CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 67 results for author: <span class="mathjax">Fangohr, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Fangohr%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fangohr, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fangohr%2C+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fangohr, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fangohr%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fangohr%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fangohr%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10466">arXiv:2412.10466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10466">pdf</a>, <a href="https://arxiv.org/format/2412.10466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Discretization anisotropy in micromagnetic simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">Samuel J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrocchi%2C+A">Andrea Petrocchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pathak%2C+S+A">Swapneel A. Pathak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10466v1-abstract-short" style="display: inline;"> Finite difference based micromagnetic simulations are a powerful tool for the computational investigation of magnetic structures. In this paper, we demonstrate how the discretization of continuous micromagnetic equations introduces a numerical &#39;discretization anisotropy&#39;. We demonstrate that, in certain scenarios, this anisotropy operates on an energy scale comparable to that of intrinsic physical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10466v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10466v1-abstract-full" style="display: none;"> Finite difference based micromagnetic simulations are a powerful tool for the computational investigation of magnetic structures. In this paper, we demonstrate how the discretization of continuous micromagnetic equations introduces a numerical &#39;discretization anisotropy&#39;. We demonstrate that, in certain scenarios, this anisotropy operates on an energy scale comparable to that of intrinsic physical phenomena. Furthermore, we illustrate that selecting appropriate finite difference stencils and minimizing the size of the discretization cells are effective strategies to mitigate discretization anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10466v1-abstract-full').style.display = 'none'; document.getElementById('2412.10466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, Supplementary Material https://gitlab.mpcdf.mpg.de/samholt/paper_discretization_anisotropy_supplementary_material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05151">arXiv:2412.05151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05151">pdf</a>, <a href="https://arxiv.org/format/2412.05151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Analysis of long-lived effects in high-repetition-rate stroboscopic transient X-ray absorption experiments on thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lojewski%2C+T">Tobias Lojewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deiter%2C+C">Carsten Deiter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F">Frank de Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+K">Karsten Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauf%2C+S">Steffen Hauf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Izquierdo%2C+M">Manuel Izquierdo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%A4mmerer%2C+L">Lea K盲mmerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B+E">Benjamin E. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomidze%2C+D">David Lomidze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maffessanti%2C+S">Stefano Maffessanti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">Laurent Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miedema%2C+P+S">Piter S. Miedema</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05151v1-abstract-short" style="display: inline;"> Time-resolved X-ray absorption spectroscopy (tr-XAS) has been shown to be a versatile measurement technique for investigating non-equilibrium dynamics. Novel X-ray free electron laser (XFEL) facilities like the European XFEL offer increased repetition rates for stroboscopic XAS experiments through a burst operation mode, which enables measurements with up to 4.5 MHz. These higher repetition rates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05151v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05151v1-abstract-full" style="display: none;"> Time-resolved X-ray absorption spectroscopy (tr-XAS) has been shown to be a versatile measurement technique for investigating non-equilibrium dynamics. Novel X-ray free electron laser (XFEL) facilities like the European XFEL offer increased repetition rates for stroboscopic XAS experiments through a burst operation mode, which enables measurements with up to 4.5 MHz. These higher repetition rates lead to higher data acquisition rates but can also introduce long-lived excitations that persist and thus build up during each burst. Here, we report on such long-lived effects in Ni and NiO thin film samples that were measured at the European XFEL. We disentangle the long-lived excitations from the initial pump-induced change and perform a detailed modelling-based analysis of how they modify transient X-ray spectra. As a result, we link the long-lived effects in Ni to a local temperature increase, as well as the effects in NiO to excited charge carrier trapping through polaron formation. In addition, we present possible correction methods, as well as discuss ways in which the effects of these long-lived excitations could be minimized for future time-resolved X-ray absorption spectroscopy measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05151v1-abstract-full').style.display = 'none'; document.getElementById('2412.05151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16064">arXiv:2406.16064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16064">pdf</a>, <a href="https://arxiv.org/format/2406.16064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad766f">10.1088/1674-1056/ad766f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MicroMagnetic.jl: A Julia package for micromagnetic and atomistic simulations with GPU support </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+B">Boyao Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+L">Lingyao Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Haifeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16064v2-abstract-short" style="display: inline;"> MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations. Using the features of the Julia programming language, MicroMagnetic.jl supports CPU and various GPU platforms, including NVIDIA, AMD, Intel, and Apple GPUs. Moreover, MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the Nudged-Elastic-Band method for energy barrier com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16064v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16064v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16064v2-abstract-full" style="display: none;"> MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations. Using the features of the Julia programming language, MicroMagnetic.jl supports CPU and various GPU platforms, including NVIDIA, AMD, Intel, and Apple GPUs. Moreover, MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the Nudged-Elastic-Band method for energy barrier computations. With built-in support for double and single precision modes and a design allowing easy extensibility to add new features, MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16064v2-abstract-full').style.display = 'none'; document.getElementById('2406.16064v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. B 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04896">arXiv:2401.04896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04896">pdf</a>, <a href="https://arxiv.org/format/2401.04896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Resolving non-equilibrium shape variations amongst millions of gold nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhou Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awel%2C+S">Salah Awel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergemann%2C+M">Martin Bergemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giewekemeyer%2C+K">Klaus Giewekemeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karnevskiy%2C+M">Mikhail Karnevskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirkwood%2C+H">Henry Kirkwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yoonhee Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koliyadu%2C+J">Jayanath Koliyadu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lange%2C+H">Holger Lange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mall%2C+A">Abhishek Mall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michelat%2C+T">Thomas Michelat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+N">Nils Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+A+K">Amit K. Samanta</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04896v1-abstract-short" style="display: inline;"> Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with x-ray free-electron lasers (XFELs) creates unprecedented opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04896v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04896v1-abstract-full" style="display: none;"> Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with x-ray free-electron lasers (XFELs) creates unprecedented opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential, three challenges have to be overcome: (1) simultaneous parametrization of structural variability in real and reciprocal spaces; (2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up comparisons between $10^5$ structural models and $10^6$ XFEL-SPI measurements. Here, we describe how we overcame these three challenges to resolve the non-equilibrium shape distributions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the degree of asymmetry in these particles, discover a relatively stable `shape envelope&#39; amongst nanoparticles, discern finite-size effects related to shape-controlling surfactants, and extrapolate nanoparticles&#39; shapes to their idealized thermodynamic limit. Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from anecdotally interesting to statistically meaningful. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04896v1-abstract-full').style.display = 'none'; document.getElementById('2401.04896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10170">arXiv:2307.10170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10170">pdf</a>, <a href="https://arxiv.org/format/2307.10170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-023-45111-5">10.1038/s41598-023-45111-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling stable Bloch points with electric currents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pathak%2C+S+A">Swapneel Amit Pathak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">Samuel J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10170v1-abstract-short" style="display: inline;"> The Bloch point is a point singularity in the magnetisation configuration, where the magnetisation vanishes. It can exist as an equilibrium configuration and plays an important role in many magnetisation reversal processes. In the present work, we focus on manipulating Bloch points in a system that can host stable Bloch points - a two-layer FeGe nanostrip with opposite chirality of the two layers.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10170v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10170v1-abstract-full" style="display: none;"> The Bloch point is a point singularity in the magnetisation configuration, where the magnetisation vanishes. It can exist as an equilibrium configuration and plays an important role in many magnetisation reversal processes. In the present work, we focus on manipulating Bloch points in a system that can host stable Bloch points - a two-layer FeGe nanostrip with opposite chirality of the two layers. We drive Bloch points using spin-transfer torques and find that Bloch points can move collectively without any Hall effect and report that Bloch points are repelled from the sample boundaries and each other. We study pinning of Bloch points at wedge-shaped constrictions (notches) in the nanostrip and demonstrate that arrays of Bloch points can be moved past a series of notches in a controlled manner by applying consecutive current pulses of different strength. Finally, we simulate a T-shaped geometry and demonstrate that a Bloch point can be moved along different paths by applying current between suitable strip ends. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10170v1-abstract-full').style.display = 'none'; document.getElementById('2307.10170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16472">arXiv:2303.16472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.16472">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coarse-graining collective skyrmion dynamics in confined geometries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Winkler%2C+T+B">Thomas Brian Winkler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%C3%B6rl%2C+J">Jan Roth枚rl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brems%2C+M+A">Maarten A. Brems</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16472v1-abstract-short" style="display: inline;"> Magnetic skyrmions are magnetic quasi-particles with enhanced stability and different manipulation mechanisms using external fields and currents making them promising candidates for future applications for instance in neuromorphic computing. Recently, several measurements and simulations have shown that thermally activated skyrmions in confined geometries, as they are necessary for device applicat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16472v1-abstract-full').style.display = 'inline'; document.getElementById('2303.16472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16472v1-abstract-full" style="display: none;"> Magnetic skyrmions are magnetic quasi-particles with enhanced stability and different manipulation mechanisms using external fields and currents making them promising candidates for future applications for instance in neuromorphic computing. Recently, several measurements and simulations have shown that thermally activated skyrmions in confined geometries, as they are necessary for device applications, arrange themselves predominantly based on commensurability effects. In this simulational study, based on the Thiele model, we investigate the enhanced dynamics and degenerate non-equilibrium steady state of a system in which the intrinsic skyrmion-skyrmion and skyrmion-boundary interaction compete with thermal fluctuations as well as current-induced spin-orbit torques. The investigated system is a triangular-shaped confinement geometry hosting four skyrmions, where we inject spin-polarized currents between two corners of the structure. We coarse-grain the skyrmion states in the system to analyze the intricacies of skyrmion arrangements of the skyrmion ensemble. In the context of neuromorphic computing, such methods address the key challenge of optimizing read-out positions in confined geometries and form the basis to understand collective skyrmion dynamics in systems with competing interactions on different scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16472v1-abstract-full').style.display = 'none'; document.getElementById('2303.16472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10091">arXiv:2303.10091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10091">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TMAG.2024.3510934">10.1109/TMAG.2024.3510934 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating Bloch points using micromagnetic and Heisenberg models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Winkler%2C+T+B">Thomas Brian Winkler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10091v2-abstract-short" style="display: inline;"> Magnetic Bloch points (BPs) are highly confined magnetization configurations, that often occur in transient spin dynamics processes. However, opposing chiralities of adjacent layers for instance in a FeGe bilayer stack can stabilize such magnetic BPs at the layer interface. These BPs configurations are metastable and consist of two coupled vortices (one in each layer) with same circularity and opp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10091v2-abstract-full').style.display = 'inline'; document.getElementById('2303.10091v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10091v2-abstract-full" style="display: none;"> Magnetic Bloch points (BPs) are highly confined magnetization configurations, that often occur in transient spin dynamics processes. However, opposing chiralities of adjacent layers for instance in a FeGe bilayer stack can stabilize such magnetic BPs at the layer interface. These BPs configurations are metastable and consist of two coupled vortices (one in each layer) with same circularity and opposite polarity. Each vortex is stabilized by opposite sign Dzyaloshinskii-Moriya interactions. This stabilization mechanism potentially opens the door towards BP-based spintronic applications. An open question, from a methodological point of view, is whether the Heisenberg (HB) model approach (atomistic model) as to be used to study such systems or if the -- computationally more efficient -- micromagnetic (MM) models can be used and still obtain robust results. We are modelling and comparing the energetics and dynamics of a stable BP obtained using both HB and MM approaches. We find that an MM description of a stable BP leads qualitatively to the same results as the HB description, and that an appropriate mesh discretization plays a more important role than the chosen model. Further, we study the dynamics by shifting the BP with an applied in-plane field and investigating the relaxation after switching the filed off abruptly. The precessional motion of coupled vortices in a BP state can be drastically reduced compared to a classical vortex, which may be also an interesting feature for fast and efficient devices. A recent study has shown that a bilayer stack hosting BPs can be used to retain information [1]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10091v2-abstract-full').style.display = 'none'; document.getElementById('2303.10091v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, in IEEE Transactions on Magnetics, 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01784">arXiv:2303.01784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.01784">pdf</a>, <a href="https://arxiv.org/format/2303.01784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1119/5.0149038">10.1119/5.0149038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical simulation projects in micromagnetics with Jupyter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lonsky%2C+M">Martin Lonsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S">Samuel Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pathak%2C+S+A">Swapneel Amit Pathak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klause%2C+R">Robin Klause</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lo%2C+T">Tzu-Hsiang Lo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+A">Axel Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01784v2-abstract-short" style="display: inline;"> We report a case study where an existing materials science course was modified to include numerical simulation projects on the micromagnetic behavior of materials. The Ubermag micromagnetic simulation software package is used in order to solve problems computationally. The simulation software is controlled through Python code in Jupyter notebooks. Our experience is that the self-paced problem-solv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01784v2-abstract-full').style.display = 'inline'; document.getElementById('2303.01784v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01784v2-abstract-full" style="display: none;"> We report a case study where an existing materials science course was modified to include numerical simulation projects on the micromagnetic behavior of materials. The Ubermag micromagnetic simulation software package is used in order to solve problems computationally. The simulation software is controlled through Python code in Jupyter notebooks. Our experience is that the self-paced problem-solving nature of the project work can facilitate a better in-depth exploration of the course contents. We discuss which aspects of the Ubermag and the project Jupyter ecosystem have been beneficial for the students&#39; learning experience and which could be transferred to similar teaching activities in other subject areas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01784v2-abstract-full').style.display = 'none'; document.getElementById('2303.01784v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main article: 9 pages; supplementary material: 24 pages. Accepted for publication in American Journal of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05711">arXiv:2211.05711</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05711">pdf</a>, <a href="https://arxiv.org/format/2211.05711">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.20.064021">10.1103/PhysRevApplied.20.064021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skyrmion automotion in confined counter-sensor device geometries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Leutner%2C+K">Kilian Leutner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winkler%2C+T+B">Thomas Brian Winkler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCttinger%2C+J">Johannes G眉ttinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05711v1-abstract-short" style="display: inline;"> Magnetic skyrmions are topologically stabilized quasi-particles and are promising candidates for energy-efficient applications, such as storage but also logic and sensing. Here we present a new concept for a multi-turn sensor-counter device based on skyrmions, where the number of sensed rotations is encoded in the number of nucleated skyrmions. The skyrmion-boundary force in the confined geometry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05711v1-abstract-full').style.display = 'inline'; document.getElementById('2211.05711v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05711v1-abstract-full" style="display: none;"> Magnetic skyrmions are topologically stabilized quasi-particles and are promising candidates for energy-efficient applications, such as storage but also logic and sensing. Here we present a new concept for a multi-turn sensor-counter device based on skyrmions, where the number of sensed rotations is encoded in the number of nucleated skyrmions. The skyrmion-boundary force in the confined geometry of the device in combination with the topology-dependent dynamics leads to the effect of automotion for certain geometries. For our case, we describe and investigate this effect with micromagnetic simulations and the coarse-grained Thiele equation in a triangular geometry with an attached reservoir as part of the sensor-counter device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05711v1-abstract-full').style.display = 'none'; document.getElementById('2211.05711v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 20 (2023) 064021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04265">arXiv:2211.04265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04265">pdf</a>, <a href="https://arxiv.org/format/2211.04265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577523000619">10.1107/S1600577523000619 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eschenlohr%2C+A">Andrea Eschenlohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beye%2C+M">Martin Beye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W">William Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carinan%2C+C">Cammille Carinan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">Uwe Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buck%2C+J">Jens Buck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Elia%2C+A">Alessandro D&#39;Elia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delitz%2C+J">Jan-Torben Delitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehsan%2C+W">Wajid Ehsan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R">Robin Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6hlisch%2C+A">Alexander F枚hlisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gensch%2C+M">Michael Gensch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04265v3-abstract-short" style="display: inline;"> Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy &amp; Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04265v3-abstract-full').style.display = 'inline'; document.getElementById('2211.04265v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04265v3-abstract-full" style="display: none;"> Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy &amp; Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04265v3-abstract-full').style.display = 'none'; document.getElementById('2211.04265v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2023). 30, 284-300 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13162">arXiv:2210.13162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13162">pdf</a>, <a href="https://arxiv.org/format/2210.13162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/21663831.2023.2210606">10.1080/21663831.2023.2210606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lojewski%2C+T">Tobias Lojewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elhanoty%2C+M+F">Mohamed F. Elhanoty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%A5n%C3%A4s%2C+O">Oscar Gr氓n盲s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=David%2C+C">Christian David</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deiter%2C+C">Carsten Deiter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F">Frank de Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+K">Karsten Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauf%2C+S">Steffen Hauf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Izquierdo%2C+M">Manuel Izquierdo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B+E">Benjamin E. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kvashnin%2C+Y">Yaroslav Kvashnin</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13162v1-abstract-short" style="display: inline;"> The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13162v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13162v1-abstract-full" style="display: none;"> The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temporal resolution in femtosecond time-resolved X-ray absorption spectroscopy with ab initio time-dependent density functional theory we analyze the electronic structure in fcc Ni on the time scale of these interactions in a pump-probe experiment. We distinguish transient broadening and energy shifts in the absorption spectra, which we demonstrate to be caused by electron repopulation and correlation-induced modifications of the electronic structure, respectively. Importantly, the theoretical description of this experimental result hence requires to take the local Coulomb interaction into account, revealing a temporal interplay between band formation, exchange interaction, and Coulomb repulsion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13162v1-abstract-full').style.display = 'none'; document.getElementById('2210.13162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Research Letters 11, 655-661 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13689">arXiv:2203.13689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.13689">pdf</a>, <a href="https://arxiv.org/format/2203.13689">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-023-33998-z">10.1038/s41598-023-33998-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bloch points in nanostrips </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13689v1-abstract-short" style="display: inline;"> Complex magnetic materials hosting topologically non-trivial particle-like objects such as skyrmions are under intensive research and could fundamentally change the way we store and process data. One important class of materials are helimagnetic materials with Dzyaloshinskii-Moriya interaction. Recently, it was demonstrated that nanodisks consisting of two layers with opposite chirality can host a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13689v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13689v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13689v1-abstract-full" style="display: none;"> Complex magnetic materials hosting topologically non-trivial particle-like objects such as skyrmions are under intensive research and could fundamentally change the way we store and process data. One important class of materials are helimagnetic materials with Dzyaloshinskii-Moriya interaction. Recently, it was demonstrated that nanodisks consisting of two layers with opposite chirality can host a single stable Bloch point of two different types at the interface between the layers. Using micromagnetic simulations we show that FeGe nanostrips consisting of two layers with opposite chirality can host multiple coexisting Bloch points in an arbitrary combination of the two different types. We show that the number of Bloch points that can simultaneously coexist depends on the strip geometry and the type of the individual Bloch points. Our simulation results allow us to predict strip geometries suitable for an arbitrary number of Bloch points. We show an example of an 80-Bloch-point configuration verifying the prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13689v1-abstract-full').style.display = 'none'; document.getElementById('2203.13689v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, and 2 pages and 3 figures supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06350">arXiv:2201.06350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06350">pdf</a>, <a href="https://arxiv.org/format/2201.06350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577522008414">10.1107/S1600577522008414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kerber%2C+N">Nico Kerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parra%2C+E+B">Erick Burgos Parra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seng%2C+B">Boris Seng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kammerbauer%2C+F">Fabian Kammerbauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+H">Horia Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neeraj%2C+K">Kumar Neeraj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+D">Debanjan Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jangid%2C+R">Rahul Jangid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovcharenko%2C+S">Sergei Ovcharenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">Diego Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ksenzov%2C+D">Dmitriy Ksenzov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pronin%2C+I">Igor Pronin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baidakova%2C+M">Marina Baidakova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmising%2C+C+v+K">Clemens von Korff Schmising</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borchert%2C+M">Martin Borchert</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06350v2-abstract-short" style="display: inline;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we presen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06350v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06350v2-abstract-full" style="display: none;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'none'; document.getElementById('2201.06350v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures. Supplementary Information as ancillary file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2022), 29 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06179">arXiv:2109.06179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06179">pdf</a>, <a href="https://arxiv.org/format/2109.06179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Unsupervised learning approaches to characterize heterogeneous samples using X-ray single particle imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Y">Yulong Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awel%2C+S">Salah Awel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergemann%2C+M">Martin Bergemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giewekemeyer%2C+K">Klaus Giewekemeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karnevskiy%2C+M">Mikhail Karnevskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirkwood%2C+H">Henry Kirkwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yoonhee Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koliyadu%2C+J">Jayanath Koliyadu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lange%2C+H">Holger Lange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mall%2C+A">Abhishek Mall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michelat%2C+T">Thomas Michelat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+N">Nils Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+A+K">Amit K. Samanta</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06179v1-abstract-short" style="display: inline;"> One of the outstanding analytical problems in X-ray single particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. We propose two methods which explicitly account for this orien&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06179v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06179v1-abstract-full" style="display: none;"> One of the outstanding analytical problems in X-ray single particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. We propose two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA) provides a rough classification which is essentially parameter-free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs) can generate 3D structures of the objects at any point in the structural landscape. We implement both these methods in combination with the noise-tolerant expand-maximize-compress (EMC) algorithm and demonstrate its utility by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern and recover both discrete structural classes as well as continuous deformations. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility to move beyond studying homogeneous sample sets and study open questions on topics such as nanocrystal growth and dynamics as well as phase transitions which have not been externally triggered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06179v1-abstract-full').style.display = 'none'; document.getElementById('2109.06179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.08355">arXiv:2105.08355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.08355">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TMAG.2021.3078896">10.1109/TMAG.2021.3078896 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ubermag: Towards more effective micromagnetic workflows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.08355v1-abstract-short" style="display: inline;"> Computational micromagnetics has become an essential tool in academia and industry to support fundamental research and the design and development of devices. Consequently, computational micromagnetics is widely used in the community, and the fraction of time researchers spend performing computational studies is growing. We focus on reducing this time by improving the interface between the numerica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08355v1-abstract-full').style.display = 'inline'; document.getElementById('2105.08355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.08355v1-abstract-full" style="display: none;"> Computational micromagnetics has become an essential tool in academia and industry to support fundamental research and the design and development of devices. Consequently, computational micromagnetics is widely used in the community, and the fraction of time researchers spend performing computational studies is growing. We focus on reducing this time by improving the interface between the numerical simulation and the researcher. We have designed and developed a human-centred research environment called Ubermag. With Ubermag, scientists can control an existing micromagnetic simulation package, such as OOMMF, from Jupyter notebooks. The complete simulation workflow, including definition, execution, and data analysis of simulation runs, can be performed within the same notebook environment. Numerical libraries, co-developed by the computational and data science community, can immediately be used for micromagnetic data analysis within this Python-based environment. By design, it is possible to extend Ubermag to drive other micromagnetic packages from the same environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08355v1-abstract-full').style.display = 'none'; document.getElementById('2105.08355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.11517">arXiv:2104.11517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.11517">pdf</a>, <a href="https://arxiv.org/format/2104.11517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaelm.2c00692">10.1021/acsaelm.2c00692 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confinement of Skyrmions in Nanoscale FeGe Device-like Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Twitchett-Harrison%2C+A+C">A. C. Twitchett-Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loudon%2C+J+C">J. C. Loudon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R+A">R. A. Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">H. Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Midgley%2C+P+A">P. A. Midgley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.11517v3-abstract-short" style="display: inline;"> Skyrmion-containing devices have been proposed as a promising solution for low energy data storage. These devices include racetrack or logic structures and require skyrmions to be confined in regions with dimensions comparable to the size of a single skyrmion. Here we examine Bloch skyrmions in FeGe device shapes using Lorentz transmission electron microscopy (LTEM) to reveal the consequences of s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11517v3-abstract-full').style.display = 'inline'; document.getElementById('2104.11517v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.11517v3-abstract-full" style="display: none;"> Skyrmion-containing devices have been proposed as a promising solution for low energy data storage. These devices include racetrack or logic structures and require skyrmions to be confined in regions with dimensions comparable to the size of a single skyrmion. Here we examine Bloch skyrmions in FeGe device shapes using Lorentz transmission electron microscopy (LTEM) to reveal the consequences of skyrmion confinement in a device-like structure. Dumbbell-shaped elements were created by focused ion beam (FIB) milling to provide regions where single skyrmions are confined adjacent to areas containing a skyrmion lattice. Simple block shapes of equivalent dimensions were also prepared to allow a direct comparison with skyrmion formation in a less complex, yet still confined, device geometry. The impact of applying a magnetic field and varying the temperature on the formation of skyrmions within the shapes was examined. This revealed that it is not just confinement within a small device structure that controls the position and number of skyrmions, but that a complex device geometry changes the skyrmion behaviour, including allowing skyrmions to form at lower applied magnetic fields than in simple shapes. This could allow methods to be developed to control both the position and number of skyrmions within device structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11517v3-abstract-full').style.display = 'none'; document.getElementById('2104.11517v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12351">arXiv:2005.12351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.12351">pdf</a>, <a href="https://arxiv.org/format/2005.12351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> fmmgen: Automatic Code Generation of Operators for Cartesian Fast Multipole and Barnes-Hut Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R+A">Ryan Alexander Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12351v1-abstract-short" style="display: inline;"> The Barnes-Hut and Fast Multipole Methods are widely utilised methods applied in order to reduce the computational cost of evaluating long range forces in $N$-body simulations. Despite this, applying existing libraries to simple problems with higher order source points, such as dipoles, is not straightforward or efficient because individual libraries are optimised towards specific problems, normal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12351v1-abstract-full').style.display = 'inline'; document.getElementById('2005.12351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12351v1-abstract-full" style="display: none;"> The Barnes-Hut and Fast Multipole Methods are widely utilised methods applied in order to reduce the computational cost of evaluating long range forces in $N$-body simulations. Despite this, applying existing libraries to simple problems with higher order source points, such as dipoles, is not straightforward or efficient because individual libraries are optimised towards specific problems, normally solving for the potential and field of a set of Coulombic particles. In this paper we detail the implementation and testing of a software package, fmmgen, in which the source code for Barnes-Hut and Fast Multipole operator functions for calculating calculate the potential, field or both from arbitrary ordered sources is easily generated through symbolic algebra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12351v1-abstract-full').style.display = 'none'; document.getElementById('2005.12351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04318">arXiv:2002.04318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04318">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5334/jors.223">10.5334/jors.223 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fidimag -- a finite difference atomistic and micromagnetic simulation package </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R+A">Ryan A. Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kluyver%2C+T">Thomas Kluyver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04318v1-abstract-short" style="display: inline;"> Fidimag is an open-source scientific code for the study of magnetic materials at the nano- or micro-scale using either atomistic or finite difference micromagnetic simulations, which are based on solving the Landau-Lifshitz-Gilbert equation. In addition, it implements simple procedures for calculating energy barriers in the magnetisation through variants of the nudged elastic band method. This com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04318v1-abstract-full').style.display = 'inline'; document.getElementById('2002.04318v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04318v1-abstract-full" style="display: none;"> Fidimag is an open-source scientific code for the study of magnetic materials at the nano- or micro-scale using either atomistic or finite difference micromagnetic simulations, which are based on solving the Landau-Lifshitz-Gilbert equation. In addition, it implements simple procedures for calculating energy barriers in the magnetisation through variants of the nudged elastic band method. This computer software has been developed with the aim of creating a simple code structure that can be readily installed, tested, and extended. An agile development approach was adopted, with a strong emphasis on automated builds and tests, and reproducibility of results. The main code and interface to specify simulations are written in Python, which allows simple and readable simulation and analysis configuration scripts. Computationally costly calculations are written in C and exposed to the Python interface as Cython extensions. Docker containers are shipped for a convenient setup experience. The code is freely available on GitHub and includes documentation and examples in the form of Jupyter notebooks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04318v1-abstract-full').style.display = 'none'; document.getElementById('2002.04318v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Open Research Software 6, 22 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.04528">arXiv:1909.04528</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.04528">pdf</a>, <a href="https://arxiv.org/format/1909.04528">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-15474-8">10.1038/s41467-020-15474-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-space imaging of confined magnetic skyrmion tubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">D. Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turnbull%2C+L+A">L. A. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gro%C3%9F%2C+F">F. Gro脽</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tr%C3%A4ger%2C+N">N. Tr盲ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurenson%2C+A">A. Laurenson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bukin%2C+N">N. Bukin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weigand%2C+M">M. Weigand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCtz%2C+G">G. Sch眉tz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+H">H. Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">R. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steadman%2C+P">P. Steadman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verezhak%2C+J+A+T">J. A. T. Verezhak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loudon%2C+J+C">J. C. Loudon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Twitchett-Harrison%2C+A+C">A. C. Twitchett-Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">O. Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">H. Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ogrin%2C+F">F. Ogrin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%A4fe%2C+J">J. Gr盲fe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.04528v2-abstract-short" style="display: inline;"> Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the sample. Study of this skyrmion tube (SkT) state is highly rele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.04528v2-abstract-full').style.display = 'inline'; document.getElementById('1909.04528v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.04528v2-abstract-full" style="display: none;"> Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the sample. Study of this skyrmion tube (SkT) state is highly relevant for investigating skyrmion metastability and for implementation in recently proposed magnonic computing. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the first real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigations into this unexplored dimension of the skyrmion spin texture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.04528v2-abstract-full').style.display = 'none'; document.getElementById('1909.04528v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 1726 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.02544">arXiv:1908.02544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.02544">pdf</a>, <a href="https://arxiv.org/format/1908.02544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.060408">10.1103/PhysRevB.101.060408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A nano-carbon route to rare earth free permanent magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moorsom%2C+T">Timothy Moorsom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alghamdi%2C+S">Shoug Alghamdi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stansill%2C+S">Sean Stansill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poli%2C+E">Emiliano Poli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teobaldi%2C+G">Gilberto Teobaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rogers%2C+M">Matt Rogers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aslam%2C+Z">Zabeada Aslam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+M">Mannan Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+B+J">Bryan J Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cespedes%2C+O">Oscar Cespedes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.02544v3-abstract-short" style="display: inline;"> High coercivity magnets are an important resource for renewable energy, electric vehicles and memory technologies. Most hard magnetic materials incorporate rare-earths such as neodymium and samarium, but the concerns about the environmental impact and supply stability of these materials is prompting research into alternatives. Here, we present a hybrid bilayer of cobalt and the nano-carbon molecul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02544v3-abstract-full').style.display = 'inline'; document.getElementById('1908.02544v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.02544v3-abstract-full" style="display: none;"> High coercivity magnets are an important resource for renewable energy, electric vehicles and memory technologies. Most hard magnetic materials incorporate rare-earths such as neodymium and samarium, but the concerns about the environmental impact and supply stability of these materials is prompting research into alternatives. Here, we present a hybrid bilayer of cobalt and the nano-carbon molecule C60 which exhibits significantly enhanced coercivity with minimal reduction in magnetisation. We demonstrate how this anisotropy enhancing effect cannot be described by existing models of molecule-metal magnetic interfaces. We outline a new form of magnetic anisotropy, arising from asymmetric magneto-electric coupling in the metal-molecule interface. Because this phenomenon arises from pi-d hybrid orbitals, we propose calling this effect pi-anisotropy. While the critical temperature of this effect is currently limited by the rotational degree of freedom of the chosen molecule, C60, we describe how surface functionalisation would allow for the design of room-temperature, carbon based hard magnetic films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02544v3-abstract-full').style.display = 'none'; document.getElementById('1908.02544v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 060408 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06999">arXiv:1901.06999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06999">pdf</a>, <a href="https://arxiv.org/format/1901.06999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.214408">10.1103/PhysRevB.99.214408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nano-scale magnetic skyrmions and target states in confined geometries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romming%2C+N">Niklas Romming</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Bergmann%2C+K">Kirsten von Bergmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubetzka%2C+A">Andr茅 Kubetzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiesendanger%2C+R">Roland Wiesendanger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06999v2-abstract-short" style="display: inline;"> Research on magnetic systems with broken inversion symmetry has been stimulated by the experimental proof of particle-like configurations known as skyrmions, whose non-trivial topological properties make them ideal candidates for spintronic technology. This class of materials enables Dzyaloshinskii-Moriya interactions (DMI) which favor the stabilization of chiral configurations. Recent advances in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06999v2-abstract-full').style.display = 'inline'; document.getElementById('1901.06999v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06999v2-abstract-full" style="display: none;"> Research on magnetic systems with broken inversion symmetry has been stimulated by the experimental proof of particle-like configurations known as skyrmions, whose non-trivial topological properties make them ideal candidates for spintronic technology. This class of materials enables Dzyaloshinskii-Moriya interactions (DMI) which favor the stabilization of chiral configurations. Recent advances in material engineering have shown that in confined geometries it is possible to stabilize skyrmionic configurations at zero field. Moreover, it has been shown that in systems based on Pd/Fe bilayers on top of Ir(111) surfaces skyrmions can be as small as a few nanometres in diameter. In this work we present scanning tunneling microscopy measurements of small Pd/Fe and Pd$_2$/Fe islands on Ir(111) that exhibit a variety of different spin textures, which can be reproduced using discrete spin simulations. These configurations include skyrmions and skyrmion-like states with extra spin rotations such as the target state, which have been of interest due to their promising dynamic properties. Furthermore, using simulations we analyze the stability of these skyrmionic textures as a function of island size, applied field and boundary conditions of the system. An understanding of the parameters and conditions affecting the stability of these magnetic structures in confined geometries is crucial for the development of energetically efficient and optimally sized skyrmion-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06999v2-abstract-full').style.display = 'none'; document.getElementById('1901.06999v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 13 figures, Supplemental Material 16 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 214408 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10772">arXiv:1808.10772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10772">pdf</a>, <a href="https://arxiv.org/ps/1808.10772">ps</a>, <a href="https://arxiv.org/format/1808.10772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-019-44462-2">10.1038/s41598-019-44462-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stable and manipulable Bloch point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R+A">Ryan A. Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atie%2C+B">Bilal Atie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Downing%2C+G">Gary Downing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kluyver%2C+T">Thomas Kluyver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10772v2-abstract-short" style="display: inline;"> The prediction of magnetic skyrmions being used to change the way we store and process data has led to materials with Dzyaloshinskii-Moriya interaction coming into the focus of intensive research. So far, studies have looked mostly at magnetic systems composed of materials with single chirality. In a search for potential future spintronic devices, combination of materials with different chirality&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10772v2-abstract-full').style.display = 'inline'; document.getElementById('1808.10772v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10772v2-abstract-full" style="display: none;"> The prediction of magnetic skyrmions being used to change the way we store and process data has led to materials with Dzyaloshinskii-Moriya interaction coming into the focus of intensive research. So far, studies have looked mostly at magnetic systems composed of materials with single chirality. In a search for potential future spintronic devices, combination of materials with different chirality into a single system may represent an important new avenue for research. Using finite element micromagnetic simulations, we study an FeGe disk with two layers of different chirality. We show that for particular thicknesses of layers, a stable Bloch point emerges at the interface between two layers. In addition, we demonstrate that the system undergoes hysteretic behaviour and that two different types of Bloch point exist. These `head-to-head&#39; and `tail-to-tail&#39; Bloch point configurations can, with the application of an external magnetic field, be switched between. Finally, by investigating the time evolution of the magnetisation field, we reveal the creation mechanism of the Bloch point. Our results introduce a stable and manipulable Bloch point to the collection of particle-like state candidates for the development of future spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10772v2-abstract-full').style.display = 'none'; document.getElementById('1808.10772v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 9, 7959 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.08333">arXiv:1806.08333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.08333">pdf</a>, <a href="https://arxiv.org/format/1806.08333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.067204">10.1103/PhysRevLett.122.067204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flat Bands, Indirect Gaps, and Unconventional Spin-Wave Behavior Induced by a Periodic Dzyaloshinskii-Moriya Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gallardo%2C+R+A">R. A. Gallardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">D. Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rold%C3%A1n-Molina%2C+A">A. Rold谩n-Molina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+F">Fusheng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Troncoso%2C+R+E">R. E. Troncoso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">K. Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">H. Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J. Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landeros%2C+P">P. Landeros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.08333v2-abstract-short" style="display: inline;"> Periodically patterned metamaterials are known for exhibiting wave properties similar to the ones observed in electronic band structures in crystal lattices. In particular, periodic ferromagnetic materials are characterized by the presence of bands and bandgaps in their spin-wave spectrum at tunable GHz frequencies. Recently, the fabrication of magnets hosting Dzyaloshinskii-Moriya interactions ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08333v2-abstract-full').style.display = 'inline'; document.getElementById('1806.08333v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.08333v2-abstract-full" style="display: none;"> Periodically patterned metamaterials are known for exhibiting wave properties similar to the ones observed in electronic band structures in crystal lattices. In particular, periodic ferromagnetic materials are characterized by the presence of bands and bandgaps in their spin-wave spectrum at tunable GHz frequencies. Recently, the fabrication of magnets hosting Dzyaloshinskii-Moriya interactions has been pursued with high interest since properties such as the stabilization of chiral spin textures and nonreciprocal spin-wave propagation emerge from this antisymmetric exchange coupling. In this context, to further engineer the magnon band structure, we propose the implementation of magnonic crystals with periodic Dzyaloshinskii-Moriya interactions, which can be obtained, for instance, via patterning of periodic arrays of heavy-metals wires on top of an ultrathin magnetic film. We demonstrate through theoretical calculations and micromagnetic simulations that such systems show an unusual evolution of the standing spin waves around the gaps in areas of the film that are in contact with the heavy-metal wires. We also predict the emergence of indirect gaps and flat bands and, effects that depend on the strength of the Dzyaloshinskii-Moriya interaction. This study opens new routes towards engineered metamaterials for spin-wave-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08333v2-abstract-full').style.display = 'none'; document.getElementById('1806.08333v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 067204 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.11174">arXiv:1803.11174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.11174">pdf</a>, <a href="https://arxiv.org/format/1803.11174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aaea1c">10.1088/1367-2630/aaea1c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nehruji%2C+V">Vanessa Nehruji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breth%2C+L">Leoni Breth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R">Ryan Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kluyver%2C+T">Thomas Kluyver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Downing%2C+G">Gary Downing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P">Peter Hatton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">Tom Lancaster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hertel%2C+R">Riccardo Hertel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.11174v1-abstract-short" style="display: inline;"> Understanding the role of the Dzyaloshinskii-Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.11174v1-abstract-full').style.display = 'inline'; document.getElementById('1803.11174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.11174v1-abstract-full" style="display: none;"> Understanding the role of the Dzyaloshinskii-Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising N茅el-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.11174v1-abstract-full').style.display = 'none'; document.getElementById('1803.11174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics, 20, 113015 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.08699">arXiv:1801.08699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.08699">pdf</a>, <a href="https://arxiv.org/format/1801.08699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LMAG.2018.2825280">10.1109/LMAG.2018.2825280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of magnetic skyrmion clusters driven by spin-polarized current with a spatially varied polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenjing Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J">Jing Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xichao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yifan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chuang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+G+P">G. P. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.08699v3-abstract-short" style="display: inline;"> Magnetic skyrmions are promising candidates for future information technology. Here, we present a micromagnetic study of isolated skyrmions and skyrmion clusters in ferromagnetic nanodisks driven by the spin-polarized current with spatially varied polarization. The current-driven skyrmion clusters can be either dynamic steady or static, depending on the spatially varied polarization profile. For t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08699v3-abstract-full').style.display = 'inline'; document.getElementById('1801.08699v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.08699v3-abstract-full" style="display: none;"> Magnetic skyrmions are promising candidates for future information technology. Here, we present a micromagnetic study of isolated skyrmions and skyrmion clusters in ferromagnetic nanodisks driven by the spin-polarized current with spatially varied polarization. The current-driven skyrmion clusters can be either dynamic steady or static, depending on the spatially varied polarization profile. For the dynamic steady state, the skyrmion cluster moves in a circle in the nanodisk, while for the static state, the skyrmion cluster is static. The frequency of the circular motion of skyrmion is also studied. Furthermore, the dependence of the skyrmion cluster dynamics on the magnetic anisotropy and Dzyaloshinskii-Moriya interaction is investigated. Our results may provide a pathway to realize magnetic skyrmion cluster based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08699v3-abstract-full').style.display = 'none'; document.getElementById('1801.08699v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Magnetics Letters 9, 3102905 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.06073">arXiv:1801.06073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.06073">pdf</a>, <a href="https://arxiv.org/format/1801.06073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Magpy: A C++ accelerated Python package for simulating magnetic nanoparticle stochastic dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Laslett%2C+O">Oliver Laslett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waters%2C+J">Jonathon Waters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.06073v2-abstract-short" style="display: inline;"> Magpy is a C++ accelerated Python package for modelling and simulating the magnetic dynamics of nano-sized particles. Nanoparticles are modelled as a system of three-dimensional macrospins and simulated with a set of coupled stochastic differential equations (the Landau-Lifshitz-Gilbert equation), which are solved numerically using explicit or implicit methods. The results of the simulations may b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06073v2-abstract-full').style.display = 'inline'; document.getElementById('1801.06073v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.06073v2-abstract-full" style="display: none;"> Magpy is a C++ accelerated Python package for modelling and simulating the magnetic dynamics of nano-sized particles. Nanoparticles are modelled as a system of three-dimensional macrospins and simulated with a set of coupled stochastic differential equations (the Landau-Lifshitz-Gilbert equation), which are solved numerically using explicit or implicit methods. The results of the simulations may be used to compute equilibrium states, the dynamic response to external magnetic fields, and heat dissipation. Magpy is built on a C++ library, which is optimised for serial execution, and exposed through a Python interface utilising an embarrassingly parallel strategy. Magpy is free, open-source, and available on github under the 3-Clause BSD License. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06073v2-abstract-full').style.display = 'none'; document.getElementById('1801.06073v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.03275">arXiv:1801.03275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.03275">pdf</a>, <a href="https://arxiv.org/format/1801.03275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5022567">10.1063/1.5022567 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skyrmion states in thin confined polygonal nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R+A">Ryan Alexander Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kluyver%2C+T">Thomas Kluyver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carey%2C+R">Rebecca Carey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vousden%2C+M">Mark Vousden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.03275v1-abstract-short" style="display: inline;"> Recent studies have demonstrated that skyrmionic states can be the ground state in thin-film FeGe disk nanostructures in the absence of a stabilising applied magnetic field. In this work, we advance this understanding by investigating to what extent this stabilisation of skyrmionic structures through confinement exists in geometries that do not match the cylindrical symmetry of the skyrmion -- suc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03275v1-abstract-full').style.display = 'inline'; document.getElementById('1801.03275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.03275v1-abstract-full" style="display: none;"> Recent studies have demonstrated that skyrmionic states can be the ground state in thin-film FeGe disk nanostructures in the absence of a stabilising applied magnetic field. In this work, we advance this understanding by investigating to what extent this stabilisation of skyrmionic structures through confinement exists in geometries that do not match the cylindrical symmetry of the skyrmion -- such as as squares and triangles. Using simulation, we show that skyrmionic states can form the ground state for a range of system sizes in both triangular and square-shaped FeGe nanostructures of $10\,\text{nm}$ thickness in the absence of an applied field. We further provide data to assist in the experimental verification of our prediction; to imitate an experiment where the system is saturated with a strong applied field before the field is removed, we compute the time evolution and show the final equilibrium configuration of magnetization fields, starting from a uniform alignment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03275v1-abstract-full').style.display = 'none'; document.getElementById('1801.03275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 123, 093903 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.03325">arXiv:1706.03325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.03325">pdf</a>, <a href="https://arxiv.org/format/1706.03325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2017.06.057">10.1016/j.jmmm.2017.06.057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absorbing boundary layers for spin wave micromagnetics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Venkat%2C+G">G. Venkat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">H. Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakar%2C+A">A. Prabhakar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.03325v1-abstract-short" style="display: inline;"> Micromagnetic simulations are used to investigate the effects of different absorbing boundary layers (ABLs) on spin waves (SWs) reflected from the edges of a magnetic nano-structure. We define the conditions that a suitable ABL must fulfill and compare the performance of abrupt, linear, polynomial and tan hyperbolic damping profiles in the ABL. We first consider normal incidence in a permalloy str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03325v1-abstract-full').style.display = 'inline'; document.getElementById('1706.03325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.03325v1-abstract-full" style="display: none;"> Micromagnetic simulations are used to investigate the effects of different absorbing boundary layers (ABLs) on spin waves (SWs) reflected from the edges of a magnetic nano-structure. We define the conditions that a suitable ABL must fulfill and compare the performance of abrupt, linear, polynomial and tan hyperbolic damping profiles in the ABL. We first consider normal incidence in a permalloy stripe and propose a transmission line model to quantify reflections and calculate the loss introduced into the stripe due to the ABL. We find that a parabolic damping profile absorbs the SW energy efficiently and has a low reflection coefficient, thus performing much better than the commonly used abrupt damping profile. We then investigated SWs that are obliquely incident at 26.6, 45 and 63.4 degrees on the edge of a yttrium-iron-garnet film. The parabolic damping profile again performs efficiently by showing a high SW energy transfer to the ABL and a low reflected SW amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03325v1-abstract-full').style.display = 'none'; document.getElementById('1706.03325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Journal of Magnetism and Magnetic Materials, 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.08959">arXiv:1703.08959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.08959">pdf</a>, <a href="https://arxiv.org/format/1703.08959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.094428">10.1103/PhysRevB.96.094428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Micromagnetic simulations of spin-torque driven magnetisation dynamics with spatially resolved spin transport and magnetisation texture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Borlenghi%2C+S">Simone Borlenghi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahani%2C+M+R">M. R. Mahani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franchin%2C+M">Matteo Franchin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delin%2C+A">Anna Delin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fransson%2C+J">Jonas Fransson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.08959v2-abstract-short" style="display: inline;"> We present a simple and fast method to simulate spin-torque driven magnetisation dynamics in nano-pillar spin-valve structures. The approach is based on the coupling between a spin transport code based on random matrix theory and a micromagnetics finite-elements software. In this way the spatial dependence of both spin transport and magnetisation dynamics is properly taken into account. Our result&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08959v2-abstract-full').style.display = 'inline'; document.getElementById('1703.08959v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.08959v2-abstract-full" style="display: none;"> We present a simple and fast method to simulate spin-torque driven magnetisation dynamics in nano-pillar spin-valve structures. The approach is based on the coupling between a spin transport code based on random matrix theory and a micromagnetics finite-elements software. In this way the spatial dependence of both spin transport and magnetisation dynamics is properly taken into account. Our results are compared with experiments. The excitation of the spin-wave modes, in- cluding the threshold current for steady state magnetisation precession and the nonlinear frequency shift of the modes are reproduced correctly. The giant magneto resistance effect and the magnetisa- tion switching also agree with experiment. The similarities with recently described spin-caloritronics devices are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08959v2-abstract-full').style.display = 'none'; document.getElementById('1703.08959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 094428 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.07079">arXiv:1611.07079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.07079">pdf</a>, <a href="https://arxiv.org/format/1611.07079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-017-03391-8">10.1038/s41598-017-03391-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal stability and topological protection of skyrmions in nanotracks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R+A">Ryan A. Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carey%2C+R">Rebecca Carey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vousden%2C+M">Mark Vousden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kluyver%2C+T">Thomas Kluyver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.07079v2-abstract-short" style="display: inline;"> Magnetic skyrmions are hailed as a potential technology for data storage and other data processing devices. However, their stability against thermal fluctuations is an open question that must be answered before skyrmion-based devices can be designed. In this work, we study paths in the energy landscape via which the transition between the skyrmion and the uniform state can occur in interfacial Dzy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07079v2-abstract-full').style.display = 'inline'; document.getElementById('1611.07079v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.07079v2-abstract-full" style="display: none;"> Magnetic skyrmions are hailed as a potential technology for data storage and other data processing devices. However, their stability against thermal fluctuations is an open question that must be answered before skyrmion-based devices can be designed. In this work, we study paths in the energy landscape via which the transition between the skyrmion and the uniform state can occur in interfacial Dzyaloshinskii-Moriya finite-sized systems. We find three mechanisms the system can take in the process of skyrmion nucleation or destruction and identify that the transition facilitated by the boundary has a significantly lower energy barrier than the other energy paths. This clearly demonstrates the lack of the skyrmion topological protection in finite-sized magnetic systems. Overall, the energy barriers of the system under investigation are too small for storage applications at room temperature, but research into device materials, geometry and design may be able to address this. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07079v2-abstract-full').style.display = 'none'; document.getElementById('1611.07079v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 7, Article number: 4060 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.01512">arXiv:1611.01512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.01512">pdf</a>, <a href="https://arxiv.org/format/1611.01512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.024430">10.1103/PhysRevB.96.024430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+C">Chenjie Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.01512v2-abstract-short" style="display: inline;"> We theoretically investigate the spin wave (magnon) excitations in a classical antiferromagnetic spin chain with easy-axis anisotropy. We obtain a Dirac-like equation by linearizing the Landau- Lifshitz-Gilbert equation in this antiferromagnetic system, in contrast to the ferromagnetic system in which a Schr枚dinger equation is derived. The Hamiltonian operator in the Dirac-like equation is a pseud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.01512v2-abstract-full').style.display = 'inline'; document.getElementById('1611.01512v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.01512v2-abstract-full" style="display: none;"> We theoretically investigate the spin wave (magnon) excitations in a classical antiferromagnetic spin chain with easy-axis anisotropy. We obtain a Dirac-like equation by linearizing the Landau- Lifshitz-Gilbert equation in this antiferromagnetic system, in contrast to the ferromagnetic system in which a Schr枚dinger equation is derived. The Hamiltonian operator in the Dirac-like equation is a pseudo-Hermitian. We compute and demonstrate the relativistic Zitterbewegung (trembling motion) in the antiferromagnetic spin chain by measuring the expectation values of the wave packet position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.01512v2-abstract-full').style.display = 'none'; document.getElementById('1611.01512v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 024430 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.04876">arXiv:1608.04876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.04876">pdf</a>, <a href="https://arxiv.org/format/1608.04876">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aa9698">10.1088/1361-648X/aa9698 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current-induced instability of domain walls in cylindrical nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhaoyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R+A">Ryan A. Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+C">Congpu Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.04876v2-abstract-short" style="display: inline;"> We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW Gaussian wave packets (spin waves) will be generated when the charge current is applied to the system suddenly. And this e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04876v2-abstract-full').style.display = 'inline'; document.getElementById('1608.04876v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.04876v2-abstract-full" style="display: none;"> We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW Gaussian wave packets (spin waves) will be generated when the charge current is applied to the system suddenly. And this effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper-velocity limit for the DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple domain walls since the instability of Gaussian wave packets will break the structure of multiple domain walls. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04876v2-abstract-full').style.display = 'none'; document.getElementById('1608.04876v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics: Condensed Matter, 30, 015801 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.05181">arXiv:1606.05181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.05181">pdf</a>, <a href="https://arxiv.org/ps/1606.05181">ps</a>, <a href="https://arxiv.org/format/1606.05181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4962726">10.1063/1.4962726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hysteresis of nanocylinders with Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Carey%2C+R">Rebecca Carey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vousden%2C+M">Mark Vousden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.05181v2-abstract-short" style="display: inline;"> The potential for application of magnetic skyrmions in high density storage devices provides a strong drive to investigate and exploit their stability and manipulability. Through a three-dimensional micromagnetic hysteresis study, we investigate the question of existence of skyrmions in cylindrical nanostructures of variable thickness. We quantify the applied field and thickness dependence of skyr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05181v2-abstract-full').style.display = 'inline'; document.getElementById('1606.05181v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.05181v2-abstract-full" style="display: none;"> The potential for application of magnetic skyrmions in high density storage devices provides a strong drive to investigate and exploit their stability and manipulability. Through a three-dimensional micromagnetic hysteresis study, we investigate the question of existence of skyrmions in cylindrical nanostructures of variable thickness. We quantify the applied field and thickness dependence of skyrmion states, and show that these states can be accessed through relevant practical hysteresis loop measurement protocols. As skyrmionic states have yet to be observed experimentally in confined helimagnetic geometries, our work opens prospects for developing viable hysteresis process-based methodologies to access and observe skyrmionic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05181v2-abstract-full').style.display = 'none'; document.getElementById('1606.05181v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 109, 122401 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.02598">arXiv:1606.02598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.02598">pdf</a>, <a href="https://arxiv.org/format/1606.02598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.144402">10.1103/PhysRevB.94.144402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topologically stable magnetization states on a spherical shell: curvature stabilized skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kravchuk%2C+V+P">Volodymyr P. Kravchuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B6%C3%9Fler%2C+U+K">Ulrich K. R枚脽ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Volkov%2C+O+M">Oleksii M. Volkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheka%2C+D+D">Denis D. Sheka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Makarov%2C+D">Denys Makarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuchs%2C+H">Hagen Fuchs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaididei%2C+Y">Yuri Gaididei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.02598v2-abstract-short" style="display: inline;"> Topologically stable structures include vortices in a wide variety of matter, such as skyrmions in ferro- and antiferromagnets, and hedgehog point defects in liquid crystals and ferromagnets. These are characterized by integer-valued topological quantum numbers. In this context, closed surfaces are a prominent subject of study as they form a link between fundamental mathematical theorems and real&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.02598v2-abstract-full').style.display = 'inline'; document.getElementById('1606.02598v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.02598v2-abstract-full" style="display: none;"> Topologically stable structures include vortices in a wide variety of matter, such as skyrmions in ferro- and antiferromagnets, and hedgehog point defects in liquid crystals and ferromagnets. These are characterized by integer-valued topological quantum numbers. In this context, closed surfaces are a prominent subject of study as they form a link between fundamental mathematical theorems and real physical systems. Here we perform an analysis on the topology and stability of equilibrium magnetization states for a thin spherical shell with easy-axis anisotropy in normal directions. Skyrmion solutions are found for a range of parameters. These magnetic skyrmions on a spherical shell have two distinct differences compared to their planar counterpart: (i) they are topologically trivial, and (ii) can be stabilized by curvature effects, even when Dzyaloshinskii-Moriya interactions are absent. Due to its specific topological nature a skyrmion on a spherical shell can be simply induced by a uniform external magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.02598v2-abstract-full').style.display = 'none'; document.getElementById('1606.02598v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 144402 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.01830">arXiv:1605.01830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.01830">pdf</a>, <a href="https://arxiv.org/ps/1605.01830">ps</a>, <a href="https://arxiv.org/format/1605.01830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.224407">10.1103/PhysRevB.94.224407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exchange-mediated, non-linear, out-of-plane magnetic field dependence of the ferromagnetic vortex gyrotropic mode frequency driven by core deformation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fried%2C+J+P">Jasper P. Fried</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostylev%2C+M">Mikhail Kostylev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metaxas%2C+P+J">Peter J. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.01830v1-abstract-short" style="display: inline;"> We have performed micromagnetic simulations of the vortex gyrotropic mode resonance in a range of disk geometries subject to spatially uniform out-of-plane magnetic fields. For disks of small lateral dimensions, we observe a drop-off in the mode&#39;s frequency for field amplitudes approaching the disk saturation field. This non-linear frequency response is shown to be associated with an increased vor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.01830v1-abstract-full').style.display = 'inline'; document.getElementById('1605.01830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.01830v1-abstract-full" style="display: none;"> We have performed micromagnetic simulations of the vortex gyrotropic mode resonance in a range of disk geometries subject to spatially uniform out-of-plane magnetic fields. For disks of small lateral dimensions, we observe a drop-off in the mode&#39;s frequency for field amplitudes approaching the disk saturation field. This non-linear frequency response is shown to be associated with an increased vortex core deformation, which results from the demagnetizing field created when the core is shifted laterally. Such deformation results in an increase in the average out-of-plane magnetization of the displaced vortex state, which through an exchange contribution, leads to a sharp decrease in the vortex stiffness coefficient. It is this decrease in the vortex stiffness coefficient which leads to the non-linear field dependence of the gyrotropic mode frequency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.01830v1-abstract-full').style.display = 'none'; document.getElementById('1605.01830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 224407 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.00524">arXiv:1605.00524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.00524">pdf</a>, <a href="https://arxiv.org/ps/1605.00524">ps</a>, <a href="https://arxiv.org/format/1605.00524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/29/3/035602">10.1088/1361-648X/29/3/035602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Q">Qingyou Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varney%2C+C+N">Christopher N. Varney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babaev%2C+E">Egor Babaev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.00524v2-abstract-short" style="display: inline;"> It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.00524v2-abstract-full').style.display = 'inline'; document.getElementById('1605.00524v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.00524v2-abstract-full" style="display: none;"> It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.00524v2-abstract-full').style.display = 'none'; document.getElementById('1605.00524v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Physics.: Condens. Matter 29, 035602 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.08347">arXiv:1604.08347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.08347">pdf</a>, <a href="https://arxiv.org/format/1604.08347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.014433">10.1103/PhysRevB.95.014433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of skyrmionic states in confined helimagnetic nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carey%2C+R">Rebecca Carey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vousden%2C+M">Mark Vousden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciccarelli%2C+C">Chiara Ciccarelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spencer%2C+C+S">Charles S. Spencer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.08347v2-abstract-short" style="display: inline;"> In confined helimagnetic nanostructures, skyrmionic states in the form of incomplete and isolated skyrmion states can emerge as the ground state in absence of both external magnetic field and magnetocrystalline anisotropy. In this work, we study the dynamic properties (resonance frequencies and corresponding eigenmodes) of skyrmionic states in thin film FeGe disk samples. We employ two different m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08347v2-abstract-full').style.display = 'inline'; document.getElementById('1604.08347v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.08347v2-abstract-full" style="display: none;"> In confined helimagnetic nanostructures, skyrmionic states in the form of incomplete and isolated skyrmion states can emerge as the ground state in absence of both external magnetic field and magnetocrystalline anisotropy. In this work, we study the dynamic properties (resonance frequencies and corresponding eigenmodes) of skyrmionic states in thin film FeGe disk samples. We employ two different methods in finite-element based micromagnetic simulation: eigenvalue and ringdown method. The eigenvalue method allows us to identify all resonance frequencies and corresponding eigenmodes that can exist in the simulated system. However, using a particular experimentally feasible excitation can excite only a limited set of eigenmodes. Because of that, we perform ringdown simulations that resemble the experimental setup using both in-plane and out-of-plane excitations. In addition, we report the nonlinear dependence of resonance frequencies on the external magnetic bias field and disk sample diameter and discuss the possible reversal mode of skyrmionic states. We compare the power spectral densities of incomplete skyrmion and isolated skyrmion states and observe several key differences that can contribute to the experimental identification of the state present in the sample. We measure the FeGe Gilbert damping, and using its value we determine what eigenmodes can be expected to be observed in experiments. Finally, we show that neglecting the demagnetisation energy contribution or ignoring the magnetisation variation in the out-of-film direction - although not changing the eigenmode&#39;s magnetisation dynamics significantly - changes their resonance frequencies substantially. Apart from contributing to the understanding of skyrmionic states physics, this systematic work can be used as a guide for the experimental identification of skyrmionic states in confined helimagnetic nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08347v2-abstract-full').style.display = 'none'; document.getElementById('1604.08347v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">manuscript: 17 pages, 9 figures; supplementary information: 10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 95, 014433 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.07277">arXiv:1604.07277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.07277">pdf</a>, <a href="https://arxiv.org/format/1604.07277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0957-4484/27/45/455502">10.1088/0957-4484/27/45/455502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frequency-based nanoparticle sensing over large field ranges using the ferromagnetic resonances of a magnetic nanodisc </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshenko%2C+D">Dmitri Chernyshenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carey%2C+R+L">Rebecca L. Carey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metaxas%2C+P+J">Peter J. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.07277v2-abstract-short" style="display: inline;"> Using finite element micromagnetic simulations, we study how resonant magnetisation dynamics in thin magnetic discs with perpendicular anisotropy are influenced by magnetostatic coupling to a magnetic nanoparticle. We identify resonant modes within the disc using direct magnetic eigenmode calculations and study how their frequencies and profiles are changed by the nanoparticle&#39;s stray magnetic fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07277v2-abstract-full').style.display = 'inline'; document.getElementById('1604.07277v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.07277v2-abstract-full" style="display: none;"> Using finite element micromagnetic simulations, we study how resonant magnetisation dynamics in thin magnetic discs with perpendicular anisotropy are influenced by magnetostatic coupling to a magnetic nanoparticle. We identify resonant modes within the disc using direct magnetic eigenmode calculations and study how their frequencies and profiles are changed by the nanoparticle&#39;s stray magnetic field. We demonstrate that particles can generate shifts in the resonant frequency of the disc&#39;s fundamental mode which exceed resonance linewidths in recently studied spin torque oscillator devices. Importantly, it is shown that the simulated shifts can be maintained over large field ranges (here up to 1T). This is because the resonant dynamics (the basis of nanoparticle detection here) respond directly to the nanoparticle stray field, i.e. detection does not rely on nanoparticle-induced changes to the magnetic ground state of the disk. A consequence of this is that in the case of small disc-particle separations, sensitivities to the particle are highly mode- and particle-position-dependent, with frequency shifts being maximised when the intense stray field localised directly beneath the particle can act on a large proportion of the disc&#39;s spins that are undergoing high amplitude precession. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07277v2-abstract-full').style.display = 'none'; document.getElementById('1604.07277v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures. Updated version from 31.7.2016 includes minor changes in introduction and sections III.C and III.D (additional information linking the results to real-world bio-sensing devices)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanotechnology, 27, 455502 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.05835">arXiv:1604.05835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.05835">pdf</a>, <a href="https://arxiv.org/format/1604.05835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.6.044005">10.1103/PhysRevApplied.6.044005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonance-based Detection of Magnetic Nanoparticles and Microbeads Using Nanopatterned Ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sushruth%2C+M">Manu Sushruth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Junjia Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duczynski%2C+J">Jeremy Duczynski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woodward%2C+R+C">Robert C. Woodward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Begley%2C+R">Ryan Begley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuller%2C+R+O">Rebecca O. Fuller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adeyeye%2C+A+O">Adekunle O. Adeyeye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostylev%2C+M">Mikhail Kostylev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metaxas%2C+P+J">Peter J. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.05835v1-abstract-short" style="display: inline;"> Biosensing with ferromagnet-based magnetoresistive devices has been dominated by electrical detection of particle-induced changes to the devices&#39; static magnetic configuration. There are however potential advantages to be gained from using field dependent, high frequency magnetization dynamics for magnetic particle detection. Here we demonstrate the use of nano-confined ferromagnetic resonances in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05835v1-abstract-full').style.display = 'inline'; document.getElementById('1604.05835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.05835v1-abstract-full" style="display: none;"> Biosensing with ferromagnet-based magnetoresistive devices has been dominated by electrical detection of particle-induced changes to the devices&#39; static magnetic configuration. There are however potential advantages to be gained from using field dependent, high frequency magnetization dynamics for magnetic particle detection. Here we demonstrate the use of nano-confined ferromagnetic resonances in periodically patterned magnetic films for the detection of adsorbed magnetic particles with diameters ranging from 6 nm to 4 $渭$m. The nanopatterned films contain arrays of holes which can act as preferential adsorption sites for small particles. Hole-localized particles act in unison to shift the resonant frequencies of the various modes of the patterned layer with shift polarities determined by the localization of each mode within the nanopattern&#39;s repeating unit cell. The same polarity shifts are observed for a large range of coverages, even when hole-localized particles are covered by quasi-continuous particle sheets. For large particles however, preferential adsorption no longer occurs, leading to resonance shifts with polarities which are independent of the mode localization. Analogous shifts are seen in continuous layers where, for small particles, the shift of the layer&#39;s fundamental mode is typically about 10 times less than in patterned systems and induced by relatively weak fields emanating beyond the particle in the direction of the static applied field. This highlights the importance of having confined modes consistently positioned with respect to nearby particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05835v1-abstract-full').style.display = 'none'; document.getElementById('1604.05835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 6, 044005 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.05419">arXiv:1603.05419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.05419">pdf</a>, <a href="https://arxiv.org/format/1603.05419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2016.08.009">10.1016/j.jmmm.2016.08.009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+A">Alexander Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ashton%2C+G">Gregory Ashton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshenko%2C+D">Dmitri Chernyshenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franchin%2C+M">Matteo Franchin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C+L">Chun Lian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stamps%2C+R">Robert Stamps</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.05419v1-abstract-short" style="display: inline;"> Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05419v1-abstract-full').style.display = 'inline'; document.getElementById('1603.05419v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.05419v1-abstract-full" style="display: none;"> Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with \textsf{OOMMF} and \textsf{Nmag} simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05419v1-abstract-full').style.display = 'none'; document.getElementById('1603.05419v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Magnetism and Magnetic Materials 421, 428 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.02064">arXiv:1602.02064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.02064">pdf</a>, <a href="https://arxiv.org/format/1602.02064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4945262">10.1063/1.4945262 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skyrmions in thin films with easy-plane magnetocrystalline anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vousden%2C+M">Mark Vousden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carey%2C+R">Rebecca Carey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshenko%2C+D">Dmitri Chernyshenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">Ondrej Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.02064v2-abstract-short" style="display: inline;"> We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our observations contradict results from prior analytical work, but are compatible with recent experimental investigations. The size of the observed skyrmi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02064v2-abstract-full').style.display = 'inline'; document.getElementById('1602.02064v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.02064v2-abstract-full" style="display: none;"> We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our observations contradict results from prior analytical work, but are compatible with recent experimental investigations. The size of the observed skyrmions increases with the easy-plane magnetocrystalline anisotropy. We use a full micromagnetic model including demagnetization and a three-dimensional geometry to find local energy minimum (metastable) magnetization configurations using numerical damped time integration. We explore the phase space of the system and start simulations from a variety of initial magnetization configurations to present a systematic overview of anisotropy and magnetic field parameters for which skyrmions are metastable and global energy minimum (stable) states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02064v2-abstract-full').style.display = 'none'; document.getElementById('1602.02064v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 108, 132406 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.01478">arXiv:1508.01478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.01478">pdf</a>, <a href="https://arxiv.org/format/1508.01478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.054430">10.1103/PhysRevB.92.054430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phenomenological description of the nonlocal magnetization relaxation in magnonics, spintronics, and domain-wall dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dvornik%2C+M">Mykola Dvornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshenko%2C+D">Dmitri Chernyshenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vansteenkiste%2C+A">Arne Vansteenkiste</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waeyenberge%2C+B+V">Bartel V. Waeyenberge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuchko%2C+A+N">Andriy N. Kuchko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kruglyak%2C+V+V">Volodymyr V. Kruglyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.01478v1-abstract-short" style="display: inline;"> A phenomenological equation called Landau-Lifshitz-Baryakhtar (LLBar) equation, which could be viewed as the combination of Landau-Lifshitz (LL) equation and an extra &#34;exchange damping&#34; term, was derived by Baryakhtar using Onsager&#39;s relations. We interpret the origin of this &#34;exchange damping&#34; as nonlocal damping by linking it to the spin current pumping. The LLBar equation is investigated numeri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.01478v1-abstract-full').style.display = 'inline'; document.getElementById('1508.01478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.01478v1-abstract-full" style="display: none;"> A phenomenological equation called Landau-Lifshitz-Baryakhtar (LLBar) equation, which could be viewed as the combination of Landau-Lifshitz (LL) equation and an extra &#34;exchange damping&#34; term, was derived by Baryakhtar using Onsager&#39;s relations. We interpret the origin of this &#34;exchange damping&#34; as nonlocal damping by linking it to the spin current pumping. The LLBar equation is investigated numerically and analytically for the spin wave decay and domain wall motion. Our results show that the lifetime and propagation length of short-wavelength magnons in the presence of nonlocal damping could be much smaller than those given by LL equation. Furthermore, we find that both the domain wall mobility and the Walker breakdown field are strongly influenced by the nonlocal damping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.01478v1-abstract-full').style.display = 'none'; document.getElementById('1508.01478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 92, 054430 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.00445">arXiv:1505.00445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.00445">pdf</a>, <a href="https://arxiv.org/format/1505.00445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.020403">10.1103/PhysRevB.92.020403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Driving magnetic skyrmions with microwave fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuch%2C+W">Wolfgang Kuch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.00445v2-abstract-short" style="display: inline;"> We show theoretically by numerically solving the Landau-Lifshitz-Gilbert equation with a classical spin model on a two-dimensional system that both magnetic skyrmions and skyrmion lattices can be moved with microwave magnetic fields. The mechanism is enabled by breaking the axial symmetry of the skyrmion, for example through application of a static in-plane external field. The net velocity of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00445v2-abstract-full').style.display = 'inline'; document.getElementById('1505.00445v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.00445v2-abstract-full" style="display: none;"> We show theoretically by numerically solving the Landau-Lifshitz-Gilbert equation with a classical spin model on a two-dimensional system that both magnetic skyrmions and skyrmion lattices can be moved with microwave magnetic fields. The mechanism is enabled by breaking the axial symmetry of the skyrmion, for example through application of a static in-plane external field. The net velocity of the skyrmion depends on the frequency and amplitude of the microwave fields as well as the strength of the in-plane field. The maximum velocity is found where the frequency of the microwave coincides with the resonance frequency of the breathing mode of the skyrmions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00445v2-abstract-full').style.display = 'none'; document.getElementById('1505.00445v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 020403 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.02869">arXiv:1503.02869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.02869">pdf</a>, <a href="https://arxiv.org/format/1503.02869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4914496">10.1063/1.4914496 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuch%2C+W">Wolfgang Kuch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.02869v1-abstract-short" style="display: inline;"> The nonlinear dynamic behavior of a magnetic skyrmion in circular nanodots was studied numerically by solving the Landau-Lifshitz-Gilbert equation with a classical spin model. We show that a skyrmion core reversal can be achieved within nanoseconds using a perpendicular oscillating magnetic field. Two symmetric switching processes that correspond to excitations of the breathing mode and the mixed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02869v1-abstract-full').style.display = 'inline'; document.getElementById('1503.02869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.02869v1-abstract-full" style="display: none;"> The nonlinear dynamic behavior of a magnetic skyrmion in circular nanodots was studied numerically by solving the Landau-Lifshitz-Gilbert equation with a classical spin model. We show that a skyrmion core reversal can be achieved within nanoseconds using a perpendicular oscillating magnetic field. Two symmetric switching processes that correspond to excitations of the breathing mode and the mixed mode (combination of the breathing mode and a radial spin-wave mode) are identified. For excitation of the breathing mode, the skyrmion core switches through nucleation of a new core from a transient uniform state. In the mixed mode, the skyrmion core reverses with the help of spins excited both at the edge and core regions. Unlike the magnetic vortex core reversal, the excitation of radial spin waves does not dominate the skyrmion core reversal process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02869v1-abstract-full').style.display = 'none'; document.getElementById('1503.02869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 106, 102401 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.01171">arXiv:1501.01171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.01171">pdf</a>, <a href="https://arxiv.org/format/1501.01171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4922392">10.1063/1.4922392 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensing magnetic nanoparticles using nano-confined ferromagnetic resonances in a magnonic crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Metaxas%2C+P">Peter Metaxas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sushruth%2C+M">Manu Sushruth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Begley%2C+R">Ryan Begley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Junjia Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woodward%2C+R">Robert Woodward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maksymov%2C+I">Ivan Maksymov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adeyeye%2C+A">Adekunle Adeyeye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostylev%2C+M">Mikhail Kostylev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.01171v1-abstract-short" style="display: inline;"> We demonstrate the use of the magnetic-field-dependence of highly spatially confined, GHz-frequency ferromagnetic resonances in a ferromagnetic nanostructure for the detection of adsorbed magnetic nanoparticles. This is achieved in a large area magnonic crystal consisting of a thin ferromagnetic film containing a periodic array of closely spaced, nano-scale anti-dots. Stray fields from nanoparticl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01171v1-abstract-full').style.display = 'inline'; document.getElementById('1501.01171v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.01171v1-abstract-full" style="display: none;"> We demonstrate the use of the magnetic-field-dependence of highly spatially confined, GHz-frequency ferromagnetic resonances in a ferromagnetic nanostructure for the detection of adsorbed magnetic nanoparticles. This is achieved in a large area magnonic crystal consisting of a thin ferromagnetic film containing a periodic array of closely spaced, nano-scale anti-dots. Stray fields from nanoparticles within the anti-dots modify resonant dynamic magnetisation modes in the surrounding magnonic crystal, generating easily measurable resonance peak shifts. The shifts are comparable to the resonance linewidths for high anti-dot filling fractions with their signs and magnitudes dependent upon the modes&#39; localisations (in agreement with micromagnetic simulation results). This is a highly encouraging result for the development of frequency-based nanoparticle detectors for high speed nano-scale biosensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01171v1-abstract-full').style.display = 'none'; document.getElementById('1501.01171v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 106, 232406 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.4502">arXiv:1411.4502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.4502">pdf</a>, <a href="https://arxiv.org/ps/1411.4502">ps</a>, <a href="https://arxiv.org/format/1411.4502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.054414">10.1103/PhysRevB.93.054414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant translational, breathing and twisting modes of pinned transverse magnetic domain walls </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Metaxas%2C+P+J">Peter J. Metaxas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lequeux%2C+S">Steven Lequeux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grollier%2C+J">Julie Grollier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortolotti%2C+P">Paolo Bortolotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anane%2C+A">Abdelmadjid Anane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.4502v2-abstract-short" style="display: inline;"> We study translational, breathing and twisting resonant modes of transverse magnetic domain walls pinned at notches in ferromagnetic nanostrips. We demonstrate that a mode&#39;s sensitivity to notches depends strongly on the characteristics of that particular resonance. For example, the frequencies of modes involving lateral motion of the wall are the ones which are most sensitive to changes in the no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.4502v2-abstract-full').style.display = 'inline'; document.getElementById('1411.4502v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.4502v2-abstract-full" style="display: none;"> We study translational, breathing and twisting resonant modes of transverse magnetic domain walls pinned at notches in ferromagnetic nanostrips. We demonstrate that a mode&#39;s sensitivity to notches depends strongly on the characteristics of that particular resonance. For example, the frequencies of modes involving lateral motion of the wall are the ones which are most sensitive to changes in the notch intrusion depth (especially at the narrower, more strongly confined end of the domain wall). In contrast, the breathing mode, whose dynamics are concentrated away from the notches is relatively insensitive to changes in the notches&#39; sizes. We also demonstrate a sharp drop in the translational mode&#39;s frequency towards zero when approaching depinning which is found, using a harmonic oscillator model, to be consistent with a reduction in the local slope of the notch-induced confining potential at its edge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.4502v2-abstract-full').style.display = 'none'; document.getElementById('1411.4502v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, additional data and analysis</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 054414 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.2421">arXiv:1409.2421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.2421">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4896027">10.1063/1.4896027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic control of spin wave spectra using spin-polarized currents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huaiwu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+X">Xiaoli Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+F">Feiming Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zhiyong Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.2421v2-abstract-short" style="display: inline;"> We describe a method of controlling the spin wave spectra dynamically in a uniform nanostripe waveguide through spin-polarized currents. A stable periodic magnetization structure is observed when the current flows vertically through the center of nanostripe waveguide. After being excited, the spin wave is transmitted at the sides of the waveguide. Numerical simulations of spin-wave transmission an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.2421v2-abstract-full').style.display = 'inline'; document.getElementById('1409.2421v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.2421v2-abstract-full" style="display: none;"> We describe a method of controlling the spin wave spectra dynamically in a uniform nanostripe waveguide through spin-polarized currents. A stable periodic magnetization structure is observed when the current flows vertically through the center of nanostripe waveguide. After being excited, the spin wave is transmitted at the sides of the waveguide. Numerical simulations of spin-wave transmission and dispersion curves reveal a single, pronounced band gap. Moreover, the periodic magnetization structure can be turned on and off by the spin-polarized current. The switching process from full rejection to full transmission takes place within less than 3ns. Thus, this type magnonic waveguide can be utilized for low-dissipation spin wave based filters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.2421v2-abstract-full').style.display = 'none'; document.getElementById('1409.2421v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, submitted to APL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.5997">arXiv:1406.5997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.5997">pdf</a>, <a href="https://arxiv.org/format/1406.5997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.087203">10.1103/PhysRevLett.114.087203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albert%2C+M">Maximilian Albert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisotti%2C+M">Marc-Antonio Bisotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshenko%2C+D">Dmitri Chernyshenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">David Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawke%2C+I">Ian Hawke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.5997v2-abstract-short" style="display: inline;"> We study domain wall (DW) motion induced by spin waves (magnons) in the presence of Dzyaloshinskii-Moriya interaction (DMI). The DMI exerts a torque on the DW when spin waves pass through the DW, and this torque represents a linear momentum exchange between the spin wave and the DW. Unlike angular momentum exchange between the DW and spin waves, linear momentum exchange leads to a rotation of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5997v2-abstract-full').style.display = 'inline'; document.getElementById('1406.5997v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.5997v2-abstract-full" style="display: none;"> We study domain wall (DW) motion induced by spin waves (magnons) in the presence of Dzyaloshinskii-Moriya interaction (DMI). The DMI exerts a torque on the DW when spin waves pass through the DW, and this torque represents a linear momentum exchange between the spin wave and the DW. Unlike angular momentum exchange between the DW and spin waves, linear momentum exchange leads to a rotation of the DW plane rather than a linear motion. In the presence of an effective easy plane anisotropy, this DMI induced linear momentum transfer mechanism is significantly more efficient than angular momentum transfer in moving the DW. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5997v2-abstract-full').style.display = 'none'; document.getElementById('1406.5997v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 087203 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.4615">arXiv:1405.4615</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Mesh Size and Damped Edge Effects in Micromagnetic Spin Wave Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Venkat%2C+G">G. Venkat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franchin%2C+M">M. Franchin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">H. Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakar%2C+A">A. Prabhakar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.4615v2-abstract-short" style="display: inline;"> We have studied the dependence of spin wave dispersion on the characteristics of the mesh used in a finite element micromagnetic simulation. It is shown that the dispersion curve has a cut off at a frequency which is analytically predictable. The frequency depends on the average mesh length used for the simulation. Based on this, a recipe to effectively obtain the dispersion relation has been sugg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4615v2-abstract-full').style.display = 'inline'; document.getElementById('1405.4615v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.4615v2-abstract-full" style="display: none;"> We have studied the dependence of spin wave dispersion on the characteristics of the mesh used in a finite element micromagnetic simulation. It is shown that the dispersion curve has a cut off at a frequency which is analytically predictable. The frequency depends on the average mesh length used for the simulation. Based on this, a recipe to effectively obtain the dispersion relation has been suggested. In a separate study, spin wave reflections are absorbed by introducing highly damped edges in the device. However, an abrupt change in the damping parameter causes reflections. We compare damping profiles and identify an exponential damping profile as causing significantly less reflections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4615v2-abstract-full').style.display = 'none'; document.getElementById('1405.4615v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been withdrawn by the authors as the work has further scope for improvement. We look forward to a re-submission after boosting the quality of the study</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.4305">arXiv:1404.4305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.4305">pdf</a>, <a href="https://arxiv.org/ps/1404.4305">ps</a>, <a href="https://arxiv.org/format/1404.4305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.020509">10.1103/PhysRevB.90.020509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Honeycomb, square, and kagom茅 vortex lattices in superconducting systems with multi-scale inter-vortex interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Q">Qingyou Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varney%2C+C+N">Christopher N. Varney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babaev%2C+E">Egor Babaev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.4305v2-abstract-short" style="display: inline;"> The recent proposal of Romero-Isart {\em et al.}~\cite{romero-isart_superconducting_2013} to utilize the vortex lattice phases of superconducting materials to prepare a lattice for ultra-cold atoms-based quantum emulators, raises the need to create and control vortex lattices of different symmetries. Here we propose a mechanism by which honeycomb, hexagonal, square, and kagom茅 vortex lattices coul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.4305v2-abstract-full').style.display = 'inline'; document.getElementById('1404.4305v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.4305v2-abstract-full" style="display: none;"> The recent proposal of Romero-Isart {\em et al.}~\cite{romero-isart_superconducting_2013} to utilize the vortex lattice phases of superconducting materials to prepare a lattice for ultra-cold atoms-based quantum emulators, raises the need to create and control vortex lattices of different symmetries. Here we propose a mechanism by which honeycomb, hexagonal, square, and kagom茅 vortex lattices could be created in superconducting systems with multi-scale inter-vortex interaction. Multiple scales of the inter-vortex interaction can be created and controlled in layered systems made of different superconducting material or with differing interlayer spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.4305v2-abstract-full').style.display = 'none'; document.getElementById('1404.4305v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 020509(R) (2014) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fangohr%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fangohr%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fangohr%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10