CINXE.COM

All Glossary Items - MacTutor History of Mathematics

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no" /> <link rel="icon" href="../static/img/favicon.gif" /> <title> All Glossary Items - MacTutor History of Mathematics </title> <!-- Bootstrap CSS --> <link rel="stylesheet" href="../static/css/bootstrap.min.css?h=8de02d92" /> <!-- Custom CSS - must be in this order --> <link rel="stylesheet" href="../static/css/lato.css?h=cc1e7b16" /> <link rel="stylesheet" href="../static/css/reset.css?h=d363f773" /> <link rel="stylesheet" href="../static/css/custom.css?h=af6c60f9" /> <link rel="stylesheet" href="../static/css/site.css?h=009079dc" /> <link rel="stylesheet" href="../static/css/content.css?h=469c9b2b" /> <link rel="stylesheet" href="../static/katex/katex.min.css?h=607b2673" /> <link rel="stylesheet" href="../static/css/tooltip.css?h=8bb1ae34" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css" /> <!-- Switch design skin --> <link id="new-theme-style" rel="stylesheet" /> <!-- opposite of noscript --> <noscript> <style> .nonoscript { display: none; } </style> </noscript> </head> <body> <div class="container"> <!--noindex--> <!-- HEADER --> <header class="site-header py-3 position-relative"> <!-- skip link for accessibility --> <a class="skip-link" href="#main">Skip to content</a> <div class="row flex-nowrap justify-content-between align-items-center"> <div class="col pt-1"> <a class="site-header-name text-decoration-none" href="../" > <h1 class="site-header-name"> <img height="48" src="../static/img/logo.png" alt="MacTutor logo" />&nbsp;MacTutor </h1> </a> </div> </div> <!-- <a href="javascript:void()" class="row justify-content-end small pr-4" id="theme-toggler" onclick="toggleTheme()" > <i class="fa" style="width: min-content">&#xf1fc;</i> </a> --> </header> <!-- END HEADER --> <!-- NAVIGATION --> <div class="container nav-bar" role="navigation"> <div class="row nav"> <a class="col-md-auto p-2" href="../">Home</a> <a class="col-md-auto p-2" href="../Biographies/">Biographies</a> <a class="col-md-auto p-2" href="../HistTopics/">History Topics</a> <a class="col-md-auto p-2" href="../Map/">Map</a> <a class="col-md-auto p-2" href="../Curves/">Curves</a> <a class="col-md-auto p-2" href="../Search/">Search</a> </div> </div> <!-- END NAVIGATION --> <!--endnoindex--> <main id="main"> <div class="row"> <div class="col-md-12"> <h1>Glossary</h1> </div> </div> <div class="row"> <div class="col-md-12"> <a name="abacus"> <h3>abacus</h3> </a> <p><span class="markup">An <em>abacus</em> is a calculating device based on either beads sliding on wires or balls or stones in grooves.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="abelian_function"> <h3>abelian or hyperelliptic function</h3> </a> <p><span class="markup">An <em>abelian or hyperelliptic function</em> is a generalisation of an <a class="gllink" data-popup="elliptic_function/" href="#elliptic_function">elliptic function</a>. It is a function of two variables with four periods. <br/> In a similar way to an <a class="gllink" data-popup="elliptic_function/" href="#elliptic_function">elliptic function</a> it can also be regarded as the inverse function to certain integrals <span class="non-italic">(</span>called <em>abelian</em> or <em>hyperelliptic integrals</em><span class="non-italic">)</span> of the form <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle mathsize="1.2em"><mrow><mo>∫</mo><mfrac><mrow><mi>d</mi><mi>z</mi></mrow><msqrt><mrow><mi>R</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></msqrt></mfrac></mrow></mstyle></mrow><annotation encoding="application/x-tex">\large{\int \frac{dz}{\sqrt{R(z)}}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.965609142857143em;vertical-align:-0.937257142857143em;"></span><span class="mord sizing reset-size6 size7"><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0005599999999999772em;">∫</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter sizing reset-size7 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85696em;"><span style="top:-2.49872619047619em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0369107142857144em;"><span class="svg-align" style="top:-3.428571428571429em;"><span class="pstrut" style="height:3.428571428571429em;"></span><span class="mord mtight" style="padding-left:1.19em;"><span class="mord mathdefault mtight" style="margin-right:0.00773em;">R</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.04398em;">z</span><span class="mclose mtight">)</span></span></span><span style="top:-3.0089107142857143em;"><span class="pstrut" style="height:3.428571428571429em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.5428571428571431em;"><svg width='400em' height='1.5428571428571431em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4196607142857143em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">d</span><span class="mord mathdefault mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7810476190476192em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size7 size6"></span></span></span></span></span></span></span> where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.00773em;">R</span></span></span></span></span> is a polynomial of degree <em>greater than</em> <span class="non-italic">4</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="abelian_group"> <h3>abelian group</h3> </a> <p><span class="markup">An <em>abelian group</em> is a <a class="gllink" data-popup="group/" href="#group">group</a> in which the group operation is commutative. i.e. it satisfies <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mi mathvariant="normal">.</mi><mi>b</mi><mo>=</mo><mi>b</mi><mi mathvariant="normal">.</mi><mi>a</mi></mrow><annotation encoding="application/x-tex">a.b = b.a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord">.</span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mord">.</span><span class="mord mathdefault">a</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="abitur"> <h3>abitur</h3> </a> <p><span class="markup">The <em>abitur</em> is the set of examinations taken in the final year of the <a class="gllink" data-popup="gymnasium/" href="#gymnasium">gymnasium</a> or secondary school in Germany.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="abundant_number"> <h3>abundant number</h3> </a> <p><span class="markup">An <em>abundant number</em> is an integer for which the sum of its proper divisors is greater than the number itself. <br/> <br/> For example, the proper divisors of <span class="non-italic">12</span> are <span class="non-italic">1</span>, <span class="non-italic">2</span>, <span class="non-italic">3</span>, <span class="non-italic">4</span>, <span class="non-italic">6</span> which sum to <span class="non-italic">16</span>. <br/> See also: <a class="gllink" data-popup="perfect_number/" href="#perfect_number">perfect number</a>, <a class="gllink" data-popup="deficient_number/" href="#deficient_number">deficient number</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="agregation"> <h3>agrégation</h3> </a> <p><span class="markup">The <em>agrégation</em> is a competitive examination in France which allows the holder to teach in lycées or colleges.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="alexander_the_great"> <h3>Alexander the Great</h3> </a> <p><span class="markup">Alexander the Great or Alexander III <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">356</span> BC in Pella in Macedonia, <strong>died:</strong> <span class="non-italic">323</span> BC in Babylon<span class="non-italic">)</span> was a King of Macedonia who conquered the Persian Empire.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="algebra"> <h3>algebra</h3> </a> <p><span class="markup">An <em>algebra</em> is a set which is both a <a class="gllink" data-popup="ring/" href="#ring">ring</a> and a <a class="gllink" data-popup="vector_space/" href="#vector_space">vector space</a> satisfying, of course various special properties or axioms.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="algebraic_geometry"> <h3>algebraic geometry</h3> </a> <p><span class="markup"><em>Algebraic geometry</em> studies curves, surfaces and their higher dimensional equivalents defined by systems of polynomial equations and relates their properties to the algebraic properties of the polynomial rings that they determine.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="algebraic_number"> <h3>algebraic number</h3> </a> <p><span class="markup">An <em>algebraic number</em> is a real number which is the root of a polynomial equation with integer <span class="non-italic">(</span>or <a class="gllink" data-popup="rational/" href="#rational">rational</a><span class="non-italic">)</span> coefficients. <br/> <br/> For example, √<span class="non-italic">2</span> is a root of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">x^{2} = 2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">2</span></span></span></span></span> and so is algebraic.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="algebraic_number_field"> <h3>algebraic number field</h3> </a> <p><span class="markup">An <em>algebraic number field</em> is a subfield of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> which contains the rational numbers <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">Q</mi></mrow><annotation encoding="application/x-tex">\mathbb{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85556em;vertical-align:-0.16667em;"></span><span class="mord"><span class="mord mathbb">Q</span></span></span></span></span></span> as well as the roots of some polynomial with rational coefficients. <br/> For example, the field written <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">Q</mi></mrow><annotation encoding="application/x-tex">\mathbb{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85556em;vertical-align:-0.16667em;"></span><span class="mord"><span class="mord mathbb">Q</span></span></span></span></span></span> <span class="non-italic">(</span>√<span class="non-italic">2)</span> is the set of real numbers {<span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mtext>√</mtext><mn>2</mn><mi mathvariant="normal">∣</mi><mi>a</mi><mo separator="true">,</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a + b√2 | a, b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.05em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mord">√</span><span class="mord">2</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span></span></span></span></span> are rationals}. This contains the roots of the equation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^{2} - 2 = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="algebraic_number_theory"> <h3>algebraic number theory</h3> </a> <p><span class="markup"><em>Algebraic number theory</em> is <a class="gllink" data-popup="number_theory/" href="#number_theory">number theory</a> studied without using methods like infinite series, convergence, etc. taken from analysis. <br/> It contrasts with <a class="gllink" data-popup="analytic_number_theory/" href="#analytic_number_theory">analytic number theory</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="algebraic_topology"> <h3>algebraic topology</h3> </a> <p><span class="markup"><em>Algebraic topology</em> is a branch of <a class="gllink" data-popup="topology/" href="#topology">topology</a> in which one calculated invariants of a topological space which are algebraic structures, often <a class="gllink" data-popup="group/" href="#group">groups</a>. <br/> For example, the <a class="gllink" data-popup="fundamental_group/" href="#fundamental_group">fundamental group</a> of a space is such an invariant as are <a class="gllink" data-popup="homotopy/" href="#homotopy">homotopy groups</a> and <a class="gllink" data-popup="homology/" href="#homology">homology groups</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="alternating_group"> <h3>alternating group</h3> </a> <p><span class="markup">An <em>alternating group</em> is the <a class="gllink" data-popup="group/" href="#group">group</a> of all <em>even</em> <a class="gllink" data-popup="permutation/" href="#permutation">permutations</a> of a finite set. <br/> A <a class="gllink" data-popup="permutation/" href="#permutation">permutation</a> is <em>even</em> if it can be written as a product of an even number of <em>transpositions</em> where a transposition swaps a pair of elements and leaves the rest fixed. <br/> The alternating group of a set of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> is denoted <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>A</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">A_{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>. <br/> The alternating group <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>A</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">A_{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> contains half the elements of the <a class="gllink" data-popup="symmetric_group/" href="#symmetric_group">symmetric group</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>S</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">S_{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> and has order <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo stretchy="false">!</mo><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">n! /2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mclose">!</span><span class="mord">/</span><span class="mord">2</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="amicable_number"> <h3>amicable numbers</h3> </a> <p><span class="markup"><em>Amicable numbers</em> are a pair of numbers <em>a, b</em> for which the sum of the proper divisors of <em>a</em> equals <em>b</em> and the sum of the proper divisors of <em>b</em> is equal to <em>a</em>. <br/> <br/> For example, <span class="non-italic">220</span> and <span class="non-italic">284</span> are amicable numbers.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="ammonius"> <h3>Ammonius</h3> </a> <p><span class="markup">Ammonius <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">550</span> AD<span class="non-italic">)</span> was a Greek philosopher who worked mainly on logic and science. He wrote many critical works on Aristotle. He was a student with Proclus then later he was appointed the head of the Alexandrian school.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="analytic_number_theory"> <h3>analytic number theory</h3> </a> <p><span class="markup"><em>Analytic number theory</em> is <a class="gllink" data-popup="number_theory/" href="#number_theory">number theory</a> studied using methods like infinite series, convergence, etc. taken from analysis and especially from Complex analysis. <br/> It contrasts with <a class="gllink" data-popup="algebraic_number_theory/" href="#algebraic_number_theory">algebraic number theory</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="anaximander"> <h3>Anaximander</h3> </a> <p><span class="markup">Anaximander <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">610</span> BC in Miletus <span class="non-italic">[</span>now in Turkey<span class="non-italic">]</span>, <strong>died:</strong> <span class="non-italic">546</span> BC<span class="non-italic">)</span> was a Greek philosopher who was a pupil of Thales. He is considered as the founder of astronomy. He was the first to develop a cosmology.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="angle_trisection"> <h3>angle trisection</h3> </a> <p><span class="markup">One of the classic problems of Greek mathematics was to find a <a class="gllink" data-popup="ruler_and_compass/" href="#ruler_and_compass">ruler and compass</a> construction to <em>divide any angle into three equal pieces</em>. <br/> The other classic problems were <a class="gllink" data-popup="square_the_circle/" href="#square_the_circle">squaring the circle</a> and <a class="gllink" data-popup="duplicating_the_cube/" href="#duplicating_the_cube">duplicating the cube</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="annular_eclipse"> <h3>annular eclipse</h3> </a> <p><span class="markup">An <em>annular eclipse</em> is a solar eclipse in which a ring of the sun is still visible because the Moon is too close to the Earth to shield the Sun completely.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="apogee"> <h3>apogee</h3> </a> <p><span class="markup">The <em>apogee</em> is the point where a heavenly body is furthest away from the centre of its orbit. <br/> The nearest point is called the <em>perigee</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="apollodorus"> <h3>Apollodorus</h3> </a> <p><span class="markup">Apollodorus <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">130</span> BC<span class="non-italic">)</span> was a Greek scholar who is best known for his Chronicle of Greek history. He was a pupil of Aristarchus. In <span class="non-italic">146</span> BC he left Alexandria for Pergamum and later settled at Athens.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="apotome"> <h3>apotome</h3> </a> <p><span class="markup">An <em>apotome</em> is one of Euclid's categories of <a class="gllink" data-popup="irrational/" href="#irrational">irrational numbers</a>. <br/> A number of the form <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>√</mtext><mo stretchy="false">(</mo><mtext>√</mtext><mi>A</mi><mo>−</mo><mtext>√</mtext><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">√(√A - √B)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.05em;vertical-align:-0.25em;"></span><span class="mord">√</span><span class="mopen">(</span><span class="mord">√</span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.05em;vertical-align:-0.25em;"></span><span class="mord">√</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span></span> is called a <em>apotome</em>. <br/> The corresponding number with a + sign is called a <em>binomial</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="apuleius"> <h3>Apuleius</h3> </a> <p><span class="markup">Apuleius <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">124</span> AD in Madauros in Numidia, <strong>died:</strong> about <span class="non-italic">175</span> AD<span class="non-italic">)</span> was a Platonic philosopher, who was educated at Carthage and Athens, then taught rhetoric in Rome before returning to Africa. He wrote important philosophical treatises including three on Plato.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="arcesilaus"> <h3>Arcesilaus</h3> </a> <p><span class="markup">Arcesilaus <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">316</span> BC in Pitane in Aeolis <span class="non-italic">[</span>now in Turkey<span class="non-italic">]</span>, <strong>died:</strong> about <span class="non-italic">241</span> BC<span class="non-italic">)</span> was a philosopher who became head of the Greek Academy. He was a Sceptic who believed that a wise man need know only that his actions are reasonable.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="archimedes_principle"> <h3>Archimedes&#39; principle</h3> </a> <p><span class="markup"><em>Archimedes' principle</em> states that any body completely or partially submerged in a fluid is acted upon by an upward force which is equal to the weight of the fluid displaced by the body.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="archimedes_screw"> <h3>Archimedes&#39; screw</h3> </a> <p><span class="markup"><em>Archimedes' screw</em> consists of a pipe in the shape of a helix with its lower end dipped in the water. As the device is rotated the water rises up the pipe.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="arithmetic_progression"> <h3>arithmetic progression</h3> </a> <p><span class="markup">An <em>arithmetic progression</em> is a sequence in which each number increases by the same amount <span class="non-italic">(</span>the common difference<span class="non-italic">)</span> over the previous one. <br/> As for example: <span class="non-italic">5</span>, <span class="non-italic">8</span>, <span class="non-italic">11</span>, <span class="non-italic">14</span>, <span class="non-italic">17</span>, ...</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="associative"> <h3>associative</h3> </a> <p><span class="markup">An binary operation . on a set is <em>associative</em> if it satisfies the identity <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mi mathvariant="normal">.</mi><mi>b</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi><mi>c</mi><mo>=</mo><mi>a</mi><mi mathvariant="normal">.</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">.</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a.b).c = a.(b.c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord">.</span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mord">.</span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">a</span><span class="mord">.</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">.</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span> <br/> Composition of functions and multiplication of <a class="gllink" data-popup="matrix/" href="#matrix">matrices</a> are important associative operations.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="astrolabe"> <h3>astrolabe</h3> </a> <p><span class="markup">An <em>astrolabe</em> is an early instrument for measuring the angle between the horizon and a star or planet. It was superceded by the octant and sextant</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="asymptote"> <h3>asymptote</h3> </a> <p><span class="markup">An <em>asymptote</em> of a curve is a straight line <span class="non-italic">(</span>or more generally, another curve<span class="non-italic">)</span> which approaches the curve arbitrarily closely. <br/> A <a class="gllink" data-popup="hyperbola/" href="#hyperbola">hyperbola</a> has a pair of straight lines as asymptotes.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="atomic_theory"> <h3>atomic theory</h3> </a> <p><span class="markup"><em>Atomic theory</em> is the theory that matter and space are not infinitely divisible.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="automorphism_group"> <h3>automorphism group</h3> </a> <p><span class="markup">An <em>automorphism group</em> of a <a class="gllink" data-popup="group/" href="#group">group</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> is the group formed by the automorphisms of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> <span class="non-italic">(</span>bijections from <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> to itself which preserve the multiplication<span class="non-italic">)</span>. <br/> Similarly, one can consider the automorphism groups of other structures like <a class="gllink" data-popup="ring/" href="#ring">rings</a>, graphs, etc. by looking at bijections which preserve their mathematical structure.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="axiom_of_choice"> <h3>Axiom of choice</h3> </a> <p><span class="markup">The <em>Axiom of Choice</em> states that given any collection <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> of mutually exclusive non-empty sets, one can create a new set by choosing an element out of each set in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span>. It is equivalent to several other important statements about infinite sets <span class="non-italic">(</span>the Well-Ordering Principle, Zorn's Lemma, ...<span class="non-italic">)</span> and has been shown to be independent of the other set-theory axioms.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="azimuth"> <h3>azimuth</h3> </a> <p><span class="markup">The <em>azimuth</em> is the arc of the horizon between the meridian <span class="non-italic">(</span>the direction North<span class="non-italic">)</span> and a vertical circle passing through a heavenly body.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="banach_space"> <h3>Banach space</h3> </a> <p><span class="markup">A <em>Banach</em> space is a complete normed vector space. <br/> <br/> That is, vector space with a metric that is <em>complete</em> in the sense that a Cauchy sequence of vectors always converges to a well defined limit in the space.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="bernoulli_number"> <h3>Bernoulli number</h3> </a> <p><span class="markup"><em>Bernoulli numbers</em> were defined by Jacob Bernoulli in connection with evaluating sums of the form ∑ <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>i</mi><mi>k</mi></msup></mrow><annotation encoding="application/x-tex">i^{k}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.849108em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">i</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span></span></span></span></span></span>. <br/> The sequence <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>B</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>B</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>B</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">B_{0} , B_{1} , B_{2} , ...</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span></span></span></span></span> can be generated using the formula <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mi mathvariant="normal">/</mi><mo stretchy="false">(</mo><msup><mi>e</mi><mi>x</mi></msup><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mo>∑</mo><mo stretchy="false">(</mo><msub><mi>B</mi><mi>n</mi></msub><msup><mi>x</mi><mi>n</mi></msup><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mi>n</mi><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">x/(e^{x} - 1) = \sum (B_{n}x^{n})/n!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">x</span><span class="mord">/</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">x</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.00001em;vertical-align:-0.25001em;"></span><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord">/</span><span class="mord mathdefault">n</span><span class="mclose">!</span></span></span></span></span> <br/> though various different notations are used for them. <br/> The first few are: <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>B</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn><mo separator="true">,</mo><msub><mi>B</mi><mn>1</mn></msub><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo separator="true">,</mo><msub><mi>B</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo separator="true">,</mo><msub><mi>B</mi><mn>4</mn></msub><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mn>30</mn></mfrac><mo separator="true">,</mo><msub><mi>B</mi><mn>6</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>42</mn></mfrac><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">B_{0} = 1 , B_{1} = -{{1}\over{2}} , B_{2} = {{1}\over{6}} , B_{4} = -{{1}\over{30}} , B_{6} = {{1}\over{42}} , ...</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord">−</span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">6</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord">−</span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">0</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">6</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span></span></span></span></span> <br/> They occur in many diverse areas of mathematics including the series expansions of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>tan</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\tan(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">tan</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span>, <a class="gllink" data-popup="fermats_last_theorem/" href="#fermats_last_theorem">Fermat's Last theorem</a>, ...</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="bessel_function"> <h3>Bessel&#39;s function</h3> </a> <p><span class="markup"><em>Bessel functions</em> are the radial part of the modes of vibration of a circular drum. They satisfy Bessel's <a class="gllink" data-popup="Partial_diff_equation/" href="#Partial_diff_equation">partial differential equation</a> which is a form of <a class="gllink" data-popup="laplace_equation/" href="#laplace_equation">Laplace's equation</a> with cylindrical symmetry.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="beta_function"> <h3>beta function</h3> </a> <p><span class="markup">The <em>beta function</em> B <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>m</mi><mo separator="true">,</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(m, n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">m</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span></span> is defined to be the integral: <br/> <img alt="beta funct" class="diagram" src="../Diagrams/beta_funct.gif"/>. <br/> It can be defined in terms of the <a class="gllink" data-popup="gamma_function/" href="#gamma_function">gamma function</a> by: <br/> <img alt="beta identity" class="diagram" src="../Diagrams/beta_identity.gif"/>. <br/> Many integrals can be reduced to the evaluation of Beta functions.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="bieberbach_conjecture"> <h3>Bieberbach conjecture</h3> </a> <p><span class="markup">The <em>Bieberbach conjecture</em> states that if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span></span></span></span> is a complex function given by the series <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>a</mi><mn>0</mn></msub><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mi>z</mi><mo>+</mo><msub><mi>a</mi><mn>2</mn></msub><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><msub><mi>a</mi><mn>3</mn></msub><msup><mi>z</mi><mn>3</mn></msup><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">f(z) = a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3} + ...</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.964108em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.964108em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.10556em;vertical-align:0em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span></span></span></span></span> <br/> which maps the unit disc conformally in a one-one way then <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><msub><mi>a</mi><mi>n</mi></msub><mi mathvariant="normal">∣</mi><mo>≤</mo><mi>n</mi><mi mathvariant="normal">∣</mi><msub><mi>a</mi><mn>1</mn></msub><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|a_{n}| ≤ n |a_{1}|</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span></span></span></span></span> for each <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>. <br/> It can be expressed as: <br/> The <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>th coefficient of a univalent function can be no more than <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="binary-stars"> <h3>binary-stars</h3> </a> <p><span class="markup">Binary Stars are star systems where two stars are orbiting each other</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="binomial"> <h3>binomial</h3> </a> <p><span class="markup">A <em>binomial</em> is one of Euclid's categories of <a class="gllink" data-popup="irrational/" href="#irrational">irrational numbers</a>. <br/> <br/> A number of the form <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>√</mtext><mo stretchy="false">(</mo><mtext>√</mtext><mi>A</mi><mo>+</mo><mtext>√</mtext><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">√(√A + √B)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.05em;vertical-align:-0.25em;"></span><span class="mord">√</span><span class="mopen">(</span><span class="mord">√</span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.05em;vertical-align:-0.25em;"></span><span class="mord">√</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span></span> is called a <em>binomial</em>. <br/> The corresponding number with a - sign is called a <em>apotome</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="binomial_coefficient"> <h3>binomial coefficient</h3> </a> <p><span class="markup">The <em>binomial coefficients</em> are the coefficients of powers of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span> in the expansion of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>x</mi><msup><mo stretchy="false">)</mo><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">(1 + x)^{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">x</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span>. <br/> We have <img alt="binom1" class="diagram" src="../Diagrams/binom1.gif"/> <br/> where the binomial coefficient <img alt="binom2" class="diagram" src="../Diagrams/binom2.gif" style="vertical-align: middle;"/> is the number of ways of choosing an <span class="non-italic">(</span>unordered<span class="non-italic">)</span> subset of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span></span></span></span></span> from a set of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>. <br/> The binomial coefficients are the entries in the <a class="gllink" data-popup="pascal_triangle/" href="#pascal_triangle">Pascal triangle</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="binomial_theorem"> <h3>binomial theorem</h3> </a> <p><span class="markup">The <em>Binomial Theorem</em> is the result which allows one to expand a <em>binomial</em>: <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>y</mi><msup><mo stretchy="false">)</mo><mi>n</mi></msup><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mi>x</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>y</mi><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub><msup><mi>x</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>+</mo><msup><mi>y</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">(x + y)^{n} = x^{n} + a_{n-1}x^{n-1}y + a_{n-2}x^{n-2}y^{2} + ... + y^{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.747722em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.0224389999999999em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.0224389999999999em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.858832em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span> <br/> where the coefficients <em>a<span class="subscript">i</span> </em> are called <a class="gllink" data-popup="binomial_coefficients/" href="#binomial_coefficients">binomial coefficients</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="biquadratic_residue"> <h3>biquadratic residue</h3> </a> <p><span class="markup">A number <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span> is a <em>biquadratic residue</em> <a class="gllink" data-popup="modulo/" href="#modulo">modulo</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><msup><mi>r</mi><mn>4</mn></msup></mrow><annotation encoding="application/x-tex">m = r^{4}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span></span></span> <a class="gllink" data-popup="modulo/" href="#modulo">modulo</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> for some <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="boolean_algebra"> <h3>Boolean algebra</h3> </a> <p><span class="markup">A <em>Boolean algebra</em> is an <a class="gllink" data-popup="algebra/" href="#algebra">algebra</a> in which the binary operations are chosen to model the union and intersection operations in Set Theory. <br/> For any set <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span>, the subsets of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> form a Boolean algebra under the operations of union, intersection and complement.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="boundary_value_problem"> <h3>boundary value problem</h3> </a> <p><span class="markup">A <em>boundary value problem</em> is an <a class="gllink" data-popup="differential_equation/" href="#differential_equation">ordinary</a> or <a class="gllink" data-popup="partial_diff_equation/" href="#partial_diff_equation">partial differential equation</a> given together with <em>boundary conditions</em> to ensure a unique solution. <br/> These boundary conditions usually involve specifying the value of the function or its derivative on the edges of the region on which the equation is defined.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="brachistochrone"> <h3>brachistochrone</h3> </a> <p><span class="markup">The <em>brachistochrone</em> is a curve such that a particle descending along the curve under gravity will travel from one point to another in minimum time. <br/> The cycloid is such a curve.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="brownian_motion"> <h3>Brownian motion</h3> </a> <p><span class="markup"><em>Brownian motion</em> is the random motion of particles suspended in a liquid or a gas resulting from their collision with the fast-moving atoms or molecules in the gas or liquid. <br/> <br/> It named after the botanist Robert Brown who first observed it.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="burnside_problem"> <h3>Burnside problem</h3> </a> <p><span class="markup">The <em>Burnside problem</em> asks whether it is possible for a finitely generated group to be infinite if all its elements have finite order. This version is usually called the <em>General Burnside problem</em> and an example of such a group was found in <span class="non-italic">1964</span>. <br/> The <em>Burnside group</em> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>d</mi><mo separator="true">,</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(d, n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord mathdefault">d</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span></span> is the largest <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span></span></span></span></span> generator group in which every element satisfies <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mi>n</mi></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">x^{n} = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.664392em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span>. <br/> <br/> The <em>Restricted Burnside problem</em> asks whether, for fixed <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>, there is a largest <strong>finite</strong> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span></span></span></span></span> generator group in which every element satisfies <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mi>n</mi></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">x^{n} = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.664392em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span>. A positive solution to the Restricted Burnside problem would show that there are only finitely many finite <a class="gllink" data-popup="factor_group/" href="#factor_group">factor groups</a> of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>d</mi><mo separator="true">,</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(d, n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord mathdefault">d</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="calcidius"> <h3>Calcidius</h3> </a> <p><span class="markup">Calcidius - <span class="non-italic">(</span>or Chalcidius<span class="non-italic">)</span> <span class="non-italic">(4</span>th century<span class="non-italic">)</span> was a Christian writer who produced an important Latin translations and commentaries of Plato's works.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="calculus_of_variations"> <h3>calculus of variations</h3> </a> <p><span class="markup">The <em>calculus of variations</em> is a generalisation of the calculus. It attempts to find the path, curve, surface, etc., for which a given function has a stationary value <span class="non-italic">(</span>usually a maximum or minimum<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="catenary"> <h3>catenary</h3> </a> <p><span class="markup"><img alt="catenary" class="diagram" src="../Diagrams/catenary.gif" style="float: right;"/>A <em>catenary</em> is the curve in which a heavy uniform chain hangs. <br/> Its equation is: <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo>=</mo><mi>cosh</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">(</mo><msup><mi>e</mi><mi>x</mi></msup><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>x</mi></mrow></msup><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>24</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">y = \cosh(x) = \frac{1} {2} (e^{x} + e^{-x}) = 1 + \frac{1}{2} x^{2} + \frac{1} {24} x^{4} + ...</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">cosh</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">x</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.021331em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.771331em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathdefault mtight">x</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">4</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.10556em;vertical-align:0em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span></span></span></span></span> <br/> <br/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="catoptrics"> <h3>catoptrics</h3> </a> <p><span class="markup"><em>Catoptrics</em> is the part of optics dealing with reflection.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="catullus"> <h3>Catullus</h3> </a> <p><span class="markup">Catullus <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">84</span> BC in Verona in Cisalpine Gaul <span class="non-italic">[</span>now Italy<span class="non-italic">]</span>, <strong>died:</strong> <span class="non-italic">54</span> BC in Rome<span class="non-italic">)</span> was a Roman poet who wrote poems about love and hate which are thought to be the best lyric poetry written in ancient Rome. Some of his poems express of contempt or hatred for <a class="gllink" data-popup="cicero/" href="#cicero">Cicero</a>, <a class="gllink" data-popup="pompey_the_great/" href="#pompey_the_great">Pompey</a> and Julius Caesar.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="celestial_equator"> <h3>celestial equator</h3> </a> <p><span class="markup">The <em>celestial equator</em> is the equator on the <a class="gllink" data-popup="celestial_sphere/" href="#celestial_sphere">celestial sphere</a> midway between the fixed points of the North and South poles.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="celestial_sphere"> <h3>celestial sphere</h3> </a> <p><span class="markup">The <em>celestial sphere</em> is the sphere on which the stars appear to move in the sky.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cepheid"> <h3>Cepheid Variables</h3> </a> <p><span class="markup"><em>Cepheid Variables</em> are very luminous stars that pulsate. Their variance in intensity is directly related to their luminosity.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="character_theory"> <h3>character theory</h3> </a> <p><span class="markup">The <em>character theory</em> of a <a class="gllink" data-popup="group/" href="#group">group</a> involves studying the traces <span class="non-italic">(</span>sums of the diagonal elements<span class="non-italic">)</span> of the <a class="gllink" data-popup="representation_theory/" href="#representation_theory">matrix representations</a> of the group. <br/> The information gained is listed in <em>character tables</em> and the properties of these can be used to give insights into the properties of the group.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cicero"> <h3>Cicero</h3> </a> <p><span class="markup">Cicero <span class="non-italic">(</span><strong>born:</strong><span class="non-italic">106</span> BC in Arpinum in Latium <span class="non-italic">[</span>now Arpino in Italy<span class="non-italic">]</span>, <strong>died:</strong> <span class="non-italic">43</span> BC in Formiae in Latium <span class="non-italic">[</span>now Formia<span class="non-italic">])</span> was educated in Rome and in Greece. He then became a Roman statesman, lawyer, scholar, and writer. He tried unsuccessfully to maintain republican principles in the civil wars that destroyed the Roman Republic.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="circumscribed"> <h3>circumscribed</h3> </a> <p><span class="markup"><img alt="circumcircle" class="diagram" src="../Diagrams/circumcircle.gif" style="float: right;"/>A circle is said to be <em>circumscribed</em> to a triangle or other polygon if the vertices of the polygon lie on the circle. <br/> The polygon is than said to be <a class="gllink" data-popup="inscribed/" href="#inscribed">inscribed</a> in the circle. <br/> <br/> The <span class="non-italic">(</span>unique<span class="non-italic">)</span> circle circumscribed to a triangle is called the <em>circumcircle</em> and its centre is the <em>circumcentre</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cmb"> <h3>Cosmic microwave background radiation</h3> </a> <p><span class="markup"><em>Cosmic microwave background radiation</em> is radiation left over from the big bang that we currently measure to be at around <span class="non-italic">2</span>.<span class="non-italic">7</span>K</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cohomology"> <h3>cohomology</h3> </a> <p><span class="markup"><em>Cohomology</em> calculates algebraic invariants of <a class="gllink" data-popup="topology/" href="#topology">topological spaces</a> which are formally dual to <a class="gllink" data-popup="homology/" href="#homology">homology</a>. <br/> The invariants obtained are in general more powerful than those given by <a class="gllink" data-popup="homology/" href="#homology">homology</a> and usually have more algebraic structure. <br/> <em>Generalised cohomology theories</em>, both for <a class="gllink" data-popup="topology/" href="#topology">topological spaces</a> and for purely algebraic structures, have been developed which have some of the formal properies of cohomology but which do not have the same geometric background.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="combination"> <h3>combination</h3> </a> <p><span class="markup">A <em>combination</em> is a subset of a given set where the order of elements is ignored <span class="non-italic">(</span>as distinct from a <a class="gllink" data-popup="permutation/" href="#permutation">permutation</a><span class="non-italic">)</span>. <br/> <br/> For example there are <span class="non-italic">6</span> combinations of size <span class="non-italic">2</span> from the set {<span class="non-italic">1</span>, <span class="non-italic">2</span>, <span class="non-italic">3</span>, <span class="non-italic">4</span>}: <br/> {<span class="non-italic">1</span>, <span class="non-italic">2</span>}, {<span class="non-italic">1</span>, <span class="non-italic">3</span>}, {<span class="non-italic">1</span>, <span class="non-italic">4</span>}, {<span class="non-italic">2</span>, <span class="non-italic">3</span>}, {<span class="non-italic">2</span>, <span class="non-italic">4</span>}, {<span class="non-italic">3</span>, <span class="non-italic">4</span>}. <br/> <br/> The number of combinations of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span></span></span></span></span> from a set of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> is the <a class="gllink" data-popup="binomial_coefficient/" href="#binomial_coefficient">binomial coefficient</a> <img alt="binom2" class="diagram" src="../Diagrams/binom2.gif" style="vertical-align: middle;"/> also written <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mrow></mrow><mi>n</mi></msub><msub><mi>C</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">_{n}C_{k}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="commensurable"> <h3>commensurable</h3> </a> <p><span class="markup">Two lines or distances are <em>commensurable</em> if the ratio of their lengths is a <a class="gllink" data-popup="rational/" href="#rational">rational number</a>. <br/> If the ratio is an <a class="gllink" data-popup="irrational/" href="#irrational">irrational number</a>, they are called <em>incommensurable</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="commutator"> <h3>commutator</h3> </a> <p><span class="markup">The <em>commutator</em> of two elements <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x, y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span> of a <a class="gllink" data-popup="group/" href="#group">group</a> is the element <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>x</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">x^{-1}y^{-1}x y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span> and is written <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[x, y]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">]</span></span></span></span></span>. <br/> The <em>commutator subgroup</em> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mi>H</mi><mo separator="true">,</mo><mi>K</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[H, K]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord mathdefault" style="margin-right:0.08125em;">H</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mclose">]</span></span></span></span></span> of two subgroups <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>H</mi></mrow><annotation encoding="application/x-tex">H</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.08125em;">H</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span></span></span></span></span> is the subgroup generated by all the commutators <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[x, y]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">]</span></span></span></span></span> with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>H</mi></mrow><annotation encoding="application/x-tex">x \isin H</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.08125em;">H</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">y \isin K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="compact"> <h3>compact</h3> </a> <p><span class="markup">A <a class="gllink" data-popup="topology/" href="#topology">topological space</a> is <em>compact</em> if every covering of the space by open sets has a finite sub-cover. <br/> In the case of metric spaces compact spaces have the property that bounded sequences have cconvergent sub-sequences.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="compass_variation"> <h3>compass variation</h3> </a> <p><span class="markup"><em>Compass variation</em> or <a class="gllink" data-popup="magnetic_declination/" href="#magnetic_declination">magnetic declination</a> is the amount by which compass readings differ from the true North.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="composite_number"> <h3>composite number</h3> </a> <p><span class="markup">A <em>composite number</em> is an integer which is not <a class="gllink" data-popup="prime_number/" href="#prime_number">prime numbers</a>. <br/> Every composite number can be written as a product of <a class="gllink" data-popup="prime_number/" href="#prime_number">prime numbers</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="concentric_spheres"> <h3>concentric spheres</h3> </a> <p><span class="markup"><em>Concentric spheres</em> are spheres with the same centre but different radii. <br/> <br/> Early theories of <a class="gllink" data-popup="cosmology/" href="#cosmology">cosmology</a> had concentric spheres for the planets to move on.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="conformal_mapping"> <h3>conformal mapping</h3> </a> <p><span class="markup">A <em>conformal mapping</em> is a map from the plane <span class="non-italic">(</span>which can be regarded as <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span><span class="superscript"><span class="non-italic">2</span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span><span class="non-italic">)</span> to itself which <em>preserves angles</em>. That is, the angle between any two curves is the same as the angle between their images. <br/> Any analytic map from <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> to <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> is conformal at a point where the derivative is non-zero.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="conic"> <h3>conic</h3> </a> <p><span class="markup">A <em>conic</em> or <em>conic section</em> is one of the three curves: a <a class="gllink" data-popup="parabola/" href="#parabola">parabola</a>, <a class="gllink" data-popup="hyperbola/" href="#hyperbola">hyperbola</a> or <a class="gllink" data-popup="ellipse/" href="#ellipse">ellipse</a> which one can obtain by intersecting a plane with a <span class="non-italic">(</span>double sided<span class="non-italic">)</span> cone.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="conjunction"> <h3>conjunction</h3> </a> <p><span class="markup">A <em>conjunction</em> takes place when two heavenly bodies move into the same place in the sky. <br/> <span class="non-italic">(</span>Literally, the word means <em>joined together</em><span class="non-italic">)</span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="continued_fraction"> <h3>continued fraction</h3> </a> <p><span class="markup"><img alt="continuedfrac" class="diagram" src="../Diagrams/continuedfrac.gif" style="float: right;"/>The <em>continued fraction expansion</em> of a number <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span></span></span></span></span> is an expression of the form: <br/> <br/> If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span></span></span></span></span> is a <a class="gllink" data-popup="rational/" href="#rational">rational</a> number this expansion terminates.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="continuum_hypothesis"> <h3>Continuum Hypothesis</h3> </a> <p><span class="markup">The <em>Continuum hypothesis</em> states that there is no no set whose cardinality lies between that of the Natural numbers and that of the Reals. <br/> The <em>Generalised Continuum hypothesis</em> states that if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> is any set, there is no set whose cardinality lies between the cardinality of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> and the cardinality of the set of all subsets of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span>. <br/> The Continuum hypothesis has been shown to be independent of the other set-theory axioms.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="control_theory"> <h3>control theory</h3> </a> <p><span class="markup"><em>Control theory</em> is the study of how to adjust the parameters in the equations controlling a system to maximise its performance.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="coprime"> <h3>coprime</h3> </a> <p><span class="markup">Two integers are <em>coprime</em> if they have no factors in common. <br/> <br/> For example, <span class="non-italic">3</span> and <span class="non-italic">4</span> are coprime, but <span class="non-italic">25</span> and <span class="non-italic">15</span> are not since both have a factor of <span class="non-italic">5</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cosa"> <h3>cosa</h3> </a> <p><span class="markup">The word <em>cosa</em> means "a thing" and was used for the unknown in an equation. <br/> <br/> Algebraists were called <em>cossists</em>, and algebra the <em>cossic art</em>, for many years. <br/> <br/> The <em>cosa and cube</em> was a particular form: <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>=</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">x^{3} + ax = b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span></span></span></span></span> of a <a class="gllink" data-popup="cubic_equation/" href="#cubic_equation">cubic equation</a> with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a, b &gt; 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cosmogony"> <h3>cosmogony</h3> </a> <p><span class="markup"><em>Cosmogony</em> is a theory of myth of the origin of the universe, especially of the stars, nebulae, etc.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cosmology"> <h3>cosmology</h3> </a> <p><span class="markup"><em>Cosmology</em> is the science of the universe as a whole.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cubic_equation"> <h3>cubic equation</h3> </a> <p><span class="markup">A <em>cubic equation</em> is an equation whose highest term is of degree three: <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">ax^{3} + bx^{2} + cx + d = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">b</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">c</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span> <br/> in general.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cuboctahedron"> <h3>cuboctahedron</h3> </a> <p><span class="markup"><img alt="cuboctahedron" class="diagram" src="../Diagrams/cuboctahedron.gif" style="float: right;"/>A <em>cuboctahedron</em> is a solid which can be obtained by cutting the corners off a cube or off an <a class="gllink" data-popup="octahedron/" href="#octahedron">octahedron</a>. It has <span class="non-italic">8</span> faces which are equilateral triangles and <span class="non-italic">6</span> faces which are squares.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="curtis-shapley"> <h3>Curtis Shapley Debate</h3> </a> <p><span class="markup">The <em>Curtis Shapley Debate</em> was a debate in <span class="non-italic">1920</span> between Herber Curtis and Harlow Shapley about whether our universe consisted of only the milky way <span class="non-italic">(</span>advocated by Shapley<span class="non-italic">)</span> or if there were other galaxies <span class="non-italic">(</span>then called 'island universes', and advocated by Curtis<span class="non-italic">)</span>. At the time of the debate there was no clear winner, but astronomers looking back agree that Curtis was closer to being correct.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="damascius"> <h3>Damascius</h3> </a> <p><span class="markup">Damascius <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">480</span>, <strong>died:</strong> about <span class="non-italic">550)</span> was appointed head of the Academy in Athens about <span class="non-italic">520</span>. He was still head when the Christian emperor Justinian closed the Academy in <span class="non-italic">529</span>. He was a <a class="gllink" data-popup="neoplatonist/" href="#neoplatonist">Neoplatonist</a> philosopher and follower of Proclus.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="declination"> <h3>declination</h3> </a> <p><span class="markup">The <em>declination</em> is the angular distance from the <a class="gllink" data-popup="celestial_equator/" href="#celestial_equator">celestial equator</a>. <br/> The other coordinate is the <a class="gllink" data-popup="right_ascension/" href="#right_ascension">right ascension</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="deficient_number"> <h3>deficient number</h3> </a> <p><span class="markup">A <em>deficient number</em> is an integer for which the sum of its proper divisors is less than than the number itself. <br/> <br/> For example, the proper divisors of <span class="non-italic">8</span> are <span class="non-italic">1</span>, <span class="non-italic">2</span>, <span class="non-italic">4</span>, which sum to <span class="non-italic">7</span>. <br/> See also: <a class="gllink" data-popup="perfect_number/" href="#perfect_number">perfect number</a>, <a class="gllink" data-popup="abundant_number/" href="#abundant_number">abundant number</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="delian_league"> <h3>Delian League</h3> </a> <p><span class="markup">The <em>Delian League</em> was a confederation of Greek states led by Athens, with headquarters at Delos, founded in <span class="non-italic">478</span> BC during the Greco-Persian wars. All Greek states were invited to join to protect themselves from Persia. After Sparta defeated Athens in <span class="non-italic">404</span> BC they disbanded the league.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="delphic_oracle"> <h3>Delphic oracle</h3> </a> <p><span class="markup">The most famous ancient oracle was that of Apollo at Delphi, situated on Mount Parnassus. Its fame stretched across the Hellenic world by the <span class="non-italic">7</span>th and <span class="non-italic">6</span>th centuries BC. Lawmakers, founders of cults, those wanting to know the outcome of wars or politicians seeking to know the outcome of their actions went there for advice. It was given in a coded form that could be interpreted in different ways.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="determinant"> <h3>determinant</h3> </a> <p><span class="markup">The <em>determinant</em> of a <a class="gllink" data-popup="matrix/" href="#matrix">matrix</a> is a combination of the entries of the matrix with the property that the determinant is <span class="non-italic">0</span> if and only if the <a class="gllink" data-popup="matrix/" href="#matrix">matrix</a> is not invertible.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="dialectic"> <h3>Dialectic</h3> </a> <p><span class="markup"><em>Dialectic</em> is the art of conversation, of question and answer; and according to Plato, dialectical skill is the ability to pose and answer questions about the essences of things.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="difference_equation"> <h3>difference equation</h3> </a> <p><span class="markup">A <em>difference equation</em> is an equation involving the differences between successive values of a function of an integer variable. <br/> A difference equation can be regarded as the discrete version of a differential equation. <br/> For example the difference equation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>−</mo><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(n+1) - f(n) = g(n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span></span> is the discrete version of the differential equation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f&#x27;(x) = g(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.001892em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="differential_equation"> <h3>differential equation</h3> </a> <p><span class="markup">A <em>differential equation</em> is an equation involving the first or higher derivatives of the function to be solved for. <br/> If the equation only involves first derivatives it is called an equation of <em>order</em> one, and so on. <br/> If only <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>-th powers of the derivatives are involved, the equation is said to have <em>degree</em> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>. Equations of degree one are called <em>linear</em>. <br/> Equations in only one variable are called <em>ordinary differential equations</em> to distinguish them from <a class="gllink" data-popup="partial_diff_equation/" href="#partial_diff_equation">partial differential equations</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="differential_geometry"> <h3>differential geometry</h3> </a> <p><span class="markup"><em>Differential geometry</em> studies properties of <a class="gllink" data-popup="manifold/" href="#manifold">manifolds</a> which depend on being able to do differentiation. <br/> Examples of the properties studied are curvature and torsion for curves and various curvatures for surfaces.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="differential_topology"> <h3>differential topology</h3> </a> <p><span class="markup"><em>Differential topology</em> is a branch of <a class="gllink" data-popup="topology/" href="#topology">topology</a> in which one investigates properties of <a class="gllink" data-popup="differential_geometry/" href="#differential_geometry">differential geometry</a> which are preserved by continuous transformation.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="diogenes_laertius"> <h3>Diogenes Laertius</h3> </a> <p><span class="markup">Diogenes Laertius <span class="non-italic">(3</span>rd century BC<span class="non-italic">)</span> was a Greek author who wrote an important history of Greek philosophy. His major work <em>Lives, Teachings, and Sayings of Famous Philosophers</em> quotes hundreds of authorities and ranges from gossip to valuable biographical data.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="dionysius_i"> <h3>Dionysius I</h3> </a> <p><span class="markup">Dionysius I <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">430</span> BC, <strong>died:</strong> <span class="non-italic">367</span> BC<span class="non-italic">)</span> was a tyrant from Syracuse who conquered Sicily and southern Italy making Syracuse the strongest Greek city west of the Greek mainland. He prevented Sicily from being conquered by Carthage but his cruel regime damaged the reputation of Greece.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="dionysius_ii"> <h3>Dionysius II</h3> </a> <p><span class="markup">Dionysius II <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">400</span> BC, <strong>died:</strong> about <span class="non-italic">330</span> BC<span class="non-italic">)</span> was a son of <a class="gllink" data-popup="dionysius_i/" href="#dionysius_i">Dionysius I</a> he succeeded his father in <span class="non-italic">367</span> BC and made peace with Carthage. Driven out bt Dion in <span class="non-italic">357</span> BC he was in exile until <span class="non-italic">346</span> BC when he regained control of Syracuse. He surrendered and retired to Corinth in <span class="non-italic">344</span> BC.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="diophantine_approximation"> <h3>diophantine approximation</h3> </a> <p><span class="markup"><em>Diophantine approximation</em> is approximating real numbers by <a class="gllink" data-popup="rational/" href="#rational">rationals</a> <span class="non-italic">(</span>ratios of integers<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="diophantine_equation"> <h3>diophantine equation</h3> </a> <p><span class="markup">A <em>Diophantine equation</em> is one which is to be solved for integer solutions only.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="discriminant"> <h3>discriminant</h3> </a> <p><span class="markup">The <em>discriminant</em> of a polynomial equation is a function of the coefficients which allows one to say when it has a pair of equal roots. <br/> The discriminant of the <a class="gllink" data-popup="quadratic_equation/" href="#quadratic_equation">quadratic equation</a>: <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">ax^{2} + bx + c = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.77777em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span> is <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi></mrow><annotation encoding="application/x-tex">b^{2} - 4ac</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">4</span><span class="mord mathdefault">a</span><span class="mord mathdefault">c</span></span></span></span></span>. <br/> The discriminant of the <a class="gllink" data-popup="cubic_equation/" href="#cubic_equation">cubic equation</a>: <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mi>r</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^{3} + qx + r = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.7777700000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">q</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span> is <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn><msup><mi>q</mi><mn>3</mn></msup><mo>+</mo><mn>27</mn><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">4q^{3} + 27r^{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord">2</span><span class="mord">7</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span>. <br/> <br/> The <em>discriminant</em> of an <a class="gllink" data-popup="algebraic_number_field/" href="#algebraic_number_field">algebraic number field</a> is an important numerical invariant that <span class="non-italic">(</span>roughly<span class="non-italic">)</span> measures the size of the ring of integers of the field.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="docent"> <h3>docent</h3> </a> <p><span class="markup">A <em>docent</em> or <em>dozent</em> or <em>privatdozent</em> was a recognised teacher at a German university who was not on the salaried staff. It was often a post held by a young mathematician working for his <a class="gllink" data-popup="habilitation/" href="#habilitation">habilitation</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="dodecahedron"> <h3>dodecahedron</h3> </a> <p><span class="markup"><img alt="dodecahedron" class="diagram" src="../Diagrams/dodecahedron.gif" style="float: right;"/>A <em>dodecahedron</em> is a <a class="gllink" data-popup="regular_polyhedron/" href="#regular_polyhedron">regular polyhedron</a> with <span class="non-italic">12</span> faces each of which is a regular pentagon.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="duplicating_the_cube"> <h3>duplicating the cube</h3> </a> <p><span class="markup">One of the classic problems of Greek mathematics was to find a <a class="gllink" data-popup="ruler_and_compass/" href="#ruler_and_compass">ruler and compass</a> construction for the cube root of <span class="non-italic">2</span>. This was called <em>duplicating the cube</em> <br/> This is sometimes called the <em>Delian problem</em> from the story that the oracle at Delphi demanded that this construction be performed to stop a plague. <br/> The other classic problems were <a class="gllink" data-popup="square_the_circle/" href="#square_the_circle">squaring the circle</a> and <a class="gllink" data-popup="angle_trisection/" href="#angle_trisection">trisecting an angle</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="dynamical_system"> <h3>dynamical system</h3> </a> <p><span class="markup">A <em>dynamical system</em> gives a means of describing how one state of a system evolves into another. <br/> Its study goes back to the work of Poincaré's work on the <a class="gllink" data-popup="three_body_problem/" href="#three_body_problem">three body problem</a> or even earlier to Huygen's work on the compound pendulum.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="eccentric_theory"> <h3>eccentric theory</h3> </a> <p><span class="markup"><em>Eccentric theory</em> is the theory that planets move round in circles whose centres do not coincide with the Earth</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="ecliptic"> <h3>ecliptic</h3> </a> <p><span class="markup">The <em>ecliptic</em> is the plane in which the orbit of the Earth cuts the <a class="gllink" data-popup="celestial_sphere/" href="#celestial_sphere">celestial sphere</a>. <br/> Hence the apparent annual motion of the Sun among the fixed stars.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="ecliptic_coordinates"> <h3>ecliptic coordinates</h3> </a> <p><span class="markup"><em>Ecliptic coordinates</em> are the description of the position of a heavenly body in terms of its <a class="gllink" data-popup="right_ascension/" href="#right_ascension">right ascension</a> and <a class="gllink" data-popup="declination/" href="#declination">declination</a>. <br/> <br/> These are given relative to the <a class="gllink" data-popup="ecliptic/" href="#ecliptic">ecliptic</a> plane.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="eigenvalue"> <h3>eigenvalue/vector/function</h3> </a> <p><span class="markup">If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span></span></span></span></span> is a linear transformation from a <a class="gllink" data-popup="vector_space/" href="#vector_space">vector space</a> to itself, then a non-zero vector <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">v</mi></mrow><annotation encoding="application/x-tex">\mathbb{v}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span> satisfying <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mi mathvariant="double-struck">v</mi><mo>=</mo><mi>λ</mi><mi mathvariant="double-struck">v</mi></mrow><annotation encoding="application/x-tex">T\mathbb{v} = \lambda \mathbb{v}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span> is called an <em>eigenvector</em> and λ is called the <em>eigenvalue</em>. <br/> If the space is a space of functions, the eigenvector may be called an <em>eigenfunction</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="eleatic_school"> <h3>Eleatic School</h3> </a> <p><span class="markup">The <em>Eleatic School</em> was a school of philosophy from Elea which was a Greek colony in southern Italy. The main doctrines were due to <a class="gllink" data-popup="parmenides/" href="#parmenides">Parmenides</a> who argued that reality was a single entity, the apparent many objects we detect with our senses are only appearances or names.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="ellipse"> <h3>ellipse</h3> </a> <p><span class="markup"><img alt="ellipse" class="diagram" src="../Diagrams/ellipse.gif" style="float: right;"/>A <em>ellipse</em> is one of the <a class="gllink" data-popup="conic/" href="#conic">conic sections</a>. <br/> It may be defined using the <a class="gllink" data-popup="focus_directrix/" href="#focus_directrix">focus directrix</a> property as the <a class="gllink" data-popup="locus/" href="#locus">locus</a> of points whose distance from a fixed point is a fixed multiple <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mo>&lt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">e &lt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">e</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span> from a fixed line. <br/> or via Cartesian coordinates as the set of points in a plane satisfying the equation : <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">ax^{2} + by^{2} = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">b</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="elliptic_function"> <h3>elliptic function</h3> </a> <p><span class="markup">An <em>elliptic function</em> is an analytic function from <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> to <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> which is doubly periodic. That is, for two independent values of the complex number <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi></mrow><annotation encoding="application/x-tex">w</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span></span></span></span></span>, the functions <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(z)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>w</mi><mo>+</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(w + z)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span></span></span></span></span> are the same. <br/> It can also be regarded as the inverse function to certain integrals <span class="non-italic">(</span>called <em>elliptic integrals</em><span class="non-italic">)</span> of the form <img alt="ellip int" class="diagram" src="../Diagrams/ellip_int.gif" style="vertical-align: middle;"/> where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.00773em;">R</span></span></span></span></span> is a polynomial of degree <span class="non-italic">3</span> or <span class="non-italic">4</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="entire_function"> <h3>entire function</h3> </a> <p><span class="markup">In complex analysis, an <em>entire function</em> <span class="non-italic">(</span>sometimes called an <em>integral function</em><span class="non-italic">)</span> is a complex-valued function that is <a class="gllink" data-popup="holomorphic/" href="#holomorphic">holomorphic</a> over the whole complex plane. <br/> <br/> Such a function then has a complex derivative everywhere in <strong>C</strong>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="envelope"> <h3>envelope</h3> </a> <p><span class="markup">A curve is the <em>envelope</em> of a family of curves if it <a class="gllink" data-popup="tangent/" href="#tangent">touches</a> every curve in the family.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="epictetus"> <h3>Epictetus</h3> </a> <p><span class="markup">Epictetus <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">55</span> in Hierapolis, in Phrygia <span class="non-italic">[</span>now Pamukkale in Turkey<span class="non-italic">]</span>, <strong>died:</strong> about <span class="non-italic">135</span> in Nicopolisin in Epirus <span class="non-italic">[</span>Greece<span class="non-italic">])</span> was a slave who attend lectures by the Stoic Musonius Rufus. He gained his freedom but spent his life suffering ill health. He was expelled from Rome in <span class="non-italic">90</span> with other Stoic philosophers by the emperor Domitian. He spent the rest of his life at Nicopolis. His teachings were popular with Christians because of their religious tone.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="epicureans"> <h3>Epicureans</h3> </a> <p><span class="markup"><em>Epicureans</em> were followers of <a class="gllink" data-popup="epicurus/" href="#epicurus">Epicurus</a> who believed pleasure was the basis of a happy life. Although they believed that the Gods were too busy to pay attention to humans, yet men had to aspire to like the Gods since only in this way could they approach perfection.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="epicurus"> <h3>Epicurus</h3> </a> <p><span class="markup">Epicurus <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">341</span> BC in Samos in Greece, <strong>died:</strong> <span class="non-italic">270</span> BC in Athens<span class="non-italic">)</span> was a pupil of Nausiphanes, a disciple of Democritus. He spent most of the first <span class="non-italic">35</span> years of his life in Asia, then went to Athens in <span class="non-italic">306</span> and established The Garden. His philosophy was based on simple pleasure and friendship. He also proposed an atomic theory.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="epicycle"> <h3>epicycle</h3> </a> <p><span class="markup">An <em>epicycle</em> is a circle whose centre is carried around the circumference of another circle. <br/> Epicycles were introduced originally to explain the orbits of planetary bodies among the fixed stars.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="equatorial_coordinates"> <h3>equatorial coordinates</h3> </a> <p><span class="markup"><em>Equatorial coordinates</em> are the description of the position of a heavenly body given relative to the plane of the Earth's equator. <br/> They differ from <a class="gllink" data-popup="ecliptic_coordinates/" href="#ecliptic_coordinates">ecliptic coordinates</a> because of the inclination or <a class="gllink" data-popup="obliquity_of_the_ecliptic/" href="#obliquity_of_the_ecliptic">obliquity</a> of the Earth's axis of rotation to the plane of the ecliptic.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="equinox"> <h3>equinox</h3> </a> <p><span class="markup">The <em>equinox</em> is the time of the year when the noon sun is overhead at the equator making day and night equal in length. <br/> Equinoxes occur about <span class="non-italic">21</span>st March and <span class="non-italic">23</span>rd September.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="equivalent_number"> <h3>equivalent numbers</h3> </a> <p><span class="markup">Two numbers <em>m</em> and <em>n</em> are called <em>equivalent</em> if sums of their proper divisors are the same. <br/> <br/> For example, the proper divisors of <span class="non-italic">159</span>, <span class="non-italic">559</span> and <span class="non-italic">703</span> all sum to <span class="non-italic">57</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="ergodic_theory"> <h3>ergodic theory</h3> </a> <p><span class="markup"><em>Ergodic theory</em> investigates the statistical and qualatitive behaviour of a system. <br/> It originated in the study of <a class="gllink" data-popup="statistical_mechanics/" href="#statistical_mechanics">statistical mechanics</a> but now has applications in many other fields.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_10"> <h3>Pi Chronolgy Note 10</h3> </a> <p><span class="markup">Brahmagupta criticises Aryabhata for his earlier, and much better, value of π. He gave <span class="non-italic">3</span> as the approximate value for practical calculation and √<span class="non-italic">10</span> as the exact value.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="ethics"> <h3>ethics</h3> </a> <p><span class="markup"><em>Ethics</em> is the science of morals: the branch of philosophy dealing with human character and conduct.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="euclid_of_megara"> <h3>Euclid of Megara</h3> </a> <p><span class="markup">Euclid of Megara <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">430</span> BC, <strong>died:</strong> about <span class="non-italic">360</span> BC<span class="non-italic">)</span> was a pupil of Socrates. His philosophy was that "the good is one, though it is called by many names, sometimes wisdom, sometimes God, and sometimes reason" and that "the contrary to the good has no reality".</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="euclidean_algorithm"> <h3>euclidean algorithm</h3> </a> <p><span class="markup">The <em>Euclidean algorithm</em> is an efficient procedure to calculate the highest common factor <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span></span></span></span></span> of a pair <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo separator="true">,</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m, n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">m</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span></span></span></span></span> and write it in the form <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mi>p</mi><mi>m</mi><mo>+</mo><mi>q</mi><mi>n</mi></mrow><annotation encoding="application/x-tex">d = pm + qn</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7777700000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span><span class="mord mathdefault">m</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">q</span><span class="mord mathdefault">n</span></span></span></span></span> with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo separator="true">,</mo><mi>q</mi></mrow><annotation encoding="application/x-tex">p, q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">q</span></span></span></span></span> integers.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="euler-maclaurin"> <h3>Euler-Maclaurin Summation Formula</h3> </a> <p><span class="markup">The <em>Euler-Maclaurin Summation Formula</em> relates integrals and sums of series. It can be used to evaluate integrals as sums or sums of infinite series by integrals. It was discovered independently by Euler and Maclaurin.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="eulers_conjecture"> <h3>Euler&#39;s conjecture</h3> </a> <p><span class="markup">In <span class="non-italic">1769</span> Euler conjectured that it is impossible to exhibit three fourth powers whose sum is a fourth power, four fifth powers whose sum is a fifth power, and similarly for higher powers. Counterexamples were not found until the <span class="non-italic">20</span>th Century</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="evolute"> <h3>evolute</h3> </a> <p><span class="markup">The <em>evolute</em> of a curve is the <a class="gllink" data-popup="envelope/" href="#envelope">envelope</a> of the <em>normals</em> to the curve. This can also be thought of as the <a class="gllink" data-popup="locus/" href="#locus">locus</a> of the centres of curvature.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="factor_group"> <h3>factor group or quotient group</h3> </a> <p><span class="markup">If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span> is a <a class="gllink" data-popup="normal_subgroup/" href="#normal_subgroup">normal subgroup</a> of a <a class="gllink" data-popup="group/" href="#group">group</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> then one can define a <em>factor group</em> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mi mathvariant="normal">/</mi><mi>N</mi></mrow><annotation encoding="application/x-tex">G/N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">G</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span> in which the elements of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span> all "become the identity". <br/> One can then try to understand the structure of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> in terms of the structures of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span> and of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mi mathvariant="normal">/</mi><mi>N</mi></mrow><annotation encoding="application/x-tex">G/N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">G</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span>. <br/> If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> is finite then the order of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mi mathvariant="normal">/</mi><mi>N</mi></mrow><annotation encoding="application/x-tex">G/N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">G</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span> is <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>G</mi><mi mathvariant="normal">∣</mi><mi mathvariant="normal">/</mi><mi mathvariant="normal">∣</mi><mi>N</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|G|/|N|</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathdefault">G</span><span class="mord">∣</span><span class="mord">/</span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span><span class="mord">∣</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="factorial"> <h3>factorial</h3> </a> <p><span class="markup">The <em>factorial</em> of an integer <em>n</em> is the product <span class="non-italic">1</span>.<span class="non-italic">2</span>.<span class="non-italic">3</span>. ... .<em>n</em> <br/> It is denoted by <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">n!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">n</span><span class="mclose">!</span></span></span></span></span> <br/> Generalised to non-integers, it is the <a class="gllink" data-popup="gamma_function/" href="#gamma_function">Gamma function</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="fermats_last_theorem"> <h3>Fermat&#39;s last theorem</h3> </a> <p><span class="markup"><em>Fermat's last theorem</em> <span class="non-italic">(</span>so called because it was the last of the results which Fermat claimed and which had not been proved<span class="non-italic">)</span> states that if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>&gt;</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n &gt; 2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">2</span></span></span></span></span> then the equation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mi>n</mi></msup><mo>+</mo><msup><mi>y</mi><mi>n</mi></msup><mo>=</mo><msup><mi>z</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x^{n} + y^{n} = z^{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.747722em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.858832em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.664392em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span> has no positive integer solutions.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="fibonacci_sequence"> <h3>Fibonacci sequence</h3> </a> <p><span class="markup">The <em>Fibonacci sequence</em> is the sequence <span class="non-italic">1</span>, <span class="non-italic">1</span>, <span class="non-italic">2</span>, <span class="non-italic">3</span>, <span class="non-italic">5</span>, <span class="non-italic">8</span>, <span class="non-italic">13</span>, <span class="non-italic">21</span>, <span class="non-italic">34</span>, <span class="non-italic">55</span>, <span class="non-italic">89</span>, <span class="non-italic">144</span>, ... generated by the rule <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>f</mi><mn>1</mn></msub><mo>=</mo><msub><mi>f</mi><mn>2</mn></msub><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mtext> </mtext><msub><mi>f</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>f</mi><mi>n</mi></msub><mo>+</mo><msub><mi>f</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">f_{1} = f_{2} = 1,  f_{n+1} = f_{n} + f_{n-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"> </span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span>. <br/> It was introduced by Fibonacci of Pisa in <em>Liber abaci</em> in a problem involving the growth of a population of rabbits.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="field"> <h3>field</h3> </a> <p><span class="markup">A <em>field</em> is a <a class="gllink" data-popup="ring/" href="#ring">ring</a> in which non-zero elements have multiplicative inverses. <br/> Among the most important fields are the Real numbers <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span>, the complex numbers <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> and various finite fields which are used in Number Theory and Combinatorics.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="fields_medal"> <h3>Fields Medal</h3> </a> <p><span class="markup">Fields Medals are given every four years to the most distinguished mathematicians aged <span class="non-italic">40</span> or under. In the absence of a Nobel prize in mathematics, they are regarded as the highest professional honour a mathematician can attain. <br/> They were funded by the Canadian mathematician J C Fields and were first awarded in <span class="non-italic">1936</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="focus_directrix"> <h3>focus directrix</h3> </a> <p><span class="markup">The <em>focus directrix</em> definition of a <a class="gllink" data-popup="conic/" href="#conic">conic section</a> is as the <a class="gllink" data-popup="locus/" href="#locus">locus</a> of a point which moves so that its distance from a fixed point <span class="non-italic">(</span>the <em>focus</em><span class="non-italic">)</span> is a fixed multiple <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">e</span></span></span></span></span> from a fixed line <span class="non-italic">(</span>the <em>directrix</em><span class="non-italic">)</span>. <br/> If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">e = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">e</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span> then the curve is a <a class="gllink" data-popup="parabola/" href="#parabola">parabola</a>, if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mo>&lt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">e &lt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">e</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span> then it is an <a class="gllink" data-popup="ellipse/" href="#ellipse">ellipse</a>, if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mo>&gt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">e &gt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">e</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span> then it is a <a class="gllink" data-popup="hyperbola/" href="#hyperbola">hyperbola</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="four_colour_theorem"> <h3>four colour theorem</h3> </a> <p><span class="markup">The <em>four colour theorem</em> states that any map of regions on a plane or sphere can be coloured with at most four colours in such a way that regions sharing a boundary are coloured differently. <br/> Although the result was conjectured as early as <span class="non-italic">1852</span> its proof was not completed until <span class="non-italic">1976</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="free_group"> <h3>free group</h3> </a> <p><span class="markup">A <em>free group</em> on a set <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> of <em>generators</em> is the <a class="gllink" data-popup="group/" href="#group">group</a> consisting of all finite <em>words</em> in elements of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> and their inverses. <br/> So if, for example, <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>=</mo><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi></mrow></mrow><annotation encoding="application/x-tex">A = {x, y, z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span></span></span></span></span></span> then words such as <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><msup><mi>y</mi><mn>2</mn></msup><msup><mi>z</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>x</mi></mrow><annotation encoding="application/x-tex">x y^{2}z^{-1}x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord mathdefault">x</span></span></span></span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mi>z</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">x^{2}z y^{-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span> are elements of the free group. <br/> One multiplies such words by <em>concatenating</em> them <span class="non-italic">(</span>writing them alongside one another<span class="non-italic">)</span> and then cancelling out any elements which are alongside thir inverses. <br/> The <em>empty word</em> is the identity of this group. <br/> The free group on a set of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> is denoted <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>F</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">F_{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="fourier_analysis"> <h3>Fourier analysis</h3> </a> <p><span class="markup"><em>Fourier analysis</em> is the process by which one may write a periodic function on <span class="non-italic">(</span>say<span class="non-italic">)</span> the interval <span class="non-italic">[</span> <span class="non-italic">0</span>, <span class="non-italic">2</span>π <span class="non-italic">]</span> as the sum of multiples of the functions <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>sin</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\sin(nx)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>cos</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\cos(nx)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span>. <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>a</mi><mn>0</mn></msub><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mi>cos</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><mi>sin</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>a</mi><mn>2</mn></msub><mi>cos</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>2</mn><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>b</mi><mn>2</mn></msub><mi>sin</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>2</mn><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">f(x) = a_{0} + a_{1}\cos(x) + b_{1}\sin(x) + a_{2}\cos(2x) + b_{2}\sin(2x) + ...</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.10556em;vertical-align:0em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span></span></span></span></span> <br/> This is called the <em>Fourier series</em> of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span></span></span></span> and the numbers <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">a_{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">b_{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> are called the <em>Fourier coefficients</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="functional_analysis"> <h3>functional analysis</h3> </a> <p><span class="markup"><em>Functional analysis</em> studies infinite dimensional <a class="gllink" data-popup="vector_space/" href="#vector_space">vector spaces</a> and mappings between them. <br/> The elements of these spaces are very often themselves functions, as for example, the space of continuous functions on an interval.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="fund_theorem_of_alg"> <h3>fundamental theorem of algebra</h3> </a> <p><span class="markup">The <em>fundamental theorem of algebra</em> is the result that any polynomial with real or complex coefficients has a root in the complex plane.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="fundamental_group"> <h3>fundamental group</h3> </a> <p><span class="markup">The <em>fundamental group</em> of a topological space <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span> is a group constructed by looking at how closed paths in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span> can be combined to get new paths. <br/> Under a suitable way of identifying paths <span class="non-italic">(</span>"homotopy"<span class="non-italic">)</span> one can get a group structure on the set which gives an algebraic invariant of the space <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="gaius_marius"> <h3>Gaius Marius</h3> </a> <p><span class="markup">Gaius Marius <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">157</span> BC in Cereatae, near Arpinum <span class="non-italic">[</span>Arpino<span class="non-italic">]</span> in Latium <span class="non-italic">[</span>now in Italy<span class="non-italic">]</span>, <strong>died:</strong> <span class="non-italic">86</span> BC in Rome<span class="non-italic">)</span> was a good soldier and a skilful general who was elected consul seven times on the strength of the votes from his soldiers. He was a poor politician.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="galois_theory"> <h3>Galois theory</h3> </a> <p><span class="markup"><em>Galois theory</em> is the study of certain <a class="gllink" data-popup="group/" href="#group">groups</a> which can be associated with polynomial equations. <br/> Whether or not the solutions to an equation can be written down using rational functions and square roots, cube roots, etc. depends on certain group-theoretic properties of this <em>Galois group</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="game_theory"> <h3>game theory</h3> </a> <p><span class="markup"><em>Game theory</em> deals with the analysis of "games" <span class="non-italic">(</span>i.e., situations which involve conflicts of interests<span class="non-italic">)</span>. As well as simple games, which can be analysed completely, the theory has applications in "real games" like poker, chess, etc as well as in areas like politics, economics etc.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="gamma_function"> <h3>gamma function</h3> </a> <p><span class="markup">The <em>gamma function</em> is a generalisation of the <a class="gllink" data-popup="factorial/" href="#factorial">factorial function</a> to the Real line and to the Complex plane. <br/> It is defined by: <br/> <img alt="gamma funct" class="diagram" src="../Diagrams/gamma_funct.gif"/> <br/> If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> is an integer then <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Γ</mi><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">\Gamma (n+1) = n!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">Γ</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">n</span><span class="mclose">!</span></span></span></span></span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="gelfonds_conjecture"> <h3>Gelfond&#39;s conjecture</h3> </a> <p><span class="markup">In <span class="non-italic">1929</span> Gelfond conjectured that:- <blockquote> If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">a_{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">b_{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> for <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">1 ≤ m ≤ n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.78041em;vertical-align:-0.13597em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7719400000000001em;vertical-align:-0.13597em;"></span><span class="mord mathdefault">m</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> are <a class="gllink" data-popup="algebraic_number/" href="#algebraic_number">algebraic numbers</a> such that {<span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mo><mi>log</mi><mo>⁡</mo></mo><mi>e</mi></msub><msub><mi>a</mi><mi>n</mi></msub><mo separator="true">,</mo><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">\log_{e} a_{n}, 1 ≤ m ≤ n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.93858em;vertical-align:-0.24414em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.057252em;"><span style="top:-2.4558600000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.24414em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7719400000000001em;vertical-align:-0.13597em;"></span><span class="mord mathdefault">m</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>} are linearly independent over <strong>Q</strong> then <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><msub><mo><mi>log</mi><mo>⁡</mo></mo><mi>e</mi></msub><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>b</mi><mn>2</mn></msub><msub><mo><mi>log</mi><mo>⁡</mo></mo><mi>e</mi></msub><msub><mi>a</mi><mn>2</mn></msub><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>+</mo><msub><mi>b</mi><mi>n</mi></msub><msub><mo><mi>log</mi><mo>⁡</mo></mo><mi>e</mi></msub><msub><mi>a</mi><mi>n</mi></msub><mo mathvariant="normal">≠</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">b_{1} \log_{e} a_{1} + b_{2} \log_{e} a_{2} + ... + b_{n} \log_{e} a_{n} ≠ 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.93858em;vertical-align:-0.24414em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.057252em;"><span style="top:-2.4558600000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.24414em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.93858em;vertical-align:-0.24414em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.057252em;"><span style="top:-2.4558600000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.24414em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.93858em;vertical-align:-0.24414em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.057252em;"><span style="top:-2.4558600000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.24414em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><span class="mrel"><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="rlap"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="inner"><span class="mrel"></span></span><span class="fix"></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span>.</blockquote> <br/> A special case of this is that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mi>b</mi></msup></mrow><annotation encoding="application/x-tex">a^{b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.849108em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">b</span></span></span></span></span></span></span></span></span></span></span></span></span> is <a class="gllink" data-popup="transcendental/" href="#transcendental">transcendental</a> if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">a</span></span></span></span></span> is algebraic <span class="non-italic">(</span><span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo mathvariant="normal">≠</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a ≠ 0, 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><span class="mrel"><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="rlap"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="inner"><span class="mrel"></span></span><span class="fix"></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span></span></span></span></span><span class="non-italic">)</span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span></span></span></span></span> is an <a class="gllink" data-popup="irrational/" href="#irrational">irrational</a> algebraic number.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="general_topology"> <h3>general or point-set topology</h3> </a> <p><span class="markup"><em>General topology</em> is a branch of <a class="gllink" data-popup="topology/" href="#topology">topology</a> in which one investigates how to put a structure on a set in such a way as to generalise the idea of continuity for maps from the reals <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span> to itself. <br/> A <em>topology</em> on a set <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span> is a certain set of so-called "open subsets" of the set <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span> which satisfy various axioms. The set <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span> together with this topology is called a <em>topological space</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geometric_progression"> <h3>geometric progression</h3> </a> <p><span class="markup">A <em>geometric progression</em> is a sequence in which each number is the same multiple <span class="non-italic">(</span>the common ratio<span class="non-italic">)</span> of the previous one. <br/> As for example: <span class="non-italic">3</span>, <span class="non-italic">6</span>, <span class="non-italic">12</span>, <span class="non-italic">24</span>, <span class="non-italic">48</span>, ...</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="goldbachs_conjecture"> <h3>Goldbach&#39;s conjecture</h3> </a> <p><span class="markup">In <span class="non-italic">1742</span>, in a letter to Euler, Goldbach conjectured that any even integer > <span class="non-italic">2</span> can be written as the sum of two primes. Despite much progress, the conjecture is still unproved.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="golden_ratio"> <h3>golden ratio</h3> </a> <p><span class="markup">The <em>golden ratio</em> or <em>golden number</em> or <em>golden mean</em> is the real number <span class="non-italic">(</span>√<span class="non-italic">5</span> + <span class="non-italic">1)</span>/<span class="non-italic">2</span> = <span class="non-italic">1</span>.<span class="non-italic">6180</span>... . <br/> It occurs in many areas in mathematics, including the geometry of the regular pentagon, <a class="gllink" data-popup="continued_fraction/" href="#continued_fraction">continued fractions</a>, the <a class="gllink" data-popup="euclidean_algorithm/" href="#euclidean_algorithm">Euclidean algorithm</a>, ...</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="gravit-waves"> <h3>Gravitational Waves</h3> </a> <p><span class="markup">Gravitational Waves</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="great_circle"> <h3>great circle</h3> </a> <p><span class="markup">A <em>great circle</em> is a line of shortest distance on a sphere: the intersection of the sphere with a plane through the origin.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="group"> <h3>group</h3> </a> <p><span class="markup">A <em>group</em> is a set together with a method of combining elements to get new ones <span class="non-italic">(</span>addition or multiplication or ...<span class="non-italic">)</span> which satisfies certain properties making it suitable for a wide variety of applications. <br/> Groups of <a class="gllink" data-popup="permutation/" href="#permutation">permutations</a>, symmetries, <a class="gllink" data-popup="matrix/" href="#matrix">matrices</a>, ... are widely used in many areas of mathematics and physics.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="group_presentation"> <h3>group presentation</h3> </a> <p><span class="markup">A <em>group presentation</em> is a way of representing a <a class="gllink" data-popup="group/" href="#group">group</a> in the form <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>&lt;</mo><mi>A</mi><mi mathvariant="normal">∣</mi><mi>R</mi><mo>&gt;</mo></mrow><annotation encoding="application/x-tex">&lt; A | R &gt;</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">A</span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.00773em;">R</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">&gt;</span></span></span></span></span>where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> is a set of generators for the group and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.00773em;">R</span></span></span></span></span> is a set of relations which are satisfied by words in the generators. <br/> So, for example<span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>&lt;</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mi>b</mi><mo>=</mo><mi>b</mi><mi>a</mi><mo>&gt;</mo></mrow><annotation encoding="application/x-tex">&lt; a, b | a b = b a &gt;</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73354em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">&gt;</span></span></span></span></span>is a free <a class="gllink" data-popup="abelian_group/" href="#abelian_group">abelian group</a> with two generators.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="gymnasium"> <h3>gymnasium</h3> </a> <p><span class="markup">A <em>Gymnasium</em> is a senior secondary school in Germany and certain other countries of mainland Europe.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="habilitation"> <h3>habilitation</h3> </a> <p><span class="markup">The <em>Habilitation</em> is the extra post-doctoral qualification needed to lecture at a German university. The thesis that has to be presented as part of this is the <em>Habilitationsschrift</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="heliocentric_theory"> <h3>heliocentric theory</h3> </a> <p><span class="markup"><em>Heliocentric theory</em> is the theory that planets move around the Sun rather than the Earth</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="heracleitus"> <h3>Heracleitus</h3> </a> <p><span class="markup">Heracleitus <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">540</span> BC in Ephesus in Anatolia, <strong>died:</strong> about <span class="non-italic">480</span> BC<span class="non-italic">)</span> was a Greek philosopher who tried to explain the world based on the belief that fire forms the basic material principle of an orderly universe. He stressed that men must live together in social harmony. He is famous for his analogy of life to a river.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="herodotus"> <h3>Herodotus</h3> </a> <p><span class="markup">Herodotus <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">484</span> BC in Halicarnassus in Asia Minor <span class="non-italic">[</span>now Bodrum in Turkey<span class="non-italic">]</span>, <strong>died:</strong> about <span class="non-italic">425</span> BC<span class="non-italic">)</span> travelled widely through the Persian Empire but spent time in Athens and Thurii, a colony of Athens in southern Italy. He is famed as an historian whose most famous work is his history of the wars between Greece and Persia from <span class="non-italic">499</span> BC to <span class="non-italic">479</span> BC.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="hilbert_space"> <h3>Hilbert space</h3> </a> <p><span class="markup">A <em>Hilbert space</em> is a vector space over <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> equipped with an inner-product. <br/> The most important real example is the space of square summable sequences together with the usual dot-product.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="hippopede"> <h3>hippopede</h3> </a> <p><span class="markup">A <em>hippopede</em> is a figure of eight curve Eudoxus used in his planetary theory. <br/> <span class="non-italic">(</span>The word means a <em>horse-fetter</em><span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="holomorphic"> <h3>holomorphic</h3> </a> <p><span class="markup">A <em>holomorphic</em> function is a complex-valued function of one or more complex variables that is complex differentiable in a neighborhood of every point in its domain.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="homer"> <h3>Homer</h3> </a> <p><span class="markup">Homer <span class="non-italic">(</span>before <span class="non-italic">7</span>th century BC<span class="non-italic">)</span> was the poet who wrote the famous Iliad and Odyssey. It is far from certain that he actually existed, but if he did he must be regarded as one of the greatest poets of all time. These works were unifying factors in the development of early Greece and Homer must have played a large part in its success.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="homocentric_spheres"> <h3>homocentric spheres</h3> </a> <p><span class="markup">The <em>homocentric sphere system</em> consisted of a number of rotating spheres, each sphere rotating about an axis through the centre of the Earth. <br/> The axis of rotation of each sphere was not fixed in space but, for most spheres, this axis was itself rotating as it was determined by points fixed on another rotating sphere.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="homology"> <h3>homology</h3> </a> <p><span class="markup"><em>Homology</em> is a way of attaching <a class="gllink" data-popup="abelian_group/" href="#abelian_group">abelian groups</a> <span class="non-italic">(</span>or more elaborate algebraic objects<span class="non-italic">)</span> to a <a class="gllink" data-popup="topology/" href="#topology">topological space</a> so as to obtain algebraic invariants. In some sense it detects the presence of "holes" of various dimensions in the space. <br/> The methods developed to handle this led to what is now called <em>homological algebra</em> and homological invariants can be calculated for many purely algebraic structures.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="homotopy"> <h3>homotopy</h3> </a> <p><span class="markup">A <em>homotopy</em> is a continuous transformation from one path in a <a class="gllink" data-popup="topology/" href="#topology">topological space</a> to another or more generally of one function to another. <br/> Paths which are connected by a homotopy are called <em>homotopic</em> and are said to be in the same <em>homotopy class</em>. <br/> Properties which are left unchanged by such homotopies are called <em>homotopy invariants</em>. <br/> Homotoy classes of paths can be composed to form the <a class="gllink" data-popup="fundamental_group/" href="#fundamental_group">fundamental group</a> or <em>first homotopy group</em>. Other maps can be used to form <em>higher homotopy groups</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="hyperbola"> <h3>hyperbola</h3> </a> <p><span class="markup"><img alt="hyperbola" class="diagram" src="../Diagrams/hyperbola.gif" style="float: right;"/>A <em>hyperbola</em> is one of the <a class="gllink" data-popup="conic/" href="#conic">conic sections</a>. <br/> It may be defined using the <a class="gllink" data-popup="focus_directrix/" href="#focus_directrix">focus directrix</a> property as the <a class="gllink" data-popup="locus/" href="#locus">locus</a> of points whose distance from a fixed point is a fixed multiple <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mo>&gt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">e &gt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">e</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span> from a fixed line. <br/> or via Cartesian coordinates as the set of points in a plane satisfying the equation : <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mi>b</mi><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">ax^{2} - by^{2} = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">b</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="hypergeometric_function"> <h3>hypergeometric function</h3> </a> <p><span class="markup">The <em>hypergeometric function</em> introduced by Gauss, is the sum of the <em>hypergeometric series</em>: <br/> <img alt="hypergeometric ser" class="diagram" src="../Diagrams/hypergeometric_ser.gif"/> <br/> It is the solution of the <em>hypergeometric equation</em>: <br/> <img alt="hypergeometric eqn" class="diagram" src="../Diagrams/hypergeometric_eqn.gif"/> <br/> Many common functions can be written as hypergeometric functions.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="hypotenuse"> <h3>hypotenuse</h3> </a> <p><span class="markup">The <em>hypotenuse</em> of a right-angled triangle is the side opposite the right angle.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="iamblichus"> <h3>Iamblichus</h3> </a> <p><span class="markup">Iamblichus <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">250</span> AD in Chalcis in Coele Syria <span class="non-italic">[</span>now in Lebanon<span class="non-italic">]</span>, <strong>died:</strong> about <span class="non-italic">330)</span> was a Syrian philosopher who played a large part in the development of Neoplatonism. His writings which have survived include <em>On the Pythagorean Life</em>; <em>The Exhortation to Philosophy</em>; <em>On the General Science of Mathematics</em>; <em>On the Arithmetic of Nicomachus</em>; and <em>Theological Principles of Arithmetic</em>. He was a major influence on Proclus.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="icosahedron"> <h3>icosahedron</h3> </a> <p><span class="markup"><img alt="icosahedron" class="diagram" src="../Diagrams/icosahedron.gif" style="float: right;"/>An <em>icosahedron</em> is a <a class="gllink" data-popup="regular_polyhedron/" href="#regular_polyhedron">regular polyhedron</a> with <span class="non-italic">20</span> faces each of which is an equilateral triangle.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="idempotent"> <h3>idempotent</h3> </a> <p><span class="markup">An element <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span></span></span></span></span> of a <a class="gllink" data-popup="ring/" href="#ring">ring</a> or <a class="gllink" data-popup="semigroup/" href="#semigroup">semigroup</a> is <em>idempotent</em> if it satisfies <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mi>r</mi></mrow><annotation encoding="application/x-tex">r^{2} = r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="infinitesimal"> <h3>infinitesimal</h3> </a> <p><span class="markup">An <em>infinitesimal</em> is an arbitrarily small quantity which early mathematicians found it necessary to incorporate into their theories in the absence of a proper theory of limits. <br/> <em>Infinitesimal calculus</em> is the Differential and Integral Calculus.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="inscribed"> <h3>inscribed</h3> </a> <p><span class="markup">A circle is said to be <em>inscribed</em> to a triangle or other polygon if the edges are tangents to the circle. <br/> The polygon is than said to be <a class="gllink" data-popup="circumscribed/" href="#circumscribed">circumscribed</a> to the circle. <br/> The <span class="non-italic">(</span>unique<span class="non-italic">)</span> circle inscribed to a triangle is called the <em>incircle</em> and its centre is the <em>incentre</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="integral_equation"> <h3>integral equation</h3> </a> <p><span class="markup">An <em>integral equation</em> is an equation which involves an integral of the function which is to be solved for. <br/> <br/> For example, being given <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo separator="true">,</mo><mi>w</mi></mrow><annotation encoding="application/x-tex">g, w</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">a</span></span></span></span></span>, one might wish to solve the equation <img alt="int eqn" class="diagram" src="../Diagrams/int_eqn.gif" style="vertical-align: middle;"/> for <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="integral_transform"> <h3>integral transform</h3> </a> <p><span class="markup">An <a class="gllink" data-popup="integral_transform/" href="#integral_transform">integral transform</a> is a process involving an integral which can be applied to a function to get another function. <br/> It is usually of the form <img alt="int trans" class="diagram" src="../Diagrams/int_trans.gif" style="vertical-align: middle;"/> for some "weight" function <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi></mrow><annotation encoding="application/x-tex">w</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span></span></span></span></span> where the integral is taken over an interval <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">I</span></span></span></span></span>. <br/> Examples of integral transforms are <a class="gllink" data-popup="laplace_transform/" href="#laplace_transform">Laplace transforms</a> or Fourier transforms.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="integrating_factor"> <h3>integrating factor</h3> </a> <p><span class="markup">An <em>integrating factor</em> is something which one multiplies an <a class="gllink" data-popup="differential_equation/" href="#differential_equation">ordinary differential equation</a> by to make it possible to solve it.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="intuitionism"> <h3>intuitionism</h3> </a> <p><span class="markup"><em>Intuitionism</em> is a branch of logic which stresses that mathematics has priority over logic, the objects of mathematics are constructed and operated upon in the mind by the mathematician, and it is impossible to define the properties of mathematical objects simply by establishing a number of axioms. <br/> In particular, intuitionists reject the <em>Law of the Excluded Middle</em> which allows proof by contradiction.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="invariant_theory"> <h3>Invariant theory</h3> </a> <p><span class="markup">An <em>invariant</em> is something that is left unchanged by some class of functions. In particular, <em>invariant theory</em> studied quantities which were associated with polynomial equations and which were left invariant under transformations of the variables. <br/> For example, the <em>discriminant</em>: <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi></mrow><annotation encoding="application/x-tex">b^{2} - 4ac</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">4</span><span class="mord mathdefault">a</span><span class="mord mathdefault">c</span></span></span></span></span> is an invariant of the <a class="gllink" data-popup="quadratic_form/" href="#quadratic_form">quadratic form</a>: <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mi>y</mi><mo>+</mo><mi>c</mi><msup><mi>y</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">ax^{2} + bxy + cy^{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">x</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">c</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="involute"> <h3>involute</h3> </a> <p><span class="markup">If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span></span></span></span></span> is a curve and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>C</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">C&#x27;</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span> is its <a class="gllink" data-popup="evolute/" href="#evolute">evolute</a>, then <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span></span></span></span></span> is called an <em>involute</em> of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>C</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">C&#x27;</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span>. <br/> Any parallel curve to <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span></span></span></span></span> is also an involute of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>C</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">C&#x27;</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span>. <br/> Hence a curve has a unique evolute but infinitely many involutes. <br/> Alternatively an involute can be thought of as any curve orthogonal to all the tangents to a given curve.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="irrational"> <h3>irrational</h3> </a> <p><span class="markup">An <em>irrational number</em> is a real number which is not <a class="gllink" data-popup="rational/" href="#rational">rational</a> and so cannot be written as a quotient of integers. <br/> <br/> For example, √<span class="non-italic">2</span> is irrational.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="isidorus"> <h3>Isidorus</h3> </a> <p><span class="markup">Isidorus <span class="non-italic">(</span>about <span class="non-italic">537</span> AD<span class="non-italic">)</span> was an architect from Miletus who directed the building of the Hagia Sophia in <span class="non-italic">537</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="isoperimetry"> <h3>isoperimetry</h3> </a> <p><span class="markup"><em>Isoperimetry</em> is the comparison of the areas of figures with the same perimeter of of the volumes of solids with the same surface areas.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="keplers_problem"> <h3>Kepler&#39;s problem</h3> </a> <p><span class="markup">Kepler speculated in that the most efficient arrangement of spheres in three-dimensions is the most obvious arrangement used to stack oranges, cannon-balls, ... . This was eventually proved to be true in <span class="non-italic">1998</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="knot_theory"> <h3>knot theory</h3> </a> <p><span class="markup"><em>Knot theory</em> is the study of the way a closed curve can be embedded in three dimensional space without intersecting itself. <br/> Intuitively, one may "make a knot" by tying a knot in an ordinary piece of string and then fusing together the free ends of the string. <br/> Associated with any knot is its <em>knot group</em> which is the <a class="gllink" data-popup="fundamental_group/" href="#fundamental_group">fundamental group</a> of the space obtained by removing the knot from the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span><span class="superscript"><span class="non-italic">3</span></span> in which it is embedded.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="laplace_transform"> <h3>Laplace transform</h3> </a> <p><span class="markup">The <em>Laplace transform</em> of a function <em>f</em> is defined by the integral: <img alt="laplace trans" class="diagram" src="../Diagrams/laplace_trans.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="laplaces_equation"> <h3>Laplace&#39;s equation</h3> </a> <p><span class="markup"><em>Laplace's equation</em> is one of the important <a class="gllink" data-popup="partial_diff_equation/" href="#partial_diff_equation">partial differential equations</a> of physics. <br/> In two dimensions it is: <img alt="laplace eqn2" class="diagram" src="../Diagrams/laplace_eqn2.gif" style="vertical-align: middle;"/> while in three dimensions it is <img alt="laplace eqn3" class="diagram" src="../Diagrams/laplace_eqn3.gif" style="vertical-align: middle;"/>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="lie_algebra"> <h3>Lie algebra</h3> </a> <p><span class="markup">A <em>Lie algebra</em> is an <a class="gllink" data-popup="algebra/" href="#algebra">algebra</a> in which the muliplication satisfies properties similar to the so-called <em>bracket operation</em> on matrices given by <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mi>A</mi><mo separator="true">,</mo><mi>B</mi><mo stretchy="false">]</mo><mo>=</mo><mi>A</mi><mi>B</mi><mo>−</mo><mi>B</mi><mi>A</mi></mrow><annotation encoding="application/x-tex">[A, B] = AB - BA</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord mathdefault">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault">A</span></span></span></span></span> where the operation on the right-hand side are ordinary multiplication and subtraction of matrices. <br/> The operation is not <a class="gllink" data-popup="associative/" href="#associative">associative</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="lie_group"> <h3>Lie group</h3> </a> <p><span class="markup">A <em>Lie group</em> is a <a class="gllink" data-popup="group/" href="#group">group</a> which is also a <a class="gllink" data-popup="manifold/" href="#manifold">manifold</a>. <br/> Groups of real matrices give naturally occurring examples of Lie groups. <br/> The tangent space at the identity element of a Lie group forms a <a class="gllink" data-popup="lie_algebra/" href="#lie_algebra">Lie algebra</a> in a natural way.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="lie_ring"> <h3>Lie ring</h3> </a> <p><span class="markup">A <em>Lie ring</em> is a <a class="gllink" data-popup="ring/" href="#ring">ring</a> in which the muliplication satisfies properties similar to the so-called <em>bracket operation</em> on matrices given by <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mi>A</mi><mo separator="true">,</mo><mi>B</mi><mo stretchy="false">]</mo><mo>=</mo><mi>A</mi><mi>B</mi><mo>−</mo><mi>B</mi><mi>A</mi></mrow><annotation encoding="application/x-tex">[A, B] = AB - BA</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord mathdefault">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault">A</span></span></span></span></span> where the operation on the right-hand side are ordinary multiplication and subtraction of matrices. <br/> The operation is not <a class="gllink" data-popup="associative/" href="#associative">associative</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="linear_group"> <h3>linear group</h3> </a> <p><span class="markup">A <em>linear group</em> is a <a class="gllink" data-popup="group/" href="#group">group</a> of <a class="gllink" data-popup="matrix/" href="#matrix">matrices</a> under matrix multiplication.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="link"> <h3>link</h3> </a> <p><span class="markup">A <em>link</em> is the result of embedding <em>several</em> <a class="gllink" data-popup="knot_theory/" href="#knot_theory">knots</a> in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span><span class="superscript"><span class="non-italic">3</span></span> .</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="livy"> <h3>Livy</h3> </a> <p><span class="markup">Livy <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">62</span> BC in Patavium in Venetia in Italy, <strong>died:</strong> <span class="non-italic">17</span> AD in Patavium<span class="non-italic">)</span> spent most of his life in Rome. He was one of the great Roman historians and he wrote a history of Rome in <span class="non-italic">142</span> books that became a classic in his lifetime. The work had a major influence on the style and philosophy of historical writing for nearly <span class="non-italic">2000</span> years.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="locus"> <h3>locus</h3> </a> <p><span class="markup">A <em>locus</em> is the line or surface made up of all the positions of a point or line satisfying some condition. <br/> For example, the locus of points equidistant from a fixed point is a circle.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="loxodrome"> <h3>loxodrome</h3> </a> <p><span class="markup">A <em>loxodrome</em> is a line on a sphere cutting each meridian at the same angle. It is the path followed when following a fixed compass bearing and is a straight line on the Mercator's projection.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="lucian"> <h3>Lucian</h3> </a> <p><span class="markup">Lucian <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">120</span> AD in Samosata in Commagene in Syria <span class="non-italic">[</span>now Samsat, in Turkey<span class="non-italic">]</span>, <strong>died:</strong> after <span class="non-italic">180</span> in Athens <span class="non-italic">[</span>Greece<span class="non-italic">])</span> was educated in western Asia Minor where he received a Greek literary education. He travelled in Greece, Italy and then Gaul. In Athens he became a famous rhetorician, pamphleteer and satirist.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="lune"> <h3>lune</h3> </a> <p><span class="markup"><img alt="lune alone" class="diagram" src="../Diagrams/lune_alone.gif" style="float: right;"/>A <em>lune</em> is the area cut off by one circle from the interior of a smaller one.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="magic_square"> <h3>magic square</h3> </a> <p><span class="markup">A <em>magic square</em> is a set of integers <span class="non-italic">(</span>often <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msup><mi>n</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">1, 2, ... , n^{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="non-italic">)</span> arranged in a square in such away that each row, each column <span class="non-italic">(</span>and often the two diagonals as well<span class="non-italic">)</span> sum to the same number. <br/> For example:  <img alt="magic sq" class="diagram" src="../Diagrams/magic_sq.gif" style="vertical-align: middle;"/>   is a <span class="non-italic">3</span> × <span class="non-italic">3</span> magic square.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="magnetic_declination"> <h3>magnetic declination</h3> </a> <p><span class="markup"><em>Magnetic declination</em> or <a class="gllink" data-popup="compass_variation/" href="#compass_variation">compass variation</a> is the amount by which compass readings differ from the true North.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="magnitude"> <h3>Absolute and Apparent Magnitude</h3> </a> <p><span class="markup">The <em>absolute magnitude</em> is how bright the star is from <span class="non-italic">10</span> parsecs away. <br/> The <em>apparent magnitude</em> is how bright the star appears on earth.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="manifold"> <h3>manifold</h3> </a> <p><span class="markup">An <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>-dimensional <em>manifold</em> is a topological space which is locally Euclidean. That is, every point lies in a region which looks like the space <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span><span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow></mrow><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">^{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.664392em;vertical-align:0em;"></span><span class="mord"><span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span>. <br/> A <span class="non-italic">1</span>-manifold is a curve, a <span class="non-italic">2</span>-manifold is a surface, etc. <br/> Manifolds which have a structure which allow differentiation to be performed are called <em>differentiable manifolds</em> and if differentiation can take place arbitrarily often they are called <em>smooth manifolds</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="marcellus"> <h3>Marcellus</h3> </a> <p><span class="markup">Marcellus <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">268</span> BC, <strong>died:</strong> <span class="non-italic">208</span> BC near Venusia in Apulia<span class="non-italic">)</span> was a Roman general who was consul five times. After the Romans were defeated at Cannae in <span class="non-italic">216</span> BC, he commanded the army and saved regions from Hannibal. From <span class="non-italic">214</span> to <span class="non-italic">211</span> he served in Sicily, where, after a two-year siege, he took Syracuse in a siege in which Archimedes died. He later fought inconclusive battles with Hannibal.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="martingale"> <h3>Martingale</h3> </a> <p><span class="markup">In probability theory, a <em>martingale</em> is a model of a fair game where knowledge of past events never helps predict the mean of the future winnings. <br/> <br/> Originally it was a gambling system of continually doubling the stakes in the hope of an eventual win that must yield a net profit.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="matrix"> <h3>matrix</h3> </a> <p><span class="markup">A <em>matrix</em> is two dimensional array or "box" of numbers or more complicated things. <br/> There are <span class="non-italic">(</span>easy<span class="non-italic">)</span> rules for adding and subtracting matrices of the same shape and sometimes <span class="non-italic">(</span>more complicated<span class="non-italic">)</span> rules for multiplying or even dividing them. <br/> Sets of square matrices often form interesting algebraic objects like <a class="gllink" data-popup="group/" href="#group">groups</a> or more general structures. <br/> Some examples:<img alt="matrix" class="diagram" src="../Diagrams/matrix.gif" style="vertical-align: middle;"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="measure_theory"> <h3>measure theory</h3> </a> <p><span class="markup"><em>Measure theory</em> investigates the conditions under which integration can take place. <br/> It considers various ways in which the "size" of a set can be estimated.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="medial"> <h3>medial</h3> </a> <p><span class="markup">A <em>medial</em> is one of Euclid's categories of <a class="gllink" data-popup="irrational/" href="#irrational">irrational numbers</a>. <br/> If the sides of a rectangle are <a class="gllink" data-popup="commensurable/" href="#commensurable">commensurable</a> in square only <span class="non-italic">(</span>e.g., <span class="non-italic">3</span> and √<span class="non-italic">2)</span>, then the side of the square equal to the rectangle <span class="non-italic">(3</span>√<span class="non-italic">2</span>, in this case<span class="non-italic">)</span> is an <a class="gllink" data-popup="irrational/" href="#irrational">irrational</a> called a <em>medial</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="menedemus_of_pyrrha"> <h3>Menedemus of Pyrrha</h3> </a> <p><span class="markup">Menedemus of Pyrrha was a member of the Academy in Plato's lifetime.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="meromorphic"> <h3>Meromorphic function</h3> </a> <p><span class="markup">A <em>meromorphic function</em> is a function of a complex variable which has no essential singularities. That is, its worst singularities are poles</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="metaphysics"> <h3>metaphysics</h3> </a> <p><span class="markup"><em>Metaphysics</em> is the branch of philosophy that investigates the first principles of nature and thought.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="method_of_exhaustion"> <h3>method of exhaustion</h3> </a> <p><span class="markup">The <em>method of exhaustion</em> is calculating an area by approximating it by the areas of a sequence of polygons. <br/> <br/> For example, filling up the interior of a circle by inscribing polygons with more and more sides.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="milky_way"> <h3>Milky Way</h3> </a> <p><span class="markup">The <em>Milky Way</em> is one of billions of galaxies that make up the universe. It is a large disk-shaped system of stars in which the sun is situated and appears as an irregular luminous band that circles the sky. The luminous band is caused by large numbers of stars each too faint to be seen in individually, but the large number gives a background glow in that part sky in the plane of the galaxy.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="model_theory"> <h3>model theory</h3> </a> <p><span class="markup"><em>Model theory</em> is the study of those mathematical structures which satisfy a particular set of axioms -- particularly in the area of Logic.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="modulo"> <h3>modulo</h3> </a> <p><span class="markup">We say that numbers <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> are equal <em>modulo</em> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span>, if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span> divides exactly into <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>−</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m - n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">m</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="neoplatonist"> <h3>Neoplatonist</h3> </a> <p><span class="markup"><em>Neoplatonists</em> were the last great ancient Greek school of philosophy. The school was founded by <a class="gllink" data-popup="plotinus/" href="#plotinus">Plotinus</a> in the <span class="non-italic">3</span>rd century. Plotinus and his followers considered themselves Platonists but their philosophy contained ideas from Aristotelian and the Stoics as well as from Plato.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="nilpotent"> <h3>nilpotent</h3> </a> <p><span class="markup">An element of a <a class="gllink" data-popup="ring/" href="#ring">ring</a> or <a class="gllink" data-popup="semigroup/" href="#semigroup">semigroup</a> is <em>nilpotent</em> if some power of it is <span class="non-italic">0</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="nilpotent_group"> <h3>nilpotent group</h3> </a> <p><span class="markup">A <em>nilpotent group</em> is a <a class="gllink" data-popup="group/" href="#group">group</a> which has a chain of <a class="gllink" data-popup="subgroup/" href="#subgroup">subgroups</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>=</mo><msub><mi>γ</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⊂</mo><msub><mi>γ</mi><mi>n</mi></msub><mo>⊂</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>⊂</mo><msub><mi>γ</mi><mn>1</mn></msub><mo>=</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">{1} = \gamma _{n+1} \subset \gamma _{n} \subset ... \subset \gamma _{1} = G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord"><span class="mord">1</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.747431em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05556em;">γ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05556em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05556em;">γ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05556em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05556em;">γ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05556em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> in which each subgroup <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>γ</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\gamma _{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05556em;">γ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.05556em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> is the <a class="gllink" data-popup="commutator/" href="#commutator">commutator subgroup</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><msub><mi>γ</mi><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo separator="true">,</mo><mi>G</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[ \gamma _{i-1}, G]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05556em;">γ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.05556em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">G</span><span class="mclose">]</span></span></span></span></span>. <br/> The smallest <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> for which <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>γ</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\gamma _{n+1} = {1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.638891em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05556em;">γ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05556em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord"><span class="mord">1</span></span></span></span></span></span> is the <em>index of nilpotence</em>. <br/> Every nilpotent group is a direct product of <a class="gllink" data-popup="p-group/" href="#p-group"><span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span>-groups</a> for different primes <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="non-euclidean"> <h3>non-Euclidean</h3> </a> <p><span class="markup">A <em>non-Euclidean geometry</em> is a geometry in which Euclid's <a class="gllink" data-popup="parallel_postulate/" href="#parallel_postulate">parallel postulate</a> fails, so that there is not a unique line failing to meet a given line through a point not on the line. <br/> If there is more than one such "parallel" the geometry is called <em>hyperbolic</em>; if there is no line which fails to meet the given one, the geometry is called <em>elliptic</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="non-standard_analysis"> <h3>non-standard analysis</h3> </a> <p><span class="markup"><em>Non-standard analysis</em> is a theory which gives an alternative model for the Real numbers <span class="non-italic">(</span>sometimes called <em>hyperreals</em><span class="non-italic">)</span> in which infinitesimals <span class="non-italic">(</span>numbers > <span class="non-italic">0</span> but < <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mi>n</mi></mfrac></mrow><annotation encoding="application/x-tex">{{1}\over{n}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span> for all <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span><span class="non-italic">)</span> can be interpreted in a different way.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="normal"> <h3>normal</h3> </a> <p><span class="markup">A <em>normal</em> to a curve or surface is a line perpendicular to the <a class="gllink" data-popup="tangent/" href="#tangent">tangent</a> to the curve or to the tangent plane.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="normal_subgroup"> <h3>normal subgroup</h3> </a> <p><span class="markup">A <em>normal subgroup</em> is a <a class="gllink" data-popup="subgroup/" href="#subgroup">subgroup</a> which is closed under the operation of conjugation. <br/> That is, a subgroup <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span> of a group <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> such that whenever an element <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> is in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span></span></span></span></span> is in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span>, the element <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mi>n</mi><msup><mi>g</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">gng^{-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault">n</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span> is in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_1"> <h3>The Rhind Papyrus</h3> </a> <p><span class="markup">Problem <span class="non-italic">50</span> <br/> <br/> Example of a round field of diameter <span class="non-italic">9</span> khet. What is its area? <br/> <br/> Take away <span class="non-italic">1</span>/<span class="non-italic">9</span> of the diameter, namely <span class="non-italic">1</span>: the remainder is <span class="non-italic">8</span>. Multiply <span class="non-italic">8</span> times <span class="non-italic">8</span>: it makes <span class="non-italic">64</span>. Therefore it contains <span class="non-italic">64</span> setat of land. <br/> <br/> Do it thus: <br/> <pre> 1 9 1/9 1 this taken away leaves 8 <br/> 1 8 2 16 4 32 8 64 </pre> Its area is <span class="non-italic">64</span> setat.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="number_theory"> <h3>number theory</h3> </a> <p><span class="markup"><em>Number theory</em> is the study of the properties of the natural numbers <strong>N</strong>. <br/> <br/> It includes such topics as <a class="gllink" data-popup="prime_number/" href="#prime_number">prime numbers</a>, including the <a class="gllink" data-popup="prime_number_theorem/" href="#prime_number_theorem">prime number theorem</a>, <a class="gllink" data-popup="quadratic_reciprocity/" href="#quadratic_reciprocity">quadratic reciprocity</a>, <a class="gllink" data-popup="quadratic_form/" href="#quadratic_form">quadratic forms</a>, <a class="gllink" data-popup="diophantine_approximation/" href="#diophantine_approximation">diophantine approximation</a> and <a class="gllink" data-popup="diophantine_equation/" href="#diophantine_equation">diophantine equations</a>, <a class="gllink" data-popup="algebraic_number_field/" href="#algebraic_number_field">algebraic number fields</a>, <a class="gllink" data-popup="fermats_last_theorem/" href="#fermats_last_theorem">Fermat's last theorem</a> and the methods developed to prove it.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="obliquity_of_the_ecliptic"> <h3>obliquity of the ecliptic</h3> </a> <p><span class="markup">The <em>obliquity of the ecliptic</em> is the "tilt" of the Earth's axis of rotation relative to the <a class="gllink" data-popup="ecliptic/" href="#ecliptic">ecliptic plane</a>. It is currently about <span class="non-italic">23</span>.<span class="non-italic">4</span>° and slowly decreasing<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="oblong_number"> <h3>oblong number</h3> </a> <p><span class="markup">An <em>oblong number</em> is any positive integer which is not a perfect square</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="occultation"> <h3>occultation</h3> </a> <p><span class="markup"><em>Occultation</em> is the concealing of one heavenly body by another, as for example of a star by a planet.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="octahedron"> <h3>octahedron</h3> </a> <p><span class="markup"><img alt="octahedron" class="diagram" src="../Diagrams/octahedron.gif" style="float: right;"/>An <em>octahedron</em> is a <a class="gllink" data-popup="regular_polyhedron/" href="#regular_polyhedron">regular polyhedron</a> with <span class="non-italic">8</span> faces each of which is an equilateral triangle. It looks like two square pyramids with their square faces glued together.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="operational_research"> <h3>Operational research</h3> </a> <p><span class="markup"><em>Operational research</em> a method of mathematically based analysis for providing a quantitive basis for management decisions.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="opposition"> <h3>opposition</h3> </a> <p><span class="markup"><em>Opposition</em> is the situation of a heavenly body when it is directly opposite another: usually the Sun.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="osculate"> <h3>osculate</h3> </a> <p><span class="markup">A pair of curves <em>osculate</em> <span class="non-italic">(</span>from the Latin for "kiss"<span class="non-italic">)</span> at a point if they both pass through the point and if their first and second derivatives at the point coincide. <br/> For example the curve <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">y = x^{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span> and the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span>-axis osculate at the origin.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="p-group"> <h3>p- group</h3> </a> <p><span class="markup">A <em>p-group</em> is a <a class="gllink" data-popup="group/" href="#group">group</a> whose order is a power of a prime <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="panaetius_of_rhodes"> <h3>Panaetius of Rhodes</h3> </a> <p><span class="markup">Panaetius of Rhodes <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">195</span> BC in Lindus in Rhodes, <strong>died:</strong> <span class="non-italic">109</span> BC<span class="non-italic">)</span> studied the philosophies of Plato and of Aristotle in Athens. For many years he lived in Rome, then he spent the last <span class="non-italic">20</span> years of his life in Athens as head of the school in Athens.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="parabola"> <h3>parabola</h3> </a> <p><span class="markup"><img alt="parabola" class="diagram" src="../Diagrams/parabola.gif" style="float: right;"/>A <em>parabola</em> is one of the <a class="gllink" data-popup="conic/" href="#conic">conic sections</a>. <br/> It may be defined using the <a class="gllink" data-popup="focus_directrix/" href="#focus_directrix">focus directrix</a> property as the <a class="gllink" data-popup="locus/" href="#locus">locus</a> of points which are equidistant from a fixed line and a fixed point. <br/> or via Cartesian coordinates as the set of points in a plane satisfying the equation : <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">y = x^{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="parallax"> <h3>Parallax</h3> </a> <p><span class="markup"><em>Parallax</em> is the angular difference from the lines of sight from two observation points to the object being measured.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="parallel_postulate"> <h3>parallel postulate</h3> </a> <p><span class="markup">The <em>parallel postulate</em> is Euclid's fifth postulate: equivalent to the idea that there is a unique parallel to any line through a point not on the line.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="parmenides"> <h3>Parmenides</h3> </a> <p><span class="markup">Parmenides <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">515</span> BC, <strong>died:</strong> about <span class="non-italic">450</span> BC<span class="non-italic">)</span> was the Greek philosopher of Elea in southern Italy who founded the <a class="gllink" data-popup="eleatic_school/" href="#eleatic_school">Eleatic School</a> of philosophy.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="parsecs"> <h3>Parsecs</h3> </a> <p><span class="markup">A <em>Parsec</em> is a measurement of distance frequently used in astronomy, <span class="non-italic">1</span> parsec is about <span class="non-italic">31</span> trillion km.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="partial_diff_equation"> <h3>partial differential equation</h3> </a> <p><span class="markup">A <em>partial differential equation</em> is an equation involving derivatives with respect to more than one variable. <br/> Many of the equations used to model the physics of the real world are partial differential equations.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="pascal_triangle"> <h3>pascal triangle</h3> </a> <p><span class="markup"><img alt="pascaltriangle" class="diagram" src="../Diagrams/pascaltriangle.gif" style="float: right;"/>The <em>Pascal triangle</em> <span class="non-italic">(</span>actually known long before Pascal<span class="non-italic">)</span> is a table of the <a class="gllink" data-popup="binomial_coefficient/" href="#binomial_coefficient">binomial coefficients</a> where the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo separator="true">,</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n, k)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span><span class="mclose">)</span></span></span></span></span>th entry is <img alt="binom2" class="diagram" src="../Diagrams/binom2.gif" style="vertical-align: middle;"/>. <br/> Each entry is the sum of the pair immediately above it.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="peloponnesian_war"> <h3>Peloponnesian War</h3> </a> <p><span class="markup">The <em>Peloponnesian War</em> was a war between Athens and Sparta which took place between <span class="non-italic">431</span> BC and <span class="non-italic">404</span> BC. Essentially all the Greek states were involved on one side or the other. It ended with defeat for Athens.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="perfect_number"> <h3>perfect number</h3> </a> <p><span class="markup">A <em>perfect number</em> is an integer for which the sum of its proper divisors is equal to the number itself. <br/> <br/> For example, <span class="non-italic">6</span> and <span class="non-italic">28</span> are both perfect numbers. <br/> See also: <a class="gllink" data-popup="abundant_number/" href="#abundant_number">abundant number</a>, <a class="gllink" data-popup="deficient_number/" href="#deficient_number">deficient number</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="pericles"> <h3>Pericles</h3> </a> <p><span class="markup">Pericles <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">495</span> BC in Athens, <strong>died:</strong> <span class="non-italic">429</span> in Athens<span class="non-italic">)</span> was an important statesman who developed democracy in Athens and helped make Athens the political and cultural centre of the Greek world. He is responsible for the construction of the Acropolis on which work started in <span class="non-italic">447</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="permanent"> <h3>Permanent</h3> </a> <p><span class="markup">In linear algebra, the <em>permanent</em> of a square matrix is a function of the matrix similar to the <a class="gllink" data-popup="determinant/" href="#determinant">determinant</a>. <br/> <br/> The definition of the permanent of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> differs from that of the determinant of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span></span> in that the signatures of the permutations are not taken into account.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="permutation"> <h3>permutation</h3> </a> <p><span class="markup">A <em>permutation</em> of an ordered set <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span> is a rearrangement of the elements of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span>. <br/> <br/> For example if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span> is the ordered set <span class="non-italic">(1</span>, <span class="non-italic">2</span>, <span class="non-italic">3)</span> there are six permutations of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span>: <br/> <span class="non-italic">(1</span>, <span class="non-italic">2</span>, <span class="non-italic">3)</span>, <span class="non-italic">(1</span>, <span class="non-italic">3</span>, <span class="non-italic">2)</span>, <span class="non-italic">(2</span>, <span class="non-italic">1</span>, <span class="non-italic">3)</span>, <span class="non-italic">(2</span>, <span class="non-italic">3</span>, <span class="non-italic">1)</span>, <span class="non-italic">(3</span>, <span class="non-italic">1</span>, <span class="non-italic">2)</span>, <span class="non-italic">(3</span>, <span class="non-italic">2</span>, <span class="non-italic">1)</span>. <br/> <br/> In general, a set with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> elements has <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">n!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">n</span><span class="mclose">!</span></span></span></span></span> permutations. <br/> <br/> One may permute <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span></span></span></span></span> elements out of a set of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> and get <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo stretchy="false">!</mo><mi mathvariant="normal">/</mi><mi>k</mi><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">n!/k!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mclose">!</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span><span class="mclose">!</span></span></span></span></span> permutations. This number is sometimes written <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mrow></mrow><mi>n</mi></msub><msub><mi>P</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">_{n}P_{k}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> to distinguish it from the number <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mrow></mrow><mi>n</mi></msub><msub><mi>C</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">_{n}C_{k}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> of <a class="gllink" data-popup="combination/" href="#combination">combinations</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="permutation_group"> <h3>permutation group</h3> </a> <p><span class="markup">One can combine <a class="gllink" data-popup="permutation/" href="#permutation">permutations</a> by treating them as maps from a set to itself and composing the maps. Some sets of such permutations then form a <em>group of permutations</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="philolaus"> <h3>Philolaus</h3> </a> <p><span class="markup">Philolaus <span class="non-italic">(</span>lived about <span class="non-italic">475</span> BC<span class="non-italic">)</span> was a student of Pythagoras who, after Pythagors died, fled to Lucania and then to Thebes in Greece. He returned to Italy where he taught Archytas. According to Speusippus, Philolaus wrote a book containing a doctrine based on the first four numbers.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="plateau_problem"> <h3>Plateau problem</h3> </a> <p><span class="markup">The <em>Plateau problem</em> is to show the existence of a surface of minimal area with a given boundary curve <br/> Dipping a frame in the shape of the curve into a soap solution will produce a film which takes the form of this surface.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="pliny"> <h3>Pliny</h3> </a> <p><span class="markup">Pliny <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">23</span> in Novum Comum in Transpadane Gaul <span class="non-italic">[</span>now in Italy<span class="non-italic">]</span>, <strong>died:</strong> <span class="non-italic">79</span> in Stabiae near modern Naples<span class="non-italic">)</span> studied in Rome and then after a military career he returned to Rome and studied law. Later he became procurator in Spain, but returned to Rome. He wrote <em>Natural History</em> which is an encyclopaedic work on scientific subjects.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="plotinus"> <h3>Plotinus</h3> </a> <p><span class="markup">Plotinus <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">205</span> AD in Lyco in Egypt, <strong>died:</strong> <span class="non-italic">270</span> in Campania<span class="non-italic">)</span> began to study philosophy in Alexandria when he was <span class="non-italic">28</span> years old. He joined an expedition to Persia where he hoped to learn more of the philosophies of the Persians and Indians. He spent the last years of his life teaching in Rome. He was the founder of the <a class="gllink" data-popup="neoplatonists/" href="#neoplatonists">Neoplatonic school</a> of philosophy. His biography was written by his student Porphyry.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="plutarch"> <h3>Plutarch</h3> </a> <p><span class="markup">Plutarch <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">46</span> AD in Chaeronea in Boeotia <span class="non-italic">[</span>Greece<span class="non-italic">]</span>, <strong>died:</strong> after <span class="non-italic">119)</span> studied mathematics and philosophy at Athens as a student of <a class="gllink" data-popup="ammonius/" href="#ammonius">Ammonius</a>. He travelled widely but kept his contacts with the Academy in Athens. He was an author writing biographies and essays on many topics such as ethics, politics, and science.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="poincare_conjecture"> <h3>Poincaré conjecture</h3> </a> <p><span class="markup">In <span class="non-italic">1904</span> Poincaré conjectured that any closed <span class="non-italic">3</span>-dimensional manifold which is homotopy equivalent to the <span class="non-italic">3</span>-sphere must be the <span class="non-italic">3</span>-sphere. Higher-dimensional analogues of this conjecture were proved first and, the original conjecture was proved by Grigori Perelman in <span class="non-italic">2002</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="polygonal_number"> <h3>polygonal number</h3> </a> <p><span class="markup">A <em>polygonal number</em> is the number of dots that may be arranged in a regular polygon. <br/> <br/> As, for example <a class="gllink" data-popup="triangular_number/" href="#triangular_number">triangular numbers</a>, <a class="gllink" data-popup="square_number/" href="#square_number">square numbers</a>, ...</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="pompey_the_great"> <h3>Pompey the Great</h3> </a> <p><span class="markup">Pompey the Great <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">106</span> BC in Rome, <strong>died:</strong> <span class="non-italic">48</span> BC in Pelusium in Egypt<span class="non-italic">)</span> was a statesman and Roman general. He led successful campaigns in Africa <span class="non-italic">(</span>where his soldiers called him "the Great"<span class="non-italic">)</span> and then reorganised the East of the Roman Empire where he greatly strengthened control by Rome. He was involved in a power struggle with Julius Caesar which resulted in civil war. Pompey was defeated.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="potential_theory"> <h3>potential/harmonic theory</h3> </a> <p><span class="markup"><em>Potential theory</em> or <em>harmonic analysis</em> is the study of <em>harmonic</em> or <em>potential functions</em>. <br/> These are solutions of the <a class="gllink" data-popup="partial_diff_equation/" href="#partial_diff_equation">partial differential equation</a> called <a class="gllink" data-popup="laplaces_equation/" href="#laplaces_equation">Laplace's equation</a>. <br/> Such functions are of great use in the study of electricity, electromagnetism, gravitation and fluid flow.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="precession"> <h3>precession of the equinoxes</h3> </a> <p><span class="markup">The <em>precession of the equinoxes</em> is a slow westward motion of the <a class="gllink" data-popup="equinox/" href="#equinox">equinoctal points</a> along the <a class="gllink" data-popup="ecliptic/" href="#ecliptic">ecliptic</a> caused by the greater attraction of the Sun and Moon on the excess of matter at the equator, so that the times at which the Sun crosses the equator come at shorter intervals than they would otherwise do.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="prime_number"> <h3>prime number</h3> </a> <p><span class="markup">A <em>prime number</em> is an integer > <span class="non-italic">1</span> is prime if it is divisible only by itself and <span class="non-italic">1</span>. The number <span class="non-italic">1</span> is <em>not</em> considered prime. <br/> <br/> Every positive integer can be written as a product of prime numbers in a unique way <span class="non-italic">(</span>up to the order of the factors<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="prime_number_theorem"> <h3>prime number theorem</h3> </a> <p><span class="markup">The <em>Prime Number Theorem</em> states that <br/> The number of <a class="gllink" data-popup="prime_number/" href="#prime_number">primes</a> ≤ <em>n</em> tends to ∞ as fast as <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mi mathvariant="normal">/</mi><msub><mo><mi>log</mi><mo>⁡</mo></mo><mi>e</mi></msub><mi>n</mi></mrow><annotation encoding="application/x-tex">n/\log_{e} n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mord">/</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.057252em;"><span style="top:-2.4558600000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.24414em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="primitive_root"> <h3>primitive root</h3> </a> <p><span class="markup">A <em>primitive root</em> for a <a class="gllink" data-popup="prime_number/" href="#prime_number">prime</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span> is one whose powers generate all the non-zero integers modulo <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span>. <br/> For example, <span class="non-italic">3</span> is a primitive root modulo <span class="non-italic">7</span> since: <br/> <span class="non-italic">3</span> = <span class="non-italic">3</span><span class="superscript"><span class="non-italic">1</span></span> , <span class="non-italic">2</span> = <span class="non-italic">3</span><span class="superscript"><span class="non-italic">2</span></span> mod <span class="non-italic">7</span>, <span class="non-italic">6</span> = <span class="non-italic">3</span><span class="superscript"><span class="non-italic">3</span></span> mod <span class="non-italic">7</span>, <span class="non-italic">4</span> = <span class="non-italic">3</span><span class="superscript"><span class="non-italic">4</span></span> mod <span class="non-italic">7</span>, <span class="non-italic">5</span> = <span class="non-italic">3</span><span class="superscript"><span class="non-italic">5</span></span> mod <span class="non-italic">7</span>, <span class="non-italic">1</span> = <span class="non-italic">3</span><span class="superscript"><span class="non-italic">6</span></span> mod <span class="non-italic">7</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="probability_theory"> <h3>probability theory</h3> </a> <p><span class="markup"><em>Probability theory</em> studies the possible outcomes of given events together with their relative likelihoods and distributions. <br/> In fact there is considerable debate about exactly what <em>probability</em> means in practice. Some mathematicians regard it as simply a component of an abstract theory, while others give it an interpretation based on the frequencies of certain outcomes.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="projective_geometry"> <h3>projective geometry</h3> </a> <p><span class="markup"><em>Projective geometry</em> is the branch of geometry dealing with the properties and invariants of geometric figures under projection from a point. <br/> So, for example, a circle may be projected into an ellipse or a hyperbola and so these curves may all be regarded as equivalent in projective geometry.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="propertius"> <h3>Propertius</h3> </a> <p><span class="markup">Propertius <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">50</span> BC in Assisi in Umbria <span class="non-italic">[</span>Italy<span class="non-italic">]</span>, <strong>died:</strong> after <span class="non-italic">16</span> BC in Rome<span class="non-italic">)</span> is regarded as the greatest elegiac poet of ancient Rome. He published four books of poems.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="protagoras"> <h3>Protagoras</h3> </a> <p><span class="markup">Protagoras <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">485</span> BC in Abdera in Greece, <strong>died:</strong> about <span class="non-italic">410</span> BC<span class="non-italic">)</span> lived most of his life in Athens but was exiled during the last five years of his life. He taught philosophy for <span class="non-italic">40</span> years and was the first of the <a class="gllink" data-popup="sophist/" href="#sophist">Sophists</a>. His teaching made him both famous and wealthy.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="pyramidal_number"> <h3>pyramidal number</h3> </a> <p><span class="markup">A <em>pyramidal number</em> is the number of dots that may be arranged in a pyramid with a regular polygon as base. <br/> <br/> As, for example <em>tetrahedral numbers</em> <span class="non-italic">(</span>triangular base<span class="non-italic">)</span>, <em>square pyramidal numbers</em>, ...</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quadratic_equation"> <h3>quadratic equation</h3> </a> <p><span class="markup">A <em>quadratic equation</em> is an equation with a second order term: <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">ax^{2} + bx + c = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.77777em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span> in general.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quadratic_form"> <h3>quadratic form</h3> </a> <p><span class="markup">A <em>quadratic form</em> is a general expression with a second order terms. <br/> In two variables it is usually written: <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>h</mi><mi>x</mi><mi>y</mi><mo>+</mo><mi>b</mi><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>g</mi><mi>x</mi><mo>+</mo><mn>2</mn><mi>f</mi><mi>y</mi><mo>+</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">ax^{2}+ 2hxy + by^{2} + 2gx + 2fy + c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord">2</span><span class="mord mathdefault">h</span><span class="mord mathdefault">x</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">b</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em;"></span><span class="mord">2</span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord">2</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quadratic_number_field"> <h3>quadratic number field</h3> </a> <p><span class="markup">A <em>quadratic number field</em> is a sub field of either <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> consisting of numbers of the form <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mtext>√</mtext><mi>n</mi></mrow><annotation encoding="application/x-tex">a + b√n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.2em;"></span><span class="mord mathdefault">b</span><span class="mord">√</span><span class="mord mathdefault">n</span></span></span></span></span> with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">a, b, n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span></span></span></span></span> rational numbers and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> with no rational square root. <br/> If <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> is positive this is called a <em>real</em> quadratic number field, otherwise it is called an <em>imaginary</em> quadratic number field.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quadratic_reciprocity"> <h3>quadratic reciprocity</h3> </a> <p><span class="markup">The <em>Law of Quadratic Reciprocity</em> gives the conditions for a <a class="gllink" data-popup="prime/" href="#prime">prime</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span> to be a <a class="gllink" data-popup="quadratic_residue/" href="#quadratic_residue">quadratic residue</a> modulo a prime <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">q</span></span></span></span></span> in terms of whether of not <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">q</span></span></span></span></span> is a <a class="gllink" data-popup="quadratic_residue/" href="#quadratic_residue">quadratic residue</a> modulo <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quadratic_residue"> <h3>quadratic residue</h3> </a> <p><span class="markup">An integer <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span> is a <em>quadratic residue</em> <a class="gllink" data-popup="modulo/" href="#modulo">modulo</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">m = r^{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span> <a class="gllink" data-popup="modulo/" href="#modulo">modulo</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> for some <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span></span></span></span></span>. <br/> <br/> Other numbers are called <em>quadratic non-residues</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quadrature"> <h3>quadrature</h3> </a> <p><span class="markup"><em>Quadrature</em> means calculating the area of a figure or the area under the graph of a function. Literally, finding a square with the same area.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quadric"> <h3>quadric</h3> </a> <p><span class="markup">A <em>quadric</em> or <em>quadratic surface</em> is a surface given by an equation of degree <span class="non-italic">2</span>. <br/> Examples of quadrics are paraboloids, hyperboloids and ellipsoids.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quantum_mechanics"> <h3>quantum mechanics</h3> </a> <p><span class="markup"><em>Quantum mechanics</em> is the branch of mathematical physics treating atomic and subatomic systems and their interaction with radiation in terms of observable quantities. <br/> It is based on the observation that all forms of energy are released in discrete units or bundles called <em>quanta</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quartic_equation"> <h3>quartic equation</h3> </a> <p><span class="markup">A <em>quartic equation</em> is an equation with a fourth order term: <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>c</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>d</mi><mi>x</mi><mo>+</mo><mi>e</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">ax^{4} + bx^{3} + cx^{2} + dx + e = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">b</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">c</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.77777em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">d</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">e</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span> <br/> in general.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quaternion"> <h3>quaternion</h3> </a> <p><span class="markup">The <em>quaternions</em> are a set of symbols of the form <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mi>i</mi><mo>+</mo><mi>c</mi><mi>j</mi><mo>+</mo><mi>d</mi><mi>k</mi></mrow><annotation encoding="application/x-tex">a + bi + cj + dk</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.77777em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">c</span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span></span></span></span></span> <br/> where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo separator="true">,</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">a, b, c, d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span></span></span></span></span> are Real numbers. <br/> They multiply using the rules <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>i</mi><mn>2</mn></msup><mo>=</mo><msup><mi>j</mi><mn>2</mn></msup><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mo>=</mo><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">i^{2} = j^{2} = k^{2} = -1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">i</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.008548em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05724em;">j</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord">1</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mi>j</mi><mo>=</mo><mi>k</mi></mrow><annotation encoding="application/x-tex">ij = k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">i</span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span></span></span></span></span>. <br/> They form a <em>non-commutative division algebra</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quintic_equation"> <h3>quintic equation</h3> </a> <p><span class="markup">A <em>quintic equation</em> is an equation with a fifth order term: <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>x</mi><mn>5</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>c</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>e</mi><mi>x</mi><mo>+</mo><mi>f</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">ax^{5} + bx^{4} + cx^{3} + dx^{2} + ex + f = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">b</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">c</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">d</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">e</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span> <br/> in general.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="radical"> <h3>radical</h3> </a> <p><span class="markup">The word <em>radical</em> means <em>root</em> and so a radical is an <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>th root of a number. <br/> To <em>solve a polynomial equation by radicals</em> means finding a formula for its roots in terms of the coefficients so that the formula only involves the operations of addition, subtraction, multiplication, division and taking roots.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="rational"> <h3>rational</h3> </a> <p><span class="markup">A <em>rational number</em> is one which can be written as a quotient of integers. <br/> <br/> For example, <span class="superscript"><span class="non-italic">1</span></span> /<span class="subscript"><span class="non-italic">2</span></span> and <span class="superscript"><span class="non-italic">3</span></span> /<span class="subscript"><span class="non-italic">5</span></span> are rational, but √<span class="non-italic">2</span> is not. <br/> <br/> The rational numbers are usually denoted by <strong>Q</strong> <span class="non-italic">(</span>standing for "quotient"<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="rational_function"> <h3>rational function</h3> </a> <p><span class="markup">A <em>rational function</em> is a quotient of two polynomials <span class="non-italic">(</span>whose coefficients need not necessarily be rational numbers<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="rationalise"> <h3>rationalise</h3> </a> <p><span class="markup">To <em>rationalise the denominator</em> of a fraction is to manipulate it to remove √ signs from the denominator. <br/> <br/> For example, <span class="bigger"><span class="superscript"><span class="non-italic">1</span></span> /<span class="subscript">√<span class="non-italic">3</span></span> </span> = <span class="bigger"><span class="superscript">√<span class="non-italic">3</span></span> /<span class="subscript"><span class="non-italic">3</span></span> </span> after multiplying top and bottom by √<span class="non-italic">3</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="reductio_ad_absurdum"> <h3>reductio ad absurdum</h3> </a> <p><span class="markup">The method of <em>reductio ad absurdum</em> is assuming that a proposition does <em>not</em> hold and using this assumption to deduce a contradiction.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="refraction"> <h3>refraction</h3> </a> <p><span class="markup"><em>Refraction</em> is the bending of a ray of light when it passes from one medium to another, as for example, from air to water or glass.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="regular_polyhedron"> <h3>regular polyhedron</h3> </a> <p><span class="markup">A <em>regular polyhedron</em> is a solid body with plane faces in which each face is the same regular polygon and all the faces meet at the same angles. <br/> <br/> There are five regular polyhedrons: the <a class="gllink" data-popup="tetrahedron/" href="#tetrahedron">tetrahedron</a>, cube, <a class="gllink" data-popup="octahedron/" href="#octahedron">octahedron</a>, <a class="gllink" data-popup="dodecahedron/" href="#dodecahedron">dodecahedron</a> and <a class="gllink" data-popup="icosahedron/" href="#icosahedron">icosahedron</a>. <br/> <br/> They are also known as <em>Platonic solids</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="representation_theory"> <h3>representation theory</h3> </a> <p><span class="markup"><em>Representation theory</em> seeks to understand an abstract algebraic system such as a <a class="gllink" data-popup="group/" href="#group">group</a> by obtaining it in a more concrete way as a <a class="gllink" data-popup="permutation_group/" href="#permutation_group">permutation group</a> or as a group of <a class="gllink" data-popup="matrix/" href="#matrix">matrices</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="rhetoric"> <h3>rhetoric</h3> </a> <p><span class="markup"><em>Rhetoric</em> is the theory or practice of eloquence, whether spoken or written and the art of using language to persuade others.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="riemann_hypothesis"> <h3>Riemann hypothesis</h3> </a> <p><span class="markup">The <em>Riemann hypothesis</em> states that the nontrivial roots of the <a class="gllink" data-popup="zeta_function/" href="#zeta_function">Riemann zeta function</a> defined on the complex plane <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> all have real part <span class="superscript"><span class="non-italic">1</span></span> /<span class="subscript"><span class="non-italic">2</span></span> . <br/> The line <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mi>e</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">Re(z) = {{1}\over{2}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.00773em;">R</span><span class="mord mathdefault">e</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span> is called the <em>critical line</em>. <br/> The truth <span class="non-italic">(</span>or otherwise<span class="non-italic">)</span> of the Riemann hypothesis would have important consequences for the <a class="gllink" data-popup="prime_number_theorem/" href="#prime_number_theorem">Prime Number Theorem</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="right_ascension"> <h3>right ascension</h3> </a> <p><span class="markup">The <em>right ascension</em> is the coordinate of the position of a heavenly body <span class="non-italic">(</span>usually in terms of time<span class="non-italic">)</span> eastwards along the celestial equator from the First Point of Aries. <br/> The other coordinate is the <a class="gllink" data-popup="declination/" href="#declination">declination</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="ring"> <h3>ring</h3> </a> <p><span class="markup">A <em>ring</em> is a set together with <em>two</em> methods <span class="non-italic">(</span>usually written as addition and multiplication<span class="non-italic">)</span> of combining elements to get new ones which satisfy certain properties or axioms. <br/> Rings of real or complex numbers, of polynomials, of <a class="gllink" data-popup="matrix/" href="#matrix">matrices</a>, ... are widely used. <br/> Most rings are <a class="gllink" data-popup="associative/" href="#associative">associative</a>, but non-associative structures such as <a class="gllink" data-popup="lie_ring/" href="#lie_ring">Lie rings</a> are also important.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="ruler_and_compass"> <h3>ruler and compass</h3> </a> <p><span class="markup"><em>Ruler and compass constructions</em> use a restricted number of operations, based on an ideal compass and an unmarked straight edge. <br/> They were the basis for the constructive forms of Greek geometry.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="samaritan"> <h3>Samaritan</h3> </a> <p><span class="markup"><em>Samaritans</em> were a people who claimed be descended from Jews of ancient Samaria who were not deported by the Assyrian conquerors of Israel in <span class="non-italic">722</span> BC. Some believe, however, that they came from Mesopotamia and settled in Samaria after the Assyrian conquest.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="sassoon"> <h3>Awareness of Alcuin</h3> </a> <p><span class="markup">by <br/> <br/> <strong>Siegfried Sassoon</strong> <br/> <br/> At peace in my tall-windowed Wiltshire room, <br/> <span class="non-italic">(</span>Birds overheard from chill March twilight's close<span class="non-italic">)</span> <br/> I read, translated, Alcuin's verse, in whom <br/> A springtide of resurgent learning rose. <br/> <br/> Homely and human, numb in feet and fingers, <br/> Alcuin believed in angels; asked their aid; <br/> And still the essence of that asking lingers <br/> In the aureoled invocation which he made <br/> For Charlemagne, his scholar. Alcuin, old, <br/> Loved listening to the nest-near nightingale, <br/> Forgetful of renown that must enfold <br/> His world-known name; remembering pomps that fail. <br/> <br/> Alcuin, from temporalities at rest, <br/> Sought grace within him, given from afar; <br/> Noting how sunsets worked around to west; <br/> Watching, at spring's approach, that beckoning star; <br/> And hearing, while one thrush sang through the rain, <br/> Youth, which his soul in Paradise might regain.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="sceptic"> <h3>Sceptic</h3> </a> <p><span class="markup"><em>Sceptic</em> or <em>Skeptic</em> - There are two forms of Skepticicism. The first is Academic Skepticism which is based on Socrates' statement that the only thing he knew was that he knew nothing. The second form follows the Pyrrhonists who claim nothing, but believe that people should stop making any claims to knowledge.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="secular_parallax"> <h3>Secular Parallax</h3> </a> <p><span class="markup"><em>Secular Parallax</em> is the angular difference from the lines of sight from two observation points to the object being measured, using the sun's motion through space as the baseline for the observation points</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="semigroup"> <h3>semigroup</h3> </a> <p><span class="markup">A <em>semigroup</em> is a set together with a method of combining elements to get new ones <span class="non-italic">(</span>addition or multiplication or ...<span class="non-italic">)</span> which satisfies only some of the properties required to get a <a class="gllink" data-popup="group/" href="#group">group</a>. <br/> <span class="non-italic">(</span>A semigroup need not have an identity element and elements need not have inverses.<span class="non-italic">)</span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="sexagesimal"> <h3>sexagesimal</h3> </a> <p><span class="markup">In the <em>sexagesimal system</em> calculations are done in the base <span class="non-italic">60</span> as used by the Ancient Babylonians. <br/> The remnants of sexagesimal notation remain in our method of telling time and measuring angles.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="sidereal"> <h3>Sidereal</h3> </a> <p><span class="markup">Sidereal</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="sidereal_year"> <h3>sidereal year</h3> </a> <p><span class="markup">The <em>sidereal year</em> is the time that the sun takes to return to the same place amongst the fixed stars.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="simple_group"> <h3>simple group</h3> </a> <p><span class="markup">A <em>simple group</em> is <a class="gllink" data-popup="group/" href="#group">group</a> which has no non-trivial proper <a class="gllink" data-popup="normal_subgroup/" href="#normal_subgroup">normal subgroups</a>. <br/> Simple groups are important because the can be thought of as the "blocks" out of which other groups can be built. Much activity has been expended in the classification of all finite simple groups.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="socrates"> <h3>Socrates</h3> </a> <p><span class="markup">Socrates <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">470</span> BC, <strong>died:</strong> <span class="non-italic">399</span> BC<span class="non-italic">)</span> was one of the most important of the Greek philosophers who was influential in developing Western culture.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="socrates_scholasticus"> <h3>Socrates Scholasticus</h3> </a> <p><span class="markup">Socrates Scholasticus <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">380</span> in Constantinople, <strong>died:</strong> about <span class="non-italic">450)</span> was a Byzantine church historian whose annotated chronicles are an important source of early Christian history.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="solar_system"> <h3>solar system</h3> </a> <p><span class="markup">The <em>solar system</em> consists of the Sun and all its planets, their moons etc.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="solaryear"> <h3>Solar Year</h3> </a> <p><span class="markup">The <em>Solar Year</em> is the time taken for the Sun to return to the same position in the cycle of seasons, as seen from Earth; for example, the time from spring equinox to spring equinox, or from summer solstice to summer solstice.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="solstice"> <h3>solstice</h3> </a> <p><span class="markup">The <em>solstice</em> is the time of the year when the sun is at its maximum distance from equator making day and night longest or shortest. <br/> They occur round about <span class="non-italic">21</span>st June and <span class="non-italic">21</span>st December.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="soluble_by_radicals"> <h3>soluble by radicals</h3> </a> <p><span class="markup">A polynomial equation is <em>soluble by radicals</em> if there is a formula for its roots in terms of the coefficients, so that the formula only involves the operations of addition, subtraction, multiplication, division and taking roots <span class="non-italic">(</span>= <a class="gllink" data-popup="radical/" href="#radical">radicals</a><span class="non-italic">)</span>. <br/> <br/> This is sometimes called <em>soluble algebraically</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="soluble_group"> <h3>soluble or solvable group</h3> </a> <p><span class="markup">A <em>soluble group</em> <span class="non-italic">(</span>called a <em>solvable group</em> in the US<span class="non-italic">)</span> is a finite <a class="gllink" data-popup="group/" href="#group">group</a> which has a chain of <a class="gllink" data-popup="subgroup/" href="#subgroup">subgroups</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>=</mo><msub><mi>H</mi><mi>n</mi></msub><mo>⊂</mo><msub><mi>H</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⊂</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>⊂</mo><msub><mi>H</mi><mn>0</mn></msub><mo>=</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">{1} = H_{n} \subset H_{n-1} \subset ... \subset H_{0} = G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord"><span class="mord">1</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.08125em;">H</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.08125em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.891661em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.08125em;">H</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.08125em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.08125em;">H</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.08125em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span></span> in which each subgroup is <a class="gllink" data-popup="normal_subgroup/" href="#normal_subgroup">normal</a> in the next one and each <a class="gllink" data-popup="factor_group/" href="#factor_group">factor group</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>H</mi><mi>i</mi></msub><mi mathvariant="normal">/</mi><msub><mi>H</mi><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">H_{i} / H_{i-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.08125em;">H</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.08125em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.08125em;">H</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.08125em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span> is an <a class="gllink" data-popup="abelian_group/" href="#abelian_group">abelian group</a>. <br/> The reason for the name is that a polynomial is <a class="gllink" data-popup="soluble_by_radicals/" href="#soluble_by_radicals">soluble by radicals</a> provided that its <a class="gllink" data-popup="galois_theory/" href="#galois_theory">Galois group</a> is soluble.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="sophist"> <h3>Sophist</h3> </a> <p><span class="markup"><em>Sophists</em> were a group of teachers who flourished in the second half of the <span class="non-italic">5</span>th century BC. They travelled round Greece teaching on many topics such as <a class="gllink" data-popup="ethics/" href="#ethics">ethics</a>, politics, logic, mathematics and other scholarly topics.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="sosigenes"> <h3>Sosigenes</h3> </a> <p><span class="markup">Sosigenes the Peripatetic <span class="non-italic">(2</span>nd century AD<span class="non-italic">)</span> was an Egyptian philosopher who was the tutor of the Greek philosopher Alexander of Aphrodisias.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="special_function"> <h3>special_function</h3> </a> <p><span class="markup">A <em>special function</em> is a function <span class="non-italic">(</span>often named after the person who introduced it<span class="non-italic">)</span> having a particular use in physics or some branch of mathematics. <br/> Examples include Bessel functions, Lagrange polynomials, <a class="gllink" data-popup="beta_function/" href="#beta_function">Beta functions</a>, <a class="gllink" data-popup="gamma_function/" href="#gamma_function">Gamma functions</a>, <a class="gllink" data-popup="hypergeometric_function/" href="#hypergeometric_function">Hypergeometric functions</a>, etc.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="spectral_theory"> <h3>spectral theory</h3> </a> <p><span class="markup">The <em>spectrum</em> of a linear map <span class="non-italic">(</span>or operator<span class="non-italic">)</span> between <a class="gllink" data-popup="vector_space/" href="#vector_space">vector spaces</a> is its set of <a class="gllink" data-popup="eigenvalue/" href="#eigenvalue">eigenvalues</a>. <br/> <em>Spectral theory</em> attempts to understand the properties of the operator in terms of the properties of this spectrum. <br/> The theory is most useful when handling vector spaces of functions in <a class="gllink" data-popup="functional_analysis/" href="#functional_analysis">functional analysis</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="spectroscopy"> <h3>Spectroscopy</h3> </a> <p><span class="markup"><em>Spectroscopy</em> is splitting the light emitted by heated atoms to form a line spectrum. Each element has its own distinctive line.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="speusippus"> <h3>Speusippus</h3> </a> <p><span class="markup">Speusippus <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">400</span> BC, <strong>died:</strong> <span class="non-italic">338</span> BC<span class="non-italic">)</span> was a nephew of Plato who followed his uncle in his philosophical views. He became head of the Academy on Plato's death in <span class="non-italic">347</span> BC. He wrote <em>On Pythagorean Numbers</em> which looks at why numbers such as <span class="non-italic">10</span> are considered as representing perfection.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="square_number"> <h3>square number</h3> </a> <p><span class="markup">A <em>square number</em> is the number of dots that may be arranged in a square: <span class="non-italic">1</span>, <span class="non-italic">4</span>, <span class="non-italic">9</span>, <span class="non-italic">16</span>, ... <br/> In general <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span><span class="superscript"><span class="non-italic">2</span></span> .</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="square_the_circle"> <h3>square the circle</h3> </a> <p><span class="markup"><em>Squaring the circle</em> means constructing a square <span class="non-italic">(</span>ideally using only <a class="gllink" data-popup="ruler_and_compass/" href="#ruler_and_compass">ruler and compass</a> constructions<span class="non-italic">)</span> with the same area as a given circle.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="staatsexamen"> <h3>Staatsexamen</h3> </a> <p><span class="markup">The <em>Staatsexamen</em> or <em>State examination</em> was an examination taken to qualify to teach in a <a href="#gymnasium">Gymnasium</a></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="stadium"> <h3>stadium</h3> </a> <p><span class="markup">A <em>stadium</em> <span class="non-italic">(</span>plural <em>stadia</em><span class="non-italic">)</span> is a Greek measure of distance equal to <span class="non-italic">600</span> Greek feet. Opinions vary about how long it actually was, with estimates varying from <span class="non-italic">154</span> to <span class="non-italic">215</span> metres.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="statistical_mechanics"> <h3>statistical mechanics</h3> </a> <p><span class="markup"><em>Statistical mechanics</em> models a system in terms of the average behaviour of the large numbers of atoms and molecules making up the system.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="stereographic_projection"> <h3>stereographic projection</h3> </a> <p><span class="markup"><em>Stereographic projection</em> is projection of the points of a sphere from the North Pole of the sphere along straight lines on to the equatorial plane or onto the tangent plane at the South Pole.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="stoa_poikile_academy"> <h3>Stoa Poikile Academy</h3> </a> <p><span class="markup"><em>Stoa Poikile Academy</em> means <em>Painted Colonnade</em> and refers to the hall in Athens in which the Academy, founded by Zeno of Citium, held its lectures. The philosophy <a class="gllink" data-popup="stoic/" href="#stoic">Stoicism</a> takes its name from this hall.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="stobaeus"> <h3>Stobaeus</h3> </a> <p><span class="markup">Stobaeus <span class="non-italic">(5</span>th century AD<span class="non-italic">)</span> was a Greek anthologist.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="stoic"> <h3>Stoic</h3> </a> <p><span class="markup">A <em>Stoic</em> was a member of the school of philosophy founded by <a class="gllink" data-popup="zeno_of_citium/" href="#zeno_of_citium">Zeno of Citium</a>. The Stoics strongly believed in duty and considered the universe to operate with rational principles.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="strabo"> <h3>Strabo</h3> </a> <p><span class="markup">Strabo <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">64</span> BC, <strong>died:</strong> about <span class="non-italic">24</span> AD<span class="non-italic">)</span> was a Greek geographer and historian.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="subgroup"> <h3>subgroup</h3> </a> <p><span class="markup">A <em>subgroup</em> is a subset of a <a class="gllink" data-popup="group/" href="#group">group</a> which is a group under the same operation.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="symmetric_group"> <h3>symmetric group</h3> </a> <p><span class="markup">A <em>symmetric group</em> is the <a class="gllink" data-popup="group/" href="#group">group</a> of all <a class="gllink" data-popup="permutation/" href="#permutation">permutations</a> of a finite set. <br/> The symmetric group of a set of size <em>n</em> is denoted <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>S</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">S_{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> and has <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">n!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">n</span><span class="mclose">!</span></span></span></span></span> <span class="non-italic">(</span>= <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> <a class="gllink" data-popup="factorial/" href="#factorial">factorial</a><span class="non-italic">)</span> elements.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="symmetry_group"> <h3>symmetry group</h3> </a> <p><span class="markup">The set of all rigid motions <span class="non-italic">(</span>translations, rotations, reflections, etc<span class="non-italic">)</span> of Euclidean space which map all points of a subset <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span></span></span> into <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span></span></span> form a <a class="gllink" data-popup="group/" href="#group">group</a> which is called the <em>symmetry group</em> of the figure <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="synodic_month"> <h3>synodic month</h3> </a> <p><span class="markup">The <em>synodic month</em> is the time between successive <a class="gllink" data-popup="opposition/" href="#opposition">oppositions</a> of the sun and moon</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="syrianus"> <h3>Syrianus</h3> </a> <p><span class="markup">Syrianus was a <a class="gllink" data-popup="neoplatonist/" href="#neoplatonist">neo-Platonist</a> philosopher from Athens who taught the Alexandrian Hermias. He was the teacher of Proclus.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="tangent"> <h3>tangent</h3> </a> <p><span class="markup">A <em>tangent</em> to a curve at a point <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span> is the best linear approximation to the curve near that point. It can be regarded as the limit of the chords from the point <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span> to other points close to <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span>. <br/> If two curves have a common tangent at a point of intersection they are said to <em>touch</em> or <em>be tangent</em>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="tautochrone"> <h3>tautochrone</h3> </a> <p><span class="markup">A <em>tautochrone</em> is a curve which has a shape such that a small ball rolling on the curve will have oscillations whose period is independent of their size. <br/> The cycloid is such a curve.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="taylor_series"> <h3>Taylor series</h3> </a> <p><span class="markup">The <strong>Taylor series</strong> allows a function to be expanded as a power series aound a point. The series appear in Brook Taylor's <em>Methodus incrementorum directa et inversa </em> <span class="non-italic">(1715)</span> but were only named "Taylor series" in <span class="non-italic">1785</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="tensor"> <h3>tensor</h3> </a> <p><span class="markup"><em>Tensors</em> are "multidimensional boxes of numbers". So, for example, a <span class="non-italic">0</span>-tensor is a scalar, a <span class="non-italic">1</span>-tensor is a vector, a <span class="non-italic">2</span>-tensor is a matrix, etc. <br/> Tensors are used in differential geometry and similar areas.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="tetrahedron"> <h3>tetrahedron</h3> </a> <p><span class="markup"><img alt="tetrahedron" class="diagram" src="../Diagrams/tetrahedron.gif" style="float: right;"/>A <em>tetrahedron</em> is a <a class="gllink" data-popup="regular_polyhedron/" href="#regular_polyhedron">regular polyhedron</a> with <span class="non-italic">4</span> faces each of which is an equilateral triangle. It looks like a pyramid on a triangular base.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="themistius"> <h3>Themistius</h3> </a> <p><span class="markup">Themistius <span class="non-italic">(</span><strong>born:</strong> about AD <span class="non-italic">350)</span> taught in Constantinople and modernised the language and style of many of Aristotle's treatises.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="theodolite"> <h3>theodolite</h3> </a> <p><span class="markup">A <em>theodolite</em> is a surveying instrument for measuring horizontal and vertical angles.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="theophrastus"> <h3>Theophrastus</h3> </a> <p><span class="markup">Theophrastus of Lesbos <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">372</span> BC in Eresus, Lesbos, <strong>died:</strong> <span class="non-italic">287</span> BC<span class="non-italic">)</span> was taught by Aristotle in Athens and in <span class="non-italic">323</span> when Aristotle retired he became the head of the Lyceum. He fully accepted all of Aristotle's philosophy.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="three_body_problem"> <h3>three body problem</h3> </a> <p><span class="markup">The <em>Three Body Problem</em> is the problem of investigating the behaviour of three mutually attracting bodies <span class="non-italic">(</span>such as the Sun, Earth and Moon<span class="non-italic">)</span> and the stability of their motion.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="topological_group"> <h3>topological or continuous group</h3> </a> <p><span class="markup">A <em>topological group</em> is a set which has both the structure of a <a class="gllink" data-popup="group/" href="#group">group</a> and of a <a class="gllink" data-popup="topology/" href="#topology">topological space</a> in such a way that the operations defining the group structure give continuous maps in the topological structure. <br/> Many groups of <a class="gllink" data-popup="matrix/" href="#matrix">matrices</a> with entries in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">C</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">C</span></span></span></span></span></span> give topological groups.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="topology"> <h3>topology</h3> </a> <p><span class="markup"><em>Topology</em> is the study of properties which are left unchanged by "continuous deformation". <br/> The development of topology has had a great influence on many areas of mathematics. <br/> Various branches of topology are: <a class="gllink" data-popup="general_topology/" href="#general_topology">general topology</a> <span class="non-italic">(</span>sometimes called point-set topology<span class="non-italic">)</span>, <a class="gllink" data-popup="algebraic_topology/" href="#algebraic_topology">algebraic topology</a> and <a class="gllink" data-popup="differential_topology/" href="#differential_topology">differential topology</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="transcendental"> <h3>transcendental</h3> </a> <p><span class="markup">A <em>transcendental number</em> is a real number which is not the root of a polynomial equation with integer <span class="non-italic">(</span>or <a class="gllink" data-popup="rational/" href="#rational">rational</a><span class="non-italic">)</span> coefficients. <br/> <br/> One may prove <span class="non-italic">(</span>with difficulty!<span class="non-italic">)</span> that π and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">e</span></span></span></span></span> <span class="non-italic">(</span>the base of natural logarithms<span class="non-italic">)</span> are transcendental.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="transit"> <h3>transit</h3> </a> <p><span class="markup">A <em>transit</em> is the passage of a heavenly body over the meridian or of one heavenly body in front of another.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="triangular_number"> <h3>triangular number</h3> </a> <p><span class="markup">A <em>triangular number</em> is the number of dots that may be arranged in an equilateral triangle: <span class="non-italic">1</span>, <span class="non-italic">3</span>, <span class="non-italic">6</span>, <span class="non-italic">10</span>, ... <br/> In general <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">n(n + 1)/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord">/</span><span class="mord">2</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="tropical_year"> <h3>tropical year</h3> </a> <p><span class="markup">The <em>tropical year</em> is time between the repeat of the seasons. It is calculated from the length of time between the <a class="gllink" data-popup="equinox/" href="#equinox">equinoxes</a>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="twin_prime_conjecture"> <h3>twin prime conjecture</h3> </a> <p><span class="markup">Twin primes are pairs of primes <span class="non-italic">2</span> apart, as, for example: <span class="non-italic">17</span>, <span class="non-italic">19</span> or <span class="non-italic">41</span>, <span class="non-italic">43</span>, ... <br/> The <em>Twin Prime Conjecture</em> is the <span class="non-italic">(</span>still unproven<span class="non-italic">)</span> statement that there are infinitely many such pairs.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="twisted_cubic"> <h3>twisted cubic</h3> </a> <p><span class="markup">A <em>twisted cubic</em> is a curve in three dimensional space or <a class="gllink" data-popup="projective_space/" href="#projective_space">projective space</a> whose points are given by <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x(t), y(t), z(t))</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mclose">)</span><span class="mclose">)</span></span></span></span></span> for a parameter <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord mathdefault">t</span></span></span></span></span> and where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi></mrow><annotation encoding="application/x-tex">x, y, z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span></span></span></span></span> are polynomials of degree at most <span class="non-italic">3</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="vector_space"> <h3>vector space</h3> </a> <p><span class="markup">A <em>vector space</em> over a <a class="gllink" data-popup="field/" href="#field">field</a> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span></span></span> is a set <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span> of vectors which can be added to get new vectors and can be multiplied by elements of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span></span></span> <span class="non-italic">(</span>called <em>scalars</em><span class="non-italic">)</span>. <br/> Vector spaces over <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span> like <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span><span class="superscript"><span class="non-italic">2</span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68889em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span></span></span><span class="superscript"><span class="non-italic">3</span></span> are particularly useful.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="virgil"> <h3>Virgil</h3> </a> <p><span class="markup">Virgil <span class="non-italic">(</span><strong>born:</strong> <span class="non-italic">15</span> October <span class="non-italic">70</span> BC in Andes <span class="non-italic">[</span>near Mantua<span class="non-italic">]</span>, in Italy, <strong>died:</strong> <span class="non-italic">19</span> BC in Brundisium<span class="non-italic">)</span> was the most important Roman poet whose major work was the Aeneid, which relates the story of the founding of Rome.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="vitruvius"> <h3>Vitruvius</h3> </a> <p><span class="markup">Vitruvius <span class="non-italic">(1</span>st century BC<span class="non-italic">)</span> was a Roman architect and engineer. He wrote the famous treatise <em>De architectura</em> which is a textbook written for Roman architects.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="wrangler"> <h3>wrangler</h3> </a> <p><span class="markup">A <em>Wrangler</em> is the name given to someone graduating with a first class degree in Mathematics from Cambridge University. The Senior Wrangler was the person with the highest marks, followed by the Second Wrangler and so on down the list. This method of classification lasted until <span class="non-italic">1909</span>, since when the lists have been published in alphabetical order.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="zeno_of_citium"> <h3>Zeno of Citium</h3> </a> <p><span class="markup">Zeno of Citium <span class="non-italic">(</span><strong>born:</strong> about <span class="non-italic">335</span> BC in Citium, Cyprus, <strong>died:</strong> <span class="non-italic">263</span> BC in Athens<span class="non-italic">)</span> was a Greek philosopher who founded the <a class="gllink" data-popup="stoic/" href="#stoic">Stoic</a> school of philosophy. He believed that happiness could be achieved by following rational reasoning.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="zeta_function"> <h3>zeta function</h3> </a> <p><span class="markup">The <em>Riemann zeta function</em> is the sum of the infinite series <br/> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ζ</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mi mathvariant="normal">Σ</mi><mo stretchy="false">(</mo><mn>1</mn><mi mathvariant="normal">/</mi><msup><mi>n</mi><mi>s</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\zeta (s) = \Sigma (1/n^{s})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.07378em;">ζ</span><span class="mopen">(</span><span class="mord mathdefault">s</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">Σ</span><span class="mopen">(</span><span class="mord">1</span><span class="mord">/</span><span class="mord"><span class="mord mathdefault">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">s</span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> <br/> thought of as either a Real or Complex series.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="zodiac"> <h3>zodiac</h3> </a> <p><span class="markup">The <em>Zodiac</em> is an imaginary belt in the heavens through which the <a class="gllink" data-popup="ecliptic/" href="#ecliptic">ecliptic</a> passes centrally and which forms the background to the motions of the planets, Sun and Moon. <br/> It is divided into <span class="non-italic">12</span> regions named for the "signs of the zodiac".</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_11"> <h3>Note 11</h3> </a> <p><span class="markup">Al'Khwarizmi states in his Algebra that the practical man uses <sup><span class="non-italic">22</span></sup>/<sub><span class="non-italic">7</span></sub> for π, the geometer uses √<span class="non-italic">10</span> for π, while the astronomer uses <span class="non-italic">3</span>.<span class="non-italic">1416</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_12"> <h3>Note 12</h3> </a> <p><span class="markup">Fibonacci gave the approximation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow></mrow><mn>864</mn></msup><msub><mi mathvariant="normal">/</mi><mn>275</mn></msub><mo>=</mo><mn>3.14181818...</mn></mrow><annotation encoding="application/x-tex">^{864}/_{275} = 3.14181818...</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">8</span><span class="mord mtight">6</span><span class="mord mtight">4</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">7</span><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">3</span><span class="mord">.</span><span class="mord">1</span><span class="mord">4</span><span class="mord">1</span><span class="mord">8</span><span class="mord">1</span><span class="mord">8</span><span class="mord">1</span><span class="mord">8</span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span></span></span></span></span> He used inscribed and circumscribed regular polygons of <span class="non-italic">96</span> sides, taking the mean, but made no reference to Archimedes.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_13"> <h3>Note 13</h3> </a> <p><span class="markup">Madhava was an Indian mathematician who discovered Gregory's series long before Gregory and was the first to use a series to calculate π.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_14"> <h3>Note 14</h3> </a> <p><span class="markup">Al'Kashi obtained his remarkably accurate value using a regular polygon with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>×</mo><msup><mn>2</mn><mn>28</mn></msup><mo>=</mo><mn>805306368</mn></mrow><annotation encoding="application/x-tex">3 × 2^{28} = 805306368</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">8</span><span class="mord">0</span><span class="mord">5</span><span class="mord">3</span><span class="mord">0</span><span class="mord">6</span><span class="mord">3</span><span class="mord">6</span><span class="mord">8</span></span></span></span></span> sides. His aim was to calculate a value which was accurate enough to allow the calculation of the circumference of the universe to within a hair's breadth. He takes the universe to be a sphere <span class="non-italic">600000</span> times the diameter of the earth. Note that in fact <span class="non-italic">39</span> places of π will compute the circumference of the universe <span class="non-italic">(</span>known in <span class="non-italic">2000)</span> to an accuracy of the radius of the hydrogen atom.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_15"> <h3>Note 15</h3> </a> <p><span class="markup">Valentin Otho, a pupil of Rheticus, was a German engineer. He gave the approximation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow></mrow><mn>355</mn></msup><msub><mi mathvariant="normal">/</mi><mn>113</mn></msub></mrow><annotation encoding="application/x-tex">^{355}/_{113}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">5</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">1</span><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_16"> <h3>Note 16</h3> </a> <p><span class="markup">Vite used Archimedes method with polygons of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6</mn><mo>×</mo><msup><mn>2</mn><mn>16</mn></msup><mo>=</mo><mn>393216</mn></mrow><annotation encoding="application/x-tex">6 × 2^{16} = 393216</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">6</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">3</span><span class="mord">9</span><span class="mord">3</span><span class="mord">2</span><span class="mord">1</span><span class="mord">6</span></span></span></span></span> sides to obtain <span class="non-italic">3</span>.<span class="non-italic">1415926535</span> <π < <span class="non-italic">3</span>.<span class="non-italic">1415926537</span>. He is also famed as the first to find an infinite series for π.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_17"> <h3>Note 17</h3> </a> <p><span class="markup">Romanus <span class="non-italic">(</span>or Adriaan van Roomen<span class="non-italic">)</span> used a regular polygon with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>2</mn><mn>30</mn></msup></mrow><annotation encoding="application/x-tex">2^{30}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">0</span></span></span></span></span></span></span></span></span></span></span></span></span> = <span class="non-italic">1073741824</span> sides. He gaveπ to <span class="non-italic">17</span> places but only <span class="non-italic">15</span> are correct.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_18"> <h3>Note 18</h3> </a> <p><span class="markup">Van Ceulen used inscribed and circumscribed polygons with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>60</mn><mo>×</mo><msup><mn>2</mn><mn>33</mn></msup><mo>=</mo><mn>515396075520</mn></mrow><annotation encoding="application/x-tex">60 × 2^{33} = 515396075520</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">6</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">5</span><span class="mord">1</span><span class="mord">5</span><span class="mord">3</span><span class="mord">9</span><span class="mord">6</span><span class="mord">0</span><span class="mord">7</span><span class="mord">5</span><span class="mord">5</span><span class="mord">2</span><span class="mord">0</span></span></span></span></span> sides. He also used what in modern notation would be essentially <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mi>cos</mi><mo>⁡</mo><mi>A</mi><mo>=</mo><mn>2</mn><msup><mo><mi>sin</mi><mo>⁡</mo></mo><mn>2</mn></msup><mi>A</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">1 - \cos A = 2\sin^{2} A/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.121868em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop">sin</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.871868em;"><span style="top:-3.12076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">A</span><span class="mord">/</span><span class="mord">2</span></span></span></span></span>. He had discovered this result.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_19"> <h3>Note 19</h3> </a> <p><span class="markup">Van Ceulen used a polygon with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>2</mn><mn>62</mn></msup><mo>=</mo><mn>4611686018427387904</mn></mrow><annotation encoding="application/x-tex">2^{62} = 4611686018427387904</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">6</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">4</span><span class="mord">6</span><span class="mord">1</span><span class="mord">1</span><span class="mord">6</span><span class="mord">8</span><span class="mord">6</span><span class="mord">0</span><span class="mord">1</span><span class="mord">8</span><span class="mord">4</span><span class="mord">2</span><span class="mord">7</span><span class="mord">3</span><span class="mord">8</span><span class="mord">7</span><span class="mord">9</span><span class="mord">0</span><span class="mord">4</span></span></span></span></span> sides to obtain π to <span class="non-italic">35</span> places of accuracy. He spent most of his life on this calculation which my computer now gives essentially instantly: <br/> <span class="non-italic">3</span>.<span class="non-italic">1415926535897932384626433832795029</span>. Snell in <span class="non-italic">1621</span> showed that more accurate values of π could be obtained by a clever variation in the construction so that he needed only to use a polygon with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>2</mn><mn>30</mn></msup></mrow><annotation encoding="application/x-tex">2^{30}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">0</span></span></span></span></span></span></span></span></span></span></span></span></span> sides to obtain the accuracy which Van Ceulen obtained by using ones with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>2</mn><mn>62</mn></msup></mrow><annotation encoding="application/x-tex">2^{62}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">6</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span> sides. It was around this time that variants of Archimedes' method stopped being used and future calculations used infinite series expansions.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_2"> <h3>Note 2</h3> </a> <p><span class="markup">It is claimed that in a text which is now lost Archimedes gave better bounds whose average gives the value <span class="non-italic">3</span>.<span class="non-italic">141596</span> for π, correct to seven places.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_20"> <h3>Note 20</h3> </a> <p><span class="markup">Isaac Newton used the series <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>arcsin</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>x</mi><mo>+</mo><mn>1</mn><mi mathvariant="normal">/</mi><mo stretchy="false">(</mo><mn>2.3</mn><mo stretchy="false">)</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>1.3</mn><mi mathvariant="normal">/</mi><mo stretchy="false">(</mo><mn>2.4.5</mn><mo stretchy="false">)</mo><msup><mi>x</mi><mn>5</mn></msup><mo>+</mo><mn>1.3.5</mn><mi mathvariant="normal">/</mi><mo stretchy="false">(</mo><mn>2.4.6.7</mn><mo stretchy="false">)</mo><msup><mi>x</mi><mn>7</mn></msup><mo>+</mo></mrow><annotation encoding="application/x-tex">\arcsin(x) = x +1/(2.3) x^{3} + 1.3/(2.4.5) x^{5} + 1.3.5/(2.4.6.7) x^{7} +</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">arcsin</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mord">/</span><span class="mopen">(</span><span class="mord">2</span><span class="mord">.</span><span class="mord">3</span><span class="mclose">)</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mord">.</span><span class="mord">3</span><span class="mord">/</span><span class="mopen">(</span><span class="mord">2</span><span class="mord">.</span><span class="mord">4</span><span class="mord">.</span><span class="mord">5</span><span class="mclose">)</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mord">.</span><span class="mord">3</span><span class="mord">.</span><span class="mord">5</span><span class="mord">/</span><span class="mopen">(</span><span class="mord">2</span><span class="mord">.</span><span class="mord">4</span><span class="mord">.</span><span class="mord">6</span><span class="mord">.</span><span class="mord">7</span><span class="mclose">)</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">7</span></span></span></span></span></span></span></span></span><span class="mord">+</span></span></span></span></span> ... putting <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><msup><mo>=</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x = ^{1}/_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><span class="mrel">=</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> to obtain a series for <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>arcsin</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>6</mn></mrow><annotation encoding="application/x-tex">\arcsin(^{1}/_{2}) = π/6</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arcsin</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">6</span></span></span></span></span>. This requires taking about <span class="non-italic">40</span> terms.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_21"> <h3>Note 21</h3> </a> <p><span class="markup">Abraham Sharp used James Gregory's series <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>arctan</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>x</mi><mo>−</mo><msup><mi>x</mi><mn>3</mn></msup><mi mathvariant="normal">/</mi><mn>3</mn><mo>+</mo><msup><mi>x</mi><mn>5</mn></msup><mi mathvariant="normal">/</mi><mn>5</mn><mo>−</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\arctan(x) = x - x^{3}/3 + x^{5}/5 - ...</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord">5</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.10556em;vertical-align:0em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span></span></span></span></span> Putting <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mi mathvariant="normal">/</mi><mtext>√</mtext><mn>3</mn></mrow><annotation encoding="application/x-tex">x = 1/√3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.05em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mord">/</span><span class="mord">√</span><span class="mord">3</span></span></span></span></span> gives a series for <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>arctan</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mi mathvariant="normal">/</mi><mtext>√</mtext><mn>3</mn><mo stretchy="false">)</mo><mo>=</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>6</mn></mrow><annotation encoding="application/x-tex">\arctan(1/√3) = π/6</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.05em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen">(</span><span class="mord">1</span><span class="mord">/</span><span class="mord">√</span><span class="mord">3</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">6</span></span></span></span></span>. To obtain π correct to <span class="non-italic">71</span> places he used nearly <span class="non-italic">300</span> terms of the series.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_24"> <h3>Note 24</h3> </a> <p><span class="markup">John Machin used the formula <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mn>4</mn><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>5</mn></msub><mo stretchy="false">)</mo><mo>−</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>129</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = 4 \arctan(^{1}/_{5}) - \arctan(^{1}/_{129})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">2</span><span class="mord mtight">9</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> and James Gregory's series for <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>arctan</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\arctan(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_25"> <h3>Note 25</h3> </a> <p><span class="markup">De Lagny used the same method as Sharp.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_26"> <h3>Note 26</h3> </a> <p><span class="markup">Takebe Hikojiro Kenko <span class="non-italic">(1664</span>-<span class="non-italic">1739)</span> was a Japanese mathematician.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_27"> <h3>Note 27</h3> </a> <p><span class="markup">Matsunaga Ryohitsu was a Japanese mathematician. He used the same method as Newton. This requires taking about <span class="non-italic">160</span> terms in the series.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_28"> <h3>Note 28</h3> </a> <p><span class="markup">Baron Georg von Vega used the relation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mn>5</mn><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>7</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mn>2</mn><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>3</mn></msup><msub><mi mathvariant="normal">/</mi><mn>79</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = 5 \arctan(^{1}/_{7}) + 2 \arctan (^{3}/_{79})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">5</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">7</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">7</span><span class="mord mtight">9</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>, and James Gregory's series for <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>arctan</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\arctan(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span>. Euler had calculated π correct to <span class="non-italic">20</span> places in an hour in <span class="non-italic">1755</span> using this method.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_29"> <h3>Note 29</h3> </a> <p><span class="markup">William Rutherford published his result in the Transactions of the Royal Society in <span class="non-italic">1841</span>. He used the relation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mn>4</mn><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>5</mn></msub><mo stretchy="false">)</mo><mo>−</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>70</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>99</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = 4 \arctan(^{1}/_{5}) - \arctan(^{1}/_{70}) + \arctan(^{1}/_{99})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">7</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">9</span><span class="mord mtight">9</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> which Euler published in <span class="non-italic">1764</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_3"> <h3>Note 3</h3> </a> <p><span class="markup">Marcus Vitruvius Pollio was a Roman architect. He made his calculation of π by measuring the distance a wheel of a given diameter moved through one revolution.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_30"> <h3>Note 30</h3> </a> <p><span class="markup">von Strassnitzky from Vienna gave the formula <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>5</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>8</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = \arctan(^{1}/_{2}) + \arctan (^{1}/_{5}) + \arctan(^{1}/_{8})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">8</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> to Zacharias Dase, a calculating prodigy. He used it and took about two months to calculate π to <span class="non-italic">200</span> places using the formula.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_31"> <h3>Note 31</h3> </a> <p><span class="markup">Thomas Clausen wanted to find the correct value of π to <span class="non-italic">200</span> places since he knew that Rutherford and Dase gave different values from the <span class="non-italic">153</span>rd place. Clausen used Machin's relation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mn>4</mn><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>5</mn></msub><mo stretchy="false">)</mo><mo>−</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>129</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = 4 \arctan(^{1}/_{5}) - \arctan(^{1}/_{129})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">2</span><span class="mord mtight">9</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>. He discovered that Dase was correct and extended the number of correct places to <span class="non-italic">248</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_32"> <h3>Note 32</h3> </a> <p><span class="markup">W Lehmann from Potsdam used the formula <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = \arctan(^{1}/_{2}) + \arctan(^{1}/_{3})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> which was published by Charles Hutton in <span class="non-italic">1776</span>. The formula <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mn>2</mn><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>3</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>7</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = 2 \arctan(^{1}/_{3}) + \arctan(^{1}/_{7})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">7</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> was also given by Hutton in <span class="non-italic">1776</span> and Euler, independently, in <span class="non-italic">1779</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_33"> <h3>Note 33</h3> </a> <p><span class="markup">William Rutherford, having made an error in his published value of π in <span class="non-italic">1841</span>, made another calculation. This time he used Machin's formula.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_34"> <h3>Note 34</h3> </a> <p><span class="markup">W Lehmann from Potsdam used the formula <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = \arctan(^{1}/_{2}) + \arctan(^{1}/_{3})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> which was published by Charles Hutton in <span class="non-italic">1776</span>. The formula <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mn>2</mn><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>3</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>7</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = 2 \arctan(^{1}/_{3}) + \arctan(^{1}/_{7})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">7</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> was also given by Hutton in <span class="non-italic">1776</span> and Euler, independently, in <span class="non-italic">1779</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_35"> <h3>Note 35</h3> </a> <p><span class="markup">D F Ferguson who worked at the Royal Naval College in England used the formula <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>=</mo><mn>3</mn><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>4</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>20</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>arctan</mi><mo>⁡</mo><msup><mo stretchy="false">(</mo><mn>1</mn></msup><msub><mi mathvariant="normal">/</mi><mn>1985</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">π/4 = 3 \arctan(^{1}/_{4}) + \arctan(^{1}/_{20}) + \arctan(^{1}/_{1985})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mop">arctan</span><span class="mopen"><span class="mopen">(</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">9</span><span class="mord mtight">8</span><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> to compute π. He worked on it from May <span class="non-italic">1944</span> until May <span class="non-italic">1945</span> by which time he had calculated <span class="non-italic">530</span> places and found that Shanks was wrong after place <span class="non-italic">528</span>. He continued with his efforts and published <span class="non-italic">620</span> correct places of π in July <span class="non-italic">1946</span>. Ferguson then continued with his calculations, but after this he used a desk calculator. This marks the point at which hand calculations of π ended and computer assisted calculations began.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_4"> <h3>Note 4</h3> </a> <p><span class="markup">Chang Hong <span class="non-italic">(78</span>-<span class="non-italic">139)</span> was an astrologer from China. He was one of the first to use this approximation. He deduced it from his value for the ratio of the volume of a cube to that of the inscribed sphere was <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>8</mn><mn>5</mn></mfrac></mrow><annotation encoding="application/x-tex">8\over{5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">8</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_5"> <h3>Note 5</h3> </a> <p><span class="markup">Ptolemy used a regular <span class="non-italic">360</span> polygon to approximate π. He actually obtained the number <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>+</mo><mn>8</mn><mi mathvariant="normal">/</mi><mn>60</mn><mo>+</mo><mn>30</mn><mi mathvariant="normal">/</mi><mn>6</mn><msup><mn>0</mn><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">3 + 8/60 + 30/60^{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">8</span><span class="mord">/</span><span class="mord">6</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mord">0</span><span class="mord">/</span><span class="mord">6</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span> which written as a decimal is <span class="non-italic">3</span>.<span class="non-italic">1416666</span>...</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_6"> <h3>Note 6</h3> </a> <p><span class="markup">Wang Fan <span class="non-italic">(229</span>-<span class="non-italic">267)</span> was a Chinese astronomer. No method of arriving at his value of π is recorded, although it has been conjectured that he came up with the value <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow></mrow><mn>142</mn></msup><msub><mi mathvariant="normal">/</mi><mn>45</mn></msub></mrow><annotation encoding="application/x-tex">^{142}/_{45}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">4</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> "knowing that <span class="non-italic">3</span>.<span class="non-italic">14</span> was too low".</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_7"> <h3>Note 7</h3> </a> <p><span class="markup">Liu Hui was a Chinese mathematician. He calculated π using an inscribed regular polygon with <span class="non-italic">192</span> sides.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_8"> <h3>Note 8</h3> </a> <p><span class="markup">Zu Chongzhi produced a value of π which was not bettered for nearly one thousand years. In fact although he gives <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow></mrow><mn>355</mn></msup><msub><mi mathvariant="normal">/</mi><mn>113</mn></msub></mrow><annotation encoding="application/x-tex">^{355}/_{113}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">5</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord">/</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">1</span><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> as a "very close" ratio, he actually calculated <span class="non-italic">3</span>.<span class="non-italic">1415926</span> < π < <span class="non-italic">3</span>.<span class="non-italic">1415927</span> which, taking an average, would give π correct to <span class="non-italic">8</span> places.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="note_9"> <h3>Note 9</h3> </a> <p><span class="markup">Aryabhata made his approximation using an inscribed regular polygon with <span class="non-italic">384</span> sides.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="apsides"> <h3>Apsides</h3> </a> <p><span class="markup">In a heliocentric <a class="gllink" data-popup="orbit/" href="#orbit">orbit</a>, the point furthest from the Sun <span class="non-italic">(</span>S<span class="non-italic">)</span> is called <em>aphelion</em> <span class="non-italic">(</span>A<span class="non-italic">)</span>, and the point nearest to the Sun is called <em>perihelion</em> <span class="non-italic">(</span>P<span class="non-italic">)</span>, as shown in the figure. These two points define the line of <strong>apsides</strong> <span class="non-italic">[</span>singular: <strong>apse</strong><span class="non-italic">]</span> which passes through the Sun, and is an axis of symmetry of the path. When the path is discovered to be an <a href="#ellipse"><font color="green" style="text-decoration:none">ellipse</font></a> this line is identified as its major axis. <br/> <br/> The corresponding points that arose originally in <a class="gllink" data-popup="geocentric/" href="#geocentric">geocentric</a> astronomy are <span class="non-italic">(</span>still<span class="non-italic">)</span> called 'apogee' and 'perigee'. Kepler invented the names 'aphelion' and 'perihelion' by analogy when he needed them for his <a class="gllink" data-popup="heliocentric/" href="#heliocentric">heliocentric</a> astronomy <span class="non-italic">(</span>from the Greek: helios = Sun, ge- referring to Earth, with prefixes ap<span class="non-italic">(</span>o<span class="non-italic">)</span>- = away from, peri- = around / near<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geocentric"> <h3>Geocentric</h3> </a> <p><span class="markup">This describes the view when the Earth is taken as centre. In astronomy, it refers to the situation when bodies move round the Earth rather than round the Sun. <span class="non-italic">[</span>Contrast <a class="gllink" data-popup="heliocentric/" href="#heliocentric">heliocentric</a><span class="non-italic">]</span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="heliocentric"> <h3>Heliocentric</h3> </a> <p><span class="markup">This describes the view when the Sun is taken as centre. In astronomy, it refers to the situation when bodies move round the Sun. <span class="non-italic">[</span>Contrast <a class="gllink" data-popup="geocentric/" href="#geocentric">geocentric</a><span class="non-italic">]</span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="secular_changes"> <h3>Secular changes</h3> </a> <p><span class="markup">The theoretical elliptic <a class="gllink" data-popup="orbit/" href="#orbit">orbit</a> of a planet is subject to slow changes of various kinds, due to the effect of other bodies in the universe. These secular changes are often perceptible only over centuries, and they may or may not be periodic <span class="non-italic">(</span>repeating<span class="non-italic">)</span>, with a period of enormous length. <br/> <br/> <span class="non-italic">[</span>'secular' in this sense is cognate with siècle = century<span class="non-italic">]</span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="stereometrical"> <h3>Mensuration / stereometry</h3> </a> <p><span class="markup"><strong>Mensuration</strong> <span class="non-italic">(</span>from the Latin for measurement<span class="non-italic">)</span> is the name of the branch of mathematics concerned with the measurement of the perimeter, area, volume of geometrical figures. The term can be extended to finding the position of 'centres' of particular interest in certain figures. Archimedes was the most famous exponent of this topic in antiquity. <br/> <strong>Stereometry</strong> <span class="non-italic">(</span>the term is derived from Greek<span class="non-italic">)</span> deals with the particular set of results involving three-dimensional <span class="non-italic">(</span>solid<span class="non-italic">)</span> bodies. <span class="non-italic">(</span>Kepler used this term in the title of his work Stereometria Doliorum <span class="non-italic">(1615)</span>, which gives a theoretical treatment of the measurement of wine barrels.<span class="non-italic">)</span></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Riemann_geometry_note"> <h3>Note</h3> </a> <p><span class="markup">The use of the singular "mathematic" and "physic" is archaic, and would have been so even in <span class="non-italic">1873</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_1"> <h3>Note 1</h3> </a> <p><span class="markup">To provide an idea of the tone that ruled throughout the letters of these two men and it is certainly the case of Mr. Bernoulli who commented very early of Mr. Euler's genius, it is sufficient here to provide the end of one of the letters selected by chance amongst those of <span class="non-italic">1739</span> <blockquote>De caetero gratissimum mihi fuit intelligere, quod ad admirationem usque Tibi placuerint quae scripsi de oscillationibus verticalibus, propter simplicitatem expressionis et insignem usum, quem praestare possunt in explicadis navium ponderibus; maluissem autem , ut ipse quoque calculum fecisses ex Tuo ingenio, quo mihi patuisset anon in ratiocinando erraverim. Nam ingenue fateor, me Tuis luminibus plus fidere quam meis. Quae uberius afferes, Vir excel de Isoperimericis, credo equidem Te omnia probe ruminasse atque ad veritatis trutinam expendisse, ita ut vix quicquam restet, quod acerrimam Tuam sagacitatem subterfugere potuerit: etc.</blockquote></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_2"> <h3>Note 2</h3> </a> <p><span class="markup">The marks of esteem to which a virtuous and enlightened man is witness abiding merit honors excessively the man who gives them and the man who receives them so that I should be bound as a duty to publish them, on this occasion that the late Mr. Turgot wrote concerning Mr. Euler by notifying him of the King's command. It is as follows: <blockquote>At Fontainebleau, <span class="non-italic">15</span> October <span class="non-italic">1775</span> <br/> During the time of my appointment at the Department of the Navy, I thought that there was nothing that I could do of greater advantage for the education of young students raised in the naval and artillery schools, than to provide them with the works that you have written on these two mathematical topics. As a result of this, I have proposed to the King to authorize to have your "Treatise on the Construction and Steering of Ships" as well as your "Commentary on the Principles of Artillery" by Robins. <br/> Had I been in closer contact with you, I would have asked for your permission prior to having disposed of these works which belong to you. However, I knew that you would be well-remunerated for the proprietary content by a sign of the King's favor. His Majesty has authorized me to indemnify you with a payment with a payment of one thousand rubles, which he requests that you accept as a token of the esteem that he has for you and which you so justly deserve. <br/> At this time I am overjoyed by being the bearer of such news, and to seize, with a true pleasure, this opportunity to express that which I have known for a very long time to a man that honors humanity with his genius and science with his style. <br/> I am, etc. Turgot</blockquote> </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_3"> <h3>Note 3</h3> </a> <p><span class="markup">After the death of Baron de Wolff, there remained the matter of finding his replacement at the University of Halle. The king wrote to Euler concerning this matter. At first Euler suggested Daniel Bernoulli, however after the refusal of this illustrious scientist, M. de Segner who obtained this position with extremely beneficial conditions which M. Euler obtained for him and at the same time convinced the King to purchase all of the scientific apparatus of the late M. de Wolff. It was also M. Euler to whom the King asked to employ the late M. Haller to enter the University of Halle. The benefits that Haller requested displeased the King and the project failed.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_4"> <h3>Note 4</h3> </a> <p><span class="markup">He had sent a pair of these glasses to the King, which had been manufactured according to his principles, who applauded this useful work and addressed the following letter to Euler from Waldau, this letter is all the more remarkable since it is written in His Majesty's own hand: <blockquote>I wish to thank you for the little spyglasses that followed you letter of the <span class="non-italic">14</span> of this month and I praise the care that you have taken to providing mankind with the theory of your study and your scientific application. As my current situation does not permit me an in depth examination of everything that has come to me from you, I reserve to do so when I have the free time. With this I pray to God that he keeps you in his holy and safety. <br/> Waldau, this <span class="non-italic">15</span> September <span class="non-italic">1759</span> <br/> Frederick</blockquote></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_5"> <h3>Note 5</h3> </a> <p><span class="markup">Euler had communicated to Mr. Bernoulli in <span class="non-italic">1776</span> concerning a new method of Mr. Euler's, more general than all the others since it applied to any initial random figures , the nature of which cannot be represented by any equation. The extract of the following response will make clear the point where the controversy was then and the noblesse of the proceeding of the two great men who are of differing opinions: <blockquote>The sketch of Mr. Euler's method has given me great pleasure, but it has not altered my ideas of this matter one bit, I remain convinced that my method provides for all the possible instances in abstracto. I will admit however that, in certain cases, that of Mr. Euler's is preferable to mine, but there are also points of view to the contrary since my method can be applied to such a number of finite bodies which is proposed even though in the system there is no perfect return or period to wait for. Irrespective of my pretensions, I am always prepared to drop my flag before my admiral.</blockquote></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_6"> <h3>Note 6</h3> </a> <p><span class="markup">Euler opened his home to students that the Academy sent to Berlin to study mathematics. Mssrs Kotelnikov and Rumovsky spent a number of years in this situation and enjoyed the teachings of their incomparable master.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_7"> <h3>Note 7</h3> </a> <p><span class="markup">As the result of frequent and familiar communication that the Prince conducted with him and the intimate friendship which was the result bonded them and he sincerely regretted the recognition of the loss which was due to everything that Mr. Euler had contributed to the cultural and spiritual enlightenment of the Margrave's daughters. He provided them with lessons and it was for them that he wrote during his stay at the Marburg Court the letters concerning various subjects of physics and philosophy which he had published after his return to Saint Petersburg.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_8"> <h3>Note 8</h3> </a> <p><span class="markup">Throughout his life he preserved the sweet memory of the great goodness that the King showed him and the bonding which inspired his affection towards this heartfelt and spiritual prince and this continued through a correspondence which he had the honor to maintain with him. I cannot withstand the temptation to ornament this eulogy with one of these letters that the king wrote in <span class="non-italic">1772</span>: <blockquote>Monsieur le professor Euler, In response to your letter of <span class="non-italic">4</span> August last , I had hoped to be able to confirm the opinion that you are enjoying different circumstances from which your friendship for me has been dictated by the expression of a virtuous and sensible heart. However ... I wish to thank you to good wishes in this regard, and I continue on to the recognition that I owe to your caring in communicating to me the observations of that the accurate astronomers that your Academy made at Bender and near the sources of the Dniestr and the Danube with the locations of some places equally important to geography. I will attempt to put them to good use as with these that are be done in this country with hard work and success, despite the troubles which blocked scientific progress. I request that you continue, as much towards the public utility as my own personal satisfaction and for you to take the opportunity to keep me apprised. I pray to God that he keeps you, dear professor Euler in his holy and worthy safety. <br/> Written at Warsaw, <span class="non-italic">7</span> June <span class="non-italic">1772</span> <br/> King Stanislaus Augustus</blockquote></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_9"> <h3>Note 9</h3> </a> <p><span class="markup">The recognition of an enlightened nation testifies by its real merit, is at once too flattering for a great man to whom it is indebted and too encouraging to those who follow his path, so as to provide for its in its proceedings, so as to insert an extract of a letter that Mr. Euler received by the secretary of the board of longitudes. <blockquote>Admiralty Office, London <span class="non-italic">13</span> June <span class="non-italic">1765</span> <br/> Sir, the Parliament of Great Britain having, by an act passed in their late sessions <span class="non-italic">(</span>a printed copy of which I herewith transmit to you<span class="non-italic">)</span> been pleased to direct, that a sum of money, not exceeding three hundred pounds in the whole, shall be paid to you, as a rewards for having furnished theorem, by the help of which the late Professor Mayer of Göttingen constructed his lunar table, by which table great progress has been made towards discovering the longitude at Sea. I am directed by the Commissioners of the longitude to acquaint you therewith and to congratulate you upon this honorary and pecuniary acknowledgement, directed to be made you by the highest Assembly of this nation, for your useful and ingenious labors towards the said discovery etc.</blockquote></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_10"> <h3>Note 10</h3> </a> <p><span class="markup">It is known that the numbers of foreign memberships of the Paris academy is set at eight. Mr. Euler was elected the ninth, without there being, by consequence a vacancy. The circumstances which have accompanied this induction are worthy to be mentioned in this eulogy. They have been included in the following letter by the Marquis d'Argenson. <blockquote>At Versailles, <span class="non-italic">15</span> June <span class="non-italic">1755</span> <br/> The King has just selected you, Sir, after the wishes of His Royal Academy of Sciences to receive a foreign membership in that Academy and as it has named at the same times My Lord Macclesfield, president of the Royal Society of London, to fill a similar place, which has be vacated by the death of M. Moivre, His Majesty has decided that the first place of this type to be vacated will not be reappointed. The extreme rarity of these types of arrangement is such a marked distinction to make it necessary to bring it to your attention as to assure you of all the support that I provide for it. The Academy truly desired for you to be associated to its works, and His Majesty could only adopt an attitude of recognition that you have justly deserved. Please be convinced, Sir, that it is not possible to be more perfectly devoted as I am.</blockquote></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_11"> <h3>Note 11</h3> </a> <p><span class="markup">The notes of the paper concerning the prize were lost on this occasion, and M. Euler's son was obligated to redo all the lunar theory and to re-calculate everything for a second time.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_12"> <h3>Note 12</h3> </a> <p><span class="markup">On might be under the impression that due to the great number of his discoveries might have caused him to become emotional as one does when the soul perceives a novel truth, the pleasure that a mathematician has the advantage of experiencing perhaps more than others. Mr. Euler always enjoyed this type of susceptibility and he would wish that everyone experience the same. He would become seriously upset with the attitude of indifference that my modest temperament made to assume when I told him the solution to a problem or a proof of a theorem that I was able to find.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_13"> <h3>Note 13</h3> </a> <p><span class="markup">Another proof of the force of his memory and his imagination is worthy of mention. He gave lessons in algebra and geometry to his grandsons. He often proposes numbers for which the extractions of their roots were powers. He calculated them in his head, and when unable to sleep because of insomnia he calculated the first six powers of all the numbers under twenty and recited them to us to our great astonishment a few days later.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_14"> <h3>Note 14</h3> </a> <p><span class="markup">It is very befitting that I should tell the readers of this eulogy, that the King of Prussia, the King of Poland, The Prince Royal of Prussia and the Margraf of Schwendt are bereaved as is the Academy due to the death of Mr. Euler. They have offered their regrets to his eldest son with letters of condolences befitting this honorable man since they render justice in the most gracious words to with talents as to his virtues.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="EF_eulogy_15"> <h3>Note 15</h3> </a> <p><span class="markup">The Academy has eight mathematicians who have enjoyed the instructions of Mr. Euler: MM. J.A. Euler, Kotelnikov, Rumovsky, Krafft, Lexell, Inokhodtsov, Golovine and I, with three absences. <br/> O my dear friends and colleagues how I have seen, by this brief stroke of the pen written by the heart, the warm tears! I have only been able to touch your hand after the pain stifled my voice, but I will never forget the memory of the mark of your sincere affliction and I hereby give public notice of the sensitivity of spirit and love that you have shown on this occasion to our dear and incomparable Master.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_1"> <h3>Note 1</h3> </a> <p><span class="markup">A European call-option is a contract that gives the owner the right, but not the obligation, to buy the given stock at a specified price <span class="non-italic">(</span>the strike price or the exercise price<span class="non-italic">)</span>. If the market price of the stock, on the expiration date, is lower than the strike price, then a call-option expires worthless.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="hooke_note"> <h3>Hooke note</h3> </a> <p><span class="markup">The portrait on this stamp was discovered recently after being missing for a long time and was initially claimed to be of Hooke; but is now believed to be of the Dutch chemist van Helmont.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_3"> <h3>Note 3</h3> </a> <p><span class="markup"><img alt="black n03" class="diagram" src="../Diagrams/black_n03.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="lofting"> <h3>lofting</h3> </a> <p><span class="markup">Lofting is a drawing technique to create curved lines. It is used for drawing plans for streamlined objects such as aircraft and boats.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_5"> <h3>Note 5</h3> </a> <p><span class="markup"><img alt="black n05" class="diagram" src="../Diagrams/black_n05.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_6"> <h3>Note 6</h3> </a> <p><span class="markup"><img alt="black n06" class="diagram" src="../Diagrams/black_n06.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_7"> <h3>Note 7</h3> </a> <p><span class="markup"><img alt="black n07" class="diagram" src="../Diagrams/black_n07.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_8"> <h3>Note 8</h3> </a> <p><span class="markup"><img alt="black n08" class="diagram" src="../Diagrams/black_n08.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_9"> <h3>Note 9</h3> </a> <p><span class="markup"><img alt="black n09" class="diagram" src="../Diagrams/black_n09.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_10"> <h3>Note 10</h3> </a> <p><span class="markup"><img alt="black n10" class="diagram" src="../Diagrams/black_n10.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_11"> <h3>Note 11</h3> </a> <p><span class="markup"><img alt="black n11" class="diagram" src="../Diagrams/black_n11.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_12"> <h3>Note 12</h3> </a> <p><span class="markup"><img alt="black n12" class="diagram" src="../Diagrams/black_n12.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_13"> <h3>Note 13</h3> </a> <p><span class="markup"><img alt="black n13" class="diagram" src="../Diagrams/black_n13.gif"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_2"> <h3></h3> </a> <p><span class="markup"><img alt="black n02" class="diagram" src="../Diagrams/black_n02.gif" style="width:600px;"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="FB_note_4"> <h3></h3> </a> <p><span class="markup"><img alt="black n04" class="diagram" src="../Diagrams/black_n04.gif" style="width:600px;"/></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="stirling_formula"> <h3>Stirling&#39;s formula</h3> </a> <p><span class="markup">Stirling showed that with the constant <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo>=</mo><mi>e</mi></mrow><annotation encoding="application/x-tex">k = e</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">e</span></span></span></span></span> the sequence <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_{n})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>n</mi></msub><mo>=</mo><mi>n</mi><mo stretchy="false">!</mo><msup><mi>k</mi><mi>n</mi></msup><mi mathvariant="normal">/</mi><msup><mi>n</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mrow><annotation encoding="application/x-tex">x_{n} = n! k^{n} /n^{n+1/2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.138em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mclose">!</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathdefault">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mord mtight">/</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span> converges to <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>√</mtext><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">√(2\pi)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.05em;vertical-align:-0.25em;"></span><span class="mord">√</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mclose">)</span></span></span></span></span>. <br/> <br/> This means that for large <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> we have the approximation <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo stretchy="false">!</mo><mo>=</mo><mtext>√</mtext><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mstyle mathsize="1.2em"><mfrac><mi>n</mi><mi>e</mi></mfrac><mstyle mathsize="1em"><msup><mo stretchy="false">)</mo><mi>n</mi></msup></mstyle></mstyle></mrow><annotation encoding="application/x-tex">n! = √(2\pi n) (\large\frac{n}{e}\normalsize )^{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">n</span><span class="mclose">!</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.2312480000000001em;vertical-align:-0.414em;"></span><span class="mord">√</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span><span class="mord mathdefault">n</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord sizing reset-size6 size7"><span class="mopen nulldelimiter sizing reset-size7 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6810400000000001em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size7 size6"></span></span><span class="mclose sizing reset-size6 size6"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span>. <br/> <table border="0" cellpadding="5"> <tbody><tr><td class="r"><em><strong>n</strong></em></td><td><em><strong>n!</strong></em></td><td><strong>Stirling's approximation</strong> <br/> </td></tr><tr class="b"><td class="r"><span class="non-italic">10</span></td><td><span class="non-italic">3</span>.<span class="non-italic">629</span> × <span class="non-italic">10</span><span class="superscript"><span class="non-italic">6</span></span> </td><td><span class="non-italic">3</span>.<span class="non-italic">604</span> × <span class="non-italic">10</span><span class="superscript"><span class="non-italic">6</span></span> <br/> </td></tr><tr class="b"><td class="r"><span class="non-italic">100</span></td><td><span class="non-italic">9</span>.<span class="non-italic">333</span> × <span class="non-italic">10</span><span class="superscript"><span class="non-italic">157</span></span> </td><td><span class="non-italic">9</span>.<span class="non-italic">425</span> × <span class="non-italic">10</span><span class="superscript"><span class="non-italic">157</span></span> <br/> </td></tr><tr class="b"><td class="r"><span class="non-italic">1000</span></td><td><span class="non-italic">4</span>.<span class="non-italic">024</span> × <span class="non-italic">10</span><span class="superscript"><span class="non-italic">2576</span></span> </td><td><span class="non-italic">4</span>.<span class="non-italic">464</span> × <span class="non-italic">10</span><span class="superscript"><span class="non-italic">2576</span></span> </td></tr></tbody></table> </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_1"> <h3>Note 1</h3> </a> <p><span class="markup">With reference to what is said in the text, and possibly the reader may think in contradiction to it, I insert here a memorandum, which I find, amongst the papers entrusted to me, and which appears to be in his father's hand. <br/> <br/> "The following numerical theorem, if not curious in itself, may perhaps be esteemed so, as coming from a boy of eight years old, who was not far advanced in the ordinary rules of arithmetic. <br/> <br/> If any number be added to its equal, subtracted from its equal, multiplied by its equal, and divided by its equal, then the sum, the difference, the product, and the quotient of these equal numbers, added together, will equal the square of the next higher number." <br/> <br/> That is to say, if <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span> be the number, <div class="indent-paragraph"><span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mi>n</mi><mi>n</mi><mo>+</mo><mi>n</mi><mi mathvariant="normal">/</mi><mi>n</mi><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>=</mo><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">(n+n) + (n-n) + nn + n/n = n^2 + 2n +1 = (n+1)^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">n</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">n</span><span class="mord">/</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.897438em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">2</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span>.</div></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_2"> <h3>Note 2</h3> </a> <p><span class="markup">His mathematical tutor was Mr T S Davies, afterwards of Woolwich; his classical, Mr H A S Johnstone.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_3"> <h3>Note 3</h3> </a> <p><span class="markup">In a note to me Mr Hopkins says, with reference to his recollections of Ellis as a pupil, "On one point he always seemed to puzzle me. The extent and definiteness of his acquirement, and his maturity of thought, were so great, so entirely pertaining to the man, that I could hardly conceive when he could have been a boy."</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_4"> <h3>Note 4</h3> </a> <p><span class="markup">Ellis's name appears as editor on the title-page of the fourth volume of the Journal. I may take this opportunity of observing that the parallel drawn between Gregory and Ellis in a very kind and warm-hearted obituary notice of the latter, which was inserted in the Athenaeum of <span class="non-italic">11</span> February <span class="non-italic">1860</span>, seems to me not justified. They resembled each other, no doubt, in the fact that both were good mathematicians and both real philosophers and lovers of truth: but beyond this very general resemblance the parallel does not hold. They were much attached, and Ellis felt the loss of his friend keenly: but neither in mind nor in manner was there much likeness between them.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_5"> <h3>Note 5</h3> </a> <p><span class="markup">It may be mentioned, for the benefit of readers not acquainted with Cambridge customs, that the distinction between Moderator and Examiner is practically merely this, that the papers of original problems are set wholly by the Moderators. Constitutionally the difference is, that the office of Moderator is an old statutable office, whereas the Examiners were added by Grace of the Senate, in consequence of the increase of the number of candidates for mathematical honours.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_6"> <h3>Note 6</h3> </a> <p><span class="markup">When Ellis first came into residence at Cambridge his father had some intention of engaging Anstey Hall, in order that he might be near his son, whose health even then was, as we have seen, not strong. This circumstance had made Ellis always feel an interest in the house.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_7"> <h3>Note 7</h3> </a> <p><span class="markup">He was very fond of translating. Amongst his papers are some translations of Danish ballads, Spanish ballads, Andersen's Tales, &c.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_8"> <h3>Note 8</h3> </a> <p><span class="markup">During his illness his notes to his physician were usually written in Latin.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_9"> <h3>Note 9</h3> </a> <p><span class="markup">He one day represented his condition to me in words curiously resembling those of Job: "When I say, My bed shall comfort me, my couch shall ease my complaint; then Thou scarest me with dreams, and terrifiest me through visions." Job vii. <span class="non-italic">13</span>, <span class="non-italic">14</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_10"> <h3>Note 10</h3> </a> <p><span class="markup">His eyes were first attacked in April, <span class="non-italic">1856</span>; he was unable to read in July, <span class="non-italic">1857</span>. </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_11"> <h3>Note 11</h3> </a> <p><span class="markup">This love of epigram was very striking. Here is an instance. During his illness an old friend wrote to him asking him for some new conundrums. It so happened that on the day of receiving this request he fancied that he had discovered from Dr Paget, that he was labouring under Bright's disease; he sent the following answer: <div class="indent-paragraph"><em> <br/> Si petis hinc aenigma novum, si ludicra poscis, <br/> Quod nuper didici scribere cur dubitem? <br/> Morbus, qui clarum fecit qui nomine clarus <br/> Semper erat, solvet vincula queis teneor.</em></div> <br/> On the same day he wrote on the same subject in a different style: <br/> <br/> DEAR PAGET, <br/> <br/> I think it well to thank you for your most kind note. It came a few minutes before my dinner. That over, I told W <span class="non-italic">[</span>his servant<span class="non-italic">]</span> its purport, and desired him to take notice how little it disturbed me. <br/> <br/> Of course, no such communication can ever be matter of indifference, and least of all to a person like me, in whom the power of suffering and of being anxious has been but little impaired by years of suffering and of anxiety. <br/> <br/> But, to use John Bradford's words, "He who has helped me till now will not leave me when I have most need, for His truth and mercy sake;" and of necessity I am less anxious about many things than I have long been. <br/> <br/> Yours, R L ELLIS. <br/> <span class="non-italic">19</span> February <span class="non-italic">(1857)</span>. <br/> </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_12"> <h3>Note 12</h3> </a> <p><span class="markup">This remark was made to me by one very intimate with him, and I cordially adopt it. In fact, with obviously wide differences, there was a good deal of curious similarity between Ellis and Dr Johnson. Ellis was an excellent conversationalist: he not only expressed himself with singular precision, but he was a patient listener, and readily caught up and retained in his memory the remarks of those with whom he conversed. </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_13"> <h3>Note 13</h3> </a> <p><span class="markup">I ventured to introduce this reminiscence into a sermon preached before the University, <span class="non-italic">22</span> March <span class="non-italic">1863</span>, and since published. I find a similar anecdote amongst some recollections, which have been kindly put in my hands by the Rev J P Norris. Speaking of children, and his strong disapproval of giving them prizes for mere cleverness, he added, "There is another point connected with children that I feel with an intensity which I would give much to have felt years ago, the sacred duty of keeping them pure. Wounded Arthur, speaking to Sir Bedivere, threatens to arise and slay him with his hands if he fail in his behest; and I feel sometimes as if I could arise from this bed and tear to shreds some of the books that are left in children's way."</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="geo_note_14"> <h3>Note 14</h3> </a> <p><span class="markup">He once observed that he wondered no one had ever chosen for an epitaph the words of Psalm cxvi. <span class="non-italic">14</span>, "Thou hast broken my bonds in sunder."</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="eg_note"> <h3>Note</h3> </a> <p><span class="markup">The values of certain definite integrals are to be looked upon as merely arithmetical results; in such cases we are not at liberty to replace the constants involved in the definite integrals by symbols of operation. In other cases we are at liberty to do so, and this remarkable application of the principles stated in the text, has already led Mr Boole of Lincoln, with whom it seems to have originated, to several curious conclusions.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="sizar"> <h3>Sizar</h3> </a> <p><span class="markup">A sizar was an undergraduate at Cambridge University or at Trinity College, Dublin, receiving financial help from the college and formerly having certain menial duties.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="newton_note"> <h3>Newton note</h3> </a> <p><span class="markup">There is an error on this banknote. <br/> The picture shows the sun at the centre of the ellipse which represents its orbit, whereas Newton's theory predicts that the sun should be at a <em>focus</em> of the ellipse.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cassini_note"> <h3>Cassini note</h3> </a> <p><span class="markup">St. Pierre et Miquelon is a small group of islands off the south coast of Newfoundland with <span class="non-italic">7000</span> inhabitants. Politically, the islands belong to France, inhabited mainly by descendants of Breton and Basque fishermen. The shape of the islands can be seen on the stamp <span class="non-italic">(</span>under the compass<span class="non-italic">)</span>. <br/> <br/> There is a date on the stamp: <span class="non-italic">31</span> July <span class="non-italic">1678</span>, at which time Cassini was <span class="non-italic">53</span> years old. What happened to him on that day? Did something special happen on the islands? No, probably nothing at all. Because one has to conclude that the postal administration of St. Pierre et Miquelon made two mistakes on this stamp in <span class="non-italic">1968</span>. They probably wanted the stamp to commemorate an event that happened <span class="non-italic">(</span>only<span class="non-italic">)</span> <span class="non-italic">200</span> years ago: the landing of the famous French astronomer and geographer Jean-Dominique Cassini in St. Pierre on <span class="non-italic">31</span> July <span class="non-italic">1768</span>. So the stamp probably shows a mistake in the numbers. But Giovanni Domenico Cassini was no longer alive in <span class="non-italic">1768</span>. The scientific expedition from France to America in <span class="non-italic">1768</span> was led by his great-grandson <span class="non-italic">(</span>and successor<span class="non-italic">)</span>, who had the same first name <span class="non-italic">(</span>in the French spelling<span class="non-italic">)</span>. The second error on the stamp is in the portrait, because this shows the great-grandfather Giovanni Domenico Cassini. <br/> <br/> Since it is easy to get confused with the four astronomers Cassini, they are often numbered Cassini I - IV; so here we are dealing with Cassini I and Cassini IV. Cassini IV continued both the astronomical and geographical research of his three direct ancestors. His expedition to America served, among other things, a purpose that had already occupied his great-grandfather a hundred years earlier, namely the measurement of longitude. Around the middle of the <span class="non-italic">18</span>th century, the Englishman John Harrison and the Frenchman Pierre Le Roy had built clocks that remained functional during voyages by ship. A clock made by Pierre Le Roy was carried and tested by Cassini IV on the expedition. On <span class="non-italic">31</span> July <span class="non-italic">1768</span>, he went ashore in St. Pierre. There he determined the exact geographical position for cartography and wrote the first detailed description of the archipelago and its inhabitants. <br/> <br/> See <a href="http://www.boergens.de/manfred/marken/briefmarke_04_02.htm">THIS LINK</a></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="gs_note"> <h3>Golden section note</h3> </a> <p><span class="markup">The decimal representation of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">ϕ</span></span></span></span></span> on this stamp has two errors: <span class="non-italic">3653</span> should be <span class="non-italic">36563</span>, and <span class="non-italic">0911</span> should be <span class="non-italic">0917</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="bolyai_note"> <h3>Bolyai note</h3> </a> <p><span class="markup">According to <a href="http://www.ams.org/notices/201101/rtx110100041p.pdf" target="_blank">THIS ARTICLE</a>, the image of Bolyai on this stamp is not authentic.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="pacioli_note"> <h3>Pacioli note</h3> </a> <p><span class="markup">Issued on the <span class="non-italic">300</span>th anniversary of the publication of the <em>Summa de arithmetica, geometria, proportioni et proportionalita.</em> The image is from a <span class="non-italic">1495</span> painting by Barbari. <br/> See <a href="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Pacioli.jpg/1280px-Pacioli.jpg" target="_blank">THIS LINK</a>. <br/> This is the earliest "reliable" portrait of any mathematician.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Harrison_note"> <h3>Harrison note</h3> </a> <p><span class="markup">John Harrison <span class="non-italic">(1693</span>–<span class="non-italic">1776)</span> was an English instrument-maker who invented the marine chronometer for finding longitude at sea. Seeking to win a £<span class="non-italic">20</span>,<span class="non-italic">000</span> prize offered by the British government, Harrison developed a series of chronometers between <span class="non-italic">1735</span> and <span class="non-italic">1761</span>. This stamp, one of a classic set from Ascension Island on the history of astronomy and space travel, shows the first Harrison chronometer, completed in <span class="non-italic">1735</span>. The ship depicted is named as the frigate HMS Deptford, on which the fourth and most successful chronometer, called H<span class="non-italic">4</span>, was tested on a voyage to the West Indies and back in <span class="non-italic">1761</span>–<span class="non-italic">62</span> with Harrison's son William on board. </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Bond"> <h3>William Bond</h3> </a> <p><span class="markup">William Bond <span class="non-italic">(1789</span>-<span class="non-italic">1859)</span> was an American astronomer, and the first director of Harvard Observatory. <br/> </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Grunbaum_note"> <h3>Grünbaum Note</h3> </a> <p><span class="markup">Brando Grünbaum noticed in <span class="non-italic">1985</span> that the drawing of the icosahedron cannot be a real projection. If three of the five vertices of the regular pentagon project onto a line, then the other two vertices must do so too.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="quadrivium"> <h3>quadrivium</h3> </a> <p><span class="markup">Western liberal arts education from the time of <a class="mlink" data-popup="../Biographies/Plato/popup/" href="../Biographies/Plato/">Plato</a> through to the Middle Ages consisted of seven subjects divided into two stages, the <a class="mlink" data-popup="../Biographies/trivium/@popup/" href="../Biographies/trivium">trivium</a>, <span class="non-italic">(</span>grammar, logic and rhetoric<span class="non-italic">)</span>, followed by the <em>quadrivium</em> <span class="non-italic">(</span>arithmetic, geometry, music and astronomy<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="trivium"> <h3>trivium</h3> </a> <p><span class="markup">Western liberal arts education from the time of <a class="mlink" data-popup="../Biographies/Plato/popup/" href="../Biographies/Plato/">Plato</a> through to the Middle Ages consisted of seven subjects, the <em>trivium</em> <span class="non-italic">(</span>grammar, logic, and rhetoric<span class="non-italic">)</span> followed by the <a class="mlink" data-popup="../Biographies/quadrivium/@popup/" href="../Biographies/quadrivium">quadrivium</a> <span class="non-italic">(</span>arithmetic, geometry, music, and astronomy<span class="non-italic">)</span>.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="cosmography"> <h3>cosmography</h3> </a> <p><span class="markup">Traditionally, <em>cosmography</em> has referred to the mapping of celestial features and the cosmos. In modern times, it is also used to refer to the mapping and underatnding of the large-scale features of the observable Universe.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="four_elements"> <h3>four elements</h3> </a> <p><span class="markup">Many ancient cultures divided nature and matter into four elements, classically earth, water, air and fire. At later times a fifth element, the aether or 'void', was adopted in some circumstances. This understanding of the Universe does not withstand the scrutiny of the modern scientific method and is not supported by modern science. </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Scientific_Method"> <h3></h3> </a> <p><span class="markup"></span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Heraclius"> <h3>Heraclius</h3> </a> <p><span class="markup">Heraclius was the Eastern Roman emperor from <span class="non-italic">610</span> to <span class="non-italic">641</span>. <br/> </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Brigeman"> <h3>Laura Bridgeman</h3> </a> <p><span class="markup">Laura Bridgman <span class="non-italic">(1829</span>-<span class="non-italic">1889)</span> was the first deaf-blind American child to gain a significant education in the English language.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Slick"> <h3>Sam Slick</h3> </a> <p><span class="markup">Sam Slick was a character created by Thomas Haliburton, a Nova Scotian judge and author. Slick's wise-cracking commentary on the colonial life of Nova Scotia and relations with the U.S. and Britain struck a note with readers.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Lowell"> <h3>James Russell Lowell</h3> </a> <p><span class="markup">James Russell Lowell <span class="non-italic">(1819</span>-<span class="non-italic">1891)</span> was an American Romantic poet, critic and editor.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Hemans"> <h3>Felicia Hemans</h3> </a> <p><span class="markup">Felicia Hemans <span class="non-italic">(1793</span>-<span class="non-italic">1835)</span> was an English poet famous for her opening lines, "The boy stood on the burning deck ...".</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Willis"> <h3>Robert Willis</h3> </a> <p><span class="markup">Robert Willis <span class="non-italic">(1800</span>-<span class="non-italic">1875)</span> was Jacksonian Professor of Natural Philosophy at Cambridge.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Sedgwick"> <h3>Adam Sedgwick</h3> </a> <p><span class="markup">Adam Sedgwick <span class="non-italic">(1785</span>-<span class="non-italic">1873)</span> was Woodwardian Professor of Geology at Cambridge and one of the founders of modern geology.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Scarlet_Days"> <h3>Scarlet Days</h3> </a> <p><span class="markup">Scarlet Days are days on which doctors in the different Cambridge faculties are directed to wear their festal, predominantly scarlet, gowns in public.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Lawrence"> <h3>Abbott Lawrence</h3> </a> <p><span class="markup">Abbott Lawrence <span class="non-italic">(1792</span>-<span class="non-italic">1855)</span> was a prominent American businessman, politician, and philanthropist.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Everett"> <h3>Edward Everett</h3> </a> <p><span class="markup">Edward Everett <span class="non-italic">(1794</span>-<span class="non-italic">1865)</span> was an American politician, Unitarian pastor, educator, diplomat, and orator from Massachusetts. <br/> </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Struve"> <h3>Otto von Struve</h3> </a> <p><span class="markup">Otto Wilhelm von Struve <span class="non-italic">(1819</span>-<span class="non-italic">1905)</span> was a Russian astronomer of Baltic German origins. <br/> </span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Chacornac"> <h3>Jean Chacornac</h3> </a> <p><span class="markup">Jean Chacornac <span class="non-italic">(1823</span>-<span class="non-italic">1873)</span> was a French astronomer and discoverer of a comet and several asteroids.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="Nasby"> <h3>Nasby</h3> </a> <p><span class="markup">Nasby was the pseudonym of David Ross Locke <span class="non-italic">(1833</span>-<span class="non-italic">88)</span> an American humorist.</span></p> </div> </div> <div class="row"> <div class="col-md-12"> <a name="means"> <h3>Means</h3> </a> <p><span class="markup">The <strong>arithmetic mean</strong> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span></span></span></span></span> of numbers <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span> satisfies <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>=</mo><mstyle mathsize="1.2em"><mfrac><mn>1</mn><mn>2</mn></mfrac><mstyle mathsize="1em"><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo stretchy="false">)</mo></mstyle></mstyle></mrow><annotation encoding="application/x-tex">z=\large\frac{1}{2}\normalsize (x+y)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.402352em;vertical-align:-0.414em;"></span><span class="mord sizing reset-size6 size7"><span class="mopen nulldelimiter sizing reset-size7 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8236266666666667em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size7 size6"></span></span><span class="mopen sizing reset-size6 size6">(</span><span class="mord mathdefault sizing reset-size6 size6">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin sizing reset-size6 size6">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault sizing reset-size6 size6" style="margin-right:0.03588em;">y</span><span class="mclose sizing reset-size6 size6">)</span></span></span></span></span>. <br/> <br/> The <strong>geometric mean</strong> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span></span></span></span></span> of numbers <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span> satisfies <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>=</mo><msqrt><mrow><mi>x</mi><mi mathvariant="normal">.</mi><mi>y</mi></mrow></msqrt></mrow><annotation encoding="application/x-tex">z=\sqrt{x.y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.33693999999999996em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.70306em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathdefault">x</span><span class="mord">.</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span><span style="top:-2.66306em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.33693999999999996em;"><span></span></span></span></span></span></span></span></span></span>. <br/> <br/> The <strong>harmonic mean</strong> <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span></span></span></span></span> of numbers <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span> is the reciprocal of the arithmetic mean of the reciprocals of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span>. <br/> That is z satisfies <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle mathsize="1.2em"><mfrac><mn>1</mn><mi>z</mi></mfrac><mstyle mathsize="1em"><mo>=</mo><mstyle mathsize="1.2em"><mfrac><mn>1</mn><mn>2</mn></mfrac><mstyle mathsize="1em"><mo stretchy="false">(</mo><mstyle mathsize="1.2em"><mfrac><mn>1</mn><mi>x</mi></mfrac><mstyle mathsize="1em"><mo>+</mo><mstyle mathsize="1.2em"><mfrac><mn>1</mn><mi>y</mi></mfrac><mstyle mathsize="1em"><mo stretchy="false">)</mo></mstyle></mstyle></mstyle></mstyle></mstyle></mstyle></mstyle></mstyle></mrow><annotation encoding="application/x-tex">\large\frac{1}{z}\normalsize = \large\frac{1}{2}\normalsize (\large\frac{1}{x}\normalsize + \large\frac{1}{y}\normalsize )</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.402352em;vertical-align:-0.414em;"></span><span class="mord sizing reset-size6 size7"><span class="mopen nulldelimiter sizing reset-size7 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8236266666666667em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.04398em;">z</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size7 size6"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel sizing reset-size6 size6">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.402352em;vertical-align:-0.414em;"></span><span class="mord sizing reset-size6 size7"><span class="mopen nulldelimiter sizing reset-size7 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8236266666666667em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size7 size6"></span></span><span class="mopen sizing reset-size6 size6">(</span><span class="mord sizing reset-size6 size7"><span class="mopen nulldelimiter sizing reset-size7 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8236266666666667em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">x</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size7 size6"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin sizing reset-size6 size6">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.557904em;vertical-align:-0.569552em;"></span><span class="mord sizing reset-size6 size7"><span class="mopen nulldelimiter sizing reset-size7 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8236266666666667em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">y</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size7 size4 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.47462666666666664em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size7 size6"></span></span><span class="mclose sizing reset-size6 size6">)</span></span></span></span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>=</mo><mstyle mathsize="1.44em"><mfrac><mrow><mn>2</mn><mi>x</mi><mi>y</mi></mrow><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">z = \Large\frac{2xy}{x+y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.9765199999999996em;vertical-align:-0.6912399999999999em;"></span><span class="mord sizing reset-size6 size8"><span class="mopen nulldelimiter sizing reset-size8 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8925555555555554em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">x</span><span class="mbin mtight">+</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">y</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.445027777777778em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathdefault mtight">x</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4800277777777777em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size8 size6"></span></span></span></span></span></span>. <br/> </span></p> </div> </div> </main> <!--noindex--> <footer class="site-footer mt-3 pb-3 pt-3 pt-md-0"> <div class="row"> <div class="cr-footer col-md-4"> DJF/JOC/EFR<br /> <a href="../Miscellaneous/copyright/" >Copyright information</a ><br /> <a href="../Miscellaneous/accessibility/" >Accessibility statement</a > </div> <div class="links-footer col-md-6"> <a href="https://www.st-andrews.ac.uk/mathematics-statistics/" target="_blank" >School of Mathematics and Statistics</a > <br /> <a href="http://www.st-andrews.ac.uk/" target="_blank" >University of St Andrews, Scotland</a > </div> <div class="col-md-2"> <img src="../static/img/st-andrews-logo.png?h=e46f195e" alt="University of St. Andrews logo" /> </div> </div> <hr /> <div class="row"> <div class="col-md-12"> If you have comments, or spot errors, we are always pleased to <a href="../Miscellaneous/contact_us/">hear from you</a>. </div> </div> </footer> <!--endnoindex--> </div> <script src="../static/js/popper.min.js?h=313789ca"></script> <script src="../static/js/tippy-bundle.iife.min.js?h=99c14441"></script> <script src="../static/js/site-popups.js?h=7ad47578"></script> <script src="../static/js/foldup.js?h=0b5aeaab"></script> <script src="../static/js/extras-popup.js?h=d0cee101"></script> <script src="../static/js/imageMapResizer.min.js?h=319b7d80"></script> <script> imageMapResize(); // https://blog.shhdharmen.me/toggle-light-and-dark-themes-in-bootstrap const LOCAL_STORAGE_KEY = 'toggle-bootstrap-theme'; const LOCAL_META_DATA = JSON.parse( localStorage.getItem(LOCAL_STORAGE_KEY) ); const DARK_THEME_PATH = 'https://bootswatch.com/5/flatly/bootstrap.min.css'; const DARK_STYLE_LINK = document.getElementById('new-theme-style'); let isDark = LOCAL_META_DATA && LOCAL_META_DATA.isDark; // check if user has already selected dark theme earlier if (isDark) { enableDarkTheme(); } else { disableDarkTheme(); } /** * Apart from toggling themes, this will also store user's theme preference in local storage. * So when user visits next time, we can load the same theme. * */ function toggleTheme() { isDark = !isDark; if (isDark) { enableDarkTheme(); } else { disableDarkTheme(); } const META = { isDark }; localStorage.setItem(LOCAL_STORAGE_KEY, JSON.stringify(META)); } function enableDarkTheme() { DARK_STYLE_LINK.setAttribute('href', DARK_THEME_PATH); } function disableDarkTheme() { DARK_STYLE_LINK.setAttribute('href', ''); } </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10