CINXE.COM
Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine | Journal of Computational and Cognitive Engineering
<!DOCTYPE html> <html lang="en" xml:lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine | Journal of Computational and Cognitive Engineering </title> <link rel="icon" href="https://ojs.bonviewpress.com/public/journals/4/favicon_en_US.png"> <meta name="generator" content="Open Journal Systems 3.4.0.7"> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="Journal of Computational and Cognitive Engineering"/> <meta name="citation_journal_abbrev" content="JCCE"/> <meta name="citation_issn" content="2810-9503"/> <meta name="citation_author" content="Gengsheng L. Zeng"/> <meta name="citation_author_institution" content="Department of Computer Science, Utah Valley University, USA"/> <meta name="citation_title" content="Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine"/> <meta name="citation_language" content="en"/> <meta name="citation_date" content="2024/11/22"/> <meta name="citation_volume" content="3"/> <meta name="citation_issue" content="4"/> <meta name="citation_firstpage" content="404"/> <meta name="citation_lastpage" content="411"/> <meta name="citation_doi" content="10.47852/bonviewJCCE42022789"/> <meta name="citation_abstract_html_url" content="https://ojs.bonviewpress.com/index.php/JCCE/article/view/2789"/> <meta name="citation_abstract" xml:lang="en" content="A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization problems. The Boltzmann machines are usually considered probability models. Probability models normally use nondeterministic algorithms to solve their parameters. The Hopfield network which is also known as the Ising model is a special case of a Boltzmann machine, in the sense that the hidden layer is the same as the visible layer. The weights and biases from the visible layer to the hidden layer are the same as the weights and biases from the hidden layer to the visible layer. When the Hopfield network is considered a probabilistic model, everything is treated as stochastic (i.e., random) and nondeterministic. An optimization problem in the Hopfield network is considered searching for the samples that have higher probabilities according to a probability density function. This paper proposes a method to consider the Hopfield network as a deterministic model, in which nothing is random, and no stochastic distribution is used. An optimization problem associated with the Hopfield network thus has a deterministic objective function (also known as loss function or cost function) that is the energy function itself. The purpose of the objective function is to assist the Hopfield network to reach a state that has a lower energy. This study suggests that deterministic optimization algorithms can be used for the associated optimization problems. The deterministic algorithm has the same mathematical form for the calculation of a perceptron that consists of a dot product, a bias, and a nonlinear activation function. This paper uses some examples of searching for stable states to demonstrate that the deterministic optimization method may have a faster convergence rate and smaller errors. Received: 8 March 2024 | Revised: 27 April 2024 | Accepted: 14 May 2024 Conflicts of Interest The author declares that he has no conflicts of interest to this work. Data Availability Statement Data sharing is not applicable to this article as no new data were created or analyzed in this study. Author Contribution Statement Gengsheng L. Zeng: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review &amp; editing, Visualization, Supervision, Project administration, Funding acquisition."/> <meta name="citation_keywords" xml:lang="en" content="restricted Boltzmann machine"/> <meta name="citation_keywords" xml:lang="en" content="Hopfield network"/> <meta name="citation_keywords" xml:lang="en" content="deterministic optimization"/> <meta name="citation_keywords" xml:lang="en" content="nondeterministic optimization"/> <meta name="citation_pdf_url" content="https://ojs.bonviewpress.com/index.php/JCCE/article/download/2789/1004"/> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Gengsheng L. Zeng"/> <meta name="DC.Date.created" scheme="ISO8601" content="2024-11-22"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2024-03-08"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2024-11-22"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2024-11-22"/> <meta name="DC.Description" xml:lang="en" content="A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization problems. The Boltzmann machines are usually considered probability models. Probability models normally use nondeterministic algorithms to solve their parameters. The Hopfield network which is also known as the Ising model is a special case of a Boltzmann machine, in the sense that the hidden layer is the same as the visible layer. The weights and biases from the visible layer to the hidden layer are the same as the weights and biases from the hidden layer to the visible layer. When the Hopfield network is considered a probabilistic model, everything is treated as stochastic (i.e., random) and nondeterministic. An optimization problem in the Hopfield network is considered searching for the samples that have higher probabilities according to a probability density function. This paper proposes a method to consider the Hopfield network as a deterministic model, in which nothing is random, and no stochastic distribution is used. An optimization problem associated with the Hopfield network thus has a deterministic objective function (also known as loss function or cost function) that is the energy function itself. The purpose of the objective function is to assist the Hopfield network to reach a state that has a lower energy. This study suggests that deterministic optimization algorithms can be used for the associated optimization problems. The deterministic algorithm has the same mathematical form for the calculation of a perceptron that consists of a dot product, a bias, and a nonlinear activation function. This paper uses some examples of searching for stable states to demonstrate that the deterministic optimization method may have a faster convergence rate and smaller errors. Received: 8 March 2024 | Revised: 27 April 2024 | Accepted: 14 May 2024 Conflicts of Interest The author declares that he has no conflicts of interest to this work. Data Availability Statement Data sharing is not applicable to this article as no new data were created or analyzed in this study. Author Contribution Statement Gengsheng L. Zeng: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review &amp; editing, Visualization, Supervision, Project administration, Funding acquisition."/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="2789"/> <meta name="DC.Identifier.pageNumber" content="404-411"/> <meta name="DC.Identifier.DOI" content="10.47852/bonviewJCCE42022789"/> <meta name="DC.Identifier.URI" content="https://ojs.bonviewpress.com/index.php/JCCE/article/view/2789"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2024 Author"/> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by/4.0/"/> <meta name="DC.Source" content="Journal of Computational and Cognitive Engineering"/> <meta name="DC.Source.ISSN" content="2810-9503"/> <meta name="DC.Source.Issue" content="4"/> <meta name="DC.Source.Volume" content="3"/> <meta name="DC.Source.URI" content="https://ojs.bonviewpress.com/index.php/JCCE"/> <meta name="DC.Subject" xml:lang="en" content="restricted Boltzmann machine"/> <meta name="DC.Subject" xml:lang="en" content="Hopfield network"/> <meta name="DC.Subject" xml:lang="en" content="deterministic optimization"/> <meta name="DC.Subject" xml:lang="en" content="nondeterministic optimization"/> <meta name="DC.Title" content="Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Research Articles"/> <link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/JCCE/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/JCCE/$$$call$$$/page/page/css?name=font" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/lib/pkp/styles/fontawesome/fontawesome.css?v=3.4.0.7" type="text/css" /><style type="text/css">.pkp_structure_head { background: center / cover no-repeat url("https://ojs.bonviewpress.com/public/journals/4/homepageImage_en_US.png");}</style><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/citations/css/citations.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/orcidProfile/css/orcidProfile.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/assets/css/paperbuzzviz.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/public/journals/4/styleSheet.css?d=2023-02-03+10%3A29%3A10" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/css/citationStyleLanguagePlugin.css?v=3.4.0.7" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view" dir="ltr"> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <nav class="cmp_skip_to_content" aria-label="Jump to content links"> <a href="#pkp_content_main">Skip to main content</a> <a href="#siteNav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </nav> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <button class="pkp_site_nav_toggle"> <span>Open Menu</span> </button> <div class="pkp_site_name"> <a href=" https://ojs.bonviewpress.com/index.php/JCCE/index " class="is_text">Journal of Computational and Cognitive Engineering</a> </div> </div> <nav class="pkp_site_nav_menu" aria-label="Site Navigation"> <a id="siteNav"></a> <div class="pkp_navigation_primary_row"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="http://ojs.bonviewpress.com/index.php/JCCE/index"> HOME </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about"> ABOUT </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/aims_and_scope"> Aims and Scope </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/JM"> Journal Metrics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/indexing"> Indexing & Abstracting </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/privacy"> Privacy Statement </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/contact"> Contact Us </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/browse"> BROWSE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/onlinefirst"> Online First </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/current"> Current Issue </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/archive"> All Issues </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/contribute"> CONTRIBUTE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/submissions"> Author Guidelines </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/OA"> Open Access </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/APC"> Article Processing Charge </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/peer_review_process"> Peer Review Process </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/pe"> Publishing Ethics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/for_reviewers"> For Reviewers </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/EBMembers"> EDITORIAL BOARD </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/special_issues"> SPECIAL ISSUES </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/submittingproposal"> Submitting a Proposal </a> </li> </ul> </li> </ul> <div class="pkp_navigation_search_wrapper"> <a href="https://ojs.bonviewpress.com/index.php/index/search" class="pkp_search pkp_search_desktop"> <span class="fa fa-search" aria-hidden="true"></span> Search </a> </div> </div> </div> <div class="pkp_navigation_user_wrapper" id="navigationUserWrapper"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/user/register"> Register </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/browse"> BROWSE </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/login"> Login </a> </li> </ul> </div> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content has_sidebar"> <div class="pkp_structure_main" role="main"> <a id="pkp_content_main"></a> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/101"> Vol. 3 No. 4 (2024) </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Research Articles </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine </h1> <div class="row"> <div class="main_entry"> <section class="item authors"> <h2 class="pkp_screen_reader">Authors</h2> <ul class="authors"> <li> <span class="name"> Gengsheng L. Zeng </span> <span class="affiliation"> Department of Computer Science, Utah Valley University, USA </span> <span class="orcid"> <svg class="orcid_icon" viewBox="0 0 256 256" aria-hidden="true"> <style type="text/css"> .st0{fill:#A6CE39;} .st1{fill:#FFFFFF;} </style> <path class="st0" d="M256,128c0,70.7-57.3,128-128,128C57.3,256,0,198.7,0,128C0,57.3,57.3,0,128,0C198.7,0,256,57.3,256,128z"/> <g> <path class="st1" d="M86.3,186.2H70.9V79.1h15.4v48.4V186.2z"/> <path class="st1" d="M108.9,79.1h41.6c39.6,0,57,28.3,57,53.6c0,27.5-21.5,53.6-56.8,53.6h-41.8V79.1z M124.3,172.4h24.5 c34.9,0,42.9-26.5,42.9-39.7c0-21.5-13.7-39.7-43.7-39.7h-23.7V172.4z"/> <path class="st1" d="M88.7,56.8c0,5.5-4.5,10.1-10.1,10.1c-5.6,0-10.1-4.6-10.1-10.1c0-5.6,4.5-10.1,10.1-10.1 C84.2,46.7,88.7,51.3,88.7,56.8z"/> </g> </svg> <a href="https://orcid.org/0000-0003-0790-6043" target="_blank"> https://orcid.org/0000-0003-0790-6043 </a> </span> </li> </ul> </section> <section class="item doi"> <h2 class="label"> DOI: </h2> <span class="value"> <a href="https://doi.org/10.47852/bonviewJCCE42022789"> https://doi.org/10.47852/bonviewJCCE42022789 </a> </span> </section> <section class="item keywords"> <h2 class="label"> Keywords: </h2> <span class="value"> restricted Boltzmann machine, Hopfield network, deterministic optimization, nondeterministic optimization </span> </section> <section class="item abstract"> <h2 class="label">Abstract</h2> <p>A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization problems. The Boltzmann machines are usually considered probability models. Probability models normally use nondeterministic algorithms to solve their parameters. The Hopfield network which is also known as the Ising model is a special case of a Boltzmann machine, in the sense that the hidden layer is the same as the visible layer. The weights and biases from the visible layer to the hidden layer are the same as the weights and biases from the hidden layer to the visible layer. When the Hopfield network is considered a probabilistic model, everything is treated as stochastic (i.e., random) and nondeterministic. An optimization problem in the Hopfield network is considered searching for the samples that have higher probabilities according to a probability density function. This paper proposes a method to consider the Hopfield network as a deterministic model, in which nothing is random, and no stochastic distribution is used. An optimization problem associated with the Hopfield network thus has a deterministic objective function (also known as loss function or cost function) that is the energy function itself. The purpose of the objective function is to assist the Hopfield network to reach a state that has a lower energy. This study suggests that deterministic optimization algorithms can be used for the associated optimization problems. The deterministic algorithm has the same mathematical form for the calculation of a perceptron that consists of a dot product, a bias, and a nonlinear activation function. This paper uses some examples of searching for stable states to demonstrate that the deterministic optimization method may have a faster convergence rate and smaller errors.</p> <p> </p> <p><strong>Received</strong>: 8 March 2024 | <strong>Revised</strong>: 27 April 2024 | <strong>Accepted</strong>: 14 May 2024</p> <p> </p> <p><strong>Conflicts of Interest</strong></p> <p>The author declares that he has no conflicts of interest to this work.</p> <p> </p> <p><strong>Data Availability Statement</strong></p> <p>Data sharing is not applicable to this article as no new data were created or analyzed in this study.</p> <p> </p> <p><strong>Author Contribution Statement</strong></p> <p><strong>Gengsheng L. Zeng:</strong> Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization, Supervision, Project administration, Funding acquisition.</p> </section> <br /><div class="separator"></div><div class="item abstract" id="trendmd-suggestions"></div><script defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"website_id":"89267", "element":"#trendmd-suggestions"}'></script><div class="item downloads_chart"> <h3 class="label"> Metrics </h3> <div id="paperbuzz"><div id="loading">Metrics Loading ...</div></div> <script type="text/javascript"> window.onload = function () { var options = { paperbuzzStatsJson: JSON.parse('{\"altmetrics_sources\":[],\"crossref_event_data_url\":\"https:\\/\\/api.eventdata.crossref.org\\/v1\\/events?rows=1000&filter=from-collected-date:1990-01-01,until-collected-date:2099-01-01,obj-id:10.47852\\/bonviewjcce42022789\",\"doi\":\"10.47852\\/bonviewjcce42022789\",\"metadata\":{\"DOI\":\"10.47852\\/bonviewjcce42022789\",\"ISSN\":[\"2810-9503\"],\"URL\":\"http:\\/\\/dx.doi.org\\/10.47852\\/bonviewjcce42022789\",\"abstract\":\"<jats:p>A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization problems. The Boltzmann machines are usually considered probability models. Probability models normally use nondeterministic algorithms to solve their parameters. The Hopfield network which is also known as the Ising model is a special case of a Boltzmann machine, in the sense that the hidden layer is the same as the visible layer. The weights and biases from the visible layer to the hidden layer are the same as the weights and biases from the hidden layer to the visible layer. When the Hopfield network is considered a probabilistic model, everything is treated as stochastic (i.e., random) and nondeterministic. An optimization problem in the Hopfield network is considered searching for the samples that have higher probabilities according to a probability density function. This paper proposes a method to consider the Hopfield network as a deterministic model, in which nothing is random, and no stochastic distribution is used. An optimization problem associated with the Hopfield network thus has a deterministic objective function (also known as loss function or cost function) that is the energy function itself. The purpose of the objective function is to assist the Hopfield network to reach a state that has a lower energy. This study suggests that deterministic optimization algorithms can be used for the associated optimization problems. The deterministic algorithm has the same mathematical form for the calculation of a perceptron that consists of a dot product, a bias, and a nonlinear activation function. This paper uses some examples of searching for stable states to demonstrate that the deterministic optimization method may have a faster convergence rate and smaller errors.<\\/jats:p>\",\"author\":[{\"ORCID\":\"http:\\/\\/orcid.org\\/0000-0003-0790-6043\",\"affiliation\":[],\"authenticated-orcid\":false,\"family\":\"Zeng\",\"given\":\"Gengsheng L.\",\"sequence\":\"first\"}],\"container-title\":\"Journal of Computational and Cognitive Engineering\",\"container-title-short\":\"JCCE\",\"content-domain\":{\"crossmark-restriction\":false,\"domain\":[]},\"created\":{\"date-parts\":[[2024,6,28]],\"date-time\":\"2024-06-28T03:41:05Z\",\"timestamp\":1719546065000},\"crossref_url\":\"https:\\/\\/api.crossref.org\\/works\\/10.47852\\/bonviewjcce42022789\\/transform\\/application\\/vnd.citationstyles.csl+json\",\"deposited\":{\"date-parts\":[[2024,6,28]],\"date-time\":\"2024-06-28T03:41:08Z\",\"timestamp\":1719546068000},\"indexed\":{\"date-parts\":[[2024,6,29]],\"date-time\":\"2024-06-29T00:23:28Z\",\"timestamp\":1719620608227},\"is-referenced-by-count\":0,\"issued\":{\"date-parts\":[[2024,5,23]]},\"member\":\"27601\",\"original-title\":[],\"prefix\":\"10.47852\",\"published\":{\"date-parts\":[[2024,5,23]]},\"published-online\":{\"date-parts\":[[2024,5,23]]},\"publisher\":\"BON VIEW PUBLISHING PTE\",\"reference-count\":0,\"references-count\":0,\"relation\":[],\"resource\":{\"primary\":{\"URL\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/view\\/2789\"}},\"score\":1,\"short-title\":[],\"source\":\"Crossref\",\"subject\":[],\"subtitle\":[],\"title\":\"Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine\",\"type\":\"journal-article\"},\"open_access\":{\"best_oa_location\":null,\"data_standard\":1,\"doi\":\"10.47852\\/bonviewjcce42022789\",\"doi_url\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewjcce42022789\",\"first_oa_location\":null,\"genre\":\"journal-article\",\"has_repository_copy\":false,\"is_oa\":false,\"is_paratext\":false,\"journal_is_in_doaj\":false,\"journal_is_oa\":false,\"journal_issn_l\":\"2810-9570\",\"journal_issns\":\"2810-9503\",\"journal_name\":\"Journal of Computational and Cognitive Engineering\",\"oa_locations\":[],\"oa_locations_embargoed\":[],\"oa_status\":\"closed\",\"oadoi_url\":\"https:\\/\\/api.oadoi.org\\/v2\\/10.47852\\/bonviewjcce42022789\",\"published_date\":\"2024-05-23\",\"publisher\":\"BON VIEW PUBLISHING PTE\",\"title\":\"Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine\",\"updated\":\"2024-06-29T01:36:28.717094\",\"year\":2024,\"z_authors\":[{\"ORCID\":\"http:\\/\\/orcid.org\\/0000-0003-0790-6043\",\"authenticated-orcid\":false,\"family\":\"Zeng\",\"given\":\"Gengsheng L.\",\"sequence\":\"first\"}]}}'), minItemsToShowGraph: { minEventsForYearly: 10, minEventsForMonthly: 10, minEventsForDaily: 6, minYearsForYearly: 3, minMonthsForMonthly: 2, minDaysForDaily: 1 //first 30 days only }, graphheight: 150, graphwidth: 300, showTitle: false, showMini: false, published_date: [2024, 11, 22], } var paperbuzzviz = undefined; paperbuzzviz = new PaperbuzzViz(options); paperbuzzviz.initViz(); } </script> </div> </div><!-- .main_entry --> <div class="entry_details"> <div class="item cover_image"> <div class="sub_item"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/101"> <img src="https://ojs.bonviewpress.com/public/journals/4/cover_issue_101_en.jpg" alt=""> </a> </div> </div> <div class="item galleys"> <h2 class="pkp_screen_reader"> Downloads </h2> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/2789/1004"> PDF </a> </li> </ul> </div> <div class="item published"> <section class="sub_item"> <h2 class="label"> Published </h2> <div class="value"> <span>2024-11-22</span> </div> </section> </div> <div class="item issue"> <section class="sub_item"> <h2 class="label"> Issue </h2> <div class="value"> <a class="title" href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/101"> Vol. 3 No. 4 (2024) </a> </div> </section> <section class="sub_item"> <h2 class="label"> Section </h2> <div class="value"> Research Articles </div> </section> </div> <div class="item copyright"> <h2 class="label"> License </h2> <p>Copyright (c) 2024 Author</p> <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" src="//i.creativecommons.org/l/by/4.0/88x31.png" /></a><p>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> </div> <div class="item citation"> <section class="sub_item citation_display"> <h2 class="label"> How to Cite </h2> <div class="value"> <div id="citationOutput" role="region" aria-live="polite"> <div class="csl-bib-body"> <div class="csl-entry">Zeng, G. L. . (2024). Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine. <i>Journal of Computational and Cognitive Engineering</i>, <i>3</i>(4), 404-411. <a href="https://doi.org/10.47852/bonviewJCCE42022789">https://doi.org/10.47852/bonviewJCCE42022789</a></div> </div> </div> <div class="citation_formats"> <button class="citation_formats_button label" aria-controls="cslCitationFormats" aria-expanded="false" data-csl-dropdown="true"> More Citation Formats </button> <div id="cslCitationFormats" class="citation_formats_list" aria-hidden="true"> <ul class="citation_formats_styles"> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acm-sig-proceedings?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acm-sig-proceedings?submissionId=2789&publicationId=3964&issueId=101&return=json" > ACM </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acs-nano?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acs-nano?submissionId=2789&publicationId=3964&issueId=101&return=json" > ACS </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/apa?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/apa?submissionId=2789&publicationId=3964&issueId=101&return=json" > APA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=2789&publicationId=3964&issueId=101&return=json" > ABNT </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/chicago-author-date?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/chicago-author-date?submissionId=2789&publicationId=3964&issueId=101&return=json" > Chicago </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/harvard-cite-them-right?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/harvard-cite-them-right?submissionId=2789&publicationId=3964&issueId=101&return=json" > Harvard </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ieee?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ieee?submissionId=2789&publicationId=3964&issueId=101&return=json" > IEEE </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/modern-language-association?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/modern-language-association?submissionId=2789&publicationId=3964&issueId=101&return=json" > MLA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=2789&publicationId=3964&issueId=101&return=json" > Turabian </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/vancouver?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/vancouver?submissionId=2789&publicationId=3964&issueId=101&return=json" > Vancouver </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ama?submissionId=2789&publicationId=3964&issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ama?submissionId=2789&publicationId=3964&issueId=101&return=json" > AMA </a> </li> </ul> <div class="label"> Download Citation </div> <ul class="citation_formats_styles"> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/download/ris?submissionId=2789&publicationId=3964&issueId=101"> <span class="fa fa-download"></span> Endnote/Zotero/Mendeley (RIS) </a> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/download/bibtex?submissionId=2789&publicationId=3964&issueId=101"> <span class="fa fa-download"></span> BibTeX </a> </li> </ul> </div> </div> </div> </section> </div> <div class="item addthis"> <div class="value"> <!-- AddThis Button BEGIN --> <div class="addthis_toolbox addthis_default_style addthis_32x32_style"> <a class="addthis_button_preferred_1"></a> <a class="addthis_button_preferred_2"></a> <a class="addthis_button_preferred_3"></a> <a class="addthis_button_preferred_4"></a> <a class="addthis_button_compact"></a> <a class="addthis_counter addthis_bubble_style"></a> </div> <script type="text/javascript" src="//s7.addthis.com/js/250/addthis_widget.js#pubid="></script> <!-- AddThis Button END --> </div> </div> <div id="citation-plugin" class="item citations-container" data-citations-url="https://ojs.bonviewpress.com/index.php/JCCE/citations/get?doi=10.47852%2FbonviewJCCE42022789" data-img-url="https://ojs.bonviewpress.com/plugins/generic/citations/images/"> <div id="citations-loader"></div> <div class="citations-count"> <div class="citations-count-crossref"> <img class="img-fluid" src="https://ojs.bonviewpress.com/plugins/generic/citations/images/crossref.png" alt="Crossref"/> <div class="badge_total"></div> </div> <div class="citations-count-scopus"> <img src="https://ojs.bonviewpress.com/plugins/generic/citations/images/scopus.png" alt="Scopus"/> <br/> <span class="badge_total"></span> </div> <div class="citations-count-google"> <a href="https://scholar.google.com/scholar?q=10.47852/bonviewJCCE42022789" target="_blank" rel="noreferrer"> <img src="https://ojs.bonviewpress.com/plugins/generic/citations/images/scholar.png" alt="Google Scholar"/> </a> </div> <div class="citations-count-europepmc"> <a href="https://europepmc.org/search?scope=fulltext&query=10.47852/bonviewJCCE42022789" target="_blank" rel="noreferrer"> <img src="https://ojs.bonviewpress.com/plugins/generic/citations/images/pmc.png" alt="Europe PMC"/> <br/> <span class="badge_total"></span> </a> </div> </div> <div class="citations-list"> <div class="cite-itm cite-prototype" style="display: none"> <img class="cite-img img-fluid" src="" alt=""> <div> <span class="cite-author"></span> <span class="cite-date"></span> </div> <div> <span class="cite-title"></span> <span class="cite-info"></span> </div> <div class="cite-doi"></div> </div> </div> <style> .citations-container { overflow-y: auto; overflow-x: hidden; max-height: 300px; } </style> </div> <div class="item funders"> <h2 class="label">Funding data</h2> <div class="value"> <ul> <li> <a href="https://search.crossref.org/funding?q=100000002">National Institutes of Health</a> <br /> Grant numbers NIH 2R15EB024283 </li> </ul> </div> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> </div><!-- .page --> </div><!-- pkp_structure_main --> <div class="pkp_structure_sidebar left" role="complementary"> <div class="pkp_block block_custom" id="customblock-right_links"> <h2 class="title">Journal Information</h2> <div class="content"> <div class="journalcard__metrics border"> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Editor-in-Chief:</strong> <span class=" jgG6ef">Harish Garg</span></span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr">Thapar Institute of Engineering and Technology, India</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Frequency: </strong>Quarterly</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Submission to First Decision: </strong>21 days<br><strong>Submission to Acceptance:</strong> <span class="sc-kPVwWT hZDpyF">95 days</span><br><strong>Accept to Publish:</strong> <span class="sc-kPVwWT hZDpyF">15 days</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Acceptance Rate: </strong>21%</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>eISSN:</strong> 2810-9503</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>pISSN:</strong> 2810-9570 </span></span></div> </div> <div class="journalcard__metrics border"> <p class="journalcard__metrics border">© 2024 Bon View Publishing Pte Ltd.</p> </div> </div> </div> <div class="pkp_block block_make_submission"> <h2 class="pkp_screen_reader"> Make a Submission </h2> <div class="content"> <a class="block_make_submission_link" href="https://ojs.bonviewpress.com/index.php/JCCE/about/submissions"> Make a Submission </a> </div> </div> <style type="text/css"> .block_announcements_article:not(:last-child) { padding-bottom: 1.5em; border-bottom: 1px solid; } .block_announcements_article { text-align: left; } .block_announcements #show-all{ font-style: italic; } </style> <div class="pkp_block block_announcements"> <h2 class="title">Announcements</h2> <div class="content"> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/81"> First CiteScore Released: 13.5 </a> </h3> <time class="block_announcements_article_date" datetime="2024-06-06"> <strong>June 6, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are delighted to announce that the CiteScore 2023 for the <em>Journal of Computational and Cognitive Engineering</em> is <strong>13.5</strong>, which ranks it 9 out of 204 journals in the Engineering (miscellaneous) category and 53 out of 817 journals in the Computer Science Applications category.<br><br>This achievement reflects the dedication and hard work of our editorial team, authors, and reviewers. We are immensely grateful for the valuable contributions and unwavering support from our community. This milestone not only highlights the quality of research we publish but also sets a higher standard for our future endeavors.<br><br>Thank you to everyone who has been a part of this journey. We look forward to continuing to provide cutting-edge research and making significant impacts in our field.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/79"> JCCE Published Volume 3, Issue 2 on May 21, 2024 </a> </h3> <time class="block_announcements_article_date" datetime="2024-05-21"> <strong>May 21, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are excited to announce that <em><strong>Journal of Computational and Cognitive Engineering (JCCE) </strong></em>published Volume 3 Issue 2 on May 21, 2024.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/71"> STM Membership Announcement </a> </h3> <time class="block_announcements_article_date" datetime="2024-04-24"> <strong>April 24, 2024</strong> </time> <div class="block_announcements_article_content"> <p>Bon View Publishing Pte. Ltd. proudly announces its membership in the esteemed <a href="https://www.stm-assoc.org/"><u>International Association of Scientific, Technical and Medical Publishers(STM)</u></a>, effective 2024. This collaboration marks a significant milestone in advancing global knowledge exchange and promoting cutting-edge research.</p> </div> </article> <a id="show-all" href="https://ojs.bonviewpress.com/index.php/JCCE/announcement">Show all announcements ...</a> </div> </div> <div class="pkp_block block_keyword_cloud"> <h2 class="title">Keywords</h2> <div class="content" id='wordcloud'></div> <script> function randomColor() { var cores = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']; return cores[Math.floor(Math.random()*cores.length)]; } document.addEventListener("DOMContentLoaded", function() { var keywords = [{"text":"sit-yolov9","size":1},{"text":"sitbehaviors dataset","size":1},{"text":"home environment","size":1},{"text":"learning behavior recognition","size":1},{"text":"image enhancement","size":1},{"text":"stealth protocols","size":1},{"text":"obfsproxy","size":1},{"text":"shadowsocks","size":1},{"text":"wireguard","size":1},{"text":" vpns","size":1},{"text":"internet service providers","size":1},{"text":"proxying strategies","size":1},{"text":"fire-vit","size":1},{"text":"tunnel fire dataset","size":1},{"text":" tunnel fire detection","size":1},{"text":"fire alarm","size":1},{"text":"visual transformer","size":1},{"text":"e-commerce","size":1},{"text":" recurrent neural network (rnn)","size":1},{"text":"authorship","size":1},{"text":"suspicion","size":1},{"text":"spam indicators","size":1},{"text":"artificial intelligence (ai)","size":1},{"text":"machine learning (ml)","size":1},{"text":"healthcare","size":1},{"text":"patient record","size":1},{"text":"clinical applications","size":1},{"text":"ethical considerations,","size":1},{"text":"explainable ai (xai)","size":1},{"text":"xgboost","size":1},{"text":"whale optimization algorithm (woa)","size":1},{"text":"anomalies detection","size":1},{"text":"manufacturing","size":1},{"text":"industry 4.0","size":1},{"text":"digital transformation","size":1},{"text":"corporate esg performance","size":1},{"text":" green technology innovation","size":1},{"text":"corporate social responsibility","size":1},{"text":" corporate internal control","size":1},{"text":"esg development","size":1},{"text":"soft computing","size":1},{"text":"human-centric solutions","size":1},{"text":"challenges","size":1},{"text":"artificial intelligence","size":1},{"text":"fuzzy logic","size":1},{"text":"image moments","size":1},{"text":"polar harmonic transform (pht)","size":1},{"text":"topological data analysis","size":1},{"text":" image reconstruction","size":1},{"text":"diversity and serendipity preference","size":1}]; var totalWeight = 0; var blockWidth = 300; var blockHeight = 200; var transitionDuration = 200; var length_keywords = keywords.length; var layout = d3.layout.cloud(); layout.size([blockWidth, blockHeight]) .words(keywords) .fontSize(function(d) { return fontSize(+d.size); }) .on('end', draw); var svg = d3.select("#wordcloud").append("svg") .attr("viewBox", "0 0 " + blockWidth + " " + blockHeight) .attr("width", '100%'); function update() { var words = layout.words(); fontSize = d3.scaleLinear().range([16, 34]); if (words.length) { fontSize.domain([+words[words.length - 1].size || 1, +words[0].size]); } } keywords.forEach(function(item,index){totalWeight += item.size;}); update(); function draw(words, bounds) { var width = layout.size()[0], height = layout.size()[1]; scaling = bounds ? Math.min( width / Math.abs(bounds[1].x - width / 2), width / Math.abs(bounds[0].x - width / 2), height / Math.abs(bounds[1].y - height / 2), height / Math.abs(bounds[0].y - height / 2), ) / 2 : 1; svg .append("g") .attr( "transform", "translate(" + [width >> 1, height >> 1] + ")scale(" + scaling + ")", ) .selectAll("text") .data(words) .enter().append("text") .style("font-size", function(d) { return d.size + "px"; }) .style("font-family", 'serif') .style("fill", randomColor) .style('cursor', 'pointer') .style('opacity', 0.7) .attr('class', 'keyword') .attr("text-anchor", "middle") .attr("transform", function(d) { return "translate(" + [d.x, d.y] + ")rotate(" + d.rotate + ")"; }) .text(function(d) { return d.text; }) .on("click", function(d, i){ window.location = "https://ojs.bonviewpress.com/index.php/index/search?query=QUERY_SLUG".replace(/QUERY_SLUG/, encodeURIComponent(''+d.text+'')); }) .on("mouseover", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return (d.size + 3) + "px"; }) .style('opacity', 1); }) .on("mouseout", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return d.size + "px"; }) .style('opacity', 0.7); }) .on('resize', function() { update() }); } layout.start(); }); </script> </div> <div class="pkp_block block_developed_by"> <div class="content"> <span class="title">Most Read</span> <ul class="most_read"> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/174">Implementation of Artificial Intelligence in Agriculture</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 3131</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/838">Comparing BERT Against Traditional Machine Learning Models in Text Classification</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1469</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/245">A Systematic Review on Intelligent Transport Systems</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1158</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/192">Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1101</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/270">Machine Learning-Based Intrusion Detection System: An Experimental Comparison</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1035</div> </li> </ul> </div> </div> </div><!-- pkp_sidebar.left --> </div><!-- pkp_structure_content --> <div class="pkp_structure_footer_wrapper" role="contentinfo"> <a id="pkp_content_footer"></a> <div class="pkp_structure_footer"> <div class="pkp_footer_content"> <p> <a href="http://creativecommons.org/licenses/by/4.0/"><img src="https://ojs.bonviewpress.com/public/site/images/admin/88x31.png" alt="" width="88" height="31" /></a>All site content, except where otherwise noted, is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> <p>pISSN 2810-9570, eISSN 2810-9503 | Published by <a href="http://www.bonviewpress.com/">Bon View Publishing Pte Ltd.</a></p> <p><strong>Member of</strong></p> <p><img style="width: 900px; height: 70px;" src="https://bonview.oss-ap-southeast-1.aliyuncs.com/resource/ojs-logo-quanji.png" /> </p> </div> <div class="pkp_brand_footer"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/aboutThisPublishingSystem"> <img alt="More information about the publishing system, Platform and Workflow by OJS/PKP." src="https://ojs.bonviewpress.com/templates/images/ojs_brand.png"> </a> </div> </div> </div><!-- pkp_structure_footer_wrapper --> </div><!-- pkp_structure_page --> <script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/popper/popper.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/util.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/main.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/js/articleCitation.js?v=3.4.0.7" type="text/javascript"></script><script src="https://d3js.org/d3.v4.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/d3-tip/0.9.1/d3-tip.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/paperbuzzviz.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/citations/js/citations.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdn.jsdelivr.net/gh/holtzy/D3-graph-gallery@master/LIB/d3.layout.cloud.js?v=3.4.0.7" type="text/javascript"></script><script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtag/js?id=' + i + dl; f.parentNode.insertBefore(j, f); function gtag(){dataLayer.push(arguments)}; gtag('js', new Date()); gtag('config', i); }) (window, document, 'script', 'dataLayer', 'UA-284252596-1'); </script> </body> </html>