CINXE.COM
Search results for: vacuum insulation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: vacuum insulation</title> <meta name="description" content="Search results for: vacuum insulation"> <meta name="keywords" content="vacuum insulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vacuum insulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vacuum insulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 764</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vacuum insulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Henshall">Paul Henshall</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Eames"> Philip Eames</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Moss"> Roger Moss</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Shire"> Stan Shire</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya"> Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum" title="vacuum">vacuum</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=flat-plate%20solar%20collector" title=" flat-plate solar collector"> flat-plate solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a> </p> <a href="https://publications.waset.org/abstracts/48208/experimental-measurements-of-evacuated-enclosure-thermal-insulation-effectiveness-for-vacuum-flat-plate-solar-thermal-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> Current Developments in Flat-Plate Vacuum Solar Thermal Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya">Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Henshall"> Paul Henshall</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Eames"> Phillip Eames</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Moss"> Roger Moss</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Shire"> Stan Shire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum flat plate solar thermal collectors offer several advantages over other collectors namely the excellent optical and thermal characteristics they exhibit due to a combination of their wide surface area and high vacuum thermal insulation. These characteristics can offer a variety of applications for industrial process heat as well as for building integration as they are much thinner than conventional collectors making installation possible in limited spaces. However, many technical challenges which need to be addressed to enable wide scale adoption of the technology still remain. This paper will discuss the challenges, expectations and requirements for the flat-plate vacuum solar collector development. In addition, it will provide an overview of work undertaken in Ulster University, Loughborough University, and the University of Warwick on flat-plate vacuum solar thermal collectors. Finally, this paper will present a detailed experimental investigation on the development of a vacuum panel with a novel sealing method which will be used to accommodate a novel slim hydroformed solar absorber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20box%20calorimeter" title="hot box calorimeter">hot box calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20collector" title=" solar thermal collector"> solar thermal collector</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation" title=" vacuum insulation"> vacuum insulation</a> </p> <a href="https://publications.waset.org/abstracts/49273/current-developments-in-flat-plate-vacuum-solar-thermal-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inseok%20Yeo">Inseok Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metal- barrier-added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For the double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for the service life of more than 20 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation%20panels" title="vacuum insulation panels">vacuum insulation panels</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life" title=" service life"> service life</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20enveloping" title=" double enveloping"> double enveloping</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-barrier-added%20enveloping" title=" metal-barrier-added enveloping"> metal-barrier-added enveloping</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20conduction" title=" edge conduction"> edge conduction</a> </p> <a href="https://publications.waset.org/abstracts/19362/investigation-of-long-term-thermal-insulation-performance-of-vacuum-insulation-panels-with-various-enveloping-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Yavari">Farzad Yavari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Chegini"> Hamid Chegini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Lotfi"> Saeed Lotfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VPI" title="VPI">VPI</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20rich" title=" resin rich"> resin rich</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20bar" title=" stator bar"> stator bar</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation%20factor" title=" dissipation factor"> dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20endurance" title=" voltage endurance"> voltage endurance</a> </p> <a href="https://publications.waset.org/abstracts/104741/influence-of-insulation-system-methods-on-dissipation-factor-and-voltage-endurance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bongsu%20Choi">Bongsu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m•K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=envelope" title="envelope">envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20conduction" title=" edge conduction"> edge conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation%20panel" title=" vacuum insulation panel"> vacuum insulation panel</a> </p> <a href="https://publications.waset.org/abstracts/19366/measurement-of-vip-edge-conduction-using-vacuum-guarded-hot-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Improvement of GVPI Insulation System Characteristics by Curing Process Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shadmand">M. Shadmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20system" title="insulation system">insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=GVPI" title=" GVPI"> GVPI</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC" title=" PDC"> PDC</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/79906/improvement-of-gvpi-insulation-system-characteristics-by-curing-process-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> Theoretical Study of Flexible Edge Seals for Vacuum Glazing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya">Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20edge%20seal" title="flexible edge seal">flexible edge seal</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20pillar" title=" support pillar"> support pillar</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20glazing" title=" vacuum glazing"> vacuum glazing</a> </p> <a href="https://publications.waset.org/abstracts/72593/theoretical-study-of-flexible-edge-seals-for-vacuum-glazing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">757</span> Insulation Properties of Rod-Plane Electrode Covered with ATH/SIR Nano-Composite in Dry-Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Yong%20Sim">Jae-Yong Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Hun%20Kwon"> Jung-Hun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Sung%20Park"> Ji-Sung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the latest trends for insulation systems to improve the insulation performance is the use of eco-friendly hybrid insulation using compressed dry-air. Despite the excellent insulation performance of sulphurhexafluoride (SF6) gas, its use has been restricted due to the problems with significant global warming potential (GWP). Accordingly, lightning impulse performance of the hybrid insulation system covered with an aluminum trihydrate/silicone rubber (ATH/SIR) nanocomposite was examined in air at atmospheric pressure and in compressed air at pressures between 0.2 and 0.6 MPa. In the experiments, the most common breakdown path took place along the surface of the covered rod. The insulation reliability after several discharges should be guaranteed in hybrid insulation. On the other hand, the surface of the covered rod was carbonized after several discharges. Therefore, nanoscale ATH can be used as a reinforcement of covered dielectrics to inhibit carbonization on the surface of a covered rod. The results were analyzed in terms of the surface resistivity of the cover dielectrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20insulation" title=" hybrid insulation"> hybrid insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ATH" title=" ATH"> ATH</a>, <a href="https://publications.waset.org/abstracts/search?q=dry-air" title=" dry-air"> dry-air</a> </p> <a href="https://publications.waset.org/abstracts/14050/insulation-properties-of-rod-plane-electrode-covered-with-athsir-nano-composite-in-dry-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">756</span> Thermal Insulation, Sound Insulation, and Tensile Properties of Epoxy-Silica Aerogel and Epoxy-Polystyrene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ucar">Mehmet Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar"> Nuray Ucar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both thermal insulation and sound insulation play a key role in energy saving and the quality of life. In this study, the effects of different fillers, such as silica aerogel and polystyrene, on the tensile strength, thermal insulation, and sound insulation of epoxy composites have been analyzed. Results from the experimental studies show that both tensile strength and insulation properties (sound and thermal insulation) of the epoxy composite increased by the use of silica aerogel additive. Polystyrene additive significantly increases the sound absorption coefficient of the epoxy composite. Such composites offer great potential for many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20composite" title="epoxy composite">epoxy composite</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20aerogel" title=" silica aerogel"> silica aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20insulation" title=" sound insulation"> sound insulation</a> </p> <a href="https://publications.waset.org/abstracts/192633/thermal-insulation-sound-insulation-and-tensile-properties-of-epoxy-silica-aerogel-and-epoxy-polystyrene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">755</span> The Effect of Glass Thickness on Stress in Vacuum Glazing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya">Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Trevisi"> Andrea Trevisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Basso"> Paolo Basso</a>, <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Bardaro"> Danilo Bardaro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20glazing" title="vacuum glazing">vacuum glazing</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation" title=" vacuum insulation"> vacuum insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20pillars" title=" support pillars"> support pillars</a> </p> <a href="https://publications.waset.org/abstracts/93497/the-effect-of-glass-thickness-on-stress-in-vacuum-glazing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">754</span> Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gia%20Lam%20Le">Gia Lam Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20T.%20Bergado"> Dennis T. Bergado</a>, <a href="https://publications.waset.org/abstracts/search?q=Thi%20Ngoc%20Truc%20Nguyen"> Thi Ngoc Truc Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVD%20improvement" title="PVD improvement">PVD improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20preloading" title=" vacuum preloading"> vacuum preloading</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20vertical%20drain" title=" prefabricated vertical drain"> prefabricated vertical drain</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20PVD" title=" thermal PVD"> thermal PVD</a> </p> <a href="https://publications.waset.org/abstracts/73298/soft-ground-improved-by-prefabricated-vertical-drains-with-vacuum-and-thermal-preloading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">753</span> Holistic Approach to Assess the Potential of Using Traditional and Advance Insulation Materials for Energy Retrofit of Office Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Picco">Marco Picco</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Alam"> Mahmood Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the energy performance of existing buildings can be challenging, particularly when facades cannot be modified, and the only available option is internal insulation. In such cases, the choice of the most suitable material becomes increasingly complex, as in addition to thermal transmittance and capital cost, the designer needs to account for the impact of the intervention on the internal spaces, and in particular the loss of usable space due to the additional layers of materials installed. This paper explores this issue by analysing a case study of an average office building needing to go through a refurbishment in order to reach the limits imposed by current regulations to achieve energy efficiency in buildings. The building is simulated through dynamic performance simulation under three different climate conditions in order to evaluate its energy needs. The use of Vacuum Insulated Panels as an option for energy refurbishment is compared to traditional insulation materials (XPS, Mineral Wool). For each scenario, energy consumptions are calculated and, in combination with their expected capital costs, used to perform a financial feasibility analysis. A holistic approach is proposed, taking into account the impact of the intervention on internal space by quantifying the value of the lost usable space and used in the financial feasibility analysis. The proposed approach highlights how taking into account different drivers will lead to the choice of different insulation materials, showing how accounting for the economic value of space can make VIPs an attractive solution for energy retrofitting under various climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulated%20panels" title="vacuum insulated panels">vacuum insulated panels</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20performance%20simulation" title=" building performance simulation"> building performance simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=payback%20period" title=" payback period"> payback period</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20retrofit" title=" building energy retrofit"> building energy retrofit</a> </p> <a href="https://publications.waset.org/abstracts/141917/holistic-approach-to-assess-the-potential-of-using-traditional-and-advance-insulation-materials-for-energy-retrofit-of-office-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">752</span> Modelling of Lunar Lander’s Thruster’s Exhaust Plume Impingement in Vacuum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrigank%20Sahai">Mrigank Sahai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sri%20Raghu"> R. Sri Raghu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the modelling of rocket exhaust plume flow field and exhaust plume impingement in vacuum for the liquid apogee engine and attitude control thrusters of the lunar lander. Analytic formulations for rarefied gas kinetics has been taken as reference for modelling the plume flow field. The plume has been modelled as high speed, collision-less, axi-symmetric gas jet, expanding into vacuum and impinging at a normally set diffusive circular plate. Specular reflections have not been considered for the present study. Different parameters such as number density, temperature, pressure, flow velocity, heat flux etc., have been calculated and have been plotted against and compared to Direct Simulation Monte Carlo results. These analyses have provided important information for the placement of critical optical instruments and design of optimal thermal insulation for the hardware that may come in contact with the thruster exhaust. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision-less%20gas" title="collision-less gas">collision-less gas</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=plume%20impingement" title=" plume impingement"> plume impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=rarefied%20exhaust%20plume" title=" rarefied exhaust plume"> rarefied exhaust plume</a> </p> <a href="https://publications.waset.org/abstracts/58713/modelling-of-lunar-landers-thrusters-exhaust-plume-impingement-in-vacuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">751</span> Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khoukhi">M. Khoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operating%20temperature" title="operating temperature">operating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20insulation" title=" polystyrene insulation"> polystyrene insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a> </p> <a href="https://publications.waset.org/abstracts/43335/change-of-the-thermal-conductivity-of-polystyrene-insulation-in-term-of-temperature-at-the-mid-thickness-of-the-insulation-material-impact-on-the-cooling-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">750</span> Development of Water-Based Thermal Insulation Paints Using Silica Aerogel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Yanru">Lu Yanru</a>, <a href="https://publications.waset.org/abstracts/search?q=Handojo%20Djati%20Utomo"> Handojo Djati Utomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Xi%20Jiang"> Yin Xi Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xiaodong"> Li Xiaodong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation plays a key role in the sustainable building due to the contribution of energy consumption reduction. Without sufficient insulation, a great amount of the energy used to heat or cool a building will be lost to the outdoors. In this study, we developed a highly efficient thermal insulation paint with the incorporation of silica aerogel. Silica aerogel, with a low thermal conductivity of 0.01 W/mK, has been successfully prepared from the solid waste from the incineration plants. It has been added into water-based paints to increase its thermal insulation properties. To investigate the thermal insulation performance of silica aerogel additive, the paint samples were mixed with silica aerogel at different sizes and with various portions. The thermal conductivity, water resistance, thermal stability and adhesion strength of the samples were tested and evaluated. The thermal diffusivity measurements proved that adding silica aerogel additive could improve the thermal insulation properties of the paint significantly. Up to 5 ˚C reductions were observed after applying paints with silica aerogel additive compare to the one without it. The results showed that the developed thermal insulation paints have great potential for an application in green and sustainable building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20aerogel" title="silica aerogel">silica aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=water-based%20paints" title=" water-based paints"> water-based paints</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resistant" title=" water resistant"> water resistant</a> </p> <a href="https://publications.waset.org/abstracts/118598/development-of-water-based-thermal-insulation-paints-using-silica-aerogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">749</span> Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehyug%20Lee">Jaehyug Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20conduction%20and%20radiation" title="combined conduction and radiation">combined conduction and radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20ordinates%20interpolation%20method" title=" discrete ordinates interpolation method"> discrete ordinates interpolation method</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20phase%20function" title=" scattering phase function"> scattering phase function</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation%20panel" title=" vacuum insulation panel"> vacuum insulation panel</a> </p> <a href="https://publications.waset.org/abstracts/19426/analysis-of-combined-heat-transfer-through-the-core-materials-of-vips-with-various-scattering-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">748</span> Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Qi"> Ruan Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Yan"> Qi Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20vessel" title="vacuum vessel">vacuum vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20opening" title=" large opening"> large opening</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title=" space environment simulator"> space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20design" title=" structure design"> structure design</a> </p> <a href="https://publications.waset.org/abstracts/10540/structure-design-of-vacuum-vessel-with-large-openings-for-spacecraft-thermal-vacuum-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">747</span> [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maatouk%20Khoukhi">Maatouk Khoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20insulation%20material" title="building insulation material">building insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20temperature" title=" operating temperature"> operating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/54803/keynote-talk-thermal-performance-of-common-building-insulation-materials-operating-temperature-and-moisture-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">746</span> Laboratory Evaluation of the Airborne Sound Insulation of Plasterboard Sandwich Panels Filled with Recycled Textile Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Trifonova%20Djambova">Svetlana Trifonova Djambova</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Bobeva%20Ivanova"> Natalia Bobeva Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumiana%20Asenova%20Zaharieva"> Roumiana Asenova Zaharieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small size acoustic chamber test method has been applied to experimentally evaluate and compare the airborne sound insulation provided by plasterboard sandwich panels filled with mineral wool and with its alternative from recycled textile material (produced by two different technologies). A sound source room is used as an original small-size acoustic chamber, specially built in a real-size room, utilized as a sound receiving room. The experimental results of one of the recycled textile material specimens have demonstrated sound insulation properties similar to those of the mineral wool specimen and even superior in the 1600-3150 Hz frequency range. This study contributes to the improvement of recycled textile material production, as well as to the synergy of heat insulation and sound insulation performances of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20sound%20insulation" title="airborne sound insulation">airborne sound insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation%20products" title=" heat insulation products"> heat insulation products</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20wool" title=" mineral wool"> mineral wool</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20textile%20material" title=" recycled textile material"> recycled textile material</a> </p> <a href="https://publications.waset.org/abstracts/165689/laboratory-evaluation-of-the-airborne-sound-insulation-of-plasterboard-sandwich-panels-filled-with-recycled-textile-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">745</span> Drying Kinetics of Vacuum Dried Beef Meat Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Aykin%20Dincer">Elif Aykin Dincer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Erbas"> Mustafa Erbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beef%20slice" title="beef slice">beef slice</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20models" title=" drying models"> drying models</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20diffusivity" title=" effective diffusivity"> effective diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a> </p> <a href="https://publications.waset.org/abstracts/66896/drying-kinetics-of-vacuum-dried-beef-meat-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">744</span> Upgrading of Old Large Turbo Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shadmand">M. Shadmand</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Enayaty%20Ahangar"> T. Enayaty Ahangar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kazemi"> S. Kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation system of electrical machineries is the most critical point for their durability. Depending on generator nominal voltage, its insulation system is designed. In this research, a new stator insulation system is designed by new type of mica tapes which will consequently enables us to decrease the nominal ground-wall insulation thickness for the same voltage level. By keeping constant the slot area, it will be possible to increase the copper value in stator bars which will consequently able us to increase the nominal output current of turbo-generator. This will affect the cooling capability of machinery to some extent. But by considering the thermal conductivity of new insulating system which is improved, it is possible to increase the output power of generator up to 6% more. This research is done practically on a 200 MVA and 15.75 kV turbo-generators which its insulating system is Resin Rich (RR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20system" title="insulation system">insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20rich" title=" resin rich"> resin rich</a>, <a href="https://publications.waset.org/abstracts/search?q=VPI" title=" VPI"> VPI</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a> </p> <a href="https://publications.waset.org/abstracts/35957/upgrading-of-old-large-turbo-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">743</span> Machine Installation and Maintenance Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Benmostefa">Mohammed Benmostefa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the industrial production of large series or even medium series, there are vibration problems. In continuous operations, technical devices result in vibrations in solid bodies and machine components, which generate solid noise and/or airborne noise. This is because vibrations are the mechanical oscillations of an object near its equilibrium point. In response to the problems resulting from these vibrations, a number of remedial acts and solutions have been put forward. These include insulation of machines, insulation of concrete masses, insulation under screeds, insulation of sensitive equipment, point insulation of machines, linear insulation of machines, full surface insulation of machines, and the like. Following this, the researcher sought not only to raise awareness on the possibility of lowering the vibration frequency in industrial machines but also to stress the significance of procedures involving the pre-installation process of machinery, namely, setting appropriate installation and start-up methods of the machine, allocating and updating imprint folders to each machine, and scheduling maintenance of each machine all year round to have reliable equipment, gain cost reduction and maintenance efficiency to eventually ensure the overall economic performance of the company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maintenance" title="maintenance">maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=machinery" title=" machinery"> machinery</a> </p> <a href="https://publications.waset.org/abstracts/172927/machine-installation-and-maintenance-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">742</span> Construction Technology of Modified Vacuum Pre-Loading Method for Slurry Dredged Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20H.%20Mahfouz">Ali H. Mahfouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Ming-Jun"> Gao Ming-Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Sharif"> Mohamad Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Slurry dredged soil at coastal area has a high water content, poor permeability, and low surface intensity. Hence, it is infeasible to use vacuum preloading method to treat this type of soil foundation. For the special case of super soft ground, a floating bridge is first constructed on muddy soil and used as a service road and platform for implementing the modified vacuum preloading method. The modified technique of vacuum preloading and its construction process for the super soft soil foundation improvement is then studied. Application of modified vacuum preloading method shows that the technology and its construction process are highly suitable for improving the super soft soil foundation in coastal areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20soft%20foundation" title="super soft foundation">super soft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=dredger%20fill" title=" dredger fill"> dredger fill</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20preloading" title=" vacuum preloading"> vacuum preloading</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20treatment" title=" foundation treatment"> foundation treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20technology" title=" construction technology"> construction technology</a> </p> <a href="https://publications.waset.org/abstracts/46474/construction-technology-of-modified-vacuum-pre-loading-method-for-slurry-dredged-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">741</span> Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Glew">David Glew</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Thomas"> Felix Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Brooke-Peat"> Matthew Brooke-Peat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation%20risk" title="condensation risk">condensation risk</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation" title=" hygrothermal simulation"> hygrothermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20wall%20insulation" title=" internal wall insulation"> internal wall insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20bridging" title=" thermal bridging"> thermal bridging</a> </p> <a href="https://publications.waset.org/abstracts/127908/assessing-the-risk-of-condensation-and-moisture-accumulation-in-solid-walls-comparing-different-internal-wall-insulation-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">740</span> Protection of Transformers Against Surge Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20S.%20Khopkar">Anil S. Khopkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20N.%20Soni"> Umesh N. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surge voltage arises in the system either by switching operations of heavy load or by natural lightning. Surge voltages cause significant failure of power system equipment if adequate protection is not provided. A Surge Arrester is a device connected to a power system to protect the equipment against surge voltages. To protect the transformers against surge voltages, metal oxide surge arresters (MOSA) are connected across each terminal. Basic Insulation Level (BIL) has been defined in national and international standards of transformers based on their voltage rating. While designing transformer insulation, the BIL of the transformer, Surge arrester ratings and its operating voltage have to be considered. However, the performance of transformer insulation largely depends on the ratings of the surge arrester connected, the location of the surge arrester, the margin considered in the insulation design, the quantity of surge voltage strike, etc. This paper demonstrates the role of Surge arresters in the protection of transformers against over-voltage, transformer insulation design, optimum location of surge arresters and their connection lead length, Insulation coordination for transformer, protection margin in BIL and methods of protection of transformers against surge voltages, in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge%20voltage" title="surge voltage">surge voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20arresters" title=" surge arresters"> surge arresters</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20coordination" title=" insulation coordination"> insulation coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20margin" title=" protection margin"> protection margin</a> </p> <a href="https://publications.waset.org/abstracts/183790/protection-of-transformers-against-surge-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> Electrical Power Distribution Reliability Improvement by Retrofitting 4.16 kV Vacuum Contactor in Badak LNG Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Hasurungan">David Hasurungan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper objective is to assess the power distribution reliability improvement by retrofitting obsolete vacuum contactor. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. To support plant operational, Badak LNG is equipped with 4.16 kV switchgear for supplying the storage and loading facilities, utilities facilities, and train facilities. However, there is a problem in two switch gears of sixteen switch gears. The problem is the obsolescence issue in its vacuum contactor. Not only that, but the same switchgear also has suffered from electrical fault due to contact fingering misalignment. In order to improve the reliability in switchgear, the vacuum contactor retrofit project is done. The retrofit will introduce new vacuum contactor design. The comparison between existing design and the new design is presented in this paper. Meanwhile, The reliability assessment and calculation are performed using software Reliasoft 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=obsolescence" title=" obsolescence"> obsolescence</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofit" title=" retrofit"> retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20contactor" title=" vacuum contactor"> vacuum contactor</a> </p> <a href="https://publications.waset.org/abstracts/71414/electrical-power-distribution-reliability-improvement-by-retrofitting-416-kv-vacuum-contactor-in-badak-lng-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">738</span> Offline High Voltage Diagnostic Test Findings on 15MVA Generator of Basochhu Hydropower Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suprit%20Pradhan">Suprit Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tshering%20Yangzom"> Tshering Yangzom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even with availability of the modern day online insulation diagnostic technologies like partial discharge monitoring, the measurements like Dissipation Factor (tanδ), DC High Voltage Insulation Currents, Polarization Index (PI) and Insulation Resistance Measurements are still widely used as a diagnostic tools to assess the condition of stator insulation in hydro power plants. To evaluate the condition of stator winding insulation in one of the generators that have been operated since 1999, diagnostic tests were performed on the stator bars of 15 MVA generators of Basochhu Hydropower Plant. This paper presents diagnostic study done on the data gathered from the measurements which were performed in 2015 and 2016 as part of regular maintenance as since its commissioning no proper aging data were maintained. Measurement results of Dissipation Factor, DC High Potential tests and Polarization Index are discussed with regard to their effectiveness in assessing the ageing condition of the stator insulation. After a brief review of the theoretical background, the strengths of each diagnostic method in detecting symptoms of insulation deterioration are identified. The interesting results observed from Basochhu Hydropower Plant is taken into consideration to conclude that Polarization Index and DC High Voltage Insulation current measurements are best suited for the detection of humidity and contamination problems and Dissipation Factor measurement is a robust indicator of long-term ageing caused by oxidative degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipation%20Factor%20%28tan%CE%B4%29" title="dissipation Factor (tanδ)">dissipation Factor (tanδ)</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20Index%20%28PI%29" title=" polarization Index (PI)"> polarization Index (PI)</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20High%20Voltage%20Insulation%20Current" title=" DC High Voltage Insulation Current"> DC High Voltage Insulation Current</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20resistance%20%28IR%29" title=" insulation resistance (IR)"> insulation resistance (IR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Delta%20Tip-Up" title=" Tan Delta Tip-Up"> Tan Delta Tip-Up</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20absorption%20ratio" title=" dielectric absorption ratio"> dielectric absorption ratio</a> </p> <a href="https://publications.waset.org/abstracts/53740/offline-high-voltage-diagnostic-test-findings-on-15mva-generator-of-basochhu-hydropower-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">737</span> Mineral Thermal Insulation Materials Based on Sodium Liquid Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zin%20Min%20Htet">Zin Min Htet</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikhomirova%20Irina%20Nikolaevna"> Tikhomirova Irina Nikolaevna</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpenko%20Marina%20A."> Karpenko Marina A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation%20material" title="thermal insulation material">thermal insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20liquid%20glass" title=" sodium liquid glass"> sodium liquid glass</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20glass%20granules" title=" foam glass granules"> foam glass granules</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hardener" title=" hardener"> hardener</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20density" title=" apparent density"> apparent density</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/92313/mineral-thermal-insulation-materials-based-on-sodium-liquid-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">736</span> Economical Analysis of Optimum Insulation Thickness for HVAC Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Kumar">D. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Memon"> A. G. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Memon"> R. A. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Harijan"> K. Harijan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of energy is usually lost due to compression of insulation in Heating, ventilation, and air conditioning (HVAC) duct. In this paper, the economic impact of compression of insulation is estimated. Relevant mathematical models were used to estimate the optimal thickness at the points of compression. Furthermore, the payback period is calculated for the optimal thickness at the critical parts of supply air duct (SAD) and return air duct (RAD) considering natural gas (NG) and liquefied petroleum gas (LPG) as fuels for chillier operation. The mathematical model is developed using preliminary data obtained for an HVAC system of a pharmaceutical company. The higher heat gain and cooling loss, due to compression of thermal insulation, is estimated using relevant heat transfer equations. The results reveal that maximum energy savings (ES) in SAD is 34.5 and 40%, while in RAD is 22.9% and 29% for NG and LPG, respectively. Moreover, the minimum payback period (PP) for SAD is 2 and 1.6years, while in RAD is 4.3 and 2.7years for NG and LPG, respectively. The optimum insulation thickness (OIT) corresponding to maximum ES and minimum PP is estimated to be 35 and 42mm for SAD, while 30 and 38mm for RAD in case of NG and LPG, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20insulation%20thickness" title="optimum insulation thickness">optimum insulation thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost%20analysis" title=" life cycle cost analysis"> life cycle cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=payback%20period" title=" payback period"> payback period</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a> </p> <a href="https://publications.waset.org/abstracts/92533/economical-analysis-of-optimum-insulation-thickness-for-hvac-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">735</span> Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Na%20Hwang">Ju-Na Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hae%20Park"> Min-Hae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, High Voltage Direct Current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of Liquid Silicone Rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to Nano-Aluminum Trihydrate (ATH) was confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nano-filler dispersion state. The LSR nano-composite was prepared by compounding LSR filled nano-sized ATH filler. The DC insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20silicone%20rubber" title="liquid silicone rubber">liquid silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-composite" title=" nano-composite"> nano-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC%20insulation" title=" HVDC insulation"> HVDC insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20joints" title=" cable joints"> cable joints</a> </p> <a href="https://publications.waset.org/abstracts/6214/influence-of-nano-ath-on-electrical-performance-of-lsr-for-hvdc-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>