CINXE.COM

Search results for: reference evapotranspiration

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reference evapotranspiration</title> <meta name="description" content="Search results for: reference evapotranspiration"> <meta name="keywords" content="reference evapotranspiration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reference evapotranspiration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reference evapotranspiration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2426</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reference evapotranspiration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2426</span> Temporal Variation of Reference Evapotranspiration in Central Anatolia Region, Turkey and Meteorological Drought Analysis via Standardized Precipitation Evapotranspiration Index Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alper%20Serdar%20Anli">Alper Serdar Anli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of temporal variation of reference evapotranspiration (ET0) is important in arid and semi-arid regions where water resources are limited. In this study, temporal variation of reference evapotranspiration (ET0) and meteorological drought analysis through SPEI (Standardized Precipitation Evapotranspiration Index) method have been carried out in provinces of Central Anatolia Region, Turkey. Reference evapotranspiration of concerning provinces in the region has been estimated using Penman-Monteith method and one calendar year has been split up four periods as r1, r2, r3 and r4. Temporal variation of reference evapotranspiration according to four periods has been analyzed through parametric Dickey-Fuller test and non-parametric Mann-Whitney U test. As a result, significant increasing trends for reference evapotranspiration have been detected and according to SPEI method used for estimating meteorological drought in provinces, mild drought has been experienced in general, and however there have been also a significant amount of events where moderate and severely droughts occurred. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20Anatolia%20region" title="central Anatolia region">central Anatolia region</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20index" title=" drought index"> drought index</a>, <a href="https://publications.waset.org/abstracts/search?q=Penman-Monteith" title=" Penman-Monteith"> Penman-Monteith</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration" title=" reference evapotranspiration"> reference evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20variation" title=" temporal variation"> temporal variation</a> </p> <a href="https://publications.waset.org/abstracts/63824/temporal-variation-of-reference-evapotranspiration-in-central-anatolia-region-turkey-and-meteorological-drought-analysis-via-standardized-precipitation-evapotranspiration-index-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2425</span> Estimation of Evapotranspiration and Crop Coefficient of Eggplant with Lysimeter in Al-Hasa Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mishari%20AlNaim">Mishari AlNaim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted for two seasons of 2011 and 2012 in The Agricultural Experiment Research Station in King Faisal University at Al-Hasa region, Saudi Arabia to estimate evapotranspiration (ETC) of Eggplant crop using Drainage Lysimeter with surface area of 2 x 2 m and depth of 1.5 m. The irrigation was applied daily. The amount of drainage was measured before each irrigation event. The results showed that there was almost no difference in the seasonal evapotranspiration of eggplant crop in the two seasons. The average evapotranspiration values for eggplant crop for the summer and winter seasons were 823.4 mm and 479.7 mm respectively. The highest and the lowest weekly measured values of (ETC) of eggplant crop during the two summer seasons were 8.6 mm/day and 3.9 mm/day respectively, while the highest and lowest weekly measured values of (ETC) of eggplant crop during the two winter seasons were 3.9 mm/day and 2.0 mm/day respectively. The measured values of ETc, in conjunction with the results of Penmen-Monteith equation for reference Evapotranspiration (ETR), were used to determine the crop coefficient (KC ini, KC mid and KC end) for eggplant crop. The average values were 0.50, 84 and 0.60 for KC ini, KC mid and KC end in Al-Hasa region, respectively. These estimated values for KC were used to approximate (ETc) for eggplant crop. High positive correlation coefficient (0.959) was detected between the approximated and measured values of eggplant crop evapotranspiration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=eggpant" title=" eggpant"> eggpant</a>, <a href="https://publications.waset.org/abstracts/search?q=ETC" title=" ETC"> ETC</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Hasa" title=" Al-Hasa"> Al-Hasa</a> </p> <a href="https://publications.waset.org/abstracts/11245/estimation-of-evapotranspiration-and-crop-coefficient-of-eggplant-with-lysimeter-in-al-hasa-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2424</span> Analyses of Reference Evapotranspiration in West of Iran under Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Jahanbakhsh%20Asl">Saeed Jahanbakhsh Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaghob%20Dinpazhoh"> Yaghob Dinpazhoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Foroughi"> Masoumeh Foroughi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reference evapotranspiration (ET₀) is an important element in the water cycle that integrates atmospheric demands and surface conditions, and analysis of changes in ET₀ is of great significance for understanding climate change and its impacts on hydrology. As ET₀ is an integrated effect of climate variables, increases in air temperature should lead to increases in ET₀. ET₀ estimated by using the globally accepted Food and Agriculture Organization (FAO) Penman-Monteith (FAO-56 PM) method in 18 meteorological stations located in the West of Iran. The trends of ET₀ detected by using the Mann-Kendall (MK) test. The slopes of the trend lines were computed by using the Sen’s slope estimator. The results showed significant increasing as well as decreasing trends in the annual and monthly ET₀. However, ET₀ trends were increasing. In the monthly scale, the number of the increasing trends was more than the number of decreasing trends, in the majority of warm months of the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Mann%E2%80%93Kendall" title=" Mann–Kendall"> Mann–Kendall</a>, <a href="https://publications.waset.org/abstracts/search?q=Penman-Monteith%20method%20%28FAO-56%20PM%29" title=" Penman-Monteith method (FAO-56 PM)"> Penman-Monteith method (FAO-56 PM)</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20crop%20evapotranspiration" title=" reference crop evapotranspiration"> reference crop evapotranspiration</a> </p> <a href="https://publications.waset.org/abstracts/83009/analyses-of-reference-evapotranspiration-in-west-of-iran-under-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2423</span> Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Dehgan%20Moroozeh">Ali Dehgan Moroozeh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Farhadi%20Bansouleh"> B. Farhadi Bansouleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=hargreaves" title=" hargreaves"> hargreaves</a>, <a href="https://publications.waset.org/abstracts/search?q=equation" title=" equation"> equation</a>, <a href="https://publications.waset.org/abstracts/search?q=FAO-Penman%20method" title=" FAO-Penman method"> FAO-Penman method</a> </p> <a href="https://publications.waset.org/abstracts/34552/assessment-of-hargreaves-equation-for-estimating-monthly-reference-evapotranspiration-in-the-south-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2422</span> Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Bahrawi">J. Bahrawi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elhag"> M. Elhag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daily%20evapotranspiration" title="daily evapotranspiration">daily evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20evaporation" title=" relative evaporation"> relative evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=SEBS" title=" SEBS"> SEBS</a>, <a href="https://publications.waset.org/abstracts/search?q=AATSR" title=" AATSR"> AATSR</a>, <a href="https://publications.waset.org/abstracts/search?q=MERIS" title=" MERIS"> MERIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Nile%20Delta" title=" Nile Delta"> Nile Delta</a> </p> <a href="https://publications.waset.org/abstracts/26889/deliberation-of-daily-evapotranspiration-and-evaporative-fraction-based-on-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2421</span> Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akinola%20Ikudayisi">Akinola Ikudayisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Josiah%20Adeyemo"> Josiah Adeyemo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (&deg;C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration" title=" reference evapotranspiration"> reference evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaalharts" title=" Vaalharts"> Vaalharts</a> </p> <a href="https://publications.waset.org/abstracts/44193/effects-of-different-meteorological-variables-on-reference-evapotranspiration-modeling-application-of-principal-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2420</span> Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tayyab%20Afzal">Muhammad Tayyab Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arslan"> Muhammad Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Muhammad%20Waqar"> Mirza Muhammad Waqar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SEBS" title="SEBS">SEBS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title=" evapotranspiration"> evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=ETa" title=" ETa"> ETa</a> </p> <a href="https://publications.waset.org/abstracts/5764/satellite-derived-evapotranspiration-and-turbulent-heat-fluxes-using-surface-energy-balance-system-sebs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2419</span> Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enze%20Zhang">Enze Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most challenging steps in implementing virtual water content (VWC) analysis of crops is to get properly the total volume of consumptive water use (CWU) and, therefore, the choice of a reliable crop CWU estimation method. In practice, lots of previous researches obtaining CWU of crops follow a classical procedure for calculating crop evapotranspiration which is determined by multiplying reference evapotranspiration by appropriate coefficient, such as crop coefficient and water stress coefficients. However, this manner of calculation requires lots of field experimental data at point scale and more seriously, when current growing conditions differ from the standard conditions, may easily produce deviation between the calculated CWU and the actual CWU. Since evapotranspiration caused by crop planting always plays a vital role in surface water-energy balance in an agricultural region, this study decided to alternatively estimates crop evapotranspiration by Budyko framework. After brief introduce the development process of Budyko framework. We choose a modified Budyko framework under unsteady-state to better evaluated the actual CWU and apply it in an agricultural irrigation area in North China Plain which rely on underground water for irrigation. With the agricultural statistic data, this calculated CWU was further converted into VWC and its subdivision of crops at the annual scale. Results show that all the average values of VWC, VWC_blue and VWC_green show a downward trend with increased agricultural production and improved acreage. By comparison with the previous research, VWC calculated by Budyko framework agree well with part of the previous research and for some other research the value is greater. Our research also suggests that this methodology and findings may be reliable and convenient for investigation of virtual water throughout various agriculture regions of the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20water%20content" title="virtual water content">virtual water content</a>, <a href="https://publications.waset.org/abstracts/search?q=Budyko%20framework" title=" Budyko framework"> Budyko framework</a>, <a href="https://publications.waset.org/abstracts/search?q=consumptive%20water%20use" title=" consumptive water use"> consumptive water use</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20evapotranspiration" title=" crop evapotranspiration"> crop evapotranspiration</a> </p> <a href="https://publications.waset.org/abstracts/66681/use-of-the-budyko-framework-to-estimate-the-virtual-water-content-in-shijiazhuang-plain-north-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2418</span> Study of Evapotranspiration for Pune District</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjeet%20Sable">Ranjeet Sable</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahotsavi%20Patil"> Mahotsavi Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Aadesh%20Nimbalkar"> Aadesh Nimbalkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prajakta%20Palaskar"> Prajakta Palaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Sagar"> Ritu Sagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exact amount of water used by various crops in different climatic conditions is necessary to step for design, planning, and management of irrigation schemes, water resources, scheduling of irrigation systems. Evaporation and transpiration are combinable called as evapotranspiration. Water loss from trees during photosynthesis is called as transpiration and when water gets converted into gaseous state is called evaporation. For calculation of correct evapotranspiration, we have to choose the method in such way that is should be suitable and require minimum climatic data also it should be applicable for wide range of climatic conditions. In hydrology, there are multiple correlations and regression is generally used to develop relationships between three or more hydrological variables by knowing the dependence between them. This research work includes the study of various methods for calculation of evapotranspiration and selects reasonable and suitable one Pune region (Maharashtra state). As field methods are very costly, time-consuming and not give appropriate results if the suitable climate is not maintained. Observation recorded at Pune metrological stations are used to calculate evapotranspiration with the help of Radiation Method (RAD), Modified Penman Method (MPM), Thornthwaite Method (THW), Blaney-Criddle (BCL), Christiansen Equation (CNM), Hargreaves Method (HGM), from which Hargreaves and Thornthwaite are temperature based methods. Performance of all these methods are compared with Modified Penman method and method which showing less variation with standard Modified Penman method (MPM) is selected as the suitable one. Evapotranspiration values are estimated on a monthly basis. Comparative analysis in this research used for selection for raw data-dependent methods in case of missing data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blaney-Criddle" title="Blaney-Criddle">Blaney-Criddle</a>, <a href="https://publications.waset.org/abstracts/search?q=Christiansen%20equation%20evapotranspiration" title=" Christiansen equation evapotranspiration"> Christiansen equation evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=Hargreaves%20method" title=" Hargreaves method"> Hargreaves method</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitations" title=" precipitations"> precipitations</a>, <a href="https://publications.waset.org/abstracts/search?q=Penman%20method" title=" Penman method"> Penman method</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/86674/study-of-evapotranspiration-for-pune-district" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2417</span> Plants as Alternative Covers at Contaminated Sites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Grifoni">M. Grifoni</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Petruzzelli"> G. Petruzzelli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Barbafieri"> M. Barbafieri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rosellini"> I. Rosellini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pezzarossa"> B. Pezzarossa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pedron"> F. Pedron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evapotranspiration (ET) covers are an alternative cover system that utilizes water balance approach to maximize the ET process to reduce the contaminants leaching through the soil profile. Microcosm tests allow to identify in a short time the most suitable plant species to be used as alternative covers, their survival capacity, and simultaneously the transpiration and evaporation rate of the cover in a specific contaminated soil. This work shows the soil characterization and ET results of microcosm tests carried out on two contaminated soils by using <em>Triticum durum</em> and <em>Helianthus annuus</em> species. The data indicated that transpiration was higher than evaporation, supporting the use of plants as alternative cover at this contaminated site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20sites" title="contaminated sites">contaminated sites</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration%20cover" title=" evapotranspiration cover"> evapotranspiration cover</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title=" evapotranspiration"> evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=microcosm%20experiments" title=" microcosm experiments"> microcosm experiments</a> </p> <a href="https://publications.waset.org/abstracts/77910/plants-as-alternative-covers-at-contaminated-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2416</span> Usage the Point Analysis Algorithm (SANN) on Drought Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khosro%20Shafie%20Motlaghi">Khosro Shafie Motlaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Reza%20Salemian"> Amir Reza Salemian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In arid and semi-arid regions like our country Evapotranspiration is the greatestportion of water resource. Therefor knowlege of its changing and other climate parameters plays an important role for planning, development, and management of water resource. In this search the Trend of long changing of Evapotranspiration (ET0), average temprature, monthly rainfall were tested. To dose, all synoptic station s in iran were divided according to the climate with Domarton climate. The present research was done in semi-arid climate of Iran, and in which 14 synoptic with 30 years period of statistics were investigated with 3 methods of minimum square error, Mann Kendoll, and Vald-Volfoytz Evapotranspiration was calculated by using the method of FAO-Penman. The results of investigation in periods of statistic has shown that the process Evapotranspiration parameter of 24 percent of stations is positive, and for 2 percent is negative, and for 47 percent. It was without any Trend. Similary for 22 percent of stations was positive the Trend of parameter of temperature for 19 percent , the trend was negative and for 64 percent, it was without any Trend. The results of rainfall trend has shown that the amount of rainfall in most stations was not considered as a meaningful trend. The result of Mann-kendoll method similar to minimum square error method. regarding the acquired result was can admit that in future years Some regions will face increase of temperature and Evapotranspiration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=SANN" title=" SANN"> SANN</a>, <a href="https://publications.waset.org/abstracts/search?q=ET0" title=" ET0 "> ET0 </a> </p> <a href="https://publications.waset.org/abstracts/32450/usage-the-point-analysis-algorithm-sann-on-drought-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2415</span> Estimating Evapotranspiration Irrigated Maize in Brazil Using a Hybrid Modelling Approach and Satellite Image Inputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Zution%20Goncalves">Ivo Zution Goncalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20M.%20U.%20Neale"> Christopher M. U. Neale</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiran%20Medeiros"> Hiran Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Everardo%20Mantovani"> Everardo Mantovani</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Souza"> Natalia Souza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multispectral and thermal infrared imagery from satellite sensors coupled with climate and soil datasets were used to estimate evapotranspiration and biomass in center pivots planted to maize in Brazil during the 2016 season. The hybrid remote sensing based model named Spatial EvapoTranspiration Modelling Interface (SETMI) was applied using multispectral and thermal infrared imagery from the Landsat Thematic Mapper instrument. Field data collected by the IRRIGER center pivot management company included daily weather information such as maximum and minimum temperature, precipitation, relative humidity for estimating reference evapotranspiration. In addition, soil water content data were obtained every 0.20 m in the soil profile down to 0.60 m depth throughout the season. Early season soil samples were used to obtain water-holding capacity, wilting point, saturated hydraulic conductivity, initial volumetric soil water content, layer thickness, and saturated volumetric water content. Crop canopy development parameters and irrigation application depths were also inputs of the model. The modeling approach is based on the reflectance-based crop coefficient approach contained within the SETMI hybrid ET model using relationships developed in Nebraska. The model was applied to several fields located in Minas Gerais State in Brazil with approximate latitude: -16.630434 and longitude: -47.192876. The model provides estimates of real crop evapotranspiration (ET), crop irrigation requirements and all soil water balance outputs, including biomass estimation using multi-temporal satellite image inputs. An interpolation scheme based on the growing degree-day concept was used to model the periods between satellite inputs, filling the gaps between image dates and obtaining daily data. Actual and accumulated ET, accumulated cold temperature and water stress and crop water requirements estimated by the model were compared with data measured at the experimental fields. Results indicate that the SETMI modeling approach using data assimilation, showed reliable daily ET and crop water requirements for maize, interpolated between remote sensing observations, confirming the applicability of the SETMI model using new relationships developed in Nebraska for estimating mainly ET and water requirements in Brazil under tropical conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basal%20crop%20coefficient" title="basal crop coefficient">basal crop coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=SETMI" title=" SETMI"> SETMI</a> </p> <a href="https://publications.waset.org/abstracts/105713/estimating-evapotranspiration-irrigated-maize-in-brazil-using-a-hybrid-modelling-approach-and-satellite-image-inputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2414</span> Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bensaid%20A.">Bensaid A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostephaoui%20T."> Mostephaoui T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nedjai%20R."> Nedjai R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=ETP" title=" ETP"> ETP</a>, <a href="https://publications.waset.org/abstracts/search?q=MODIS" title=" MODIS"> MODIS</a>, <a href="https://publications.waset.org/abstracts/search?q=GIEC%20scenarios" title=" GIEC scenarios"> GIEC scenarios</a> </p> <a href="https://publications.waset.org/abstracts/163258/crossing-multi-source-climate-data-to-estimate-the-effects-of-climate-change-on-evapotranspiration-data-application-to-the-french-central-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2413</span> Design and Implementation of A 10-bit SAR ADC with A Programmable Reference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasmayadi%20Abdul%20Majid">Hasmayadi Abdul Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuzman%20Yusoff"> Yuzman Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Shelida%20Salleh"> Noor Shelida Salleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. A single ended 38.5 kS/s 10-bit programmable reference SAR ADC was proposed and implemented in a 0.35 µm CMOS technology and consumed less than 7.5 mW power with a 3 V supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=successive%20approximation%20register%20analog-to-digital%20converter" title="successive approximation register analog-to-digital converter">successive approximation register analog-to-digital converter</a>, <a href="https://publications.waset.org/abstracts/search?q=SAR%20ADC" title=" SAR ADC"> SAR ADC</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20DAC" title=" resistive DAC"> resistive DAC</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20reference" title=" programmable reference"> programmable reference</a> </p> <a href="https://publications.waset.org/abstracts/19760/design-and-implementation-of-a-10-bit-sar-adc-with-a-programmable-reference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2412</span> Wheat Yield and Yield Components under Raised Bed Planting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Miri">Hamidreza Miri</a>, <a href="https://publications.waset.org/abstracts/search?q=Farahnaz%20Momtazi"> Farahnaz Momtazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=raised%20bed%20planting" title=" raised bed planting"> raised bed planting</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use" title=" water use"> water use</a> </p> <a href="https://publications.waset.org/abstracts/170384/wheat-yield-and-yield-components-under-raised-bed-planting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2411</span> A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Ahmed%20Khan%20Afridi">Waqas Ahmed Khan Afridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhas%20Chandra%20Mukhopadhyay"> Subhas Chandra Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bandita%20Mainali"> Bandita Mainali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=FAO56" title=" FAO56"> FAO56</a>, <a href="https://publications.waset.org/abstracts/search?q=KNIME" title=" KNIME"> KNIME</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=RStudio" title=" RStudio"> RStudio</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/177750/a-support-vector-machine-learning-prediction-model-of-evapotranspiration-using-real-time-sensor-node-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2410</span> Water Balance Components under Climate Change in Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Ba%C5%A1i%C4%87">Jelena Bašić</a>, <a href="https://publications.waset.org/abstracts/search?q=Vi%C5%A1njica%20Vu%C4%8Deti%C4%87"> Višnjica Vučetić</a>, <a href="https://publications.waset.org/abstracts/search?q=Mislav%20Ani%C4%87"> Mislav Anić</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomislav%20Ba%C5%A1i%C4%87"> Tomislav Bašić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lack of precipitation combined with high temperatures causes great damage to the agriculture and economy in Croatia. Therefore, it is important to understand water circulation and balance. We decided to gain a better insight into the spatial distribution of water balance components (WBC) and their long-term changes in Croatia. WBC are precipitation (P), potential evapotranspiration (PET), actual evapotranspiration (ET), soil moisture content (S), runoff (RO), recharge (R), and soil moisture loss (L). Since measurements of the mentioned components in Croatia are very rare, the Palmer model has been applied to estimate them. We refined method by setting into the account the corrective factor to include influence effects of the wind as well as a maximum soil capacity for specific soil types. We will present one hundred years’ time series of PET and ET showing the trends at few meteorological stations and a comparison of components of two climatological periods. The meteorological data from 109 stations have been used for the spatial distribution map of the WBC of Croatia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=croatia" title="croatia">croatia</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20trends" title=" long-term trends"> long-term trends</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20palmer%20method" title=" the palmer method"> the palmer method</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20balance%20components" title=" water balance components"> water balance components</a> </p> <a href="https://publications.waset.org/abstracts/145346/water-balance-components-under-climate-change-in-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2409</span> Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seema%20Paul">Seema Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Mango%20Magero"> John Mango Magero</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosun%20Bhattacharya"> Prosun Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Kalantari"> Zahra Kalantari</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20W.%20Lyon"> Steve W. Lyon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climograph" title="climograph">climograph</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20scenarios" title=" climate scenarios"> climate scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title=" evapotranspiration"> evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20trend%20flow" title=" linear trend flow"> linear trend flow</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20event%20on%20LV" title=" rainfall event on LV"> rainfall event on LV</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/151534/understanding-hydrodynamic-in-lake-victoria-basin-in-a-catchment-scale-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2408</span> Determination of Optimum Water Consumptive Using Deficit Irrigation Model for Barely: A Case Study in Arak, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Najarchi">Mohsen Najarchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was carried out in five fields (5-15 hectares) in Arak located in center of Iran, to determine optimum level of water consumed for Barely in four stages growth (vegetative, yield formation, flowering, and ripening). Actual evapotranspiration was calculated using measured water requirement in the fields. Five levels of water requirement equal to 50, 60, 70, 80, and 90 percents formed the treatments. To determine the optimum level of water requirement linear programming was used. The study showed 60 percent water requirement (40 percent deficit irrigation) has been the optimum level of irrigation for winter wheat in four stages of growth. Comparison between all of the treatments indicated above with normal condition (100% water requirement) shows increasing in water use efficiency. Although 40% deficit irrigation treatment lead to decrease of 38% in yield, net benefit was increasing in 11.37%. Furthermore, in comparison with normal condition, 70% of water requirement increased water use efficiency as 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum" title="optimum">optimum</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title=" evapotranspiration"> evapotranspiration</a> </p> <a href="https://publications.waset.org/abstracts/14760/determination-of-optimum-water-consumptive-using-deficit-irrigation-model-for-barely-a-case-study-in-arak-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2407</span> Reference Management Software: Comparative Analysis of RefWorks and Zotero</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujit%20K.%20Basak">Sujit K. Basak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparison of reference management software between RefWorks and Zotero. The results were drawn by comparing two software and the novelty of this paper is the comparative analysis of software and it has shown that ReftWorks can import more information from the Google Scholar for the researchers. This finding could help to know researchers to use the reference management software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20management%20software" title=" reference management software"> reference management software</a>, <a href="https://publications.waset.org/abstracts/search?q=researchers" title=" researchers"> researchers</a> </p> <a href="https://publications.waset.org/abstracts/11670/reference-management-software-comparative-analysis-of-refworks-and-zotero" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2406</span> Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubaina%20Soni">Lubaina Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Farrell"> Claire Farrell</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Szota"> Christopher Szota</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20D.%20Fletcher"> Tim D. Fletcher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20cover" title=" plant cover"> plant cover</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20drought%20stress" title=" plant drought stress"> plant drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20retention" title=" rainfall retention"> rainfall retention</a> </p> <a href="https://publications.waset.org/abstracts/148263/influence-of-plant-cover-and-redistributing-rainfall-on-green-roof-retention-and-plant-drought-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2405</span> Spatially Downscaling Land Surface Temperature with a Non-Linear Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Liu">Kai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bowen%20ration" title="Bowen ration">Bowen ration</a>, <a href="https://publications.waset.org/abstracts/search?q=downscaling" title=" downscaling"> downscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title=" evapotranspiration"> evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title=" land surface temperature"> land surface temperature</a> </p> <a href="https://publications.waset.org/abstracts/69946/spatially-downscaling-land-surface-temperature-with-a-non-linear-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2404</span> Formal Specification of Web Services Applications for Digital Reference Services of Library Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magaji%20Zainab%20Musa">Magaji Zainab Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nordin%20M.%20A.%20Rahman"> Nordin M. A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Julaily%20Aida%20Jusoh"> Julaily Aida Jusoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the formal specification of web services applications for digital reference services (WSDRS). Digital reference service involves a user requesting for help from a reference librarian and a reference librarian responding to the request of a user all by electronic means. In most cases users do not get satisfied while using digital reference service due to delay of response of the librarians. Another may be due to no response or due to librarian giving an irrelevant solution to the problem submitted by the user. WDSRS is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ need in the reference section of libraries. But informal model is in natural language which is inconsistent and ambiguous that may cause difficulties to the developers of the system. In order to solve this problem we decided to convert the informal specifications into formal specifications. This is supposed to reduce the overall development time and cost. Formal specification can be used to provide an unambiguous and precise supplement to natural language descriptions. It can be rigorously validated and verified leading to the early detection of specification errors. We use Z language to develop the formal model and verify it with Z/EVES theorem prover tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formal" title="formal">formal</a>, <a href="https://publications.waset.org/abstracts/search?q=specifications" title=" specifications"> specifications</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20services" title=" web services"> web services</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20reference%20services" title=" digital reference services"> digital reference services</a> </p> <a href="https://publications.waset.org/abstracts/34898/formal-specification-of-web-services-applications-for-digital-reference-services-of-library-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2403</span> Assessing Moisture Adequacy over Semi-arid and Arid Indian Agricultural Farms using High-Resolution Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devansh%20Desai">Devansh Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Nigam"> Rahul Nigam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop water stress (W) at a given growth stage starts to set in as moisture availability (M) to roots falls below 75% of maximum. It has been found that ratio of crop evapotranspiration (ET) and reference evapotranspiration (ET0) is an indicator of moisture adequacy and is strongly correlated with ‘M’ and ‘W’. The spatial variability of ET0 is generally less over an agricultural farm of 1-5 ha than ET, which depends on both surface and atmospheric conditions, while the former depends only on atmospheric conditions. Solutions from surface energy balance (SEB) and thermal infrared (TIR) remote sensing are now known to estimate latent heat flux of ET. In the present study, ET and moisture adequacy index (MAI) (=ET/ET0) have been estimated over two contrasting western India agricultural farms having rice-wheat system in semi-arid climate and arid grassland system, limited by moisture availability. High-resolution multi-band TIR sensing observations at 65m from ECOSTRESS (ECOsystemSpaceborne Thermal Radiometer Experiment on Space Station) instrument on-board International Space Station (ISS) were used in an analytical SEB model, STIC (Surface Temperature Initiated Closure) to estimate ET and MAI. The ancillary variables used in the ET modeling and MAI estimation were land surface albedo, NDVI from close-by LANDSAT data at 30m spatial resolution, ET0 product at 4km spatial resolution from INSAT 3D, meteorological forcing variables from short-range weather forecast on air temperature and relative humidity from NWP model. Farm-scale ET estimates at 65m spatial resolution were found to show low RMSE of 16.6% to 17.5% with R2 >0.8 from 18 datasets as compared to reported errors (25 – 30%) from coarser-scale ET at 1 to 8 km spatial resolution when compared to in situ measurements from eddy covariance systems. The MAI was found to show lower (<0.25) and higher (>0.5) magnitudes in the contrasting agricultural farms. The study showed the potential need of high-resolution high-repeat spaceborne multi-band TIR payloads alongwith optical payload in estimating farm-scale ET and MAI for estimating consumptive water use and water stress. A set of future high-resolution multi-band TIR sensors are planned on-board Indo-French TRISHNA, ESA’s LSTM, NASA’s SBG space-borne missions to address sustainable irrigation water management at farm-scale to improve crop water productivity. These will provide precise and fundamental variables of surface energy balance such as LST (Land Surface Temperature), surface emissivity, albedo and NDVI. A synchronization among these missions is needed in terms of observations, algorithms, product definitions, calibration-validation experiments and downstream applications to maximize the potential benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20remote%20sensing" title="thermal remote sensing">thermal remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title=" land surface temperature"> land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20water%20stress" title=" crop water stress"> crop water stress</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title=" evapotranspiration"> evapotranspiration</a> </p> <a href="https://publications.waset.org/abstracts/168412/assessing-moisture-adequacy-over-semi-arid-and-arid-indian-agricultural-farms-using-high-resolution-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2402</span> Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Blokh">M. Blokh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title="hydrodynamics">hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-inertial%20reference%20frames" title=" non-inertial reference frames"> non-inertial reference frames</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching" title=" teaching "> teaching </a> </p> <a href="https://publications.waset.org/abstracts/28610/combining-laws-of-mechanics-and-hydrostatics-in-non-inertial-reference-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2401</span> Changes in Forest Cover Regulate Streamflow in Central Nigerian Gallery Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahila%20Yilangai">Rahila Yilangai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Saha"> Sonali Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Amartya%20Saha"> Amartya Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20Ezealor"> Augustine Ezealor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gallery forests in sub-Saharan Africa are drastically disappearing due to intensive anthropogenic activities thus reducing ecosystem services, one of which is water provisioning. The role played by forest cover in regulating streamflow and water yield is not well understood, especially in West Africa. This pioneering 2-year study investigated the interrelationships between plant cover and hydrology in protected and unprotected gallery forests. Rainfall, streamflow, and evapotranspiration (ET) measurements/estimates over 2015-2016 were obtained to form a water balance for both catchments. In addition, transpiration in the protected gallery forest with high vegetation cover was calculated from stomatal conductance readings of selected species chosen from plot level data of plant diversity and abundance. Results showed that annual streamflow was significantly higher in the unprotected site than the protected site, even when normalized by catchment area. However, streamflow commenced earlier and lasted longer in the protected site than the degraded unprotected site, suggesting regulation by the greater tree density in the protected site. Streamflow correlated strongly with rainfall with the highest peak in August. As expected, transpiration measurements were less than potential evapotranspiration estimates, while rainfall exceeded ET in the water cycle. The water balance partitioning suggests that the lower vegetation cover in the unprotected catchment leads to a larger runoff in the rainy season and less infiltration, thereby leading to streams drying up earlier, than in the protected catchment. This baseline information is important in understanding the contribution of plants in water cycle regulation, for modeling integrative water management in applied research and natural resource management in sustaining water resources with changing the land cover and climate uncertainties in this data-poor region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=gallery%20forest" title=" gallery forest"> gallery forest</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow" title=" streamflow"> streamflow</a>, <a href="https://publications.waset.org/abstracts/search?q=transpiration" title=" transpiration"> transpiration</a> </p> <a href="https://publications.waset.org/abstracts/95088/changes-in-forest-cover-regulate-streamflow-in-central-nigerian-gallery-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2400</span> Phrases, Agreement and Reference in Students&#039; Writing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maya%20Lisa%20Aryanti">Maya Lisa Aryanti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20M.%20Hum"> S. S. M. Hum </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Students usually make a lot of mistakes when they write their composition. The common mistake occurs when they write their own sentences. They perhaps can use certain verb and verb phrases properly, but on another occasion, they may choose wrong verb phrases. This paper illustrates ill-formed phrases, improper agreement between subject and verb and referent and reference in the students’ writings. The objectives of this research are to show possible variety of ill-formed phrases, to show frequent mistakes in S-V Agreement, and to show wrong reference in students’ writing. The methodology of this research is descriptive qualitative research. Some general linguistic theories and semantics are used in this paper. The results of this research concern to the number and the forms of possible ill-formed phrases, the types of Subject-Verb Agreement which are often applied incorrectly in a sentence and types of reference which are often used incorrectly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agreement" title="agreement">agreement</a>, <a href="https://publications.waset.org/abstracts/search?q=meaning" title=" meaning"> meaning</a>, <a href="https://publications.waset.org/abstracts/search?q=phrases" title=" phrases"> phrases</a>, <a href="https://publications.waset.org/abstracts/search?q=reference" title=" reference"> reference</a> </p> <a href="https://publications.waset.org/abstracts/79187/phrases-agreement-and-reference-in-students-writing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2399</span> Reference Architecture for Intelligent Enterprise Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shankar%20Kambhampaty">Shankar Kambhampaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Harish%20Rohan%20Kambhampaty"> Harish Rohan Kambhampaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data in IT systems in enterprises has been growing at a phenomenal pace. This has provided opportunities to run analytics to gather intelligence on key business parameters that enable them to provide better products and services to customers. While there are several artificial intelligence (AI/ML) and business intelligence (BI) tools and technologies available in the marketplace to run analytics, there is a need for an integrated view when developing intelligent solutions in enterprises. This paper progressively elaborates a reference model for enterprise solutions, builds an integrated view of data, information, and intelligence components, and presents a reference architecture for intelligent enterprise solutions. Finally, it applies the reference architecture to an insurance organization. The reference architecture is the outcome of experience and insights gathered from developing intelligent solutions for several organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligence" title=" intelligence"> intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20intelligence" title=" business intelligence"> business intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title=" AI"> AI</a>, <a href="https://publications.waset.org/abstracts/search?q=BI" title=" BI"> BI</a>, <a href="https://publications.waset.org/abstracts/search?q=ML" title=" ML"> ML</a>, <a href="https://publications.waset.org/abstracts/search?q=analytics" title=" analytics"> analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise" title=" enterprise"> enterprise</a> </p> <a href="https://publications.waset.org/abstracts/132436/reference-architecture-for-intelligent-enterprise-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2398</span> Effect on Yield and Yield Components of Different Irrigation Levels in Edible Seed Pumpkin Growing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20Seymen">Musa Seymen</a>, <a href="https://publications.waset.org/abstracts/search?q=Duran%20Yavuz"> Duran Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurcan%20Yavuz"> Nurcan Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96nder%20T%C3%BCrkmen"> Önder Türkmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible seed pumpkin (<em>Cucurbita pepo</em> L.) is one of the important edibles preferred by consumer in Turkey due to its higher nutrient contents. However, there is almost very few study on water consumption and irrigation water requirement of confectionary edible seed pumpkin in Turkey. Therefore, a 2-year study (2013-2014) was conducted to determine the effects of irrigation levels on the seed yield and yield components of drip-irrigated confectionary edible seed pumpkin under Turkey conditions. In the study, the experimental design was made in randomized blocks with three replications. Treatments consisted of five irrigation water levels that compensated for the 100% (<em>I</em><sub>100</sub>, full irrigation), 75% (<em>I</em><sub>75</sub>), 50% (<em>I</em><sub>50</sub>), 25% (<em>I</em><sub>25</sub>) and 0% (<em>I</em><sub>0</sub>, no irrigation) of crop water requirements at 14-day irrigation intervals. Seasonal evapotranspiration of treatments varied from 194.2 to 625.2 mm in 2013 and from 208.6 to 556.6 mm in 2014. In both years, the highest seasonal evapotranspiration was obtained in <em>I</em><sub>100</sub> treatment. Average across years, the seed yields ranged between 1090 (<em>I</em><sub>100</sub>) and 422 (<em>I</em><sub>0</sub>) kg ha<sup>-1</sup>. The irrigation treatments were found to significantly affect the yield parameters such as the seed yield, oil seed yield number of seeds per fruit, seed size, seed width, fruit size, fruit width and fruit index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20level" title="irrigation level">irrigation level</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20seed%20pumpkin" title=" edible seed pumpkin"> edible seed pumpkin</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20quality" title=" seed quality"> seed quality</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20yield" title=" seed yield"> seed yield</a> </p> <a href="https://publications.waset.org/abstracts/46800/effect-on-yield-and-yield-components-of-different-irrigation-levels-in-edible-seed-pumpkin-growing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2397</span> Validation of the Formal Model of Web Services Applications for Digital Reference Service of Library Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Magaji%20Musa">Zainab Magaji Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nordin%20M.%20A.%20Rahman"> Nordin M. A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Julaily%20Aida%20Jusoh"> Julaily Aida Jusoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The web services applications for digital reference service (WSDRS) of LIS model is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ needs in the reference section of libraries. The formal WSDRS model consists of the Z specifications of all the informal specifications of the model. This paper discusses the formal validation of the Z specifications of WSDRS model. The authors formally verify and thus validate the properties of the model using Z/EVES theorem prover. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=validation" title="validation">validation</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a>, <a href="https://publications.waset.org/abstracts/search?q=formal" title=" formal"> formal</a>, <a href="https://publications.waset.org/abstracts/search?q=theorem%20prover" title=" theorem prover"> theorem prover</a> </p> <a href="https://publications.waset.org/abstracts/34902/validation-of-the-formal-model-of-web-services-applications-for-digital-reference-service-of-library-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=80">80</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reference%20evapotranspiration&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10