CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;23 of 23 results for author: <span class="mathjax">Hasselmann, P H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hasselmann, P H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hasselmann%2C+P+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hasselmann, P H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14149">arXiv:2408.14149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14149">pdf</a>, <a href="https://arxiv.org/format/2408.14149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Spectro-photometry of Phobos simulants: II. Effects of porosity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wargnier%2C+A">Antonin Wargnier</a>, <a href="/search/?searchtype=author&amp;query=Poch%2C+O">Olivier Poch</a>, <a href="/search/?searchtype=author&amp;query=Poggiali%2C+G">Giovanni Poggiali</a>, <a href="/search/?searchtype=author&amp;query=Gautier%2C+T">Thomas Gautier</a>, <a href="/search/?searchtype=author&amp;query=Doressoundiram%2C+A">Alain Doressoundiram</a>, <a href="/search/?searchtype=author&amp;query=Beck%2C+P">Pierre Beck</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+T">Tomoki Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Miyamoto%2C+H">Hideaki Miyamoto</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+S">Shingo Kameda</a>, <a href="/search/?searchtype=author&amp;query=Ruscassier%2C+N">Nathalie Ruscassier</a>, <a href="/search/?searchtype=author&amp;query=Buch%2C+A">Arnaud Buch</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">Pedro H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Sultana%2C+R">Robin Sultana</a>, <a href="/search/?searchtype=author&amp;query=Quirico%2C+E">Eric Quirico</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">Sonia Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+A">Antonella Barucci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14149v1-abstract-short" style="display: inline;"> Surface porosity has been found to be an important property for small bodies. Some asteroids and comets can exhibit an extremely high surface porosity in the first millimeter layer. This layer may be produced by various processes and maintained by the lack of an atmosphere. However, the influence of porosity on the spectro-photometric properties of small body surfaces is not yet fully understood.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14149v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14149v1-abstract-full" style="display: none;"> Surface porosity has been found to be an important property for small bodies. Some asteroids and comets can exhibit an extremely high surface porosity in the first millimeter layer. This layer may be produced by various processes and maintained by the lack of an atmosphere. However, the influence of porosity on the spectro-photometric properties of small body surfaces is not yet fully understood. In this study, we looked into the effect of porosity on the spectro-photometric properties of Phobos regolith spectroscopic simulants; created by mixing the simulants with ultra-pure water, producing ice-dust particles, and then sublimating the water. The reflectance spectroscopic properties in the visible and near-infrared (0.5-4.2 $渭$m) show no strong variations between the porous and compact samples. However, one simulant exhibits a bluing of the slope after increasing porosity, providing possible insights into the differences between the blue and red units observed on Phobos. In the mid-infrared range, a contrast increase of the 10-$渭$m emissivity plateau due to silicates is observed. Photometry reveals a modification in the phase reddening behavior between the compact powder and the sublimation residue for both simulants. However, the observed behavior is different between the simulants, suggesting that the phase reddening may be dependent on the composition of the simulants. The phase curve also appears to be modified by the addition of porosity, with a higher contribution of forward scattering observed for the sublimation residue. The derivation of the Hapke parameters indicates an increase in roughness for the porous sample, but no significant modification of the opposition effect. This study aims to provide new insights into the understanding of porosity by using two Phobos simulants in the context of the upcoming JAXA/Martian Moons eXploration mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14149v1-abstract-full').style.display = 'none'; document.getElementById('2408.14149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Icarus</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19764">arXiv:2405.19764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19764">pdf</a>, <a href="https://arxiv.org/format/2405.19764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Macro-scale roughness reveals the complex history of asteroids Didymos and Dimorphos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vincent%2C+J">Jean-Baptiste Vincent</a>, <a href="/search/?searchtype=author&amp;query=Asphaug%2C+E">Erik Asphaug</a>, <a href="/search/?searchtype=author&amp;query=Barnouin%2C+O">Olivier Barnouin</a>, <a href="/search/?searchtype=author&amp;query=Beccarelli%2C+J">Joel Beccarelli</a>, <a href="/search/?searchtype=author&amp;query=Benavidez%2C+P+G">Paula G. Benavidez</a>, <a href="/search/?searchtype=author&amp;query=Campo-Bagatin%2C+A">Adriano Campo-Bagatin</a>, <a href="/search/?searchtype=author&amp;query=Chabot%2C+N+L">Nancy L. Chabot</a>, <a href="/search/?searchtype=author&amp;query=Ernst%2C+C+M">Carolyn M. Ernst</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">Pedro H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Hirabayashi%2C+M">Masatoshi Hirabayashi</a>, <a href="/search/?searchtype=author&amp;query=Ieva%2C+S">Simone Ieva</a>, <a href="/search/?searchtype=author&amp;query=Karatekin%2C+O">Ozgur Karatekin</a>, <a href="/search/?searchtype=author&amp;query=Kasparek%2C+T">Tomas Kasparek</a>, <a href="/search/?searchtype=author&amp;query=Kohout%2C+T">Tomas Kohout</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z">Zhong-Yi Lin</a>, <a href="/search/?searchtype=author&amp;query=Lucchetti%2C+A">Alice Lucchetti</a>, <a href="/search/?searchtype=author&amp;query=Michel%2C+P">Patrick Michel</a>, <a href="/search/?searchtype=author&amp;query=Murdoch%2C+N">Naomi Murdoch</a>, <a href="/search/?searchtype=author&amp;query=Pajola%2C+M">Maurizio Pajola</a>, <a href="/search/?searchtype=author&amp;query=Parro%2C+L+M">Laura M. Parro</a>, <a href="/search/?searchtype=author&amp;query=Raducan%2C+S+D">Sabina D. Raducan</a>, <a href="/search/?searchtype=author&amp;query=Sunshine%2C+J">Jessica Sunshine</a>, <a href="/search/?searchtype=author&amp;query=Tancredi%2C+G">Gonzalo Tancredi</a>, <a href="/search/?searchtype=author&amp;query=Trigo-Rodriguez%2C+J+M">Josep M. Trigo-Rodriguez</a>, <a href="/search/?searchtype=author&amp;query=Zinzi%2C+A">Angelo Zinzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19764v1-abstract-short" style="display: inline;"> Morphological mapping is a fundamental step in studying the processes that shaped an asteroid surface. Yet, it is challenging and often requires multiple independent assessments by trained experts. Here, we present fast methods to detect and characterize meaningful terrains from the topographic roughness: entropy of information, and local mean surface orientation. We apply our techniques to Didymo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19764v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19764v1-abstract-full" style="display: none;"> Morphological mapping is a fundamental step in studying the processes that shaped an asteroid surface. Yet, it is challenging and often requires multiple independent assessments by trained experts. Here, we present fast methods to detect and characterize meaningful terrains from the topographic roughness: entropy of information, and local mean surface orientation. We apply our techniques to Didymos and Dimorphos, the target asteroids of NASA&#39;s DART mission: first attempt to deflect an asteroid. Our methods reliably identify morphological units at multiple scales. The comparative study reveals various terrain types, signatures of processes that transformed Didymos and Dimorphos. Didymos shows the most heterogeneity and morphology that indicate recent resurfacing events. Dimorphos is comparatively rougher than Didymos, which may result from the formation process of the binary pair and past interaction between the two bodies. Our methods can be readily applied to other bodies and data sets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19764v1-abstract-full').style.display = 'none'; document.getElementById('2405.19764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to PSJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02999">arXiv:2405.02999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02999">pdf</a>, <a href="https://arxiv.org/format/2405.02999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Spectro-photometry of Phobos simulants: I. Detectability of hydrated minerals and organic bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wargnier%2C+A">Antonin Wargnier</a>, <a href="/search/?searchtype=author&amp;query=Gautier%2C+T">Thomas Gautier</a>, <a href="/search/?searchtype=author&amp;query=Doressoundiram%2C+A">Alain Doressoundiram</a>, <a href="/search/?searchtype=author&amp;query=Poggiali%2C+G">Giovanni Poggiali</a>, <a href="/search/?searchtype=author&amp;query=Beck%2C+P">Pierre Beck</a>, <a href="/search/?searchtype=author&amp;query=Poch%2C+O">Olivier Poch</a>, <a href="/search/?searchtype=author&amp;query=Quirico%2C+E">Eric Quirico</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+T">Tomoki Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Miyamoto%2C+H">Hideaki Miyamoto</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+S">Shingo Kameda</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">Pedro H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Ruscassier%2C+N">Nathalie Ruscassier</a>, <a href="/search/?searchtype=author&amp;query=Buch%2C+A">Arnaud Buch</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">Sonia Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">Maria Antonietta Barucci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02999v1-abstract-short" style="display: inline;"> Previous observations of Phobos and Deimos, the moons of Mars, have improved our understanding of these small bodies. However, their formation and composition remain poorly constrained. Physical and spectral properties suggest that Phobos may be a weakly thermal-altered captured asteroid but the dynamical properties of the martian system suggest a formation by giant collision similar to the Earth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02999v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02999v1-abstract-full" style="display: none;"> Previous observations of Phobos and Deimos, the moons of Mars, have improved our understanding of these small bodies. However, their formation and composition remain poorly constrained. Physical and spectral properties suggest that Phobos may be a weakly thermal-altered captured asteroid but the dynamical properties of the martian system suggest a formation by giant collision similar to the Earth moon. In 2027, the JAXA&#39;s MMX mission aims to address these outstanding questions. We undertook measurements with a new simulant called OPPS (Observatory of Paris Phobos Simulant) which closely matches Phobos spectra in the visible to the mid-infrared range. The simulant was synthesized using a mixture of olivine, saponite, anthracite, and coal. Since observation geometry is a crucial aspect of planetary surface remote sensing exploration, we evaluated the parameters obtained by modeling the phase curves -- obtained through laboratory measurements -- of two different Phobos simulants (UTPS-TB and OPPS) using Hapke IMSA model. Our results show that the photometric properties of Phobos simulants are not fully consistent with those of Tagish Lake, Allende, or the NWA 4766 shergottite. We also investigated the detection of volatiles/organic compounds and hydrated minerals, as the presence of such components is expected on Phobos in the hypothesis of a captured primitive asteroid. The results indicate that a significant amount of organic compounds is required for the detection of C-H bands at 3.4 $渭$m. In contrast, the 2.7 $渭$m absorption band, due to hydrated minerals, is much deeper and easier to detect than C-H organic features at the same concentration levels. Posing limits on detectability of some possible key components of Phobos surface will be pivotal to prepare and interpret future observations of the MIRS spectrometer onboard MMX mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02999v1-abstract-full').style.display = 'none'; document.getElementById('2405.02999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">58 pages, 19 figures, submitted to Icarus</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12156">arXiv:2403.12156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12156">pdf</a>, <a href="https://arxiv.org/format/2403.12156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449220">10.1051/0004-6361/202449220 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phobos photometric properties from Mars Express HRSC observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Wargnier%2C+A">A. Wargnier</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Tirsch%2C+D">D. Tirsch</a>, <a href="/search/?searchtype=author&amp;query=Matz%2C+K+-">K. -D. Matz</a>, <a href="/search/?searchtype=author&amp;query=Doressoundiram%2C+A">A. Doressoundiram</a>, <a href="/search/?searchtype=author&amp;query=Gautier%2C+T">T. Gautier</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12156v1-abstract-short" style="display: inline;"> This study aims to analyze Phobos&#39; photometric properties using Mars Express mission observations to support the Martian Moons eXploration mission. We analyzed resolved images of Phobos acquired between 2004 and 2022 by the HRSC and the SRC cameras on board the Mars Express spacecraft. We performed photometric analysis using the Hapke model for both integrated and disk-resolved data. The Phobos ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12156v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12156v1-abstract-full" style="display: none;"> This study aims to analyze Phobos&#39; photometric properties using Mars Express mission observations to support the Martian Moons eXploration mission. We analyzed resolved images of Phobos acquired between 2004 and 2022 by the HRSC and the SRC cameras on board the Mars Express spacecraft. We performed photometric analysis using the Hapke model for both integrated and disk-resolved data. The Phobos phase function has a strong opposition effect due to shadow hiding, with an amplitude and a half-width of the opposition surge of 2.28$\pm$0.03 and 0.0573$\pm$0.0001, respectively. Overall, the surface of Phobos is dark, with a geometric albedo of 6.8 % in the green filter and backscattering. We also found a surface porosity of 87\%, indicating the presence of a thick dust mantle or of fractal aggregates on the top surface. The SSA maps revealed high reflectance variability, with the blue unit area in the northeast Stickney rim being up to 65\% brighter than average, while the Stickney floor is among the darkest regions, with reflectance 10 to 20% lower than average. Photometric modeling of the regions of interest selected in the red and blue units indicates that red unit terrains have a stronger opposition effect and a smaller SSA value than the blue ones, but they have similar porosity and backscattering properties. The HRSC data provide a unique investigation of the Phobos phase function and opposition surge, which is valuable information for the MMX observational planning. The Phobos opposition surge, surface porosity, phase integral, and spectral slope are very similar to the values observed for the comet 67P and for Jupiter family comets in general. Based on these similarities, we formulate a hypothesis that the Mars satellites might be the results of a binary or bilobated comet captured by Mars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12156v1-abstract-full').style.display = 'none'; document.getElementById('2403.12156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 16 figures, accepted for publication in Astron. &amp; Astroph</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A203 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00667">arXiv:2403.00667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00667">pdf</a>, <a href="https://arxiv.org/format/2403.00667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-024-02200-3">10.1038/s41550-024-02200-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physical properties of asteroid Dimorphos as derived from the DART impact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Raducan%2C+S+D">S. D. Raducan</a>, <a href="/search/?searchtype=author&amp;query=Jutzi%2C+M">M. Jutzi</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+A+F">A. F. Cheng</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Barnouin%2C+O">O. Barnouin</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+G+S">G. S. Collins</a>, <a href="/search/?searchtype=author&amp;query=Daly%2C+R+T">R. T. Daly</a>, <a href="/search/?searchtype=author&amp;query=Davison%2C+T+M">T. M. Davison</a>, <a href="/search/?searchtype=author&amp;query=Ernst%2C+C+M">C. M. Ernst</a>, <a href="/search/?searchtype=author&amp;query=Farnham%2C+T+L">T. L. Farnham</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+F">F. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Hirabayashi%2C+M">M. Hirabayashi</a>, <a href="/search/?searchtype=author&amp;query=Kumamoto%2C+K+M">K. M. Kumamoto</a>, <a href="/search/?searchtype=author&amp;query=Michel%2C+P">P. Michel</a>, <a href="/search/?searchtype=author&amp;query=Murdoch%2C+N">N. Murdoch</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+R">R. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Pajola%2C+M">M. Pajola</a>, <a href="/search/?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/?searchtype=author&amp;query=Agrusa%2C+H+F">H. F. Agrusa</a>, <a href="/search/?searchtype=author&amp;query=Barbee%2C+B+W">B. W. Barbee</a>, <a href="/search/?searchtype=author&amp;query=Syal%2C+M+B">M. Bruck Syal</a>, <a href="/search/?searchtype=author&amp;query=Chabot%2C+N+L">N. L. Chabot</a>, <a href="/search/?searchtype=author&amp;query=Dotto%2C+E">E. Dotto</a>, <a href="/search/?searchtype=author&amp;query=Fahnestock%2C+E+G">E. G. Fahnestock</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00667v1-abstract-short" style="display: inline;"> On September 26, 2022, NASA&#39;s Double Asteroid Redirection Test (DART) mission successfully impacted Dimorphos, the natural satellite of the binary near-Earth asteroid (65803) Didymos. Numerical simulations of the impact provide a means to explore target surface material properties and structures, consistent with the observed momentum deflection efficiency, ejecta cone geometry, and ejected mass. O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00667v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00667v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00667v1-abstract-full" style="display: none;"> On September 26, 2022, NASA&#39;s Double Asteroid Redirection Test (DART) mission successfully impacted Dimorphos, the natural satellite of the binary near-Earth asteroid (65803) Didymos. Numerical simulations of the impact provide a means to explore target surface material properties and structures, consistent with the observed momentum deflection efficiency, ejecta cone geometry, and ejected mass. Our simulation, which best matches observations, indicates that Dimorphos is weak, with a cohesive strength of less than a few pascals (Pa), similar to asteroids (162173) Ryugu and (101955) Bennu. We find that a bulk density of Dimorphos, rhoB, lower than 2400 kg/m3, and a low volume fraction of boulders (&lt;40 vol%) on the surface and in the shallow subsurface, are consistent with measured data from the DART experiment. These findings suggest Dimorphos is a rubble pile that might have formed through rotational mass shedding and re-accumulation from Didymos. Our simulations indicate that the DART impact caused global deformation and resurfacing of Dimorphos. ESA&#39;s upcoming Hera mission may find a re-shaped asteroid, rather than a well-defined crater. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00667v1-abstract-full').style.display = 'none'; document.getElementById('2403.00667v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12089">arXiv:2310.12089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12089">pdf</a>, <a href="https://arxiv.org/format/2310.12089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kareta%2C+T">Theodore Kareta</a>, <a href="/search/?searchtype=author&amp;query=Thomas%2C+C">Cristina Thomas</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jian-Yang Li</a>, <a href="/search/?searchtype=author&amp;query=Knight%2C+M+M">Matthew M. Knight</a>, <a href="/search/?searchtype=author&amp;query=Moskovitz%2C+N">Nicholas Moskovitz</a>, <a href="/search/?searchtype=author&amp;query=Rozek%2C+A">Agata Rozek</a>, <a href="/search/?searchtype=author&amp;query=Bannister%2C+M+T">Michele T. Bannister</a>, <a href="/search/?searchtype=author&amp;query=Ieva%2C+S">Simone Ieva</a>, <a href="/search/?searchtype=author&amp;query=Snodgrass%2C+C">Colin Snodgrass</a>, <a href="/search/?searchtype=author&amp;query=Pravec%2C+P">Petr Pravec</a>, <a href="/search/?searchtype=author&amp;query=Ryan%2C+E+V">Eileen V. Ryan</a>, <a href="/search/?searchtype=author&amp;query=Ryan%2C+W+H">William H. Ryan</a>, <a href="/search/?searchtype=author&amp;query=Fahnestock%2C+E+G">Eugene G. Fahnestock</a>, <a href="/search/?searchtype=author&amp;query=Rivkin%2C+A+S">Andrew S. Rivkin</a>, <a href="/search/?searchtype=author&amp;query=Chabot%2C+N">Nancy Chabot</a>, <a href="/search/?searchtype=author&amp;query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&amp;query=Osip%2C+D">David Osip</a>, <a href="/search/?searchtype=author&amp;query=Lister%2C+T">Tim Lister</a>, <a href="/search/?searchtype=author&amp;query=Sarid%2C+G">Gal Sarid</a>, <a href="/search/?searchtype=author&amp;query=Hirabayashi%2C+M">Masatoshi Hirabayashi</a>, <a href="/search/?searchtype=author&amp;query=Farnham%2C+T">Tony Farnham</a>, <a href="/search/?searchtype=author&amp;query=Tancredi%2C+G">Gonzalo Tancredi</a>, <a href="/search/?searchtype=author&amp;query=Michel%2C+P">Patrick Michel</a>, <a href="/search/?searchtype=author&amp;query=Wainscoat%2C+R">Richard Wainscoat</a>, <a href="/search/?searchtype=author&amp;query=Weryk%2C+R">Rob Weryk</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12089v1-abstract-short" style="display: inline;"> The impact of the DART spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos&#39; orbit substantially, largely from the ejection of material. We present results from twelve Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ~1.4 magnitudes, we find consis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12089v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12089v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12089v1-abstract-full" style="display: none;"> The impact of the DART spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos&#39; orbit substantially, largely from the ejection of material. We present results from twelve Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ~1.4 magnitudes, we find consistent dimming rates of 0.11-0.12 magnitudes/day in the first week, and 0.08-0.09 magnitudes/day over the entire study period. The system returned to its pre-impact brightness 24.3-25.3 days after impact through the primary ejecta tail remained. The dimming paused briefly eight days after impact, near in time to the appearance of the second tail. This was likely due to a secondary release of material after re-impact of a boulder released in the initial impact, through movement of the primary ejecta through the aperture likely played a role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12089v1-abstract-full').style.display = 'none'; document.getElementById('2310.12089v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 Figures, accepted in the Astrophysical Journal Letters (ApJL) on October 16, 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03464">arXiv:2303.03464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03464">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-05878-z">10.1038/s41586-023-05878-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum Transfer from the DART Mission Kinetic Impact on Asteroid Dimorphos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cheng%2C+A+F">Andrew F. Cheng</a>, <a href="/search/?searchtype=author&amp;query=Agrusa%2C+H+F">Harrison F. Agrusa</a>, <a href="/search/?searchtype=author&amp;query=Barbee%2C+B+W">Brent W. Barbee</a>, <a href="/search/?searchtype=author&amp;query=Meyer%2C+A+J">Alex J. Meyer</a>, <a href="/search/?searchtype=author&amp;query=Farnham%2C+T+L">Tony L. Farnham</a>, <a href="/search/?searchtype=author&amp;query=Raducan%2C+S+D">Sabina D. Raducan</a>, <a href="/search/?searchtype=author&amp;query=Richardson%2C+D+C">Derek C. Richardson</a>, <a href="/search/?searchtype=author&amp;query=Dotto%2C+E">Elisabetta Dotto</a>, <a href="/search/?searchtype=author&amp;query=Zinzi%2C+A">Angelo Zinzi</a>, <a href="/search/?searchtype=author&amp;query=Della+Corte%2C+V">Vincenzo Della Corte</a>, <a href="/search/?searchtype=author&amp;query=Statler%2C+T+S">Thomas S. Statler</a>, <a href="/search/?searchtype=author&amp;query=Chesley%2C+S">Steven Chesley</a>, <a href="/search/?searchtype=author&amp;query=Naidu%2C+S+P">Shantanu P. Naidu</a>, <a href="/search/?searchtype=author&amp;query=Hirabayashi%2C+M">Masatoshi Hirabayashi</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jian-Yang Li</a>, <a href="/search/?searchtype=author&amp;query=Eggl%2C+S">Siegfried Eggl</a>, <a href="/search/?searchtype=author&amp;query=Barnouin%2C+O+S">Olivier S. Barnouin</a>, <a href="/search/?searchtype=author&amp;query=Chabot%2C+N+L">Nancy L. Chabot</a>, <a href="/search/?searchtype=author&amp;query=Chocron%2C+S">Sidney Chocron</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+G+S">Gareth S. Collins</a>, <a href="/search/?searchtype=author&amp;query=Daly%2C+R+T">R. Terik Daly</a>, <a href="/search/?searchtype=author&amp;query=Davison%2C+T+M">Thomas M. Davison</a>, <a href="/search/?searchtype=author&amp;query=DeCoster%2C+M+E">Mallory E. DeCoster</a>, <a href="/search/?searchtype=author&amp;query=Ernst%2C+C+M">Carolyn M. Ernst</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+F">Fabio Ferrari</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03464v1-abstract-short" style="display: inline;"> The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on September 26, 2022 as a planetary defense test. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defense, intended to validate kinetic impact as a means of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03464v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03464v1-abstract-full" style="display: none;"> The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on September 26, 2022 as a planetary defense test. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defense, intended to validate kinetic impact as a means of asteroid deflection. Here we report the first determination of the momentum transferred to an asteroid by kinetic impact. Based on the change in the binary orbit period, we find an instantaneous reduction in Dimorphos&#39;s along-track orbital velocity component of 2.70 +/- 0.10 mm/s, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact. For a Dimorphos bulk density range of 1,500 to 3,300 kg/m$^3$, we find that the expected value of the momentum enhancement factor, $尾$, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg/m$^3$, $尾$= 3.61 +0.19/-0.25 (1 $蟽$). These $尾$ values indicate that significantly more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03464v1-abstract-full').style.display = 'none'; document.getElementById('2303.03464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01700">arXiv:2303.01700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.01700">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-05811-4">10.1038/s41586-023-05811-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ejecta from the DART-produced active asteroid Dimorphos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jian-Yang Li</a>, <a href="/search/?searchtype=author&amp;query=Hirabayashi%2C+M">Masatoshi Hirabayashi</a>, <a href="/search/?searchtype=author&amp;query=Farnham%2C+T+L">Tony L. Farnham</a>, <a href="/search/?searchtype=author&amp;query=Sunshine%2C+J+M">Jessica M. Sunshine</a>, <a href="/search/?searchtype=author&amp;query=Knight%2C+M+M">Matthew M. Knight</a>, <a href="/search/?searchtype=author&amp;query=Tancredi%2C+G">Gonzalo Tancredi</a>, <a href="/search/?searchtype=author&amp;query=Moreno%2C+F">Fernando Moreno</a>, <a href="/search/?searchtype=author&amp;query=Murphy%2C+B">Brian Murphy</a>, <a href="/search/?searchtype=author&amp;query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&amp;query=Chesley%2C+S">Steve Chesley</a>, <a href="/search/?searchtype=author&amp;query=Scheeres%2C+D+J">Daniel J. Scheeres</a>, <a href="/search/?searchtype=author&amp;query=Thomas%2C+C+A">Cristina A. Thomas</a>, <a href="/search/?searchtype=author&amp;query=Fahnestock%2C+E+G">Eugene G. Fahnestock</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+A+F">Andrew F. Cheng</a>, <a href="/search/?searchtype=author&amp;query=Dressel%2C+L">Linda Dressel</a>, <a href="/search/?searchtype=author&amp;query=Ernst%2C+C+M">Carolyn M. Ernst</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+F">Fabio Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&amp;query=Ieva%2C+S">Simone Ieva</a>, <a href="/search/?searchtype=author&amp;query=Ivanovski%2C+S+L">Stavro L. Ivanovski</a>, <a href="/search/?searchtype=author&amp;query=Kareta%2C+T">Teddy Kareta</a>, <a href="/search/?searchtype=author&amp;query=Kolokolova%2C+L">Ludmilla Kolokolova</a>, <a href="/search/?searchtype=author&amp;query=Lister%2C+T">Tim Lister</a>, <a href="/search/?searchtype=author&amp;query=Raducan%2C+S+D">Sabina D. Raducan</a>, <a href="/search/?searchtype=author&amp;query=Rivkin%2C+A+S">Andrew S. Rivkin</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01700v1-abstract-short" style="display: inline;"> Some active asteroids have been proposed to be the result of impact events. Because active asteroids are generally discovered serendipitously only after their tail formation, the process of the impact ejecta evolving into a tail has never been directly observed. NASA&#39;s Double Asteroid Redirection Test (DART) mission, apart from having successfully changed the orbital period of Dimorphos, demonstra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01700v1-abstract-full').style.display = 'inline'; document.getElementById('2303.01700v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01700v1-abstract-full" style="display: none;"> Some active asteroids have been proposed to be the result of impact events. Because active asteroids are generally discovered serendipitously only after their tail formation, the process of the impact ejecta evolving into a tail has never been directly observed. NASA&#39;s Double Asteroid Redirection Test (DART) mission, apart from having successfully changed the orbital period of Dimorphos, demonstrated the activation process of an asteroid from an impact under precisely known impact conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope (HST) from impact time T+15 minutes to T+18.5 days at spatial resolutions of ~2.1 km per pixel. Our observations reveal a complex evolution of ejecta, which is first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and later by solar radiation pressure. The lowest-speed ejecta dispersed via a sustained tail that displayed a consistent morphology with previously observed asteroid tails thought to be produced by impact. The ejecta evolution following DART&#39;s controlled impact experiment thus provides a framework for understanding the fundamental mechanisms acting on asteroids disrupted by natural impact. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01700v1-abstract-full').style.display = 'none'; document.getElementById('2303.01700v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00978">arXiv:2107.00978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.00978">pdf</a>, <a href="https://arxiv.org/format/2107.00978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141014">10.1051/0004-6361/202141014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Small lobe of comet 67P: Characterization of the Wosret region with ROSETTA-OSIRIS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">Sonia Fornasier</a>, <a href="/search/?searchtype=author&amp;query=de+Micas%2C+J+B">Jules Bourdelle de Micas</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">Pedro H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+V+H">Van H. Hoang</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">Maria Antonietta Barucci</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">Holger Sierks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00978v1-abstract-short" style="display: inline;"> We investigated Wosret, a region located on the small lobe of the 67P/Churyumov-Gerasimenko comet subject to strong heating during the perihelion passage. This region includes Abydos, the final landing site of the Philae lander. We analyzed high-resolution images of the Wosret region acquired between 2015 and 2016 by the OSIRIS instrument on board the Rosetta spacecraft. We observed a few morpholo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00978v1-abstract-full').style.display = 'inline'; document.getElementById('2107.00978v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00978v1-abstract-full" style="display: none;"> We investigated Wosret, a region located on the small lobe of the 67P/Churyumov-Gerasimenko comet subject to strong heating during the perihelion passage. This region includes Abydos, the final landing site of the Philae lander. We analyzed high-resolution images of the Wosret region acquired between 2015 and 2016 by the OSIRIS instrument on board the Rosetta spacecraft. We observed a few morphological changes in Wosret, related to local dust coating removal with an estimated depth of $\sim$ 1 m, along with the formation of a cavity measuring 30 m in length and 6.5 m in depth, for a total estimated mass loss of 1.2 $\times$ 10$^6$ kg. The spectrophotometry of the region is typical of medium-red regions of comet 67P, with spectral slope values of 15-16 \%/(100 nm) in pre-perihelion data acquired at phase angle 60$^o$. Wosret has a spectral phase reddening of 0.0546 $\times 10^{-4}$ nm$^{-1} deg^{-1}$, which is about a factor of 2 lower than what was determined for the nucleus northern hemisphere regions, possibly indicating a reduced surface micro-roughness due to the lack of widespread dust coating. A few tiny bright spots are observed. Morphological features such as &#34;goosebumps&#34; or clods are widely present and larger in size than similar features located in the big lobe. Compared to Anhur and Khonsu, two southern hemisphere regions in the big lobe which are also exposed to high insolation during perihelion, Wosret exhibits fewer exposed volatiles and less morphological variations due to activity events. Our analysis indicates that the small lobe has different physical and mechanical properties than the big one and a lower volatile content, at least in its uppermost layers. These results support the hypothesis that comet 67P originated from the merging of two distinct bodies in the early Solar System. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00978v1-abstract-full').style.display = 'none'; document.getElementById('2107.00978v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures, accepted for publication in Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 653, A132 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09339">arXiv:2011.09339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.09339">pdf</a>, <a href="https://arxiv.org/format/2011.09339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039552">10.1051/0004-6361/202039552 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase reddening on asteroid Bennu from visible and near-infrared spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+B+E">B. E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Praet%2C+A">A. Praet</a>, <a href="/search/?searchtype=author&amp;query=Hamilton%2C+V+E">V. E. Hamilton</a>, <a href="/search/?searchtype=author&amp;query=Simon%2C+A">A. Simon</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">J-Y. Li</a>, <a href="/search/?searchtype=author&amp;query=Cloutis%2C+E+A">E. A. Cloutis</a>, <a href="/search/?searchtype=author&amp;query=Merlin%2C+F">F. Merlin</a>, <a href="/search/?searchtype=author&amp;query=Zou%2C+X">X-D. Zou</a>, <a href="/search/?searchtype=author&amp;query=Lauretta%2C+D+S">D. S. Lauretta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09339v1-abstract-short" style="display: inline;"> The NASA mission OSIRIS-REx has been observing near-Earth asteroid (101955) Bennu in close proximity since December 2018. In this work, we investigate spectral phase reddening -- that is, the variation of spectral slope with phase angle -- on Bennu using spectra acquired by the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) covering a phase angle range of 8-130$^{o}$. We investigate this pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09339v1-abstract-full').style.display = 'inline'; document.getElementById('2011.09339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09339v1-abstract-full" style="display: none;"> The NASA mission OSIRIS-REx has been observing near-Earth asteroid (101955) Bennu in close proximity since December 2018. In this work, we investigate spectral phase reddening -- that is, the variation of spectral slope with phase angle -- on Bennu using spectra acquired by the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) covering a phase angle range of 8-130$^{o}$. We investigate this process at the global scale and for some localized regions of interest (ROIs), including boulders, craters, and the designated sample collection sites of the OSIRIS-REx mission. Bennu has a globally negative spectra slope, which is typical of B-type asteroids. The spectral slope gently increases in a linear way up to a phase angle of 90$^{\circ}$, where it approaches zero. The spectral phase reddening is monotonic and wavelength-dependent with highest values in the visible range. Its coefficient is 0.00044 $渭$m$^{-1} ~deg^{-1}$ in the 0.55-2.5 $渭$m range. For observations of Bennu acquired at high phase angle (130$^{\circ}$), phase reddening increases exponentially. Similar behavior was reported in the literature for the carbonaceous chondrite Mukundpura in spectra acquired at extreme geometries. Some ROIs, including the sample collection site, Nightingale, have a steeper phase reddening coefficient than the global average, potentially indicating a surface covered by fine material with high micro-roughness. The gentle spectral phase reddening effect on Bennu is similar to that observed in ground-based measurements of other B-type asteroids, but much lower than that observed for other low-albedo bodies such as Ceres or comet 67P/Churyumov-Gerasimenko. Monotonic reddening may be associated with the presence of fine particles at micron scales and/or of particles with fractal structure that introduce micro- and sub-micro roughness across the surface of Bennu. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09339v1-abstract-full').style.display = 'none'; document.getElementById('2011.09339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures, Astron. and Astroph., in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 644, A142 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04032">arXiv:2010.04032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.04032">pdf</a>, <a href="https://arxiv.org/format/2010.04032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.icarus.2020.114106">10.1016/j.icarus.2020.114106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling optical roughness and first-order scattering processes from OSIRIS-REx color images of the rough surface of asteroid (101955) Bennu </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">Pedro H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">Sonia Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">Maria A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Praet%2C+A">Alice Praet</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+B+E">Beth E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jian-Yang Li</a>, <a href="/search/?searchtype=author&amp;query=Golish%2C+D+R">Dathon R. Golish</a>, <a href="/search/?searchtype=author&amp;query=DellaGiustina%2C+D+N">Daniella N. DellaGiustina</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">Jasinghege Don P. Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Zou%2C+X">Xian-Duan Zou</a>, <a href="/search/?searchtype=author&amp;query=Daly%2C+M+G">Mike G. Daly</a>, <a href="/search/?searchtype=author&amp;query=Barnouin%2C+O+S">Olivier S. Barnouin</a>, <a href="/search/?searchtype=author&amp;query=Simon%2C+A+A">Amy A. Simon</a>, <a href="/search/?searchtype=author&amp;query=Lauretta%2C+D+S">Dante S. Lauretta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04032v1-abstract-short" style="display: inline;"> The dark asteroid (101955) Bennu studied by NASA\textquoteright s OSIRIS-REx mission has a boulder-rich and apparently dust-poor surface, providing a natural laboratory to investigate the role of single-scattering processes in rough particulate media. Our goal is to define optical roughness and other scattering parameters that may be useful for the laboratory preparation of sample analogs, interpr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04032v1-abstract-full').style.display = 'inline'; document.getElementById('2010.04032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04032v1-abstract-full" style="display: none;"> The dark asteroid (101955) Bennu studied by NASA\textquoteright s OSIRIS-REx mission has a boulder-rich and apparently dust-poor surface, providing a natural laboratory to investigate the role of single-scattering processes in rough particulate media. Our goal is to define optical roughness and other scattering parameters that may be useful for the laboratory preparation of sample analogs, interpretation of imaging data, and analysis of the sample that will be returned to Earth. We rely on a semi-numerical statistical model aided by digital terrain model (DTM) shadow ray-tracing to obtain scattering parameters at the smallest surface element allowed by the DTM (facets of \textasciitilde{}10 cm). Using a Markov Chain Monte Carlo technique, we solved the inversion problem on all four-band images of the OSIRIS-REx mission\textquoteright s top four candidate sample sites, for which high-precision laser altimetry DTMs are available. We reconstructed the \emph{a posteriori} probability distribution for each parameter and distinguished primary and secondary solutions. Through the photometric image correction, we found that a mixing of low and average roughness slope best describes Bennu&#39;s surface for up to $90^{\circ}$ phase angle. We detected a low non-zero specular ratio, perhaps indicating exposed sub-centimeter mono-crystalline inclusions on the surface. We report an average roughness RMS slope of $27_{-5}^{\circ+1}$, a specular ratio of $2.6_{-0.8}^{+0.1}\%$, an approx. single-scattering albedo of $4.64_{-0.09}^{+0.08}\%$ at 550 nm, and two solutions for the back-scatter asymmetric factor, $尉^{(1)}=-0.360\pm0.030$ and $尉^{(2)}=-0.444\pm0.020$, for all four sites altogether. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04032v1-abstract-full').style.display = 'none'; document.getElementById('2010.04032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Icarus 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03180">arXiv:2008.03180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.03180">pdf</a>, <a href="https://arxiv.org/format/2008.03180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Spectrophotometric characterization of the Philae landing site and surroundings with the ROSETTA/OSIRIS cameras </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Van+Hoang%2C+H">Hong Van Hoang</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Quirico%2C+E">E. Quirico</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Tubiana%2C+C">C. Tubiana</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03180v1-abstract-short" style="display: inline;"> We investigate Abydos, the final landing site of the Philae lander after its eventful landing from the Rosetta spacecraft on comet 67P/Churyumov-Gerasimenko on 12 November 2014. Over 1000 OSIRIS level 3B images were analysed, which cover the August 2014 to September 2016 timeframe, with spatial resolution ranging from 7.6 m/px to approximately 0.06 m/px. We found that the Abydos site is as dark as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03180v1-abstract-full').style.display = 'inline'; document.getElementById('2008.03180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03180v1-abstract-full" style="display: none;"> We investigate Abydos, the final landing site of the Philae lander after its eventful landing from the Rosetta spacecraft on comet 67P/Churyumov-Gerasimenko on 12 November 2014. Over 1000 OSIRIS level 3B images were analysed, which cover the August 2014 to September 2016 timeframe, with spatial resolution ranging from 7.6 m/px to approximately 0.06 m/px. We found that the Abydos site is as dark as the global 67P nucleus and spectrally red, with an average albedo of 6.5% at 649 nm and a spectral slope value of about 17%/(100 nm) at 50$^\circ$ phase angle. Similar to the whole nucleus, the Abydos site also shows phase reddening but with lower coefficients than other regions of the comet which may imply a thinner cover of microscopically rough regolith compared to other areas. Seasonal variations, as already noticed for the whole nucleus, were also observed. We identified some potential morphological changes near the landing site implying a total mass loss of 4.7-7.0$\times$10$^5$ kg. Small spots ranging from 0.1 m$^2$ to 27 m$^2$ were observed close to Abydos before and after perihelion. Their estimated water ice abundance reaches 30-40% locally, indicating fresh exposures of volatiles. Their lifetime ranges from a few hours up to three months for two pre-perihelion spots. The Abydos surroundings showed low level of cometary activity compared to other regions of the nucleus. Only a few jets are reported originating nearby Abydos, including a bright outburst that lasted for about one hour. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03180v1-abstract-full').style.display = 'none'; document.getElementById('2008.03180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.09017">arXiv:1903.09017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.09017">pdf</a>, <a href="https://arxiv.org/format/1903.09017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834824">10.1051/0004-6361/201834824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface evolution of the Anhur region on comet 67P from high-resolution OSIRIS images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Sunshine%2C+J">J. Sunshine</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Naletto%2C+G">G. Naletto</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+S">S. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Gutierrez%2C+P+J">P. J. Gutierrez</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.09017v1-abstract-short" style="display: inline;"> The southern hemisphere of comet 67P/Churyumov-Gerasimenko (67P) became observable by the Rosetta mission in March 2015, a few months before cometary southern vernal equinox. The Anhur region in the southern part of the comet&#39;s larger lobe was found to be highly eroded, enriched in volatiles, and highly active. We analyze high-resolution images of the Anhur region pre- and post-perihelion acquired&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09017v1-abstract-full').style.display = 'inline'; document.getElementById('1903.09017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.09017v1-abstract-full" style="display: none;"> The southern hemisphere of comet 67P/Churyumov-Gerasimenko (67P) became observable by the Rosetta mission in March 2015, a few months before cometary southern vernal equinox. The Anhur region in the southern part of the comet&#39;s larger lobe was found to be highly eroded, enriched in volatiles, and highly active. We analyze high-resolution images of the Anhur region pre- and post-perihelion acquired by the OSIRIS imaging system on board the Rosetta mission. The Narrow Angle Camera is particularly useful for studying the evolution in Anhur in terms of morphological changes and color variations.}{Radiance factor images processed by the OSIRIS pipeline were coregistered, reprojected onto the 3D shape model of the comet, and corrected for the illumination conditions. We find a number of morphological changes in the Anhur region that are related to formation of new scarps; removal of dust coatings; localized resurfacing in some areas, including boulders displacements; and vanishing structures, which implies localized mass loss that we estimate to be higher than 50 million kg. The strongest changes took place in and nearby the Anhur canyon-like structure, where significant dust cover was removed, an entire structure vanished, and many boulders were rearranged. All such changes are potentially associated with one of the most intense outbursts registered by Rosetta during its observations, which occurred one day before perihelion passage. Moreover, in the niche at the foot of a new observed scarp, we also see evidence of water ice exposure that persisted for at least six months. The abundance of water ice, evaluated from a linear mixing model, is relatively high (&gt; 20%). Our results confirm that the Anhur region is volatile-rich and probably is the area on 67P with the most pristine exposures near perihelion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09017v1-abstract-full').style.display = 'none'; document.getElementById('1903.09017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures; accepted for publication in Astronomy and Astrophysics for the Rosetta 2 special number</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 630, A13 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03074">arXiv:1901.03074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03074">pdf</a>, <a href="https://arxiv.org/format/1901.03074">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834764">10.1051/0004-6361/201834764 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> VIRTIS-H observations of comet 67P&#39;s dust coma: spectral properties and color temperature variability with phase and elevation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bockel%C3%A9e-Morvan%2C+D">D. Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&amp;query=Leyrat%2C+C">C. Leyrat</a>, <a href="/search/?searchtype=author&amp;query=Erard%2C+S">S. Erard</a>, <a href="/search/?searchtype=author&amp;query=Andrieu%2C+F">F. Andrieu</a>, <a href="/search/?searchtype=author&amp;query=Capaccioni%2C+F">F. Capaccioni</a>, <a href="/search/?searchtype=author&amp;query=Filacchione%2C+G">G. Filacchione</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Crovisier%2C+J">J. Crovisier</a>, <a href="/search/?searchtype=author&amp;query=Drossart%2C+P">P. Drossart</a>, <a href="/search/?searchtype=author&amp;query=Arnold%2C+G">G. Arnold</a>, <a href="/search/?searchtype=author&amp;query=Ciarniello%2C+M">M. Ciarniello</a>, <a href="/search/?searchtype=author&amp;query=Kappel%2C+D">D. Kappel</a>, <a href="/search/?searchtype=author&amp;query=Longobardo%2C+A">A. Longobardo</a>, <a href="/search/?searchtype=author&amp;query=Capria%2C+M+-">M. -T. Capria</a>, <a href="/search/?searchtype=author&amp;query=De+Sanctis%2C+M+C">M. C. De Sanctis</a>, <a href="/search/?searchtype=author&amp;query=Rinaldi%2C+G">G. Rinaldi</a>, <a href="/search/?searchtype=author&amp;query=Taylor%2C+F">F. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03074v1-abstract-short" style="display: inline;"> We analyze 2-5 micrometre spectroscopic observations of the dust coma of comet 67P/Churyumov-Gerasimenko obtained with the VIRTIS-H instrument onboard Rosetta from 3 June to 29 October 2015 at heliocentric distances r_h = 1.24-1.55 AU. The 2-2.5 micrometre color, bolometric albedo, and color temperature are measured using spectral fitting. Data obtained at alpha = 90掳 solar phase angle show an inc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03074v1-abstract-full').style.display = 'inline'; document.getElementById('1901.03074v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03074v1-abstract-full" style="display: none;"> We analyze 2-5 micrometre spectroscopic observations of the dust coma of comet 67P/Churyumov-Gerasimenko obtained with the VIRTIS-H instrument onboard Rosetta from 3 June to 29 October 2015 at heliocentric distances r_h = 1.24-1.55 AU. The 2-2.5 micrometre color, bolometric albedo, and color temperature are measured using spectral fitting. Data obtained at alpha = 90掳 solar phase angle show an increase of the bolometric albedo (0.05 to 0.14) with increasing altitude (0.5 to 8 km), accompanied by a possible marginal decrease of the color and color temperature. Possible explanations include the presence in the inner coma of dark particles on ballistic trajectories, and radial changes in particle composition. In the phase angle range 50-120掳, phase reddening is significant (0.031 %/100 nm/掳), for a mean color of 2 %/100 nm at alpha = 90掳, that can be related to the roughness of the dust particles. Moreover, a decrease of the color temperature with decreasing phase angle is also observed at a rate of ~ 0.3 K/掳, consistent with the presence of large porous particles, with low thermal inertia, and showing a significant day-to-night temperature contrast. Comparing data acquired at fixed phase angle (alpha = 90掳), a 20% increase of the bolometric albedo is observed near perihelion. Heliocentric variations of the dust color are not significant in the analyzed time period. Measured color temperatures are varying from 260 to 320 K, and follow a r^0.6 variation in the r_h = 1.24-1.5 AU range, close to the expected r_h^0.5 value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03074v1-abstract-full').style.display = 'none'; document.getElementById('1901.03074v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures. Accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 630, A22 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09415">arXiv:1812.09415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.09415">pdf</a>, <a href="https://arxiv.org/format/1812.09415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833807">10.1051/0004-6361/201833807 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ROSETTA/OSIRIS observations of the 67P nucleus during the April 2016 flyby: high-resolution spectrophotometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+S">S. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+A">A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Massironi%2C+M">M. Massironi</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Naletto%2C+G">G. Naletto</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B+J+R">B. J. R. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Guti%C3%A9rrez%2C+P+J">P. J. Guti茅rrez</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a>, <a href="/search/?searchtype=author&amp;query=Ip%2C+W+-">W. -H. Ip</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09415v1-abstract-short" style="display: inline;"> In April 2016, the Rosetta spacecraft performed a low-altitude low-phase-angle flyby over the Imhotep-Khepry transition of 67P/Churyumov-Gerasimenko&#39;s nucleus. The OSIRIS/Narrow-Angle-Camera (NAC) acquired 112 images with mainly 3 broadband filters in the visible at a resolution of up to 0.53 m/px and for phase angles between 0.095掳 and 62掳. Using those images, we have investigated the morphologic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09415v1-abstract-full').style.display = 'inline'; document.getElementById('1812.09415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09415v1-abstract-full" style="display: none;"> In April 2016, the Rosetta spacecraft performed a low-altitude low-phase-angle flyby over the Imhotep-Khepry transition of 67P/Churyumov-Gerasimenko&#39;s nucleus. The OSIRIS/Narrow-Angle-Camera (NAC) acquired 112 images with mainly 3 broadband filters in the visible at a resolution of up to 0.53 m/px and for phase angles between 0.095掳 and 62掳. Using those images, we have investigated the morphological and spectrophotometrical properties of this area. We assembled the images into coregistered color cubes. Using a 3D shape model, we produced the illumination conditions and georeference for each image. We projected the observations on a map to investigate its geomorphology. Observations were photometrically corrected using the Lommel-Seeliger disk law. Spectrophotometric analyses were performed on the coregistered color cubes. These data were used to estimate the local phase reddening. This region of the nucleus hosts numerous and varied types of terrains and features. We observe an association between a feature&#39;s nature, its reflectance, and its spectral slope. Fine material deposits exhibit an average reflectance and spectral slope, while terrains with diamictons, consolidated material, degraded outcrops, or features such as somber boulders, present a lower-than-average reflectance and higher-than-average spectral slope. Bright surfaces present here a spectral behavior consistent with terrains enriched in water-ice. We find a phase-reddening slope of 0.064{\pm}0.001{\%}/100nm/掳 at 2.7 au outbound, similarly to the one obtained at 2.3 au inbound during the February 2015 flyby. Identified as the source region of multiple jets and a host of water-ice material, the Imhotep-Khepry transition appeared in April 2016, close to the frost line, to further harbor several potential locations with exposed water-ice material among its numerous different morphological terrain units. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09415v1-abstract-full').style.display = 'none'; document.getElementById('1812.09415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 14 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.03997">arXiv:1809.03997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.03997">pdf</a>, <a href="https://arxiv.org/format/1809.03997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833803">10.1051/0004-6361/201833803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Hoang%2C+V+H">V. H. Hoang</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P. Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Naletto%2C+G">G. Naletto</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+S">S. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Gutierrez%2C+P+J">P. J. Gutierrez</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.03997v1-abstract-short" style="display: inline;"> The Rosetta space probe accompanied comet 67P/Churyumov-Gerasimenko for more than two years, obtaining an unprecedented amount of unique data of the comet nucleus and inner coma. This work focuses identifying the source regions of faint jets and outbursts and on studying the spectrophotometric properties of some outbursts. We use observations acquired with the OSIRIS/NAC camera during July-October&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03997v1-abstract-full').style.display = 'inline'; document.getElementById('1809.03997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.03997v1-abstract-full" style="display: none;"> The Rosetta space probe accompanied comet 67P/Churyumov-Gerasimenko for more than two years, obtaining an unprecedented amount of unique data of the comet nucleus and inner coma. This work focuses identifying the source regions of faint jets and outbursts and on studying the spectrophotometric properties of some outbursts. We use observations acquired with the OSIRIS/NAC camera during July-October 2015, that is, close to perihelion. More than 200 jets of different intensities were identified directly on the nucleus. Some of the more intense outbursts appear spectrally bluer than the comet dark terrain in the vivible-to-near-infrared region. We attribute this spectral behavior to icy grains mixed with the ejected dust. Some of the jets have an extremely short lifetime. They appear on the cometary surface during the color sequence observations, and vanish in less than some few minutes after reaching their peak. We also report a resolved dust plume observed in May 2016 at a resolution of 55 cm/pixel, which allowed us to estimate an optical depth of $\sim$0.65 and an ejected mass of $\sim$ 2200 kg. We present the results on the location, duration, and colors of active sources on the nucleus of 67P from the medium-resolution (i.e., 6-10 m/pixel) images acquired close to perihelion passage. The observed jets are mainly located close to boundaries between different morphological regions. Jets depart not only from cliffs, but also from smooth and dust-covered areas, from fractures, pits, or cavities that cast shadows and favor the recondensation of volatiles. This study shows that faint jets or outbursts continuously contribute to the cometary activity close to perihelion passage, and that these events are triggered by illumination conditions. Faint jets or outbursts are not associated with a particular terrain type or morphology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03997v1-abstract-full').style.display = 'none'; document.getElementById('1809.03997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication on Astronomy and Astrophysics on 27 August 2018. 27 pages, 18 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 630, A7 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01356">arXiv:1710.01356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.01356">pdf</a>, <a href="https://arxiv.org/format/1710.01356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.icarus.2015.11.023">10.1016/j.icarus.2015.11.023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asteroid (21) Lutetia: Disk-resolved Photometric Analysis of Baetica Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Leyrat%2C+C">C. Leyrat</a>, <a href="/search/?searchtype=author&amp;query=Carvano%2C+J+M">J. M. Carvano</a>, <a href="/search/?searchtype=author&amp;query=Lazzaro%2C+D">D. Lazzaro</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01356v1-abstract-short" style="display: inline;"> (21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15 to 156.8 degrees. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01356v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01356v1-abstract-full" style="display: none;"> (21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15 to 156.8 degrees. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) taken during the fly-by. We photometrically modeled the region using Minnaert disk-function and Akimov phase function to finally reconstruct a resolved spectral slope map at 5 and 20 degrees of phase angle. We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening. In the next step, we applied the Hapke (2008, 2012) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm), enabling us to compose the normal albedo and Hapke parameter maps for NAC F82+F22. On Baetica, the 649 nm global properties are: geometric albedo of 0.205+-0.005, the average single-scattering albedo of 0.181+-0.005, the average asymmetric factor of -0.342+-0.003, the average shadow-hiding opposition effect amplitude and width respectivelly of 0.824+-0.002 and 0.040+-0.0007, the average roughness slope of 11.45+-3 deg. and the average porosity is 85+-0.2%. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01356v1-abstract-full').style.display = 'none'; document.getElementById('1710.01356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Icarus 267, 135-153, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01180">arXiv:1710.01180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.01180">pdf</a>, <a href="https://arxiv.org/format/1710.01180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201424620">10.1051/0004-6361/201424620 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing spectral continuity in SDSS u&#39;g&#39;r&#39;i&#39;z&#39; asteroid photometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Fulchignoni%2C+M">M. Fulchignoni</a>, <a href="/search/?searchtype=author&amp;query=Carvano%2C+J+M">J. M. Carvano</a>, <a href="/search/?searchtype=author&amp;query=Lazzaro%2C+D">D. Lazzaro</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01180v1-abstract-short" style="display: inline;"> Context. The 4th release of the SDSS Moving Object Catalog (SDSSMOC) is presently the largest photometric dataset of asteroids. Up to this point, the release of large asteroid datasets has always been followed by a redefinition of asteroid taxonomy. In the years that followed the release of the first SDSSMOC, several classification schemes using its data were proposed, all using the taxonomic clas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01180v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01180v1-abstract-full" style="display: none;"> Context. The 4th release of the SDSS Moving Object Catalog (SDSSMOC) is presently the largest photometric dataset of asteroids. Up to this point, the release of large asteroid datasets has always been followed by a redefinition of asteroid taxonomy. In the years that followed the release of the first SDSSMOC, several classification schemes using its data were proposed, all using the taxonomic classes from previous taxonomies. However, no successful attempt has been made to derive a new taxonomic system directly from the SDSS dataset. Aims. The scope of the work is to propose a different interpretation scheme for gauging u0g0r0i0z0 asteroid observations based on the continuity of spectral features. The scheme is integrated into previous taxonomic labeling, but is not dependent on them. Methods. We analyzed the behavior of asteroid sampling through principal components analysis to understand the role of uncertainties in the SDSSMOC. We identified that asteroids in this space follow two separate linear trends using reflectances in the visible, which is characteristic of their spectrophotometric features. Results. Introducing taxonomic classes, we are able to interpret both trends as representative of featured and featureless spectra. The evolution within the trend is connected mainly to the band depth for featured asteroids and to the spectral slope for featureless ones. We defined a different taxonomic system that allowed us to only classify asteroids by two labels. Conclusions. We have classified 69% of all SDSSMOC sample, which is a robustness higher than reached by previous SDSS classifications. Furthermore, as an example, we present the behavior of asteroid (5129) Groom, whose taxonomic labeling changes according to one of the trends owing to phase reddening. Now, such behavior can be characterized by the variation of one single parameter, its position in the trend. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01180v1-abstract-full').style.display = 'none'; document.getElementById('1710.01180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 577, A147 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02945">arXiv:1707.02945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02945">pdf</a>, <a href="https://arxiv.org/format/1707.02945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx1275">10.1093/mnras/stx1275 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The highly active Anhur-Bes regions in the 67P/Churyumov - Gerasimenko comet: results from OSIRIS/ROSETTA observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+J+C">J. C. Lee</a>, <a href="/search/?searchtype=author&amp;query=Ferrari%2C+S">S. Ferrari</a>, <a href="/search/?searchtype=author&amp;query=Massironi%2C+M">M. Massironi</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=El-Maarry%2C+M+R">M. R. El-Maarry</a>, <a href="/search/?searchtype=author&amp;query=Giacomini%2C+L">L. Giacomini</a>, <a href="/search/?searchtype=author&amp;query=Mottola%2C+S">S. Mottola</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Ip%2C+W+H">W. H. Ip</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z+Y">Z. Y. Lin</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M">M. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02945v1-abstract-short" style="display: inline;"> The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since March 2015. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and erosion rate, thus exposing the subsurface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02945v1-abstract-full').style.display = 'inline'; document.getElementById('1707.02945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02945v1-abstract-full" style="display: none;"> The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since March 2015. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and erosion rate, thus exposing the subsurface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spectrophotometry and some transient events of two Southern hemisphere regions: Anhur and part of Bes. Bes is dominated by outcropping consolidated terrain covered with fine particle deposits, while Anhur appears strongly eroded with elongated canyon-like structures, scarp retreats, different kinds of deposits, and degraded sequences of strata indicating a pervasive layering. We discovered a new 140 m long and 10 m high scarp formed in the Anhur/Bes boundary during/after the perihelion passage, close to the area where exposed CO$_2$ and H$_2$O ices were previously detected. Several jets have been observed originating from these regions, including the strong perihelion outburst, an active pit, and a faint optically thick dust plume. We identify several areas with a relatively bluer slope (i.e. a lower spectral slope value) than their surroundings, indicating a surface composition enriched with some water ice. These spectrally bluer areas are observed especially in talus and gravitational accumulation deposits where freshly exposed material had fallen from nearby scarps and cliffs. The investigated regions become spectrally redder beyond 2 au outbound when the dust mantle became thicker, masking the underlying ice-rich layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02945v1-abstract-full').style.display = 'none'; document.getElementById('1707.02945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures, published online on 24 May 2017 on Mon. Not. R. Astron. Soc. stx1275, https://doi.org/10.1093/mnras/stx1275</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00012">arXiv:1611.00012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00012">pdf</a>, <a href="https://arxiv.org/format/1611.00012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw2511">10.1093/mnras/stw2511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+A">A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Preusker%2C+F">F. Preusker</a>, <a href="/search/?searchtype=author&amp;query=Scholten%2C+F">F. Scholten</a>, <a href="/search/?searchtype=author&amp;query=Jorda%2C+L">L. Jorda</a>, <a href="/search/?searchtype=author&amp;query=Pommerol%2C+A">A. Pommerol</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M">M. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Boudreault%2C+S">S. Boudreault</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B+J+R">B. J. R. Davidsson</a>, <a href="/search/?searchtype=author&amp;query=Debei%2C+S">S. Debei</a>, <a href="/search/?searchtype=author&amp;query=De+Cecco%2C+M">M. De Cecco</a>, <a href="/search/?searchtype=author&amp;query=Deller%2C+J">J. Deller</a>, <a href="/search/?searchtype=author&amp;query=Fulle%2C+M">M. Fulle</a>, <a href="/search/?searchtype=author&amp;query=Giquel%2C+A">A. Giquel</a>, <a href="/search/?searchtype=author&amp;query=Groussin%2C+O">O. Groussin</a>, <a href="/search/?searchtype=author&amp;query=Gutierrez%2C+P+J">P. J. Gutierrez</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCttler%2C+C">C. G眉ttler</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00012v1-abstract-short" style="display: inline;"> We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the OSIRIS instrument during the closest fly-by over the comet, which took place on 14 th February 2015 at a distance of {\~} 6 km from the surface. Several images covering the 0掳-33掳 phase angle range were acquired, and the spatial resolution achieved was 11 cm/pxl. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00012v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00012v1-abstract-full" style="display: none;"> We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the OSIRIS instrument during the closest fly-by over the comet, which took place on 14 th February 2015 at a distance of {\~} 6 km from the surface. Several images covering the 0掳-33掳 phase angle range were acquired, and the spatial resolution achieved was 11 cm/pxl. The flown-by region is located on the big lobe of the comet, near the borders of the Ash, Apis and Imhotep regions. Our analysis shows that this region features local heterogeneities at the decimetre scale. We observed difference of reflectance up to 40{\%} between bright spots and sombre regions, and spectral slope variations up to 50{\%}. The spectral reddening effect observed globally on the comet surface by Fornasier et al. (2015) is also observed locally on this region, but with a less steep behaviour. We note that numerous metre-sized boulders, which exhibit a smaller opposition effect, also appear spectrally redder than their surroundings. In this region, we found no evidence linking observed bright spots to exposed water-ice-rich material. We fitted our dataset using the Hapke 2008 photometric model. The region overflown is globally as dark as the whole nucleus (geometric albedo of 6.8{\%}) and it has a high porosity value in the uppermost-layers (86{\%}). These results of the photometric analysis at a decimetre scale indicate that the photometric properties of the flown-by region are similar to those previously found for the whole nucleus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00012v1-abstract-full').style.display = 'none'; document.getElementById('1611.00012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures, 5 tables, (also presented at DPS48/ESPC11: http://cdsads.u-strasbg.fr/abs/2016DPS....4830004F)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.00551">arXiv:1609.00551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.00551">pdf</a>, <a href="https://arxiv.org/format/1609.00551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201628764">10.1051/0004-6361/201628764 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of exposed H$_2$O ice on the nucleus of comet 67P/Churyumov-Gerasimenko </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Filacchione%2C+G">G. Filacchione</a>, <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Raponi%2C+A">A. Raponi</a>, <a href="/search/?searchtype=author&amp;query=Deshapriya%2C+J+D+P">J. D. P. Deshapriya</a>, <a href="/search/?searchtype=author&amp;query=Tosi%2C+F">F. Tosi</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Ciarniello%2C+M">M. Ciarniello</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Capaccioni%2C+F">F. Capaccioni</a>, <a href="/search/?searchtype=author&amp;query=Pommerol%2C+A">A. Pommerol</a>, <a href="/search/?searchtype=author&amp;query=Massironi%2C+M">M. Massironi</a>, <a href="/search/?searchtype=author&amp;query=Oklay%2C+N">N. Oklay</a>, <a href="/search/?searchtype=author&amp;query=Merlin%2C+F">F. Merlin</a>, <a href="/search/?searchtype=author&amp;query=Vincent%2C+J+-">J. -B. Vincent</a>, <a href="/search/?searchtype=author&amp;query=Fulchignoni%2C+M">M. Fulchignoni</a>, <a href="/search/?searchtype=author&amp;query=Guilbert-Lepoutre%2C+A">A. Guilbert-Lepoutre</a>, <a href="/search/?searchtype=author&amp;query=Perna%2C+D">D. Perna</a>, <a href="/search/?searchtype=author&amp;query=Capria%2C+M+T">M. T. Capria</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Rousseau%2C+B">B. Rousseau</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Bockelee-Morvan%2C+D">D. Bockelee-Morvan</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=De+Sanctis%2C+C">C. De Sanctis</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.00551v1-abstract-short" style="display: inline;"> Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P/C-G) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet&#39;s nucleus. The aim of this work is to search for the presence of H$_2$O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00551v1-abstract-full').style.display = 'inline'; document.getElementById('1609.00551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.00551v1-abstract-full" style="display: none;"> Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P/C-G) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet&#39;s nucleus. The aim of this work is to search for the presence of H$_2$O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H$_2$O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 micron absorption band of water ice in the VIRTIS spectral cubes. Out of the 13 selected bright spots, eight of them present positive H$_2$O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H$_2$O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H$_2$O ice and dark terrain, using Hapke&#39;s radiative transfer modeling. We also present a detailed analysis of the detected spots. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00551v1-abstract-full').style.display = 'none'; document.getElementById('1609.00551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">paper in press in A&amp;A, 13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 595, A102 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.06888">arXiv:1505.06888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.06888">pdf</a>, <a href="https://arxiv.org/ps/1505.06888">ps</a>, <a href="https://arxiv.org/format/1505.06888">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201525901">10.1051/0004-6361/201525901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasier%2C+S">S. Fornasier</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a>, <a href="/search/?searchtype=author&amp;query=Barucci%2C+M+A">M. A. Barucci</a>, <a href="/search/?searchtype=author&amp;query=Feller%2C+C">C. Feller</a>, <a href="/search/?searchtype=author&amp;query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&amp;query=Leyrat%2C+C">C. Leyrat</a>, <a href="/search/?searchtype=author&amp;query=Lara%2C+L">L. Lara</a>, <a href="/search/?searchtype=author&amp;query=Gutierrez%2C+P+J">P. J. Gutierrez</a>, <a href="/search/?searchtype=author&amp;query=Oklay%2C+N">N. Oklay</a>, <a href="/search/?searchtype=author&amp;query=Tubiana%2C+C">C. Tubiana</a>, <a href="/search/?searchtype=author&amp;query=Scholten%2C+F">F. Scholten</a>, <a href="/search/?searchtype=author&amp;query=Sierks%2C+H">H. Sierks</a>, <a href="/search/?searchtype=author&amp;query=Barbieri%2C+C">C. Barbieri</a>, <a href="/search/?searchtype=author&amp;query=Lamy%2C+P+L">P. L. Lamy</a>, <a href="/search/?searchtype=author&amp;query=Rodrigo%2C+R">R. Rodrigo</a>, <a href="/search/?searchtype=author&amp;query=Koschny%2C+D">D. Koschny</a>, <a href="/search/?searchtype=author&amp;query=Rickman%2C+H">H. Rickman</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+H+U">H. U. Keller</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+J">J. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=A%27Hearn%2C+M+F">M. F. A&#39;Hearn</a>, <a href="/search/?searchtype=author&amp;query=Bertaux%2C+J+-">J. -L. Bertaux</a>, <a href="/search/?searchtype=author&amp;query=Bertini%2C+I">I. Bertini</a>, <a href="/search/?searchtype=author&amp;query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&amp;query=Da+Deppo%2C+V">V. Da Deppo</a>, <a href="/search/?searchtype=author&amp;query=Davidsson%2C+B">B. Davidsson</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.06888v1-abstract-short" style="display: inline;"> The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06888v1-abstract-full').style.display = 'inline'; document.getElementById('1505.06888v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.06888v1-abstract-full" style="display: none;"> The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13$\pm$0.01 in the HG system formalism and an absolute magnitude $H_v(1,1,0)$ = 15.74$\pm$0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at $\sim$ 290 nm that is possibly due to SO$_2$ ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11\%/(100 nm) to 16\%/(100 nm) in the 1.3$^{\circ}$--54$^{\circ}$ phase angle range. The geometric albedo of the comet is 6.5$\pm$0.2\% at 649 nm, with local variations of up to $\sim$ 16\% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06888v1-abstract-full').style.display = 'none'; document.getElementById('1505.06888v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18, pages, 14 figures, Astronomy and Astrophysics, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 583, A30 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.2191">arXiv:1301.2191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.2191">pdf</a>, <a href="https://arxiv.org/format/1301.2191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201220030">10.1051/0004-6361/201220030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface composition and dynamical evolution of two retrograde objects in the outer solar system: 2008 YB3 and 2005 VD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pinilla-Alonso%2C+N">N. Pinilla-Alonso</a>, <a href="/search/?searchtype=author&amp;query=Alvarez-Candal%2C+A">A. Alvarez-Candal</a>, <a href="/search/?searchtype=author&amp;query=Melita%2C+M+D">M. D. Melita</a>, <a href="/search/?searchtype=author&amp;query=Lorenzi%2C+V">V. Lorenzi</a>, <a href="/search/?searchtype=author&amp;query=Licandro%2C+J">J. Licandro</a>, <a href="/search/?searchtype=author&amp;query=Carvano%2C+J">J. Carvano</a>, <a href="/search/?searchtype=author&amp;query=Lazzaro%2C+D">D. Lazzaro</a>, <a href="/search/?searchtype=author&amp;query=Carraro%2C+G">G. Carraro</a>, <a href="/search/?searchtype=author&amp;query=Ali-Lagoa%2C+V">V. Ali-Lagoa</a>, <a href="/search/?searchtype=author&amp;query=Costa%2C+E">E. Costa</a>, <a href="/search/?searchtype=author&amp;query=Hasselmann%2C+P+H">P. H. Hasselmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.2191v1-abstract-short" style="display: inline;"> Most of the objects in the trans-Neptunian belt (TNb) and related populations move in prograde orbits with low eccentricity and inclination. However, the list of icy minor bodies moving in orbits with an inclination above 40 deg. has increased in recent years. The origin of these bodies, and in particular of those objects in retrograde orbits, is not well determined, and different scenarios are co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.2191v1-abstract-full').style.display = 'inline'; document.getElementById('1301.2191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.2191v1-abstract-full" style="display: none;"> Most of the objects in the trans-Neptunian belt (TNb) and related populations move in prograde orbits with low eccentricity and inclination. However, the list of icy minor bodies moving in orbits with an inclination above 40 deg. has increased in recent years. The origin of these bodies, and in particular of those objects in retrograde orbits, is not well determined, and different scenarios are considered. In this paper, we present new observational and dynamical data of two objects in retrograde orbits, 2008 YB3 and 2005 VD. We find that the surface of these extreme objects is depleted of ices and does not contain the &#39;ultra-red&#39; matter typical of some Centaurs. Despite small differences, these objects share common colors and spectral characteristics with the Trojans, comet nuclei, and the group of grey Centaurs. All of these populations are supposed to be covered by a mantle of dust responsible for their reddish- to neutral-color. To investigate if the surface properties and dynamical evolution of these bodies are related, we integrate their orbits for 10^(8) years to the past. We find a remarkable difference in their dynamical evolutions: 2005 VD&#39; s evolution is dominated by a Kozai resonance with planet Jupiter while that of 2008 YB3 is dominated by close encounters with planets Jupiter and Saturn. Our models suggest that the immediate site of provenance of 2005 VD is the in the Oort cloud, whereas for 2008 YB3 it is in the trans-Neptunian region. Additionally, the study of their residence time shows that 2005 VD has spent a larger lapse of time moving in orbits in the region of the giant planets than 2008 YB3. Together with the small differences in color between these two objects, with 2005 VD being more neutral than 2008 YB3, this fact suggests that the surface of 2005 VD has suffered a higher degree of processing, probably related to cometary activity episodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.2191v1-abstract-full').style.display = 'none'; document.getElementById('1301.2191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, Accepted by Astronomy and Astrophysics: 28 November 2012</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10