CINXE.COM
Search results for: cryolite-alumina electrolyte
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cryolite-alumina electrolyte</title> <meta name="description" content="Search results for: cryolite-alumina electrolyte"> <meta name="keywords" content="cryolite-alumina electrolyte"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cryolite-alumina electrolyte" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cryolite-alumina electrolyte"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 74</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cryolite-alumina electrolyte</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Preparation of Li Ion Conductive Ceramics via Liquid Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Kotobuki">M. Kotobuki</a>, <a href="https://publications.waset.org/search?q=M.%20Koishi"> M. Koishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Co-precipitation%20method" title="Co-precipitation method">Co-precipitation method</a>, <a href="https://publications.waset.org/search?q=lithium%20battery" title=" lithium battery"> lithium battery</a>, <a href="https://publications.waset.org/search?q=NASICON-type%20electrolyte" title=" NASICON-type electrolyte"> NASICON-type electrolyte</a>, <a href="https://publications.waset.org/search?q=solid%20electrolyte." title=" solid electrolyte. "> solid electrolyte. </a> </p> <a href="https://publications.waset.org/9999373/preparation-of-li-ion-conductive-ceramics-via-liquid-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999373/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999373/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999373/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999373/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999373/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999373/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999373/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999373/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999373/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999373/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2909</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Construction of Water Electrolyzer for Single Slice O2/H2 Polymer Electrolyte Membrane Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=May%20Zin%20Lwin.">May Zin Lwin.</a>, <a href="https://publications.waset.org/search?q=Mya%20Mya%20Oo"> Mya Mya Oo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the first part of the research work, an electrolyzer (10.16 cm dia and 24.13 cm height) to produce hydrogen and oxygen was constructed for single slice O2/H2 fuel cell using cation exchange membrane. The electrolyzer performance was tested with 23% NaOH, 30% NaOH, 30% KOH and 35% KOH electrolyte solution with current input 4 amp and 2.84 V from the rectifier. Rates of volume of hydrogen produced were 0.159 cm3/sec, 0.155 cm3/sec, 0.169 cm3/sec and 0.163 cm3/sec respectively from 23% NaOH, 30% NaOH, 30% KOH and 35% KOH solution. Rates of volume of oxygen produced were 0.212 cm3/sec, 0.201 cm3/sec, 0.227 cm3/sec and 0.219 cm3/sec respectively from 23% NaOH, 30% NaOH, 30% KOH and 35% KOH solution (1.5 L). In spite of being tested the increased concentration of electrolyte solution, the gas rate does not change significantly. Therefore, inexpensive 23% NaOH electrolyte solution was chosen to use as the electrolyte in the electrolyzer. In the second part of the research work, graphite serpentine flow plates, fiberglass end plates, stainless steel screen electrodes, silicone rubbers were made to assemble the single slice O2/H2 polymer electrolyte membrane fuel cell (PEMFC).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=electrolyzer" title="electrolyzer">electrolyzer</a>, <a href="https://publications.waset.org/search?q=electrolyte%20solution" title=" electrolyte solution"> electrolyte solution</a>, <a href="https://publications.waset.org/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/search?q=rectifier" title=" rectifier"> rectifier</a> </p> <a href="https://publications.waset.org/270/construction-of-water-electrolyzer-for-single-slice-o2h2-polymer-electrolyte-membrane-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/270/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/270/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/270/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/270/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/270/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/270/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/270/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/270/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/270/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/270/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2086</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Current Density Effect on Nickel Electroplating Using Post Supercritical CO2 Mixed Watts Electrolyte</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chun-Ying%20Lee">Chun-Ying Lee</a>, <a href="https://publications.waset.org/search?q=Mei-Wen%20Wu"> Mei-Wen Wu</a>, <a href="https://publications.waset.org/search?q=Van%20Cuong%20Nguyen"> Van Cuong Nguyen</a>, <a href="https://publications.waset.org/search?q=Hung-Wei%20Chuang"> Hung-Wei Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, a nickel film with nano-crystalline grains, high hardness and smooth surface was electrodeposited using a post supercritical carbon dioxide (CO2) mixed Watts electrolyte. Although the hardness was not as high as its Sc-CO2 counterpart, the thin coating contained significantly less number of nano-sized pinholes. By measuring the escape concentration of the dissolved CO2 in post Sc-CO2 mixed electrolyte with the elapsed time, it was believed that the residue of dissolved CO2 bubbles should closely relate to the improvement in hardness and surface roughness over its conventional plating counterpart. Therefore, shortening the duration of electroplating with the raise of current density up to 0.5 A/cm2 could effectively retain more post Sc-CO2 mixing effect. This study not only confirms the roles of dissolved CO2 bubbles in electrolyte but also provides a potential process to overcome most issues associated with the cost in building high-pressure chamber for large size products and continuous plating using supercritical method.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive-free%20electrolyte" title="Additive-free electrolyte">Additive-free electrolyte</a>, <a href="https://publications.waset.org/search?q=electroplating" title=" electroplating"> electroplating</a>, <a href="https://publications.waset.org/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/search?q=supercritical%20CO2." title=" supercritical CO2."> supercritical CO2.</a> </p> <a href="https://publications.waset.org/16394/current-density-effect-on-nickel-electroplating-using-post-supercritical-co2-mixed-watts-electrolyte" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16394/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16394/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16394/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16394/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16394/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16394/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16394/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16394/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16394/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16394/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3612</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Olga%20Tkacheva">Olga Tkacheva</a>, <a href="https://publications.waset.org/search?q=Pavel%20Arkhipov"> Pavel Arkhipov</a>, <a href="https://publications.waset.org/search?q=Alexey%20Rudenko"> Alexey Rudenko</a>, <a href="https://publications.waset.org/search?q=Yurii%20Zaikov"> Yurii Zaikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm<sup>2</sup> in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13<sup>th</sup> hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na<sub>3</sub>AlF<sub>6</sub>, Na<sub>5</sub>Al<sub>3</sub>F<sub>14</sub>, Al<sub>2</sub>O<sub>3</sub>, and NaF<sup>.</sup>5CaF<sub>2</sub><sup>.</sup>AlF<sub>3</sub>. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Alumina" title="Alumina">Alumina</a>, <a href="https://publications.waset.org/search?q=alumina%20distribution" title=" alumina distribution"> alumina distribution</a>, <a href="https://publications.waset.org/search?q=aluminum%20electrolyzer" title=" aluminum electrolyzer"> aluminum electrolyzer</a>, <a href="https://publications.waset.org/search?q=cryolite-alumina%20electrolyte" title=" cryolite-alumina electrolyte"> cryolite-alumina electrolyte</a>, <a href="https://publications.waset.org/search?q=side%20ledge." title=" side ledge. "> side ledge. </a> </p> <a href="https://publications.waset.org/10010975/a-study-of-the-alumina-distribution-in-the-lab-scale-cell-during-aluminum-electrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010975/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010975/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010975/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010975/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010975/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010975/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010975/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010975/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010975/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010975/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">749</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Improvement of Photoluminescence Uniformity of Porous Silicon by using Stirring Anodization Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jia-Chuan%20Lin">Jia-Chuan Lin</a>, <a href="https://publications.waset.org/search?q=Meng-Kai%20Hsu"> Meng-Kai Hsu</a>, <a href="https://publications.waset.org/search?q=Hsi-Ting%20Hou"> Hsi-Ting Hou</a>, <a href="https://publications.waset.org/search?q=Sin-Hong%20Liu"> Sin-Hong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrolyte stirring method of anodization etching process for manufacturing porous silicon (PS) is reported in this work. Two experimental setups of nature air stirring (PS-ASM) and electrolyte stirring (PS-ESM) are employed to clarify the influence of stirring mechanisms on electrochemical etching process. Compared to traditional fabrication without any stirring apparatus (PS-TM), a large plateau region of PS surface structure is obtained from samples with both stirring methods by the 3D-profiler measurement. Moreover, the light emission response is also improved by both proposed electrolyte stirring methods due to the cycling force in electrolyte could effectively enhance etch-carrier distribution while the electrochemical etching process is made. According to the analysis of statistical calculation of photoluminescence (PL) intensity, lower standard deviations are obtained from PS-samples with studied stirring methods, i.e. the uniformity of PL-intensity is effectively improved. The calculated deviations of PL-intensity are 93.2, 74.5 and 64, respectively, for PS-TM, PS-ASM and PS-ESM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Porous%20Silicon" title="Porous Silicon">Porous Silicon</a>, <a href="https://publications.waset.org/search?q=Photoluminescence" title=" Photoluminescence"> Photoluminescence</a>, <a href="https://publications.waset.org/search?q=Uniformity%0ACarrier%20Stirring%20Method" title=" Uniformity Carrier Stirring Method"> Uniformity Carrier Stirring Method</a> </p> <a href="https://publications.waset.org/10486/improvement-of-photoluminescence-uniformity-of-porous-silicon-by-using-stirring-anodization-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10486/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10486/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10486/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10486/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10486/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10486/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10486/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10486/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10486/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10486/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1826</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> High Efficiency Electrolyte Lithium Battery and RF Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wei%20Quan">Wei Quan</a>, <a href="https://publications.waset.org/search?q=Liu%20Chao"> Liu Chao</a>, <a href="https://publications.waset.org/search?q=Mohammed%20N.%20Afsar"> Mohammed N. Afsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by Radio frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40oC to +150oC can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by Capacitance Bridge and in-waveguide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polymer%20electrolyte" title="Polymer electrolyte">Polymer electrolyte</a>, <a href="https://publications.waset.org/search?q=dielectric%20permittivity" title=" dielectric permittivity"> dielectric permittivity</a>, <a href="https://publications.waset.org/search?q=lithium%0D%0Abattery" title=" lithium battery"> lithium battery</a>, <a href="https://publications.waset.org/search?q=ionic%20relaxation" title=" ionic relaxation"> ionic relaxation</a>, <a href="https://publications.waset.org/search?q=microwave%20measurement." title=" microwave measurement."> microwave measurement.</a> </p> <a href="https://publications.waset.org/10000602/high-efficiency-electrolyte-lithium-battery-and-rf-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000602/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000602/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000602/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000602/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000602/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000602/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000602/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000602/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000602/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000602/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2424</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-LiClO4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20S.%20Wong">C. S. Wong</a>, <a href="https://publications.waset.org/search?q=K.%20H.%20Badri"> K. H. Badri</a>, <a href="https://publications.waset.org/search?q=N.%20Ataollahi"> N. Ataollahi</a>, <a href="https://publications.waset.org/search?q=K.%20P.%20Law"> K. P. Law</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20Su%E2%80%99ait"> M. S. Su鈥檃it</a>, <a href="https://publications.waset.org/search?q=N.%20I.%20Hassan"> N. I. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via prepolymerization method with different NCO/OH ratios and labelled them as PU1, PU2, PU3 and PU4. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1. Differential scanning calorimetry (DSC) analysis indicates PU1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity and the lowest activation energy, Ea. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ionic%20conductivity" title="Ionic conductivity">Ionic conductivity</a>, <a href="https://publications.waset.org/search?q=Palm%20kernel%20oil-based%20monoester%0D%0Apolyol" title=" Palm kernel oil-based monoester polyol"> Palm kernel oil-based monoester polyol</a>, <a href="https://publications.waset.org/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/search?q=solid%20polymer%20electrolyte." title=" solid polymer electrolyte."> solid polymer electrolyte.</a> </p> <a href="https://publications.waset.org/9999728/synthesis-of-new-bio-based-solid-polymer-electrolyte-polyurethane-liclo4-via-prepolymerization-method-effect-of-ncooh-ratio-on-their-chemical-thermal-properties-and-ionic-conductivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999728/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999728/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999728/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999728/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999728/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999728/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999728/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999728/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999728/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999728/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3144</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Saad%20S.%20Alrwashdeh">Saad S. Alrwashdeh</a>, <a href="https://publications.waset.org/search?q=Henning%20Mark%C3%B6tter"> Henning Mark枚tter</a>, <a href="https://publications.waset.org/search?q=Handri%20Ammari"> Handri Ammari</a>, <a href="https://publications.waset.org/search?q=Jan%20Hau%C3%9Fmann"> Jan Hau脽mann</a>, <a href="https://publications.waset.org/search?q=Tobias%20Arlt"> Tobias Arlt</a>, <a href="https://publications.waset.org/search?q=Joachim%20Scholta"> Joachim Scholta</a>, <a href="https://publications.waset.org/search?q=Ingo%20Manke"> Ingo Manke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polymer%20electrolyte%20membrane%20fuel%20cell" title="Polymer electrolyte membrane fuel cell">Polymer electrolyte membrane fuel cell</a>, <a href="https://publications.waset.org/search?q=microporous%20layer" title=" microporous layer"> microporous layer</a>, <a href="https://publications.waset.org/search?q=water%20transport" title=" water transport"> water transport</a>, <a href="https://publications.waset.org/search?q=radiography" title=" radiography"> radiography</a>, <a href="https://publications.waset.org/search?q=tomography." title=" tomography."> tomography.</a> </p> <a href="https://publications.waset.org/10011095/investigation-of-water-transport-dynamics-in-polymer-electrolyte-membrane-fuel-cells-based-on-a-gas-diffusion-media-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011095/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011095/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011095/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011095/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011095/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011095/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011095/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011095/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011095/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011095/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">766</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dimitra%20Sygkridou">Dimitra Sygkridou</a>, <a href="https://publications.waset.org/search?q=Dimitrios%20Karageorgopoulos"> Dimitrios Karageorgopoulos</a>, <a href="https://publications.waset.org/search?q=Elias%20Stathatos"> Elias Stathatos</a>, <a href="https://publications.waset.org/search?q=Evangelos%20Vitoratos"> Evangelos Vitoratos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Counter%20electrodes" title="Counter electrodes">Counter electrodes</a>, <a href="https://publications.waset.org/search?q=dye-sensitized%20solar%20cells" title=" dye-sensitized solar cells"> dye-sensitized solar cells</a>, <a href="https://publications.waset.org/search?q=quasisolid%0D%0Astate%20electrolyte" title=" quasisolid state electrolyte"> quasisolid state electrolyte</a>, <a href="https://publications.waset.org/search?q=transparency." title=" transparency."> transparency.</a> </p> <a href="https://publications.waset.org/10002077/comparison-of-transparent-nickel-doped-cobalt-sulfide-and-platinum-counter-electrodes-used-in-quasi-solid-state-dye-sensitized-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002077/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002077/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002077/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002077/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002077/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002077/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002077/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002077/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002077/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002077/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2273</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Radiation Heat Transfer in Planar SOFC Components: Application of the Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Imen%20Mejri">Imen Mejri</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Mahmoudi"> Ahmed Mahmoudi</a>, <a href="https://publications.waset.org/search?q=Mohamed%20A.%20Abbassi"> Mohamed A. Abbassi</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Omri"> Ahmed Omri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Thermal radiation plays a very important role in the heat transfer combination through the various components of the SOFC fuel cell operating at high temperatures. Lattice Boltzmann method is used for treating conduction-radiation heat transfer in the electrolyte. The thermal radiation heat transfer is coupled to the overall energy conservation equations through the divergence of the local radiative flux. The equation of energy in one dimension is numerically resolved by using the Lattice Boltzmann method. A computing program (FORTRAN) is developed locally for this purpose in order to obtain fields of temperature in every element of the cell. The parameters investigated are: functioning temperature, cell voltages and electrolyte thickness. The results show that the radiation effect increases with increasing the electrolyte thickness, also increases with increasing the functioning temperature and decreases with the increase of the voltage of the cell.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=SOFC" title="SOFC">SOFC</a>, <a href="https://publications.waset.org/search?q=lattice%20Boltzmann%20method" title=" lattice Boltzmann method"> lattice Boltzmann method</a>, <a href="https://publications.waset.org/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/search?q=planar%20medium." title=" planar medium."> planar medium.</a> </p> <a href="https://publications.waset.org/9997863/radiation-heat-transfer-in-planar-sofc-components-application-of-the-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997863/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997863/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997863/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997863/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997863/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997863/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997863/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997863/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997863/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997863/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2495</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arash%20Esmaeili">Arash Esmaeili</a>, <a href="https://publications.waset.org/search?q=Zhibang%20Liu"> Zhibang Liu</a>, <a href="https://publications.waset.org/search?q=Yang%20Xiang"> Yang Xiang</a>, <a href="https://publications.waset.org/search?q=Jimmy%20Yun"> Jimmy Yun</a>, <a href="https://publications.waset.org/search?q=Lei%20Shao"> Lei Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A high pressure carbon dioxide (CO<sub>2</sub>) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO<sub>2</sub> concentration, absorption efficiency and CO<sub>2</sub> loading to choose the most proper solution in terms of CO<sub>2 </sub>capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO<sub>2</sub> absorption with high reactivity based on the simulated operational conditions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Absorption" title="Absorption">Absorption</a>, <a href="https://publications.waset.org/search?q=amine%20solutions" title=" amine solutions"> amine solutions</a>, <a href="https://publications.waset.org/search?q=Aspen%20HYSYS" title=" Aspen HYSYS"> Aspen HYSYS</a>, <a href="https://publications.waset.org/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/search?q=simulation." title=" simulation."> simulation.</a> </p> <a href="https://publications.waset.org/10011964/assessment-of-carbon-dioxide-separation-by-amine-solutions-using-electrolyte-non-random-two-liquid-and-peng-robinson-models-carbon-dioxide-absorption-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011964/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011964/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011964/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011964/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011964/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011964/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011964/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011964/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011964/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011964/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Separation of Manganese and Cadmium from Cobalt Electrolyte Solution by Solvent Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shafiq%20Alam">Shafiq Alam</a>, <a href="https://publications.waset.org/search?q=Mirza%20Hossain"> Mirza Hossain</a>, <a href="https://publications.waset.org/search?q=Hesam%20Hassan%20Nejad"> Hesam Hassan Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impurity metals such as manganese and cadmium from high-tenor cobalt electrolyte solution were selectively removed by solvent extraction method using Co-D2EHPA after converting the functional group of D2EHPA with Co2+ ions. The process parameters such as pH, organic concentration, O/A ratio, kinetics etc. were investigated and the experiments were conducted by batch tests in the laboratory bench scale. Results showed that a significant amount of manganese and cadmium can be extracted using Co-D2EHPA for the optimum processing of cobalt electrolyte solution at equilibrium pH about 3.5. The McCabe-Thiele diagram, constructed from the extraction studies showed that 100% impurities can be extracted through four stages for manganese and three stages for cadmium using O/A ratio of 0.65 and 1.0, respectively. From the stripping study, it was found that 100% manganese and cadmium can be stripped from the loaded organic using 0.4 M H2SO4 in a single contact. The loading capacity of Co-D2EHPA by manganese and cadmium were also investigated with different O/A ratio as well as with number of stages of contact of aqueous and organic phases. Valuable information was obtained for the designing of an impurities removal process for the production of pure cobalt with less trouble in the electrowinning circuit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Manganese" title="Manganese">Manganese</a>, <a href="https://publications.waset.org/search?q=Cadmium" title=" Cadmium"> Cadmium</a>, <a href="https://publications.waset.org/search?q=Cobalt" title=" Cobalt"> Cobalt</a>, <a href="https://publications.waset.org/search?q=D2EHPA" title=" D2EHPA"> D2EHPA</a>, <a href="https://publications.waset.org/search?q=Solvent%20extraction." title=" Solvent extraction."> Solvent extraction.</a> </p> <a href="https://publications.waset.org/14928/separation-of-manganese-and-cadmium-from-cobalt-electrolyte-solution-by-solvent-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14928/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14928/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14928/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14928/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14928/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14928/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14928/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14928/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14928/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14928/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3889</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mahanijah%20Md%20Kamal.">Mahanijah Md Kamal.</a>, <a href="https://publications.waset.org/search?q=Dingli%20Yu"> Dingli Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polymer%20electrolyte%20membrane%20fuel%20cell" title="Polymer electrolyte membrane fuel cell">Polymer electrolyte membrane fuel cell</a>, <a href="https://publications.waset.org/search?q=radial%20basis%20function%20neural%20networks" title=" radial basis function neural networks"> radial basis function neural networks</a>, <a href="https://publications.waset.org/search?q=fault%20detection" title=" fault detection"> fault detection</a>, <a href="https://publications.waset.org/search?q=fault%20isolation." title=" fault isolation."> fault isolation.</a> </p> <a href="https://publications.waset.org/4674/fault-detection-and-isolation-using-rbf-networks-for-polymer-electrolyte-membrane-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4674/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4674/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4674/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4674/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4674/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4674/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4674/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4674/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4674/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4674/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1814</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yanqin%20Chen">Yanqin Chen</a>, <a href="https://publications.waset.org/search?q=Chao%20Jiang"> Chao Jiang</a>, <a href="https://publications.waset.org/search?q=Chongdu%20Cho"> Chongdu Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gas%20diffusion%20layer" title="Gas diffusion layer">Gas diffusion layer</a>, <a href="https://publications.waset.org/search?q=proton%20electrolyte%20membrane%20fuel%20cell" title=" proton electrolyte membrane fuel cell"> proton electrolyte membrane fuel cell</a>, <a href="https://publications.waset.org/search?q=stiffness%20matrix" title=" stiffness matrix"> stiffness matrix</a>, <a href="https://publications.waset.org/search?q=three-dimensional%20mechanical%20characteristics" title=" three-dimensional mechanical characteristics"> three-dimensional mechanical characteristics</a>, <a href="https://publications.waset.org/search?q=user-defined%20material%20model." title=" user-defined material model."> user-defined material model.</a> </p> <a href="https://publications.waset.org/10009895/an-investigation-of-a-three-dimensional-constitutive-model-of-gas-diffusion-layers-in-polymer-electrolyte-membrane-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009895/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009895/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009895/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009895/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009895/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009895/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009895/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009895/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009895/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009895/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">948</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Radiation Heat Transfer Effect in Solid Oxide Fuel Cell: Application of the Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Imen%20Mejri">Imen Mejri</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Mahmoudi"> Ahmed Mahmoudi</a>, <a href="https://publications.waset.org/search?q=Mohamed%20A.%20Abbassi"> Mohamed A. Abbassi</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Omri"> Ahmed Omri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The radiation effect within the solid anode, electrolyte, and cathode SOFC layers problem has been investigated in this paper. Energy equation is solved by the Lattice Boltzmann method (LBM). The Rosseland method is used to model the radiative transfer in the electrodes. The Schuster-Schwarzschild method is used to model the radiative transfer in the electrolyte. Without radiative effect, the found results are in good agreement with those published. The obtained results show that the radiative effect can be neglected.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=SOFC" title="SOFC">SOFC</a>, <a href="https://publications.waset.org/search?q=lattice%20Boltzmann%20method" title=" lattice Boltzmann method"> lattice Boltzmann method</a>, <a href="https://publications.waset.org/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/search?q=radiation." title=" radiation."> radiation.</a> </p> <a href="https://publications.waset.org/9998010/radiation-heat-transfer-effect-in-solid-oxide-fuel-cell-application-of-the-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998010/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998010/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998010/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998010/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998010/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998010/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998010/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998010/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998010/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998010/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2451</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Akan%20C.%20Offong">Akan C. Offong</a>, <a href="https://publications.waset.org/search?q=E.%20J.%20Anthony"> E. J. Anthony</a>, <a href="https://publications.waset.org/search?q=Vasilije%20Manovic"> Vasilije Manovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A modified steady-state numerical model is developed for the electrochemical reduction of CO<sub>2</sub> to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm<sup>2</sup>), FE-faradaic efficiency (~98%) and conversion (~80%) for CO<sub>2</sub> electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF<sub>4</sub>]) electrolyte, on CD, FE and CO<sub>2</sub> conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF<sub>4</sub>]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO<sub>2</sub> mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO<sub>2</sub> conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H<sub>2 </sub>formations. However, H<sub>2</sub> formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO<sub>2</sub> flow rate increases, CD, FE and CO<sub>2</sub> conversion increases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20dioxide" title="Carbon dioxide">Carbon dioxide</a>, <a href="https://publications.waset.org/search?q=electro-chemical%20reduction" title=" electro-chemical reduction"> electro-chemical reduction</a>, <a href="https://publications.waset.org/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/search?q=modelling." title=" modelling."> modelling.</a> </p> <a href="https://publications.waset.org/10010700/modelling-and-simulating-co2-electro-reduction-to-formic-acid-using-microfluidic-electrolytic-cells-the-influence-of-bi-sn-catalyst-and-1-ethyl-3-methyl-imidazolium-tetra-fluoroborate-electrolyte-on-cell-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010700/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010700/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010700/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010700/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010700/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010700/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010700/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010700/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010700/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010700/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1098</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jinliang%20Yuan">Jinliang Yuan</a>, <a href="https://publications.waset.org/search?q=Jong-Sung%20Yu"> Jong-Sung Yu</a>, <a href="https://publications.waset.org/search?q=Bengt%20Sund%C3%A9n"> Bengt Sund茅n</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20Fluid%20Dynamics%20%28CFD%29" title="Computational Fluid Dynamics (CFD)">Computational Fluid Dynamics (CFD)</a>, <a href="https://publications.waset.org/search?q=Modeling" title=" Modeling"> Modeling</a>, <a href="https://publications.waset.org/search?q=Multi-phase" title=" Multi-phase"> Multi-phase</a>, <a href="https://publications.waset.org/search?q=Transport%20Phenomena" title=" Transport Phenomena"> Transport Phenomena</a>, <a href="https://publications.waset.org/search?q=Lithium-air%20battery." title=" Lithium-air battery."> Lithium-air battery.</a> </p> <a href="https://publications.waset.org/10000680/cfd-analysis-of-multi-phase-reacting-transport-phenomena-in-discharge-process-of-non-aqueous-lithium-air-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000680/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000680/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000680/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000680/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000680/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000680/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000680/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000680/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000680/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000680/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2745</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dariush%20Jafari">Dariush Jafari</a>, <a href="https://publications.waset.org/search?q=S.%20Mostafa%20Nowee"> S. Mostafa Nowee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermodynamic%20modeling" title="Thermodynamic modeling">Thermodynamic modeling</a>, <a href="https://publications.waset.org/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/search?q=ternary%0D%0Aelectrolyte%20system." title=" ternary electrolyte system."> ternary electrolyte system.</a> </p> <a href="https://publications.waset.org/10000395/studies-on-the-applicability-of-artificial-neural-network-ann-in-prediction-of-thermodynamic-behavior-of-sodium-chloride-aqueous-system-containing-a-non-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000395/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000395/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000395/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000395/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000395/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000395/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000395/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000395/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000395/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000395/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2153</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Customized Cow鈥檚 Urine Battery Using MnO2 Depolarizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Raj%20Kumar%20Rajak">Raj Kumar Rajak</a>, <a href="https://publications.waset.org/search?q=Bharat%20Mishra"> Bharat Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO<sub>2</sub> in various ways. MnO<sub>2 </sub>is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO<sub>2</sub>. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO<sub>2</sub>, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO<sub>2</sub> (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO<sub>2 </sub>to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO<sub>2</sub> is quite suitable to energize the bio-battery.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bio-batteries" title="Bio-batteries">Bio-batteries</a>, <a href="https://publications.waset.org/search?q=cow%E2%80%99s%20urine" title=" cow鈥檚 urine"> cow鈥檚 urine</a>, <a href="https://publications.waset.org/search?q=manganese%20dioxide" title=" manganese dioxide"> manganese dioxide</a>, <a href="https://publications.waset.org/search?q=non-conventional." title=" non-conventional."> non-conventional.</a> </p> <a href="https://publications.waset.org/10008217/customized-cows-urine-battery-using-mno2-depolarizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008217/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008217/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008217/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008217/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008217/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008217/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008217/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008217/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008217/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008217/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1034</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chun-Ying%20Lee">Chun-Ying Lee</a>, <a href="https://publications.waset.org/search?q=Kun-Hsien%20Lee"> Kun-Hsien Lee</a>, <a href="https://publications.waset.org/search?q=Bor-Wei%20Wang"> Bor-Wei Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The process of post-supercritical CO<sub>2</sub> electroplating uses the electrolyte solution after being mixed with supercritical CO<sub>2</sub> and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO<sub>2</sub> in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO<sub>2</sub> bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO<sub>2</sub> microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm<sup>2</sup> achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO<sub>2</sub> mixed electrolyte.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nickel%20electroplating" title="Nickel electroplating">Nickel electroplating</a>, <a href="https://publications.waset.org/search?q=micro-bubbles" title=" micro-bubbles"> micro-bubbles</a>, <a href="https://publications.waset.org/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a>, <a href="https://publications.waset.org/search?q=ultrasonic%20agitation" title=" ultrasonic agitation"> ultrasonic agitation</a>, <a href="https://publications.waset.org/search?q=magnetic%20stirring." title=" magnetic stirring. "> magnetic stirring. </a> </p> <a href="https://publications.waset.org/10007483/nickel-electroplating-in-post-supercritical-co2-mixed-watts-bath-under-different-agitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007483/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007483/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007483/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007483/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007483/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007483/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007483/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007483/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007483/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007483/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">867</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Carbon Nanofibers Reinforced P(VdF-HFP) Based Gel Polymer Electrolyte for Lithium-Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anjan%20Sil">Anjan Sil</a>, <a href="https://publications.waset.org/search?q=Rajni%20Sharma"> Rajni Sharma</a>, <a href="https://publications.waset.org/search?q=Subrata%20Ray"> Subrata Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of carbon nanofibers (CNFs) on the electrical properties of Poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)) based gel polymer electrolytes has been investigated in the present work. The length and diameter ranges of CNFs used in the present work are 5-50 渭m and 200-600 nm respectively. The nanocomposite gel polymer electrolytes have been synthesized by solution casting technique with varying CNFs content in terms of weight percentage. Electrochemical impedance analysis demonstrates that the reinforcement of carbon nanofibers significantly enhances the ionic conductivity of the polymer electrolyte. The decrease of crystallinity of P(VdF-HFP) due the addition of CNFs has been confirmed by X-ray diffraction (XRD). The interaction of CNFs with various constituents of nanocomposite gel polymer electrolytes has been assessed by Fourier Transform Infrared (FTIR) spectroscopy. Moreover CNFs added gel polymer electrolytes offer superior thermal stability as compared to that of CNFs free electrolytes as confirmed by Thermogravimetric analysis (TGA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polymer%20electrolytes" title="Polymer electrolytes">Polymer electrolytes</a>, <a href="https://publications.waset.org/search?q=CNFs" title=" CNFs"> CNFs</a>, <a href="https://publications.waset.org/search?q=Ionic%20conductivity" title=" Ionic conductivity"> Ionic conductivity</a>, <a href="https://publications.waset.org/search?q=TGA." title=" TGA."> TGA.</a> </p> <a href="https://publications.waset.org/10002459/carbon-nanofibers-reinforced-pvdf-hfp-based-gel-polymer-electrolyte-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002459/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002459/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002459/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002459/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002459/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002459/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002459/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002459/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002459/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002459/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1942</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Mourtzikou">A. Mourtzikou</a>, <a href="https://publications.waset.org/search?q=D.%20Sygkridou"> D. Sygkridou</a>, <a href="https://publications.waset.org/search?q=T.%20Georgakopoulos"> T. Georgakopoulos</a>, <a href="https://publications.waset.org/search?q=G.%20Katsagounos"> G. Katsagounos</a>, <a href="https://publications.waset.org/search?q=E.%20Stathatos"> E. Stathatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm<sup>2</sup> were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I<sup>-</sup>/I<sub>3</sub><sup>-</sup>) redox couple of the electrolyte.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dye-sensitized%20solar%20panels" title="Dye-sensitized solar panels">Dye-sensitized solar panels</a>, <a href="https://publications.waset.org/search?q=inkjet%20printing" title=" inkjet printing"> inkjet printing</a>, <a href="https://publications.waset.org/search?q=quasi-solid-state%20electrolyte" title=" quasi-solid-state electrolyte"> quasi-solid-state electrolyte</a>, <a href="https://publications.waset.org/search?q=semi-transparency" title=" semi-transparency"> semi-transparency</a>, <a href="https://publications.waset.org/search?q=scale%20up." title=" scale up."> scale up.</a> </p> <a href="https://publications.waset.org/10011098/semi-transparent-dye-sensitized-solar-panels-for-energy-autonomous-greenhouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011098/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011098/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011098/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011098/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011098/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011098/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011098/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011098/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011098/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011098/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">795</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ch.%20Thee">Ch. Thee</a>, <a href="https://publications.waset.org/search?q=Junhua%20Dong"> Junhua Dong</a>, <a href="https://publications.waset.org/search?q=Wei%20Ke"> Wei Ke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurement were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25oC and 60% RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Atmospheric%20corrosion" title="Atmospheric corrosion">Atmospheric corrosion</a>, <a href="https://publications.waset.org/search?q=EIS" title=" EIS"> EIS</a>, <a href="https://publications.waset.org/search?q=low%20alloy" title=" low alloy"> low alloy</a>, <a href="https://publications.waset.org/search?q=rust." title=" rust."> rust.</a> </p> <a href="https://publications.waset.org/10001484/corrosion-monitoring-of-weathering-steel-in-a-simulated-coastal-industrial-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001484/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001484/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001484/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001484/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001484/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001484/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001484/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001484/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001484/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001484/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1943</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Syed%20Bahari%20Ramadzan%20Syed%20Adnan">Syed Bahari Ramadzan Syed Adnan</a>, <a href="https://publications.waset.org/search?q=Nor%20Sabirin%20Mohamed"> Nor Sabirin Mohamed</a>, <a href="https://publications.waset.org/search?q=Norwati%20K.A"> Norwati K.A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 脜, b = 6.094 脜, c = 5.293 脜, 尾 = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 脳 10-6 S cm-1 and the highest bulk conductivity of 1.16 脳 10-4 S cm-1 was obtained at 100掳C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conductivity" title="Conductivity">Conductivity</a>, <a href="https://publications.waset.org/search?q=LISICON" title=" LISICON"> LISICON</a>, <a href="https://publications.waset.org/search?q=Li4SiO4" title=" Li4SiO4"> Li4SiO4</a>, <a href="https://publications.waset.org/search?q=Solid%20electrolyte" title=" Solid electrolyte"> Solid electrolyte</a>, <a href="https://publications.waset.org/search?q=Structure." title=" Structure."> Structure.</a> </p> <a href="https://publications.waset.org/8620/li4sio4-prepared-by-sol-gel-method-as-potential-host-for-lisicon-structured-solid-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8620/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8620/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8620/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8620/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8620/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8620/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8620/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8620/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8620/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8620/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3320</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chun-Ying%20Lee">Chun-Ying Lee</a>, <a href="https://publications.waset.org/search?q=Mei-Wen%20Wu"> Mei-Wen Wu</a>, <a href="https://publications.waset.org/search?q=Li-Yi%20Cheng"> Li-Yi Cheng</a>, <a href="https://publications.waset.org/search?q=Chiang-Ho%20Cheng"> Chiang-Ho Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Supercritical%20CO2" title="Supercritical CO2">Supercritical CO2</a>, <a href="https://publications.waset.org/search?q=zinc-electroplating" title=" zinc-electroplating"> zinc-electroplating</a>, <a href="https://publications.waset.org/search?q=sodium%0D%0Afluoride." title=" sodium fluoride."> sodium fluoride.</a> </p> <a href="https://publications.waset.org/9998806/the-effects-of-naf-concentration-on-the-zinc-coating-electroplated-in-supercritical-co2-mixed-zinc-chloride-bath" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998806/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998806/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998806/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998806/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998806/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998806/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998806/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998806/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998806/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998806/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2058</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Modeling and Analysis of the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20H.%20Abdol%20Rahim">A. H. Abdol Rahim</a>, <a href="https://publications.waset.org/search?q=Alhassan%20Salami%20Tijani"> Alhassan Salami Tijani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME, water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick鈥檚 Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Diffusion" title="Diffusion">Diffusion</a>, <a href="https://publications.waset.org/search?q=gases%20cross-over" title=" gases cross-over"> gases cross-over</a>, <a href="https://publications.waset.org/search?q=steady%20state." title=" steady state."> steady state.</a> </p> <a href="https://publications.waset.org/10003145/modeling-and-analysis-of-the-effects-of-temperature-and-pressure-on-the-gas-crossover-in-polymer-electrolyte-membrane-electrolyzer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003145/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003145/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003145/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003145/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003145/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003145/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003145/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003145/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003145/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003145/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2550</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Naren%20Bag">Naren Bag</a>, <a href="https://publications.waset.org/search?q=S.%20Bhattacharyya"> S. Bhattacharyya</a>, <a href="https://publications.waset.org/search?q=Partha%20P.%20Gopmandal"> Partha P. Gopmandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electric%20double%20layer" title="Electric double layer">Electric double layer</a>, <a href="https://publications.waset.org/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/search?q=flow%20behavior%20index" title=" flow behavior index"> flow behavior index</a>, <a href="https://publications.waset.org/search?q=mixed%20electroosmotic%2Fpressure%20driven%20flow" title=" mixed electroosmotic/pressure driven flow"> mixed electroosmotic/pressure driven flow</a>, <a href="https://publications.waset.org/search?q=Non-Newtonian%20power-law%20fluids" title=" Non-Newtonian power-law fluids"> Non-Newtonian power-law fluids</a>, <a href="https://publications.waset.org/search?q=numerical%20simulation." title=" numerical simulation."> numerical simulation.</a> </p> <a href="https://publications.waset.org/10006559/transport-of-analytes-under-mixed-electroosmotic-and-pressure-driven-flow-of-power-law-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006559/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006559/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006559/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006559/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006559/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006559/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006559/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006559/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006559/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006559/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1203</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Fabrication of Carbon Doped TiO2 Nanotubes via In-situ Anodization of Ti-foil in Acidic Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Asma%20M.%20Milad">Asma M. Milad</a>, <a href="https://publications.waset.org/search?q=Mohammad%20B.%20Kassim"> Mohammad B. Kassim</a>, <a href="https://publications.waset.org/search?q=Wan%20R.%20Daud"> Wan R. Daud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly ordered TiO2 nanotube (TNT) arrays were fabricated onto a pre-treated titanium foil by anodic oxidation with a voltage of 20V in phosphoric acid/sodium fluoride electrolyte. A pretreatment of titanium foil involved washing with acetone, isopropanol, ethanol and deionized water. Carbon doped TiO2 nanotubes (C-TNT) was fabricated 'in-situ' with the same method in the presence of polyvinyl alcohol and urea as carbon sources. The affects of polyvinyl alcohol concentration and oxidation time on the composition, morphology and structure of the C-TN were studied by FE-SEM, EDX and XRD techniques. FESEM images of the nanotubes showed uniform arrays of C-TNTs. The density and microstructures of the nanotubes were greatly affected by the content of PVA. The introduction of the polyvinyl alcohol into the electrolyte increases the amount of C content inside TiO2 nanotube arrays uniformly. The influence of carbon content on the photo-current of C-TNT was investigated and the I-V profiles of the nanotubes were established. The preliminary results indicated that the 'in-situ' doping technique produced a superior quality nanotubes compared to post doping techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anodization" title="Anodization">Anodization</a>, <a href="https://publications.waset.org/search?q=photoelectrochemical%20cell" title=" photoelectrochemical cell"> photoelectrochemical cell</a>, <a href="https://publications.waset.org/search?q=%27in-situ%27" title=" 'in-situ'"> 'in-situ'</a>, <a href="https://publications.waset.org/search?q=post%20doping" title="post doping">post doping</a>, <a href="https://publications.waset.org/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/search?q=and%20titania%20nanotube%20arrays." title=" and titania nanotube arrays."> and titania nanotube arrays.</a> </p> <a href="https://publications.waset.org/2976/fabrication-of-carbon-doped-tio2-nanotubes-via-in-situ-anodization-of-ti-foil-in-acidic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2976/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2976/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2976/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2976/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2976/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2976/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2976/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2976/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2976/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2976/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2613</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Up Scaling of Highly Transparent Quasi-Solid State, Dye-Sensitized Solar Devices Composed of Nanocomposite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dimitra%20Sygkridou">Dimitra Sygkridou</a>, <a href="https://publications.waset.org/search?q=Andreas%20Rapsomanikis"> Andreas Rapsomanikis</a>, <a href="https://publications.waset.org/search?q=Elias%20Stathatos"> Elias Stathatos</a>, <a href="https://publications.waset.org/search?q=Polycarpos%20Falaras"> Polycarpos Falaras</a>, <a href="https://publications.waset.org/search?q=Evangelos%20Vitoratos"> Evangelos Vitoratos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the present work, highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dye-sensitized%20solar%20devices" title="Dye-sensitized solar devices">Dye-sensitized solar devices</a>, <a href="https://publications.waset.org/search?q=inkjet%20printing" title=" inkjet printing"> inkjet printing</a>, <a href="https://publications.waset.org/search?q=quasi-solid%0D%0Astate%20electrolyte" title=" quasi-solid state electrolyte"> quasi-solid state electrolyte</a>, <a href="https://publications.waset.org/search?q=transparency" title=" transparency"> transparency</a>, <a href="https://publications.waset.org/search?q=up%20scaling." title=" up scaling."> up scaling.</a> </p> <a href="https://publications.waset.org/10002807/up-scaling-of-highly-transparent-quasi-solid-state-dye-sensitized-solar-devices-composed-of-nanocomposite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002807/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002807/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002807/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002807/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002807/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002807/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002807/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002807/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002807/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002807/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1642</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Partha%20Sarathi%20Majee">Partha Sarathi Majee</a>, <a href="https://publications.waset.org/search?q=S.%20Bhattacharyya"> S. Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Debye%20length" title="Debye length">Debye length</a>, <a href="https://publications.waset.org/search?q=double%20layer%20polarization" title=" double layer polarization"> double layer polarization</a>, <a href="https://publications.waset.org/search?q=electrophoresis" title=" electrophoresis"> electrophoresis</a>, <a href="https://publications.waset.org/search?q=mobility%20reversal" title=" mobility reversal"> mobility reversal</a>, <a href="https://publications.waset.org/search?q=soft%20particle." title=" soft particle."> soft particle.</a> </p> <a href="https://publications.waset.org/10006548/a-numerical-study-on-electrophoresis-of-a-soft-particle-with-charged-core-coated-with-polyelectrolyte-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006548/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006548/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006548/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006548/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006548/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006548/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006548/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006548/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006548/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006548/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1143</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=cryolite-alumina%20electrolyte&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=cryolite-alumina%20electrolyte&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=cryolite-alumina%20electrolyte&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>