CINXE.COM
Search results for: vortex separator
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vortex separator</title> <meta name="description" content="Search results for: vortex separator"> <meta name="keywords" content="vortex separator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vortex separator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vortex separator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 250</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vortex separator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Effect of Different Parameters of Converging-Diverging Vortex Finders on Cyclone Separator Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Kumar">V. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jha"> K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is done to explore design modifications of the vortex finder, as it has a significant effect on the cyclone separator performance. It is evident that modifications of the vortex finder improve the performance of the cyclone separator significantly. The study conducted strives to improve the overall performance of cyclone separators by utilizing a converging-diverging (CD) vortex finder instead of the traditional uniform diameter vortex finders. The velocity and pressure fields inside a Stairmand cyclone separator with body diameter 0.29m and vortex finder diameter 0.1305m are calculated. The commercial software, Ansys Fluent v14.0 is used to simulate the flow field in a uniform diameter cyclone and six cyclones modified with CD vortex finders. Reynolds stress model is used to simulate the effects of turbulence on the fluid and particulate phases, discrete phase model is used to calculate the particle trajectories. The performance of the modified vortex finders is compared with the traditional vortex finder. The effects of the lengths of the converging and diverging sections, the throat diameter and the end diameters of the convergent divergent section are also studied to achieve enhanced performance. The pressure and velocity fields inside the vortex finder are presented by means of contour plots and velocity vectors and changes in the flow pattern due to variation of the geometrical variables are also analysed. Results indicate that a convergent-divergent vortex finder is capable of decreasing the pressure drop than that achieved through a uniform diameter vortex finder. It is also observed that the end diameters of the CD vortex finder, the throat diameter and the length of the diverging part of the vortex finder have a significant impact on the cyclone separator performance. Increase in the lower diameter of the vortex finder by 66% results in 11.5% decrease in the dimensionless pressure drop (Euler number) with 5.8% decrease in separation efficiency. Whereas 50% decrease in the throat diameter gives 5.9% increase in the Euler number with 10.2% increase in the separation efficiency and increasing the length of the diverging part gives 10.28% increase in the Euler number with 5.74% increase in the separation efficiency. Increasing the upper diameter of the CD vortex finder is seen to produce an adverse effect on the performance as it increases the pressure drop significantly and decreases the separation efficiency. Increase in length of the converging is not seen to affect the performance significantly. From the present study, it is concluded that convergent-divergent vortex finders can be used in place of uniform diameter vortex finders to achieve a better cyclone separator performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convergent-divergent%20vortex%20finder" title="convergent-divergent vortex finder">convergent-divergent vortex finder</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclone%20separator" title=" cyclone separator"> cyclone separator</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20phase%20modeling" title=" discrete phase modeling"> discrete phase modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20stress%20model" title=" Reynolds stress model"> Reynolds stress model</a> </p> <a href="https://publications.waset.org/abstracts/94779/effect-of-different-parameters-of-converging-diverging-vortex-finders-on-cyclone-separator-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Vortex Separator for More Accurate Air Dry-Bulb Temperature Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20N.%20Shmroukh">Ahmed N. Shmroukh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20S.%20Taha"> I. M. S. Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abdel-Ghany"> A. M. Abdel-Ghany</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Attalla"> M. Attalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fog systems application for cooling and humidification is still limited, although these systems require less initial cost compared with that of other cooling systems such as pad-and-fan systems. The undesirable relative humidity and air temperature inside the space which have been cooled or humidified are the main reasons for its limited use, which results from the poor control of fog systems. Any accurate control system essentially needs air dry bulb temperature as an input parameter. Therefore, the air dry-bulb temperature in the space needs to be measured accurately. The Scope of the present work is the separation of the fog droplets from the air in a fogged space to measure the air dry bulb temperature accurately. The separation is to be done in a small device inside which the sensor of the temperature measuring instrument is positioned. Vortex separator will be designed and used. Another reference device will be used for measuring the air temperature without separation. A comparative study will be performed to reach at the best device which leads to the most accurate measurement of air dry bulb temperature. The results showed that the proposed devices improved the measured air dry bulb temperature toward the correct direction over that of the free junction. Vortex device was the best. It respectively increased the temperature measured by the free junction in the range from around 2 to around 6°C for different fog on-off duration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fog%20systems" title="fog systems">fog systems</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring%20air%20dry%20bulb%20temperature" title=" measuring air dry bulb temperature"> measuring air dry bulb temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20measurement" title=" temperature measurement"> temperature measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20separator" title=" vortex separator"> vortex separator</a> </p> <a href="https://publications.waset.org/abstracts/58889/vortex-separator-for-more-accurate-air-dry-bulb-temperature-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> LES Investigation of the Natural Vortex Length in a Small-Scale Gas Cyclone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dzmitry%20Misiulia">Dzmitry Misiulia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergiy%20Antonyuk"> Sergiy Antonyuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small-scale cyclone separators are widely used in aerosol sampling. The flow field in a cyclone sampler is very complex, especially the vortex behavior. Most of the existing models for calculating cyclone efficiency use the same stable vortex structure while the vortex demonstrates dynamic variations rather than the steady-state picture. It can spontaneously ‘end’ at some point within the body of the separator. Natural vortex length is one of the most critical issues when designing and operating gas cyclones and is crucial to proper cyclone performance. The particle transport along the wall to the grid pot is not effective beyond this point. The flow field and vortex behavior inside the aerosol sampler have been investigated for a wide range of Reynolds numbers using Large Eddy Simulations. Two characteristics types of vortex behavior have been found with simulations. At low flow rates the vortex created in the cyclone dissipates in free space (without attaching to a surface) while at higher flow rates it attaches to the cyclone wall. The effects of the Reynolds number on the natural vortex length and the rotation frequency of the end of the vortex have been revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone" title="cyclone">cyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20field" title=" flow field"> flow field</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20vortex%20length" title=" natural vortex length"> natural vortex length</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/127284/les-investigation-of-the-natural-vortex-length-in-a-small-scale-gas-cyclone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Numerical Investigation of the Performance of a Vorsyl Separator Using a Euler-Lagrange Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guozhen%20Li">Guozhen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Hall"> Philip Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Miles"> Nick Miles</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Wu"> Tao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Dong"> Jie Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a Euler-Lagrange model of the water-particles multiphase flows in a Vorsyl separator where particles with different densities are separated. A series of particles with their densities ranging from 760 kg/m<sup>3</sup> to 1380 kg/m<sup>3</sup> were fed into the Vorsyl separator with water by means of tangential inlet. The simulation showed that the feed materials acquired centrifugal force which allows most portion of the particles with a density less than water to move to the center of the separator, enter the vortex finder and leave the separator through the bottom outlet. While the particles heavier than water move to the wall, reach the throat area and leave the separator through the side outlet. The particles were thus separated and particles collected at the bottom outlet are pure and clean. The influence of particle density on separation efficiency was investigated which demonstrated a positive correlation of the separation efficiency with increasing density difference between medium liquid and the particle. In addition, the influence of the split ratio on the performance was studied which showed that the separation efficiency of the Vorsyl separator can be improved by the increase of split ratio. The simulation also suggested that the Vorsyl separator may not function when the feeding velocity is smaller than a certain critical feeding in velocity. In addition, an increasing feeding velocity gives rise to increased pressure drop, however does not necessarily increase the separation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vorsyl%20separator" title="Vorsyl separator">Vorsyl separator</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20efficiency" title=" separation efficiency"> separation efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20ratio" title=" split ratio"> split ratio</a> </p> <a href="https://publications.waset.org/abstracts/49223/numerical-investigation-of-the-performance-of-a-vorsyl-separator-using-a-euler-lagrange-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20A.%20Hussein">Haitham A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozi%20Abdullah"> Rozi Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Issa%20Saket"> Issa Saket</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Azlin"> Md. Azlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%2Fwater%20separator%20tanks" title="oil/water separator tanks">oil/water separator tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20baffles" title=" inlet baffles"> inlet baffles</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/52725/the-effect-of-inlet-baffle-position-in-improving-the-efficiency-of-oil-and-water-gravity-separator-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Unsteady Characteristics Investigation on the Precessing Vortex Breakdown and Energy Separation in a Vortex Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangji%20Guo">Xiangji Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Zhang"> Bo Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the phenomenon of vortex breakdown in a vortex tube was analyzed within the scope of unsteady character in swirl flows. A 3-D Unsteady Reynolds-averaged Navier–Stokes (URANS) closed by the Reynolds Stress Model (RSM) was adopted to simulate the large-scale vortex structure in vortex tube, and the numerical model was verified by the steady results. The swirl number was calculated for the vortex tube and the flow field was classed as strong swirl flow. According to the results, a time-dependent spiral flow field gyrates around a central recirculation zone which is precessing around the axis of the tube, and manifests the flow structure is the spiral type (S-type) vortex breakdown. The vortex breakdown is crucial for the formation of the central recirculation zone (CRZ), a further discussion was about the affection on CRZ with the different external conditions of vortex tube, the study on the unsteady characters was expected to hope to design of vortex tube and analyze the energy separation effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title="vortex tube">vortex tube</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20breakdown" title=" vortex breakdown"> vortex breakdown</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20recirculation%20zone" title=" central recirculation zone"> central recirculation zone</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady" title=" unsteady"> unsteady</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20separation" title=" energy separation"> energy separation</a> </p> <a href="https://publications.waset.org/abstracts/52531/unsteady-characteristics-investigation-on-the-precessing-vortex-breakdown-and-energy-separation-in-a-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Katanoda">Hiroshi Katanoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hazwan%20bin%20Yusof"> Mohd Hazwan bin Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical investigation from the viewpoint of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study. It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing a region with higher total temperature, compared to the distant region, peripheral to the vortex core. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20separation%20mechanism" title="energy separation mechanism">energy separation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20analysis" title=" theoretical analysis"> theoretical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a>, <a href="https://publications.waset.org/abstracts/search?q=vortical%20flow" title=" vortical flow"> vortical flow</a> </p> <a href="https://publications.waset.org/abstracts/10251/energy-separation-mechanism-in-uni-flow-vortex-tube-using-compressible-vortex-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Numerical Investigation of Two Turbulence Models for Predicting the Temperature Separation in Conical Vortex Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Guen">M. Guen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A three-dimensional numerical study is used to analyze the behavior of the flow inside a vortex tube. The vortex tube or Ranque-Hilsch vortex tube is a simple device which is capable of dividing compressed air from the inlet nozzle tangentially into two flow with different temperatures warm and cold. This phenomenon is known from literature by temperature separation. The K ω-SST and K-ε turbulence models are used to predict the turbulent flow behaviour inside the tube. The vortex tube is an Exair 708 slpm (25 scfm) commercial tube. The cold and hot exits areas are 30.2 and 95 mm2 respectively. The vortex nozzle consists of 6 straight slots; the height and the width of each slot are 0.97 mm and 1.41 mm. The total area normal to the flow associated with six nozzles is therefore 8.15 mm 2. The present study focuses on a comparison between two turbulence models K ω-SST, K-ε by using a new configuration of vortex tube (Conical Vortex Tube). The performance curves of the temperature separation versus cold outlet mass fraction were calculated and compared with experimental and numerical study of other researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conical%20vortex%20tube" title="conical vortex tube">conical vortex tube</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20separation" title=" temperature separation"> temperature separation</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20mass%20fraction" title=" cold mass fraction"> cold mass fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/42531/numerical-investigation-of-two-turbulence-models-for-predicting-the-temperature-separation-in-conical-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Contributions at the Define of the Vortex Plane Cyclic Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petre%20Stan">Petre Stan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marinica%20Stan"> Marinica Stan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new way to define the vortex plane cyclic motion is exposed, starting from the physical cause of reacting the vortex. The Navier-Stokes equations are used in cylindrical coordinates for viscous fluids in laminar motion, and are integrated in case of a infinite long revolving cylinder which rotates around a pintle in a viscous fluid that occupies the entire space up to infinite. In this way, a revolving field of velocities in fluid is obtained, having the shape of a vortex in which the intensity is obtained objectively, being given by the physical phenomenon that generates this vortex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20coordinates" title="cylindrical coordinates">cylindrical coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20fluid" title=" viscous fluid"> viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20plane" title=" vortex plane "> vortex plane </a> </p> <a href="https://publications.waset.org/abstracts/129131/contributions-at-the-define-of-the-vortex-plane-cyclic-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Interaction between Unsteady Supersonic Jet and Vortex Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kitazono">Kazumasa Kitazono</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Fukuoka"> Hiroshi Fukuoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nao%20Kuniyoshi"> Nao Kuniyoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minoru%20Yaga"> Minoru Yaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Eri%20Ueno"> Eri Ueno</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoaki%20Fukuda"> Naoaki Fukuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshio%20Takiya"> Toshio Takiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-wave" title=" shock-wave"> shock-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20jet" title=" unsteady jet"> unsteady jet</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20ring" title=" vortex ring"> vortex ring</a> </p> <a href="https://publications.waset.org/abstracts/50911/interaction-between-unsteady-supersonic-jet-and-vortex-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Airliner-UAV Flight Formation in Climb Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Zikmund">Pavel Zikmund</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Popela"> Robert Popela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extreme formation is a theoretical concept of self-sustain flight when a big Airliner is followed by a small UAV glider flying in airliner’s wake vortex. The paper presents results of climb analysis with a goal to lift the gliding UAV to airliner’s cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Then, flight performance of the UAV in the wake vortex is evaluated by analytical methods. Time history of optimal distance between the airliner and the UAV during the climb is determined. The results are encouraging, therefore available UAV drag margin for electricity generation is figured out for different vortex models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flight%20in%20formation" title="flight in formation">flight in formation</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sustained%20flight" title=" self-sustained flight"> self-sustained flight</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20vortex" title=" wake vortex"> wake vortex</a> </p> <a href="https://publications.waset.org/abstracts/34122/airliner-uav-flight-formation-in-climb-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Air Pollution Control from Rice Shellers - a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ahuja">S. M. Ahuja </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Rice Sheller is used for obtaining polished white rice from paddy. There are about 3000 Rice Shellers in Punjab and 50000 in India. During the process of shelling lot of dust is emitted from different unit operations like paddy silo, paddy shaker, bucket elevators, huskers, paddy separator etc. These dust emissions have adverse effect on the health of the workers and the wear and tear of the shelling machinery is also fast. All the dust emissions spewing out of these unit operations of a rice Sheller were contained by providing suitable hoods and enclosures while ensuring their workability. These were sucked by providing an induced draft fan followed by a high efficiency cyclone separator that has got an overall dust collection efficiency of more than 90 %. This cyclone separator replaced two cyclone separators and a filter bag house, which the Rice Sheller was already having. The dust concentration in the stack after the installation of cyclone separator is well within the stipulated standards. Besides controlling pollution there is improvement in the quality of products like bran and the life of shelling machinery has also enhanced. The payback period of this technology is less than four shelling months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclone%20separator" title=" cyclone separator"> cyclone separator</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20conveying" title=" pneumatic conveying"> pneumatic conveying</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20shellers" title=" rice shellers"> rice shellers</a> </p> <a href="https://publications.waset.org/abstracts/30019/air-pollution-control-from-rice-shellers-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Singh">N. K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20with%20vortex%20generators" title=" channel with vortex generators"> channel with vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20Reynolds%20number%20on%20heat%20transfer" title=" effect of Reynolds number on heat transfer"> effect of Reynolds number on heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/3475/numerical-investigation-of-heat-transfer-in-a-channel-with-delta-winglet-vortex-generators-at-different-reynolds-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Enhancement of MIMO H₂S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20M.%20A.%20S.%20Mahmoud">Muhammad M. A. S. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H₂S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. The new design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20separator" title="gas separator">gas separator</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sweetening" title=" gas sweetening"> gas sweetening</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20controller" title=" intelligent controller"> intelligent controller</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a> </p> <a href="https://publications.waset.org/abstracts/36514/enhancement-of-mimo-h2s-gas-sweetening-separator-tower-using-fuzzy-logic-controller-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Theoretical Calculation of Wingtip Devices for Agricultural Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hashim%20Bashir">Hashim Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Vortex generated at the edges of the wing of an Aircraft are called the Wing Tip Vortex. The Wing Tip Vortices are associated with induced drag. The induced drag is responsible for nearly 50% of aircraft total drag and can be reduced through modifications to the wing tip. Some models displace wingtips vortices outwards diminishing the induced drag. Concerning agricultural aircrafts, wing tip vortex position is really important, while spreading products over a plantation. In this work, theoretical calculations were made in order to study the influence in aerodynamic characteristics and vortex position, over Sudanese agricultural aircraft, by the following types of wing tips: delta tip, winglet and down curved. The down curved tip was better for total drag reduction, but not good referring to vortex position. The delta tip gave moderate improvement on aerodynamic characteristic and on vortex position. The winglet had a better vortex position and lift increment, but caused an undesirable result referring to the wing root bending moment. However, winglet showed better development potential for agricultural aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wing%20tip%20device" title="wing tip device">wing tip device</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20tip%20vortice" title=" wing tip vortice"> wing tip vortice</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20aircaft" title=" agricultural aircaft"> agricultural aircaft</a>, <a href="https://publications.waset.org/abstracts/search?q=winglet" title=" winglet"> winglet</a> </p> <a href="https://publications.waset.org/abstracts/57169/theoretical-calculation-of-wingtip-devices-for-agricultural-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Pourmahmoud">Nader Pourmahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hassanzadeh"> Amir Hassanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20separation" title="energy separation">energy separation</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20pressure" title=" inlet pressure"> inlet pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20chamber" title=" vortex chamber"> vortex chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a> </p> <a href="https://publications.waset.org/abstracts/18358/cfd-simulation-of-the-inlet-pressure-effects-on-the-cooling-capacity-enhancement-for-vortex-tube-with-couple-vortex-chambers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Nabeel%20Khan">Mohammed Nabeel Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Perisamy"> C. Perisamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AVE" title="AVE">AVE</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20vortex%20engine" title=" atmospheric vortex engine"> atmospheric vortex engine</a>, <a href="https://publications.waset.org/abstracts/search?q=atmosphere" title=" atmosphere"> atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=updraft" title=" updraft"> updraft</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/102553/utilizing-waste-heat-from-thermal-power-plants-to-generate-power-by-modelling-an-atmospheric-vortex-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Numerical Investigation of Flow and Heat Transfer Characteristics of a Natural Refrigerant within a Vortex Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Popovac">Mirza Popovac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the application of the vortex tubes towards increasing the efficiency of high temperature heat pumps based on natural refrigerants, by recovering a part of the expansion work within the refrigerant cycle. To this purpose the 3D Navier-Stokes solver is used to perform a set of numerical simulations, investigating the vortex tube performance. Firstly, the fluid flow and heat transfer characteristics are analyzed for standard configurations of vortex tubes, and the obtained results are validated against the experimental and numerical data available in literature. Subsequently, different geometry specifications are analyzed, as well as the interplay between relevant heat pump operating conditions and the properties of natural refrigerants. Finally, the characteristic curve of performance will be derived for investigated vortex tubes specifications when used within high temperature heat pumps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title="heat pump">heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20refrigerant" title=" natural refrigerant"> natural refrigerant</a> </p> <a href="https://publications.waset.org/abstracts/105555/numerical-investigation-of-flow-and-heat-transfer-characteristics-of-a-natural-refrigerant-within-a-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Experimental and Computational Investigations of Baffle Position Effects on the Performance of Oil and Water Separator Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20A.%20Hussein">Haitham A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozi%20Abdullah%E2%80%8F%E2%80%8E"> Rozi Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Md%20Azlin%20Md%20Said%20%E2%80%8E"> Md Azlin Md Said </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. In this study, the effect on hydraulic performance of different baffle structure positions inside a tank was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The measurements were compared with the result of the computational model. The results of the experimental and computational simulations indicate that the best location of a baffle structure is achieved when the standard deviation of the velocity profile and the volume of the circulation zone inside the tank are minimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20separator%20tanks" title="gravity separator tanks">gravity separator tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle%20position" title=" baffle position"> baffle position</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=ADV" title=" ADV"> ADV</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20droplet" title=" oil droplet"> oil droplet</a> </p> <a href="https://publications.waset.org/abstracts/13318/experimental-and-computational-investigations-of-baffle-position-effects-on-the-performance-of-oil-and-water-separator-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kishan">R. Kishan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Sumant"> R. M. Sumant</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Suhas"> S. Suhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Mahalingam"> Arun Mahalingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title="CFD analysis">CFD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=FVM" title=" FVM"> FVM</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20coefficient" title=" lift coefficient"> lift coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20generators" title=" vortex generators"> vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a> </p> <a href="https://publications.waset.org/abstracts/42241/a-cfd-study-of-the-performance-characteristics-of-vented-cylinders-as-vortex-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Experimental Study on Temperature Splitting of a Counter-Flow Ranque-Hilsch Vortex Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany.%20A.%20Mohamed">Hany. A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Attalla"> M. Attalla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salem"> M. Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20M.%20Mghrabie"> Hussein M. Mghrabie</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Specht"> E. Specht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment al investigation is made to determine the effects of the nozzle dimensions and the inlet pressure on the heating and cooling performance of the counter flow Ranque–Hilsch vortex tube when air used as a working fluid. The all results were taking under inlet pressures were adjusted from 200 kPa to 600 kPa with 100 kPa increments. The conventional tangential generator with number of nuzzle of 6 was used and inner diameter of 7.5 mm. During the experiments, a vortex tube is used with an L/D ratio varied from 10 to 30. Finally, it is observed that the effect of the nuzzle aspect ratio on the energy separation changes according to the value of L/D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranque-Hilsch" title="Ranque-Hilsch">Ranque-Hilsch</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a>, <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title=" aspect ratio"> aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20separation" title=" energy separation "> energy separation </a> </p> <a href="https://publications.waset.org/abstracts/20897/experimental-study-on-temperature-splitting-of-a-counter-flow-ranque-hilsch-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Comparison of Inexpensive Cell Disruption Techniques for an Oleaginous Yeast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scott%20Nielsen">Scott Nielsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Longanesi"> Luca Longanesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Chuck"> Chris Chuck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palm oil is obtained from the flesh and kernel of the fruit of oil palms and is the most productive and inexpensive oil crop. The global demand for palm oil is approximately 75 million metric tonnes, a 29% increase in global production of palm oil since 2016. This expansion of oil palm cultivation has resulted in mass deforestation, vast biodiversity destruction and increasing net greenhouse gas emissions. One possible alternative is to produce a saturated oil, similar to palm, from microbes such as oleaginous yeast. The yeasts can be cultured on sugars derived from second-generation sources and do not compete with tropical forests for land. One highly promising oleaginous yeast for this application is Metschnikowia pulcherrima. However, recent techno-economic modeling has shown that cell lysis and standard lipid extraction are major contributors to the cost of the oil. Typical cell disruption techniques to extract either single cell oils or proteins have been based around bead-beating, homogenization and acid lysis. However, these can have a detrimental effect on lipid quality and are energy-intensive. In this study, a vortex separator, which produces high sheer with minimal energy input, was investigated as a potential low energy method of lysing cells. This was compared to four more traditional methods (thermal lysis, acid lysis, alkaline lysis, and osmotic lysis). For each method, the yeast loading was also examined at 1 g/L, 10 g/L and 100 g/L. The quality of the cell disruption was measured by optical cell density, cell counting and the particle size distribution profile comparison over a 2-hour period. This study demonstrates that the vortex separator is highly effective at lysing the cells and could potentially be used as a simple apparatus for lipid recovery in an oleaginous yeast process. The further development of this technology could potentially reduce the overall cost of microbial lipids in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20substitute" title="palm oil substitute">palm oil substitute</a>, <a href="https://publications.waset.org/abstracts/search?q=metschnikowia%20pulcherrima" title=" metschnikowia pulcherrima"> metschnikowia pulcherrima</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20disruption" title=" cell disruption"> cell disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20lysis" title=" cell lysis"> cell lysis</a> </p> <a href="https://publications.waset.org/abstracts/136695/comparison-of-inexpensive-cell-disruption-techniques-for-an-oleaginous-yeast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Flow Control Optimisation Using Vortex Generators in Turbine Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Karthik">J. Karthik</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vinayagamurthy"> G. Vinayagamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title="flow control">flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20generators" title=" vortex generators"> vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimisation" title=" design optimisation"> design optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD "> CFD </a> </p> <a href="https://publications.waset.org/abstracts/38040/flow-control-optimisation-using-vortex-generators-in-turbine-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> The Effects of the Aspect Ratio of a Flexible Cylinder on the Vortex Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vortex structures observed in the wake of a flexible cylinder can be significantly different from those of a traditional vibrating, spring mounted, rigid cylinder. These differences can significantly affect the VIV characteristics of the flow and subsequently the VIV response of the cylindrical structures. In this work, we present how the aspect ratio of a flexible cylinder can change the vortex structures in its wake. We will discuss different vortex dynamics which can be observed in the wake of the vibrating flexible cylinder, and how they can affect the vibrational response of the cylinder. Moreover, we will study the transition of these structures versus the aspect ratio of the flexible cylinder. We will discuss how these transitions affect the in-line and transverse forces on the structure. In the end, we will provide general guidelines on the minimum acceptable aspect ratio for the offshore riser studies which may have grave implications for future numerical and experimental works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20cylinder" title=" flexible cylinder"> flexible cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25475/the-effects-of-the-aspect-ratio-of-a-flexible-cylinder-on-the-vortex-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Reduction of Aerodynamic Drag Using Vortex Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Ojha">Siddharth Ojha</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Dua"> Varun Dua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classified as one of the most important reasons of aerodynamic drag in the sedan automobiles is the fluid flow separation near the vehicle’s rear end. To retard the separation of flow, bump-shaped vortex generators are being tested for its implementation to the roof end of a sedan vehicle. Frequently used in the aircrafts to prevent the separation of fluid flow, vortex generators themselves produce drag, but they also substantially reduce drag by preventing flow separation at the downstream. The net effects of vortex generators can be calculated by summing the positive and negative impacts and effects. Since this effect depends on dimensions and geometry of vortex generators, those present on the vehicle roof are optimized for maximum efficiency and performance. The model was tested through ANSYS CFD analysis and modeling. The model was tested in the wind tunnel for observing it’s properties such as aerodynamic drag and flow separation and a major time lag was gained by employing vortex generators in the scaled model. Major conclusions which were recorded during the analysis were a substantial 24% reduction in the aerodynamic drag and 14% increase in the efficiency of the sedan automobile as the flow separation from the surface is delayed. This paper presents the results of optimization, the effect of vortex generators in the flow field and the mechanism by which these effects occur and are regulated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20devices" title=" aerodynamic devices"> aerodynamic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=body" title=" body"> body</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title=" flow visualization"> flow visualization</a> </p> <a href="https://publications.waset.org/abstracts/76172/reduction-of-aerodynamic-drag-using-vortex-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Synchronization of Traveling Waves within a Hollow-Core Vortex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ait%20Abderrahmane">H. Ait Abderrahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fayed"> M. Fayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Ng"> H. D. Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20H.%20Vatistas"> G. H. Vatistas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper expands details and confirms the transition mechanism between two subsequent polygonal patterns of the hollow-core vortex. Using power spectral analysis, we confirm in this work that the transition from any <em>N-</em>gon to <em>(N+1)-</em>gon pattern observed within a hollow-core vortex of shallow rotating flows occurs in two steps. The regime was quasi-periodic before the frequencies lock (synchronization). The ratios of locking frequencies were found to be equal to <em>(N-1)/N</em>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patterns" title="patterns">patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling" title=" swirling"> swirling</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-periodic" title=" quasi-periodic"> quasi-periodic</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/61357/synchronization-of-traveling-waves-within-a-hollow-core-vortex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Heat Transfer Augmentation in a Channel with Delta Winglet Type Vortex Generators at Different Blade Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kant%20Singh">Nirmal Kant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshuman%20Pratap%20Singh"> Anshuman Pratap Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the augmentation of heat transfer in a channel with delta winglet type vortex generators is evaluated. Three-dimensional numerical simulations are performed in a rectangular channel with longitudinal triangular vortex generators (LVGs). The span wise averaged Nusselt number and mean temperature are compared with and without vortex generators in the channel. The effect of variation of blade angle (15°, 30°, 45°, and 60°) is studied at a Reynolds number of 10000. The numerical results indicate that the application of LVGs effectively enhances heat transfer in the channel. The Nusselt number and mean outlet temperature were found to be greater using LVGs than in the channel without LVGs. It is observed that heat transfer increases with increase in blade angle at the same Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20channel" title=" rectangular channel"> rectangular channel</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20vortex%20generators" title=" longitudinal vortex generators"> longitudinal vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20blade%20angle" title=" effect of blade angle"> effect of blade angle</a> </p> <a href="https://publications.waset.org/abstracts/15481/heat-transfer-augmentation-in-a-channel-with-delta-winglet-type-vortex-generators-at-different-blade-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Dynamics and Advection in a Vortex Parquet on the Plane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Filimonova%20Alexanra">Filimonova Alexanra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inviscid incompressible fluid flows are considered. The object of the study is a vortex parquet – a structure consisting of distributed vortex spots of different directions, occupying the entire plane. The main attention is paid to the study of advection processes of passive particles in the corresponding velocity field. The dynamics of the vortex structures is considered in a rectangular region under the assumption that periodic boundary conditions are imposed on the stream function. Numerical algorithms are based on the solution of the initial-boundary value problem for nonstationary Euler equations in terms of vorticity and stream function. For this, the spectral-vortex meshless method is used. It is based on the approximation of the stream function by the Fourier series cut and the approximation of the vorticity field by the least-squares method from its values in marker particles. A vortex configuration, consisting of four vortex patches is investigated. Results of a numerical study of the dynamics and interaction of the structure are presented. The influence of the patch radius and the relative position of positively and negatively directed patches on the processes of interaction and mixing is studied. The obtained results correspond to the following possible scenarios: the initial configuration does not change over time; the initial configuration forms a new structure, which is maintained for longer times; the initial configuration returns to its initial state after a certain period of time. The processes of mass transfer of vorticity by liquid particles on a plane were calculated and analyzed. The results of a numerical analysis of the particles dynamics and trajectories on the entire plane and the field of local Lyapunov exponents are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ideal%20fluid" title="ideal fluid">ideal fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless%20methods" title=" meshless methods"> meshless methods</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20structures%20in%20liquids" title=" vortex structures in liquids"> vortex structures in liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20parquet." title=" vortex parquet."> vortex parquet.</a> </p> <a href="https://publications.waset.org/abstracts/171137/dynamics-and-advection-in-a-vortex-parquet-on-the-plane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Prediction of Flow Around a NACA 0015 Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukhadia%20Karima">Boukhadia Karima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20code" title="CFD code">CFD code</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%20Profile" title=" NACA Profile"> NACA Profile</a>, <a href="https://publications.waset.org/abstracts/search?q=detachment" title=" detachment"> detachment</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20incidence" title=" angle of incidence"> angle of incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/21858/prediction-of-flow-around-a-naca-0015-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Running the Athena Vortex Lattice Code in JAVA through the Java Native Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Okonkwo">Paul Okonkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Howard%20Smith"> Howard Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=AVL" title=" AVL"> AVL</a>, <a href="https://publications.waset.org/abstracts/search?q=JNI" title=" JNI"> JNI</a> </p> <a href="https://publications.waset.org/abstracts/22131/running-the-athena-vortex-lattice-code-in-java-through-the-java-native-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vortex%20separator&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>