CINXE.COM
Search results for: terrestrial water storage
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: terrestrial water storage</title> <meta name="description" content="Search results for: terrestrial water storage"> <meta name="keywords" content="terrestrial water storage"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="terrestrial water storage" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="terrestrial water storage"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10402</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: terrestrial water storage</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10402</span> Downscaling Grace Gravity Models Using Spectral Combination Techniques for Terrestrial Water Storage and Groundwater Storage Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzam%20Fatolazadeh">Farzam Fatolazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalifa%20Goita"> Kalifa Goita</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Eshagh"> Mehdi Eshagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shusen%20Wang"> Shusen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Gravity Recovery and Climate Experiment (GRACE) is a satellite mission with twin satellites for the precise determination of spatial and temporal variations in the Earth’s gravity field. The products of this mission are monthly global gravity models containing the spherical harmonic coefficients and their errors. These GRACE models can be used for estimating terrestrial water storage (TWS) variations across the globe at large scales, thereby offering an opportunity for surface and groundwater storage (GWS) assessments. Yet, the ability of GRACE to monitor changes at smaller scales is too limited for local water management authorities. This is largely due to the low spatial and temporal resolutions of its models (~200,000 km2 and one month, respectively). High-resolution GRACE data products would substantially enrich the information that is needed by local-scale decision-makers while offering the data for the regions that lack adequate in situ monitoring networks, including northern parts of Canada. Such products could eventually be obtained through downscaling. In this study, we extended the spectral combination theory to simultaneously downscale spatiotemporally the 3o spatial coarse resolution of GRACE to 0.25o degrees resolution and monthly coarse resolution to daily resolution. This method combines the monthly gravity field solution of GRACE and daily hydrological model products in the form of both low and high-frequency signals to produce high spatiotemporal resolution TWSA and GWSA products. The main contribution and originality of this study are to comprehensively and simultaneously consider GRACE and hydrological variables and their uncertainties to form the estimator in the spectral domain. Therefore, it is predicted that we reach downscale products with an acceptable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GRACE%20satellite" title="GRACE satellite">GRACE satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20storage" title=" groundwater storage"> groundwater storage</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20combination" title=" spectral combination"> spectral combination</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage" title=" terrestrial water storage"> terrestrial water storage</a> </p> <a href="https://publications.waset.org/abstracts/166919/downscaling-grace-gravity-models-using-spectral-combination-techniques-for-terrestrial-water-storage-and-groundwater-storage-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10401</span> Assimilating Multi-Mission Satellites Data into a Hydrological Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Khaki">Mehdi Khaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Forootan"> Ehsan Forootan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Awange"> Joseph Awange</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kuhn"> Michael Kuhn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20assimilation" title="data assimilation">data assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=GRACE" title=" GRACE"> GRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=AMSR-E" title=" AMSR-E"> AMSR-E</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20model" title=" hydrological model"> hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=EnSRF" title=" EnSRF"> EnSRF</a> </p> <a href="https://publications.waset.org/abstracts/71006/assimilating-multi-mission-satellites-data-into-a-hydrological-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10400</span> Preliminary Study on Chinese Traditional Garden Making Based on Water Storage Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Fangxin">Liu Fangxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Jijun"> Zhao Jijun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, China and the world are facing the same problems of flooding, city waterlogging and other environment issues. Throughout history, China had many excellent experiences dealing with the flood, and can be used as a significant reference for contemporary urban construction. In view of this, the research used the method of literature analysis to find out the main water storage measures in ancient cities, including reservoir storage and pond water storage. And it used the case study method to introduce the historical evolution, engineering measures and landscape design of 4 typical ancient Chinese cities in details. Then we found the pond and the reservoir were the main infrastructures for the ancient Chinese city to avoid the waterlogging and flood. At last this paper summed up the historical experience of Chinese traditional water storage and made conclusions that the establishment of a reasonable green water storage facilities could be used to solve today's rain and flood problems, and hoped to give some enlightenment of stormwater management to our modern city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20Chinese%20cities" title="ancient Chinese cities">ancient Chinese cities</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20storage%20project" title=" water storage project"> water storage project</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20classical%20gardening" title=" Chinese classical gardening"> Chinese classical gardening</a>, <a href="https://publications.waset.org/abstracts/search?q=stormwater%20management" title=" stormwater management"> stormwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20facilities" title=" green facilities"> green facilities</a> </p> <a href="https://publications.waset.org/abstracts/70823/preliminary-study-on-chinese-traditional-garden-making-based-on-water-storage-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10399</span> Technical and Economical Feasibility Analysis of Solar Water Pumping System - Case Study in Iran </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Gharib">A. Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moradi"> M. Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate. Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with a storage battery, AC solar water pumping with a storage tank, and DC direct solar water pumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technical%20and%20economic%20feasibility" title="technical and economic feasibility">technical and economic feasibility</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20pumping%20system" title=" solar water pumping system"> solar water pumping system</a> </p> <a href="https://publications.waset.org/abstracts/34030/technical-and-economical-feasibility-analysis-of-solar-water-pumping-system-case-study-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10398</span> Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.Goodarzi">M.Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Mohammadi"> M.Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rezaee"> M. Rezaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate.Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with storage battery, AC solar water pumping with storage tank and DC direct solar water pumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technical%20feasibility" title="technical feasibility">technical feasibility</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20water%20pumping%20system" title=" photovoltaic water pumping system"> photovoltaic water pumping system</a> </p> <a href="https://publications.waset.org/abstracts/18930/technical-feasibility-analysis-of-pv-water-pumping-system-in-khuzestan-province-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">630</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10397</span> Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Barreto">P. Barreto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guevara"> A. Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ibujes"> V. Ibujes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20water" title=" natural water"> natural water</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20species" title=" plant species"> plant species</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizofiltration" title=" rhizofiltration"> rhizofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20solutions" title=" synthetic solutions"> synthetic solutions</a> </p> <a href="https://publications.waset.org/abstracts/101024/evaluation-of-arsenic-removal-in-synthetic-solutions-and-natural-waters-by-rhizofiltration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10396</span> Stand Alone Multiple Trough Solar Desalination with Heat Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Diaf">Abderrahmane Diaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Benabdellaziz"> Kamel Benabdellaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20trough%20distillation" title="multiple trough distillation">multiple trough distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20desalination" title=" solar desalination"> solar desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20distillation%20with%20heat%20storage" title=" solar distillation with heat storage"> solar distillation with heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20based%20heat%20storage%20system" title=" water based heat storage system"> water based heat storage system</a> </p> <a href="https://publications.waset.org/abstracts/30827/stand-alone-multiple-trough-solar-desalination-with-heat-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10395</span> Efficient Storage in Cloud Computing by Using Index Replica </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Singh%20Deora">Bharat Singh Deora</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Satpute"> Sushma Satpute</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing is based on resource sharing. Like other resources which can be shareable, storage is a resource which can be shared. We can use collective resources of storage from different locations and maintain a central index table for storage details. The storage combining of different places can form a suitable data storage which is operated from one location and is very economical. Proper storage of data should improve data reliability & availability and bandwidth utilization. Also, we are moving the contents of one storage to other according to our need. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20storage" title=" cloud storage"> cloud storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Iaas" title=" Iaas"> Iaas</a>, <a href="https://publications.waset.org/abstracts/search?q=PaaS" title=" PaaS"> PaaS</a>, <a href="https://publications.waset.org/abstracts/search?q=SaaS" title=" SaaS"> SaaS</a> </p> <a href="https://publications.waset.org/abstracts/62077/efficient-storage-in-cloud-computing-by-using-index-replica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10394</span> Arsenic Speciation in Cicer arietinum: A Terrestrial Legume That Contains Organoarsenic Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Sagar">Anjana Sagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic poisoned ground water is a major concern in South Asia. The arsenic enters the food chain not only through drinking but also by using arsenic polluted water for irrigation. Arsenic is highly toxic in its inorganic forms; however, organic forms of arsenic are comparatively less toxic. In terrestrial plants, inorganic form of arsenic is predominantly found; however, we found that significant proportion of organic arsenic was present in root and shoot of a staple legume, chickpea (Cicer arientinum L) plants. Chickpea plants were raised in pot culture on soils spiked with arsenic ranging from 0-70 mg arsenate per Kg soil. Total arsenic concentrations of chickpea shoots and roots were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) ranging from 0.76 to 20.26, and 2.09 to 16.43 µg g⁻¹ dry weight, respectively. Information on arsenic species was acquired by methanol/water extraction method, with arsenic species being analyzed by high-performance liquid chromatography (HPLC) coupled with ICP-MS. Dimethylarsinic acid (DMA) was the only organic arsenic species found in amount from 0.02 to 3.16 % of total arsenic shoot concentration and 0 to 6.93 % of total arsenic root concentration, respectively. To investigate the source of the organic arsenic in chickpea plants, arsenic species in the rhizosphere of soils of plants were also examined. The absence of organic arsenic in soils would suggest the possibility of formation of DMA in plants. The present investigation provides useful information for better understanding of distribution of arsenic species in terrestrial legume plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20speciation" title=" arsenic speciation"> arsenic speciation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethylarsinic%20acid" title=" dimethylarsinic acid"> dimethylarsinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=organoarsenic" title=" organoarsenic"> organoarsenic</a> </p> <a href="https://publications.waset.org/abstracts/125043/arsenic-speciation-in-cicer-arietinum-a-terrestrial-legume-that-contains-organoarsenic-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10393</span> Analysis of Gas Disturbance Characteristics in Lunar Sample Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng">Lv Shizeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao"> Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yi"> Zhang Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding%20Wenjing"> Ding Wenjing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lunar%20samples" title="lunar samples">lunar samples</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20disturbance" title=" gas disturbance"> gas disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20device" title=" storage device"> storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20analysis" title=" characteristic analysis"> characteristic analysis</a> </p> <a href="https://publications.waset.org/abstracts/69595/analysis-of-gas-disturbance-characteristics-in-lunar-sample-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10392</span> Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odai%20Ibrahim%20Mohammed%20Al%20Balasmeh">Odai Ibrahim Mohammed Al Balasmeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Karmaker"> Tapas Karmaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Babbar"> Richa Babbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20data" title="satellite data">satellite data</a>, <a href="https://publications.waset.org/abstracts/search?q=normalize%20differences%20vegetation%20index" title=" normalize differences vegetation index"> normalize differences vegetation index</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI" title=" NDVI"> NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=normalize%20differences%20water%20index" title=" normalize differences water index"> normalize differences water index</a>, <a href="https://publications.waset.org/abstracts/search?q=NDWI" title=" NDWI"> NDWI</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20capacity" title=" reservoir capacity"> reservoir capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=t-test%20hypothesis" title=" t-test hypothesis"> t-test hypothesis</a> </p> <a href="https://publications.waset.org/abstracts/125321/estimation-of-reservoir-capacity-and-sediment-deposition-using-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10391</span> Effect of Drying Condition on the Wheat Germ Stability Using Fluidized-Bed Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Hung">J. M. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Chan"> J. S. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Kuo"> M. I. Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Chan"> D. S. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Lu"> C. P. Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat germ is a by-product obtained from wheat milling and it contains highly concentrated nutrients. Due to highly lipase and lipoxygenase activities, wheat germ products can easily turn into rancid flavor and cause a short life. The objective of this study is to control moisture content and retard lipid hydrolysis by fluidized-bed drying. The raw wheat germ of 2 kg was dried with a vertical batch fluidized bed with the following varying conditions, inlet air temperature of 50, 80 and 120°C, inlet air velocity of 3.62 m/s. The experiment was designed to obtain a final product at around 40°C with water activity of 0.3 ± 0.1. Changes in the moisture content, water activity, enzyme activity of dried wheat germ during storage were measured. Results showed the fluidized-bed drying was found to reduce moisture content, water activity and lipase activity of raw wheat germ. After drying wheat germ, moisture content and water activity were between 5.8% to 7.2% and 0.28 to 0.40 respectively during 12 weeks of storage. The variation range of water activity indicated to retard lipid oxidation. All drying treatments displayed inactivation of lipase, except for drying condition of 50°C which showed relative high enzyme activity. During storage, lipase activity increased slowly during the first 6 weeks of storage and reached a plateau for another 6 weeks. As a result, using a fluidized-bed dryer was found to be effective drying technique in improving storage stability of wheat germ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20germ" title="wheat germ">wheat germ</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized-bed%20dryer" title=" fluidized-bed dryer"> fluidized-bed dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/54931/effect-of-drying-condition-on-the-wheat-germ-stability-using-fluidized-bed-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10390</span> Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Aisa">Ahmed Aisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Iqbal"> Tariq Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20heating" title="water heating">water heating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20cost%20solar" title=" capital cost solar"> capital cost solar</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a> </p> <a href="https://publications.waset.org/abstracts/50580/design-of-a-solar-water-heating-system-with-thermal-storage-for-a-three-bedroom-house-in-newfoundland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10389</span> Technologies for Solar Energy Storage and Utilization Using Mixture of Molten Salts and Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Mesfin%20Yeneneh">Anteneh Mesfin Yeneneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Shakoor"> Abdul Shakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimoh%20Adewole"> Jimoh Adewole</a>, <a href="https://publications.waset.org/abstracts/search?q=Safinaz%20Al%20Balushi"> Safinaz Al Balushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Al%20Balushi"> Sara Al Balushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research work focuses on exploring better technologies for solar energy storage. The research has the objective of substituting fossil fuels with renewable solar energy technology. This was the reason that motivated the research team to search for alternatives to develop an eco-friendly desalination process, which fully depends on the solar energy source. The Authors also investigated the potential of using different salt mixtures for better solar energy storage and better pure water productivity. Experiments were conducted to understand the impacts of solar energy collection and storage techniques on heat accumulation, heat storage capacity of various compositions of salt mixtures. Based on the experiments conducted, the economic and technical advantages of the integrated water desalination was assessed. Experiments also showed that the best salts with a higher storage efficiency of heat energy are NaCl, KNO3, and MgCl26H2O and polymers such as Poly Propylene and Poly Ethylene Terephthalate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molten%20salts" title="molten salts">molten salts</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20storage%20and%20utilization" title=" solar energy storage and utilization"> solar energy storage and utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/128579/technologies-for-solar-energy-storage-and-utilization-using-mixture-of-molten-salts-and-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10388</span> Carbon Sequestration in Spatio-Temporal Vegetation Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nothando%20Gwazani">Nothando Gwazani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Marembo"> K. R. Marembo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20dynamics" title=" vegetation dynamics"> vegetation dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20carbon%20sink" title=" terrestrial carbon sink"> terrestrial carbon sink</a> </p> <a href="https://publications.waset.org/abstracts/84332/carbon-sequestration-in-spatio-temporal-vegetation-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10387</span> Evaluation of SDS (Software Defined Storage) Controller (CorpHD) for Various Storage Demands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Bokare">Shreya Bokare</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Pawar"> Sanjay Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shika%20Nema"> Shika Nema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth in cloud applications is generating the tremendous amount of data, building load on traditional storage management systems. Software Defined Storage (SDS) is a new storage management concept becoming popular to handle this large amount of data. CoprHD is one of the open source SDS controller, available for experimentation and development in the storage industry. In this paper, the storage management techniques provided by CoprHD to manage heterogeneous storage platforms are experimented and analyzed. Various storage management parameters such as time to provision, storage capacity measurement, and heterogeneity are experimentally evaluated along with the theoretical expression to prove the completeness of CoprHD controller for storage management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20storage" title="software defined storage">software defined storage</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS" title=" SDS"> SDS</a>, <a href="https://publications.waset.org/abstracts/search?q=CoprHD" title=" CoprHD"> CoprHD</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20source" title=" open source"> open source</a>, <a href="https://publications.waset.org/abstracts/search?q=SMI-S%20simulator" title=" SMI-S simulator"> SMI-S simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=clarion" title=" clarion"> clarion</a>, <a href="https://publications.waset.org/abstracts/search?q=Symmetrix" title=" Symmetrix"> Symmetrix</a> </p> <a href="https://publications.waset.org/abstracts/58089/evaluation-of-sds-software-defined-storage-controller-corphd-for-various-storage-demands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10386</span> Water Budget in High Drought-Borne Area in Jaffna District, Sri Lanka during Dry Season</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kandiah">R. Kandiah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Miyamoto"> K. Miyamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Sri Lanka, the Jaffna area is a high drought affected area and depends mainly on groundwater aquifers for water needs. Water for daily activities is extracted from wells. As households manually extract water from the wells, it is not drawn from mid evening to early morning. The water inflow at night provides the maximum water level that decreases during the daytime due to extraction. The storage volume of water in wells is limited or at its lowest level during the dry season. This study analyzes the domestic water budget during the dry season in the Jaffna area. In order to evaluate the water inflow rate into wells, storage volume and extraction volume from wells over time, water pressure is measured at the bottom of three wells, which are located in coastal area denoted as well A, in nonspecific area denoted as well B, and agricultural area denoted as well C. The water quality at the wells A, B, and C, are mostly fresh, modest fresh, and saline respectively. From the monitoring, we can find that the daily inflow amount of water into the wells and daily water extraction depend on each other, that is, higher extraction yields higher inflow. And, in the dry season, the daily inflow volume and the daily extraction volume of each well are almost in balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessible%20volume" title="accessible volume">accessible volume</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption%20volume" title=" consumption volume"> consumption volume</a>, <a href="https://publications.waset.org/abstracts/search?q=inflow%20rate" title=" inflow rate"> inflow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20budget" title=" water budget"> water budget</a> </p> <a href="https://publications.waset.org/abstracts/44906/water-budget-in-high-drought-borne-area-in-jaffna-district-sri-lanka-during-dry-season" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10385</span> Challenges in Multi-Cloud Storage Systems for Mobile Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Bedi">Rajeev Kumar Bedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaswinder%20Singh"> Jaswinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Gupta"> Sunil Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20storage" title="cloud storage">cloud storage</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20privacy" title=" data privacy"> data privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20security" title=" data security"> data security</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20cloud%20storage" title=" multi cloud storage"> multi cloud storage</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20devices" title=" mobile devices"> mobile devices</a> </p> <a href="https://publications.waset.org/abstracts/68072/challenges-in-multi-cloud-storage-systems-for-mobile-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">699</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10384</span> Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edjere%20Oghenekohwiroro">Edjere Oghenekohwiroro</a>, <a href="https://publications.waset.org/abstracts/search?q=Asibor%20Irabor%20Godwin"> Asibor Irabor Godwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwem%20Bassey"> Uwem Bassey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalate%20esters" title="phthalate esters">phthalate esters</a>, <a href="https://publications.waset.org/abstracts/search?q=borehole" title=" borehole"> borehole</a>, <a href="https://publications.waset.org/abstracts/search?q=sachet%20water" title=" sachet water"> sachet water</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20extraction" title=" sample extraction"> sample extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/44400/evaluation-of-phthalates-contents-and-their-health-effects-in-consumed-sachet-water-brands-in-delta-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10383</span> Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Innocent%20Kafodya">Innocent Kafodya</a>, <a href="https://publications.waset.org/abstracts/search?q=Guijun%20Xian"> Guijun Xian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pultruded%20CFRP%20plate" title="pultruded CFRP plate">pultruded CFRP plate</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20strain" title=" bending strain"> bending strain</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition%20temperature" title=" glass transition temperature"> glass transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20modulus" title=" storage modulus"> storage modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=tan%20delta" title=" tan delta"> tan delta</a> </p> <a href="https://publications.waset.org/abstracts/19878/durability-study-of-pultruded-cfrp-plates-under-sustained-bending-in-distilled-water-and-seawater-immersions-effects-on-the-visco-elastic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10382</span> Estimation of Carbon Sequestration and Air Quality of Terrestrial Ecosystems Using Remote Sensing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanwal%20Javid">Kanwal Javid</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20Pervaiz"> Shazia Pervaiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Mumtaz"> Maria Mumtaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ameer%20Nawaz%20Akram"> Muhammad Ameer Nawaz Akram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forests and grasslands ecosystems play an important role in the global carbon cycle. Land management activities influence both ecosystems and enable them to absorb and sequester carbon dioxide (CO2). Similarly, in Pakistan, these terrestrial ecosystems are well known to mitigate carbon emissions and have a great source to supply a variety of services such as clean air and water, biodiversity, wood products, wildlife habitat, food, recreation and carbon sequestration. Carbon sequestration is the main agenda of developed and developing nations to reduce the impacts of global warming. But the amount of carbon storage within these ecosystems can be affected by many factors related to air quality such as land management, land-use change, deforestation, over grazing and natural calamities. Moreover, the long-term capacity of forests and grasslands to absorb and sequester CO2 depends on their health, productivity, resilience and ability to adapt to changing conditions. Thus, the main rationale of this study is to monitor the difference in carbon amount of forests and grasslands of Northern Pakistan using MODIS data sets and map results using Geographic Information System. Results of the study conclude that forests ecosystems are more effective in reducing the CO2 level and play a key role in improving the quality of air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title="carbon sequestration">carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=grasslands" title=" grasslands"> grasslands</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change." title=" climate change."> climate change.</a> </p> <a href="https://publications.waset.org/abstracts/139560/estimation-of-carbon-sequestration-and-air-quality-of-terrestrial-ecosystems-using-remote-sensing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10381</span> An Overview of Thermal Storage Techniques for Solar Thermal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talha%20Shafiq">Talha Shafiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title="thermal energy storage">thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible%20heat%20storage" title=" sensible heat storage"> sensible heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20storage" title=" latent heat storage"> latent heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochemical%20heat%20storage" title=" thermochemical heat storage"> thermochemical heat storage</a> </p> <a href="https://publications.waset.org/abstracts/21035/an-overview-of-thermal-storage-techniques-for-solar-thermal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10380</span> Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yohana%20Fessehazion">Yohana Fessehazion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercury" title="mercury">mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Thor%20chemicals" title=" Thor chemicals"> Thor chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hyacinth" title=" water hyacinth"> water hyacinth</a> </p> <a href="https://publications.waset.org/abstracts/129820/assessment-of-environmental-mercury-contamination-from-an-old-mercury-processing-plant-thor-chemicals-in-cato-ridge-kwazulu-natal-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10379</span> Detection of Brackish Water Biological Fingerprints in Potable Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Mohammad">Abdullah Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alshemali"> Abdullah Alshemali</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Alsaleh"> Esmaeil Alsaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title="potable water">potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title=" brackish water"> brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20aeroginosa" title=" pseudomonas aeroginosa"> pseudomonas aeroginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title=" multidrug resistance"> multidrug resistance</a> </p> <a href="https://publications.waset.org/abstracts/151234/detection-of-brackish-water-biological-fingerprints-in-potable-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10378</span> A Methodology for Optimisation of Water Containment Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hedjripour">Amir Hedjripour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The required dewatering configuration for a contaminated sediment dam is discussed to meet no-spill criteria for a defined Average Recurrence Interval (ARI). There is an option for the sediment dam to pump the contaminated water to another storage facility before its capacity is exceeded. The system is subjected to a range of storm durations belonging to the design ARI with concurrent dewatering to the other storage facility. The model is set up in 1-minute time intervals and temporal patterns of storm events are used to de-segregate the total storm depth into partial durations. By running the model for selected storm durations, the maximum water volume in the dam is recorded as the critical volume, which indicates the required storage capacity for that storm duration. Runoff from upstream catchment and the direct rainfall over the dam open area are calculated by taking into account the time of concentration for the catchment. Total 99 different storm durations from 5 minutes to 72 hours were modelled together with five dewatering scenarios from 50 l/s to 500 l/s. The optimised dam/pump configuration is selected by plotting critical points for all cases and storage-dewatering envelopes. A simple economic analysis is also presented in the paper using Present-Value (PV) analysis to assist with the financial evaluation of each configuration and selection of the best alternative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20water" title="contaminated water">contaminated water</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=pump" title=" pump"> pump</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20dam" title=" sediment dam"> sediment dam</a> </p> <a href="https://publications.waset.org/abstracts/38317/a-methodology-for-optimisation-of-water-containment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10377</span> Impact of Gold and Silver Nanoparticles on Terrestrial Flora and Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Steponavi%C4%8Di%C5%ABt%C4%97">L. Steponavičiūtė</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Steponavi%C4%8Dien%C4%97"> L. Steponavičienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the rapid nanotechnology progress and recognition, its potential impact in ecosystems and health of humans is still not fully known. In this paper, the study of ecotoxicological dangers of nanomaterials is presented. By chemical reduction method, silver (AgNPs) and gold (AuNPs) nanoparticles were synthesized, characterized and used in experiments to examine their impact on microorganisms (<em>Escherichia coli</em>, <em>Staphylococcus aureus</em> and <em>Candida albicans</em>) and terrestrial flora (<em>Phaseolus vulgaris</em> and <em>Lepidium sativum</em>). The results collected during experiments with terrestrial flora show tendentious growth stimulations caused by gold nanoparticles. In contrast to these results, silver nanoparticle solutions inhibited growth of beans and garden cress, compared to control samples. The results obtained from experiments with microorganisms show similarities with ones collected from experiments with terrestrial plants. Samples treated with AuNPs of size 13 nm showed stimulation in the growth of the colonies compared with 3,5 nm size nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotoxicology" title=" ecotoxicology"> ecotoxicology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a> </p> <a href="https://publications.waset.org/abstracts/44974/impact-of-gold-and-silver-nanoparticles-on-terrestrial-flora-and-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10376</span> Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhang">Lei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification%20system" title="classification system">classification system</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20storage" title=" carbon storage"> carbon storage</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20based" title=" object based"> object based</a> </p> <a href="https://publications.waset.org/abstracts/182404/land-cover-classification-system-for-the-estimation-of-carbon-storage-in-terrestrial-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10375</span> Phyto Diversity and Conservation of Pulicat Lake-Andhra Pradesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20M.%20Basha">S. K. M. Basha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulicat Lake is the second largest brackish water lagoon after Chilika Lake of Orissa along the east coast of India. Estuaries and lagoons have brackish water which shows high biological productivity than fresh or sea water. Hence it has wide range of aquatic, terrestrial flora and fauna. The World Wide Fund for Nature declared that it is a protected area. Present study aims to explore the flora and fauna of the lagoon along with the various threats for its eco-degradation which helps to plan necessary conservation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytodiversity" title="phytodiversity">phytodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulicat%20Lake" title=" Pulicat Lake"> Pulicat Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=threats" title=" threats"> threats</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/5621/phyto-diversity-and-conservation-of-pulicat-lake-andhra-pradesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10374</span> Climate Change and Its Effects on Terrestrial Insect Diversity in Mukuruthi National Park, Nilgiri Biosphere Reserve, Tamilnadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Elanchezhian">M. Elanchezhian</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gunasekaran"> C. Gunasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Agnes%20Deepa"> A. Agnes Deepa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salahudeen"> M. Salahudeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years climate change is one of the most emerging threats facing by biodiversity both the animals and plants species. Elevated carbon dioxide and ozone concentrations, extreme temperature, changes in rainfall patterns, insects-plant interaction are the main criteria that affect biodiversity. In the present study, which emphasis the climate change and its effects on terrestrial insect diversity in Mukuruthi National Park a protected areas of Western Ghats in India. Sampling was done seasonally at the three areas using pitfall traps, over the period of January to December 2013. The statistical findings were done by Shannon wiener diversity index (H). A significant seasonal variation pattern was detected for total insect’s diversity at the different study areas. Totally nine orders of insects were recorded. Diversity and abundance of terrestrial insects shows much difference between the Natural, Shoal forest and the Grasslands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=mukuruthi%20national%20park" title=" mukuruthi national park"> mukuruthi national park</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20invertebrates" title=" terrestrial invertebrates"> terrestrial invertebrates</a> </p> <a href="https://publications.waset.org/abstracts/11763/climate-change-and-its-effects-on-terrestrial-insect-diversity-in-mukuruthi-national-park-nilgiri-biosphere-reserve-tamilnadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10373</span> Attempt to Reuse Used-PCs as Distributed Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toshiya%20Kawato">Toshiya Kawato</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-ichi%20Motomura"> Shin-ichi Motomura</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Higashino"> Masayuki Higashino</a>, <a href="https://publications.waset.org/abstracts/search?q=Takao%20Kawamura"> Takao Kawamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Storage for storing data is indispensable. If a storage capacity becomes insufficient, we can increase its capacity by adding new disks. It is, however, difficult to add a new disk when a budget is not enough. On the other hand, there are many unused idle resources such as used personal computers despite those use value. In order to solve those problems, used personal computers can be reused as storage. In this paper, we attempt to reuse used-PCs as a distributed storage. First, we list up the characteristics of used-PCs and design a storage system that utilizes its characteristics. Next, we experimentally implement an auto-construction system that automatically constructs a distributed storage environment in used-PCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20storage" title="distributed storage">distributed storage</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20personal%20computer" title=" used personal computer"> used personal computer</a>, <a href="https://publications.waset.org/abstracts/search?q=idle%20resource" title=" idle resource"> idle resource</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20construction" title=" auto construction"> auto construction</a> </p> <a href="https://publications.waset.org/abstracts/87359/attempt-to-reuse-used-pcs-as-distributed-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=346">346</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=347">347</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrestrial%20water%20storage&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>