CINXE.COM
Search results for: Ising ferromagnet
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ising ferromagnet</title> <meta name="description" content="Search results for: Ising ferromagnet"> <meta name="keywords" content="Ising ferromagnet"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ising ferromagnet" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ising ferromagnet"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 22</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ising ferromagnet</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Yang-Lee Edge Singularity of the Infinite-Range Ising Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeon%20Kim">Seung-Yeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ising model, consisting magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising model has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising model explains the gas-liquid phase transitions accurately. However, the Ising model in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising model in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising model with that of the square-lattice Ising model in an external magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ising%20ferromagnet" title="Ising ferromagnet">Ising ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20function%20zeros" title=" partition function zeros"> partition function zeros</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-Lee%20edge%20singularity" title=" Yang-Lee edge singularity"> Yang-Lee edge singularity</a> </p> <a href="https://publications.waset.org/abstracts/20452/yang-lee-edge-singularity-of-the-infinite-range-ising-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">739</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulgassyl%20Nugmanova">Gulgassyl Nugmanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanat%20Zhunussova"> Zhanat Zhunussova</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuralay%20Yesmakhanova"> Kuralay Yesmakhanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Galya%20Mamyrbekova"> Galya Mamyrbekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratbay%20Myrzakulov"> Ratbay Myrzakulov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr\"odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heisenberg%20Ferromagnet%20equations" title="Heisenberg Ferromagnet equations">Heisenberg Ferromagnet equations</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20equations" title=" soliton equations"> soliton equations</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence" title=" equivalence"> equivalence</a>, <a href="https://publications.waset.org/abstracts/search?q=Lax%20representation" title=" Lax representation"> Lax representation</a> </p> <a href="https://publications.waset.org/abstracts/27440/integrable-heisenberg-ferromagnet-equations-with-self-consistent-potentials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Non-Universality in Barkhausen Noise Signatures of Thin Iron Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Roy">Arnab Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Anil%20Kumar"> P. S. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We discuss angle dependent changes to the Barkhausen noise signatures of thin epitaxial Fe films upon altering the angle of the applied field. We observe a sub-critical to critical phase transition in the hysteresis loop of the sample upon increasing the out-of-plane component of the applied field. The observations are discussed in the light of simulations of a 2D Gaussian Random Field Ising Model with references to a reducible form of the Random Anisotropy Ising Model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barkhausen%20noise" title="Barkhausen noise">Barkhausen noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Planar%20Hall%20effect" title=" Planar Hall effect"> Planar Hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Random%20Field%20Ising%20Model" title=" Random Field Ising Model"> Random Field Ising Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Random%20Anisotropy%20Ising%20Model" title=" Random Anisotropy Ising Model"> Random Anisotropy Ising Model</a> </p> <a href="https://publications.waset.org/abstracts/17529/non-universality-in-barkhausen-noise-signatures-of-thin-iron-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Correlations in the Ising Kagome Lattice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Aguilar%20Aguilar">Antonio Aguilar Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliezer%20Braun%20Guitler"> Eliezer Braun Guitler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a previously developed procedure and with the aid of algebraic software, a two-dimensional generalized Ising model with a 4×2 unitary cell (UC), we obtain a Kagome Lattice with twelve different spin-spin values of interaction, in order to determine the partition function per spin L(T). From the partition function we can study the magnetic behavior of the system. Because of the competition phenomenon between spins, a very complex behavior among them in a variety of magnetic states can be observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlations" title="correlations">correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=Ising" title=" Ising"> Ising</a>, <a href="https://publications.waset.org/abstracts/search?q=Kagome" title=" Kagome"> Kagome</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20functions" title=" exact functions"> exact functions</a> </p> <a href="https://publications.waset.org/abstracts/17208/correlations-in-the-ising-kagome-lattice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmytro%20Zubov">Dmytro Zubov</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Volponi"> Francesco Volponi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20wave" title="heat wave">heat wave</a>, <a href="https://publications.waset.org/abstracts/search?q=D-wave" title=" D-wave"> D-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=Ising%20model" title=" Ising model"> Ising model</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title=" quantum computing"> quantum computing</a> </p> <a href="https://publications.waset.org/abstracts/34119/d-wave-quantum-computing-ising-model-a-case-study-for-forecasting-of-heat-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> 2D Ferromagnetism in Van der Waals Bonded Fe₃GeTe₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Tiwari">Ankita Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Saini"> Jyoti Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhasis%20Ghosh"> Subhasis Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For many years, researchers have been fascinated by the subject of how properties evolve as dimensionality is lowered. Early on, it was shown that the presence of a significant magnetic anisotropy might compensate for the lack of long-range (LR) magnetic order in a low-dimensional system (d < 3) with continuous symmetry, as proposed by Hohenberg-Mermin and Wagner (HMW). Strong magnetic anisotropy allows an LR magnetic order to stabilize in two dimensions (2D) even in the presence of stronger thermal fluctuations which is responsible for the absence of Heisenberg ferromagnetism in 2D. Van der Waals (vdW) ferromagnets, including CrI₃, CrTe₂, Cr₂X₂Te₆ (X = Si and Ge) and Fe₃GeTe₂, offer a nearly ideal platform for studying ferromagnetism in 2D. Fe₃GeTe₂ is the subject of extensive investigation due to its tunable magnetic properties, high Curie temperature (Tc ~ 220K), and perpendicular magnetic anisotropy. Many applications in the field of spintronics device development have been quite active due to these appealing features of Fe₃GeTe₂. Although it is known that LR-driven ferromagnetism is necessary to get around the HMW theorem in 2D experimental realization, Heisenberg 2D ferromagnetism remains elusive in condensed matter systems. Here, we show that Fe₃GeTe₂ hosts both localized and delocalized spins, resulting in itinerant and local-moment ferromagnetism. The presence of LR itinerant interaction facilitates to stabilize Heisenberg ferromagnet in 2D. With the help of Rhodes-Wohlfarth (RW) and generalized RW-based analysis, Fe₃GeTe₂ has been shown to be a 2D ferromagnet with itinerant magnetism that can be modulated by an external magnetic field. Hence, the presence of both local moment and itinerant magnetism has made this system interesting in terms of research in low dimensions. We have also rigorously performed critical analysis using an improvised method. We show that the variable critical exponents are typical signatures of 2D ferromagnetism in Fe₃GeTe₂. The spontaneous magnetization exponent β changes the universality class from mean-field to 2D Heisenberg with field. We have also confirmed the range of interaction via the renormalization group (RG) theory. According to RG theory, Fe₃GeTe₂ is a 2D ferromagnet with LR interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20der%20Waal%20ferromagnet" title="Van der Waal ferromagnet">Van der Waal ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20ferromagnetism" title=" 2D ferromagnetism"> 2D ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=itinerant%20ferromagnetism" title=" itinerant ferromagnetism"> itinerant ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20range%20order" title=" long range order"> long range order</a> </p> <a href="https://publications.waset.org/abstracts/175619/2d-ferromagnetism-in-van-der-waals-bonded-fe3gete2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Effect of the Crystal Field Interaction on the Critical Temperatures and the Sublattice Magnetizations of a Mixedspin-3/2 and Spin-5/2 Ferromagnetic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Abubrig">Fathi Abubrig</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Delfag"> Mohamed Delfag</a>, <a href="https://publications.waset.org/abstracts/search?q=Suad%20Abuzariba"> Suad Abuzariba </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of the crystal field interactions on the mixed spin-3/2 and spin-5/2 ferromagnetic Ising system is considered by using the mean field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed, the phase diagrams of the second-order critical temperatures are obtained, and the thermal variation of the sublattice magnetizations is investigated in detail. We find some interesting phenomena for the sublattice magnetizations at particular values of the crystal field interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20field" title="crystal field">crystal field</a>, <a href="https://publications.waset.org/abstracts/search?q=Ising%20system" title=" Ising system"> Ising system</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagrams" title=" phase diagrams"> phase diagrams</a> </p> <a href="https://publications.waset.org/abstracts/5406/the-effect-of-the-crystal-field-interaction-on-the-critical-temperatures-and-the-sublattice-magnetizations-of-a-mixedspin-32-and-spin-52-ferromagnetic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyabrata%20Bera">Satyabrata Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=Mintu%20Mondal"> Mintu Mondal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20vdW%20ferromagnet" title="2D vdW ferromagnet">2D vdW ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20reorientation%20transition" title=" spin reorientation transition"> spin reorientation transition</a>, <a href="https://publications.waset.org/abstracts/search?q=anomalous%20hall%20effect" title=" anomalous hall effect"> anomalous hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=berry%20curvature" title=" berry curvature"> berry curvature</a> </p> <a href="https://publications.waset.org/abstracts/178827/exploring-spin-reorientation-transition-and-berry-curvature-driven-anomalous-hall-effect-in-quasi-2d-vdw-ferromagnet-fe4gete2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Frustration Measure for Dipolar Spin Ice and Spin Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Nefedev">Konstantin Nefedev</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Andriushchenko"> Petr Andriushchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frustrations" title="frustrations">frustrations</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20of%20order" title=" parameter of order"> parameter of order</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20physics" title=" statistical physics"> statistical physics</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism" title=" magnetism"> magnetism</a> </p> <a href="https://publications.waset.org/abstracts/80975/frustration-measure-for-dipolar-spin-ice-and-spin-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Half Metallic Antiferromagnetic of Doped TiO2 Rutile with Doubles Impurities (Os, Mo) from Ab Initio Calculations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fakhim%20Lamrani">M. Fakhim Lamrani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ouchri"> M. Ouchri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belaiche"> M. Belaiche</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Kenz"> El Kenz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Loulidi"> M. Loulidi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyoussef"> A. Benyoussef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronic and magnetic calculations based on density functional theory within the generalized gradient approximation for II-VI compound semiconductor TiO2 doped with single impurity Os and Mo; these compounds are a half metallic ferromagnet in their ground state with a total magnetic moment of 2 μB for both systems. Then, TiO2 doped with double impurities Os and Mo have been performed. As result, Ti1-2xOsxMoxO2 with x=0.065 is half-metallic antiferromagnets with 100% spin polarization of the conduction electrons crossing the Fermi level, without showing a net magnetization. Moreover, Ti14OsMoO32 compound is stable energetically than Ti1-xMoxO2 and Ti1-xOsxO2. The antiferromagnetic interaction in Ti1-2xOsxMoxO2 system is attributed to the double exchange mechanism, and the latter could also be the origin of their half metallic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductor" title="diluted magnetic semiconductor">diluted magnetic semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=half-metallic%20antiferromagnetic" title=" half-metallic antiferromagnetic"> half-metallic antiferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20spherical%20wave%20method" title=" augmented spherical wave method "> augmented spherical wave method </a> </p> <a href="https://publications.waset.org/abstracts/25646/half-metallic-antiferromagnetic-of-doped-tio2-rutile-with-doubles-impurities-os-mo-from-ab-initio-calculations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Spectral Power Amplification on the Regular Lattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kotbi%20Lakhdar">Kotbi Lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hachi%20Mostefa"> Hachi Mostefa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ising%20model" title="ising model">ising model</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transitions" title=" phase transitions"> phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20temperature" title=" critical temperature"> critical temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20exponent" title=" critical exponent"> critical exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20power%20amplification" title=" spectral power amplification"> spectral power amplification</a> </p> <a href="https://publications.waset.org/abstracts/64570/the-spectral-power-amplification-on-the-regular-lattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Evolution of Structure and Magnetic Behavior by Pr Doping in SrRuO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Gupta">Renu Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashim%20K.%20Pramanik"> Ashim K. Pramanik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the evolution of structure and magnetic properties in perovskite ruthenates Sr1-xPrxRuO3 (x = 0.0 and 0.1). Our main expectations, to induce the structural modification and change the Ru charge state by Pr doping at Sr site. By the Pr doping on Sr site retains orthorhombic structure while we find a minor change in structural parameters. The SrRuO3 have itinerant type of ferromagnetism with ordering temperature ~160 K. By Pr doping, the magnetic moment decrease and ZFC show three distinct peaks (three transition temperature; TM1, TM2 and TM3). Further analysis of magnetization of both samples, at high temperature follow modified CWL and Pr doping gives Curie temperature ~ 129 K which is close to TM2. Above TM2 to TM3, the inverse susceptibility shows upward deviation from CW behavior, indicating the existence AFM like clustered in this regime. The low-temperature isothermal magnetization M (H) shows moment decreases by Pr doping. The Arrott plot gives spontaneous magnetization (Ms) which also decreases by Pr doping. The evolution of Rhodes-Wohlfarth ratio increases which suggests the FM in this system evolves toward the itinerant type by Pr doping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=itinerant%20ferromagnet" title="itinerant ferromagnet">itinerant ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Perovskite%20structure" title=" Perovskite structure"> Perovskite structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruthenates" title=" Ruthenates"> Ruthenates</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhodes-Wohlfarth%20ratio" title=" Rhodes-Wohlfarth ratio"> Rhodes-Wohlfarth ratio</a> </p> <a href="https://publications.waset.org/abstracts/69743/evolution-of-structure-and-magnetic-behavior-by-pr-doping-in-srruo3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arman%20S.%20Kussainov">Arman S. Kussainov</a>, <a href="https://publications.waset.org/abstracts/search?q=Altynbek%20K.%20Beisekov"> Altynbek K. Beisekov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20of%20states" title="density of states">density of states</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20algorithm" title=" parallel algorithm"> parallel algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Landau%20algorithm" title=" Wang Landau algorithm"> Wang Landau algorithm</a> </p> <a href="https://publications.waset.org/abstracts/66265/constructing-the-density-of-states-from-the-parallel-wang-landau-algorithm-overlapping-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Imtiyaz">Sahil Imtiyaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20evolution" title=" quantum evolution"> quantum evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=hamiltonian" title=" hamiltonian"> hamiltonian</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20laser" title=" dye laser"> dye laser</a>, <a href="https://publications.waset.org/abstracts/search?q=fermionic%20computations" title=" fermionic computations"> fermionic computations</a> </p> <a href="https://publications.waset.org/abstracts/89927/mapping-tunnelling-parameters-for-global-optimization-in-big-data-via-dye-laser-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Complete Enumeration Approach for Calculation of Residual Entropy for Diluted Spin Ice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuriy%20A.%20Shevchenko">Yuriy A. Shevchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20V.%20Nefedev"> Konstantin V. Nefedev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the antiferromagnetic systems of Ising spins located at the sites of the hexagonal, triangular and pyrochlore lattices. Such systems can be diluted to a certain concentration level by randomly replacing the magnetic spins with nonmagnetic ones. Quite recently we studied density of states (DOS) was calculated by the Wang-Landau method. Based on the obtained data, we calculated the dependence of the residual entropy (entropy at a temperature tending to zero) on the dilution concentration for quite large systems (more than 2000 spins). In the current study, we obtained the same data for small systems (less than 20 spins) by a complete search of all possible magnetic configurations and compared the result with the result for large systems. The shape of the curve remains unchanged in both cases, but the specific values of the residual entropy are different because of the finite size effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrochlore" title=" pyrochlore"> pyrochlore</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20ice" title=" spin ice"> spin ice</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang-Landau%20algorithm" title=" Wang-Landau algorithm"> Wang-Landau algorithm</a> </p> <a href="https://publications.waset.org/abstracts/81003/complete-enumeration-approach-for-calculation-of-residual-entropy-for-diluted-spin-ice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Half-Metallic Ferromagnetism in Ternary Zinc Blende Fe/In0.5Ga0.5 as/in Psuperlattice: First-Principles Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Berrouachedi">N. Berrouachedi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouslama"> M. Bouslama</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rioual"> S. Rioual</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lescop"> B. Lescop</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Langlois"> J. Langlois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using first-principles calculations within the LSDA (Local Spin Density Approximation) method based on density functional theory (DFT), the electronic structure and magnetic properties of zinc blende Fe/In0.5Ga0.5As/InPsuperlattice are investigated. This compound are found to be half -metallic ferromagnets with a total magnetic moment of 2.25μB per Fe. In addition to this, we reported the DRX measurements of the thick iron sample before and after annealing. One should note, after the annealing treatment at a higher temperature, the disappearance of the peak associated to the Fe(001) plane. In contrast to this report, we observed after the annealing at low temperature the additional peaks attributed to the presence of indium and Fe2As. This suggests a subsequent process consisting in a strong migration of atoms followed with crystallization at the higher temperature.To investigate the origin of magnetism and electronic structure in these zb compounds, we calculated the total and partial DOS of FeInP.One can see that µtotal=4.24µBand µFe=3.27µB in contrast µIn=0.021µB and µP=0.049µB.These results predicted that FeInP compound do belong to the class of zb half metallic HM ferromagnetswith a pseudo gap= 0.93 eVare more promising materials for spintronics devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zincblend%20structure" title="zincblend structure">zincblend structure</a>, <a href="https://publications.waset.org/abstracts/search?q=half%20metallic%20ferromagnet" title=" half metallic ferromagnet"> half metallic ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20moments" title=" spin moments"> spin moments</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20and%20partial%20DOS" title=" total and partial DOS"> total and partial DOS</a>, <a href="https://publications.waset.org/abstracts/search?q=DRX" title=" DRX"> DRX</a>, <a href="https://publications.waset.org/abstracts/search?q=Wien2k" title=" Wien2k"> Wien2k</a> </p> <a href="https://publications.waset.org/abstracts/39717/half-metallic-ferromagnetism-in-ternary-zinc-blende-fein05ga05-asin-psuperlattice-first-principles-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Electrical Transport in Bi₁Sb₁Te₁.₅Se₁.₅ /α-RuCl₃ Heterostructure Nanodevices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoubhik%20Mandal">Shoubhik Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Debarghya%20Mallick"> Debarghya Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Banerjee"> Abhishek Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ganesan"> R. Ganesan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Anil%20Kumar"> P. S. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report magnetotransport measurements in Bi₁Sb₁Te₁.₅Se₁.₅/RuCl₃ heterostructure nanodevices. Bi₁Sb₁Te₁.₅Se₁.₅ (BSTS) is a strong three-dimensional topological insulator (3D-TI) that hosts conducting topological surface states (TSS) enclosing an insulating bulk. α-RuCl₃ (namely, RuCl₃) is an anti-ferromagnet that is predicted to behave as a Kitaev-like quantum spin liquid carrying Majorana excitations. Temperature (T)-dependent resistivity measurements show the interplay between parallel bulk and surface transport channels. At T < 150 K, surface state transport dominates over bulk transport. Multi-channel weak anti-localization (WAL) is observed, as a sharp cusp in the magnetoconductivity, indicating strong spin-orbit coupling. The presence of top and bottom topological surface states (TSS), including a pair of electrically coupled Rashba surface states (RSS), are indicated. Non-linear Hall effect, explained by a two-band model, further supports this interpretation. Finally, a low-T logarithmic resistance upturn is analyzed using the Lu-Shen model, supporting the presence of gapless surface states with a π Berry phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topological%20materials" title="topological materials">topological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20transport" title=" electrical transport"> electrical transport</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu-Shen%20model" title=" Lu-Shen model"> Lu-Shen model</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20spin%20liquid" title=" quantum spin liquid"> quantum spin liquid</a> </p> <a href="https://publications.waset.org/abstracts/149012/electrical-transport-in-bi1sb1te15se15-a-rucl3-heterostructure-nanodevices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Inverted Umbrella-type Chiral Non-coplanar Ferrimagnetic Structure in Co(NO₃)₂ </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Maximova">O. Maximova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20L.%20Danilovich"> I. L. Danilovich</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Deeva"> E. B. Deeva</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Bukhteev"> K. Y. Bukhteev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Vorobyova"> A. A. Vorobyova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Morozov"> I. V. Morozov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Volkova"> O. S. Volkova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Zvereva"> E. A. Zvereva</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Solovyev"> I. V. Solovyev</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Nikolaev"> S. A. Nikolaev</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Phuyal"> D. Phuyal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdel-Hafiez"> M. Abdel-Hafiez</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Wang"> Y. C. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Lin"> J. Y. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Chen"> J. M. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20I.%20Gorbunov"> D. I. Gorbunov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Puzniak"> K. Puzniak</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lake"> B. Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Vasiliev"> A. N. Vasiliev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The low-dimensional magnetic systems tend to reveal exotic spin liquid ground states or form peculiar types of long-range order. Among systems of vivid interest are those characterized by the triangular motif in two dimensions. The realization of either ordered or disordered ground state in a triangular, honeycomb, or kagome lattices is are dictated by the competition of exchange interactions, also being sensitive to anisotropy and the spin value of magnetic ions. While the low-spin Heisenberg systems may arrive at a spin liquid long-range entangled quantum state with emergent gauge structures, the high-spin Ising systems may establish the rigid non-collinear structures. This study presents the case of chiral non-coplanar inverted umbrella-type ferrimagnet formed in cobalt nitrate Co(NO₃)₂ below T <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chiral%20magnetic%20structures" title="chiral magnetic structures">chiral magnetic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20dimensional%20magnetic%20systems" title=" low dimensional magnetic systems"> low dimensional magnetic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=umbrella-type%20ferrimagnets" title=" umbrella-type ferrimagnets"> umbrella-type ferrimagnets</a>, <a href="https://publications.waset.org/abstracts/search?q=chiral%20non-coplanar%20magnetic%20structures" title=" chiral non-coplanar magnetic structures"> chiral non-coplanar magnetic structures</a> </p> <a href="https://publications.waset.org/abstracts/130784/inverted-umbrella-type-chiral-non-coplanar-ferrimagnetic-structure-in-cono32" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ben%20Khlifa">H. Ben Khlifa</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Cheikhrouhou-Koubaa"> W. Cheikhrouhou-Koubaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cheikhrouhou"> A. Cheikhrouhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganites" title="manganites">manganites</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20exponents" title=" critical exponents"> critical exponents</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric" title=" magnetocaloric"> magnetocaloric</a>, <a href="https://publications.waset.org/abstracts/search?q=master%20curve" title=" master curve"> master curve</a> </p> <a href="https://publications.waset.org/abstracts/142016/critical-behaviour-and-filed-dependence-of-magnetic-entropy-change-in-k-doped-manganites-pr08na02kmno3-x-10-and-15" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Classification on Statistical Distributions of a Complex N-Body System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20C.%20Ni">David C. Ni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blaschke" title="blaschke">blaschke</a>, <a href="https://publications.waset.org/abstracts/search?q=lorentz%20transformation" title=" lorentz transformation"> lorentz transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20variables" title=" complex variables"> complex variables</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous" title=" continuous"> continuous</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete" title=" discrete"> discrete</a>, <a href="https://publications.waset.org/abstracts/search?q=canonical" title=" canonical"> canonical</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/51005/classification-on-statistical-distributions-of-a-complex-n-body-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Petropoulos">Nikolaos Petropoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Blokhina"> Elena Blokhina</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Sokolov"> Andrii Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Semenov"> Andrii Semenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Giounanlis"> Panagiotis Giounanlis</a>, <a href="https://publications.waset.org/abstracts/search?q=Xutong%20Wu"> Xutong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmytro%20Mishagli"> Dmytro Mishagli</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Koskin"> Eugene Koskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Bogdan%20Staszewski"> Robert Bogdan Staszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Leipold"> Dirk Leipold</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensed%20matter%20physics" title="condensed matter physics">condensed matter physics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title=" quantum computing"> quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information%20theory" title=" quantum information theory"> quantum information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20physics" title=" quantum physics"> quantum physics</a> </p> <a href="https://publications.waset.org/abstracts/149557/quantum-information-scrambling-and-quantum-chaos-in-silicon-based-fermi-hubbard-quantum-dot-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Leitner">Matthias Leitner</a>, <a href="https://publications.waset.org/abstracts/search?q=Gernot%20Pottlacher"> Gernot Pottlacher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20point%20data" title="critical point data">critical point data</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20metals" title=" liquid metals"> liquid metals</a>, <a href="https://publications.waset.org/abstracts/search?q=niobium" title=" niobium"> niobium</a>, <a href="https://publications.waset.org/abstracts/search?q=ohmic%20pulse-heating" title=" ohmic pulse-heating"> ohmic pulse-heating</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20expansion" title=" volume expansion"> volume expansion</a> </p> <a href="https://publications.waset.org/abstracts/72691/density-determination-of-liquid-niobium-by-means-of-ohmic-pulse-heating-for-critical-point-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>