CINXE.COM

Search results for: acoustical performance

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: acoustical performance</title> <meta name="description" content="Search results for: acoustical performance"> <meta name="keywords" content="acoustical performance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="acoustical performance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="acoustical performance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12853</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: acoustical performance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12853</span> Effect of Acoustical Performance Detection and Evaluation in Music Practice Rooms on Teaching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsu-Hui%20Cheng">Hsu-Hui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng-Chian%20Chen"> Peng-Chian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yuan%20Chang"> Shu-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie-Ying%20Zhang"> Jie-Ying Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activities in the music practice rooms range from playing, listening, rehearsing to music performing. The good room acoustics in a music practice room enables a music teacher to teach more effectively subtle concepts such as intonation, articulation, balance, dynamics and tone production. A poor acoustical environment would deeply affect the development of basic musical skills of music students. Practicing in the music practice room is an essential daily activity for music students; consequently, music practice rooms are very important facilities in a music school or department. The purpose of this survey is to measure and analyze the acoustic condition of piano practice rooms at the department of music in Zhaoqing University and accordingly apply a more effective teaching method to music students. The volume of the music practice room is approximately 25 m³, and it has existing curtains and some wood hole sound-absorbing panels. When all small music practice rooms are in constant use for teaching, it was found that the values of the background noise at 45, 46, 42, 46, 45 dB(A) in the small music practice room ( the doors and windows were close), respectively. The noise levels in the small music practice room to higher than standard levels (35dB(A)). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustical%20performance" title="acoustical performance">acoustical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20practice%20room" title=" music practice room"> music practice room</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20level" title=" noise level"> noise level</a>, <a href="https://publications.waset.org/abstracts/search?q=piano%20room" title=" piano room"> piano room</a> </p> <a href="https://publications.waset.org/abstracts/138088/effect-of-acoustical-performance-detection-and-evaluation-in-music-practice-rooms-on-teaching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12852</span> Assessment of the Occupancy’s Effect on Speech Intelligibility in Al-Madinah Holy Mosque</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wasim%20Orfali">Wasim Orfali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Tolba"> Hesham Tolba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the acoustical characteristics of Al-Madinah Holy Mosque. Extensive field measurements were conducted in different locations of Al-Madinah Holy Mosque to characterize its acoustic characteristics. The acoustical characteristics are usually evaluated by the use of objective parameters in unoccupied rooms due to practical considerations. However, under normal conditions, the room occupancy can vary such characteristics due to the effect of the additional sound absorption present in the room or by the change in signal-to-noise ratio. Based on the acoustic measurements carried out in Al-Madinah Holy Mosque with and without occupancy, and the analysis of such measurements, the existence of acoustical deficiencies has been confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Madinah%20Holy%20Mosque" title="Al-Madinah Holy Mosque">Al-Madinah Holy Mosque</a>, <a href="https://publications.waset.org/abstracts/search?q=mosque%20acoustics" title=" mosque acoustics"> mosque acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20intelligibility" title=" speech intelligibility"> speech intelligibility</a>, <a href="https://publications.waset.org/abstracts/search?q=worship%20sound" title=" worship sound"> worship sound</a> </p> <a href="https://publications.waset.org/abstracts/97808/assessment-of-the-occupancys-effect-on-speech-intelligibility-in-al-madinah-holy-mosque" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12851</span> Unsupervised Reciter Recognition Using Gaussian Mixture Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alwosheel">Ahmad Alwosheel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alqaraawi"> Ahmed Alqaraawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quran" title="Quran">Quran</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20recognition" title=" speaker recognition"> speaker recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=reciter%20recognition" title=" reciter recognition"> reciter recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20Mixture%20Model" title=" Gaussian Mixture Model"> Gaussian Mixture Model</a> </p> <a href="https://publications.waset.org/abstracts/46532/unsupervised-reciter-recognition-using-gaussian-mixture-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12850</span> Acoustic Performance and Application of Three Personalized Sound-Absorbing Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangying%20Wang">Fangying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Sanming"> Zhang Sanming</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20Qian"> Ni Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, more and more personalized sound absorbing materials have entered the Chinese room acoustical decoration market. The acoustic performance of three kinds of personalized sound-absorbing materials: Flame-retardant Flax Fiber Sound-absorbing Cotton, Eco-Friendly Sand Acoustic Panel and Transparent Micro-perforated Panel (Film) are tested by Reverberation Room Method. The sound absorption characteristic curves show that their performance match for or even exceed the traditional sound absorbing material. Through the application in the actual projects, these personalized sound-absorbing materials also proved their sound absorption ability and unique decorative effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20performance" title="acoustic performance">acoustic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20prospect%20personalized%20sound-absorbing%20materials" title=" application prospect personalized sound-absorbing materials"> application prospect personalized sound-absorbing materials</a> </p> <a href="https://publications.waset.org/abstracts/88980/acoustic-performance-and-application-of-three-personalized-sound-absorbing-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12849</span> Optimization of Transmission Loss on a Series-Coupled Muffler by Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing-Fung%20Lin">Jing-Fung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jer-Jia%20Sheu"> Jer-Jia Sheu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an approach has been developed for the noise reduction of a muffler. The transmission loss (TL) in the muffler is maximized by the use of a double-chamber muffler, and a baffle with a hole is inserted between chambers. Taguchi method is used to optimize the design for the acoustical performance of the muffler. The TL performance is evaluated by COMSOL software. The excellent parameter combination for the maximum TL is attained as high as 35.30 dB in a wide frequency range from 10 Hz to 1400 Hz. The influence sequence of four parameters on TL is determined by the range analysis. The effects of length and expansion ratio of the first chamber on TL performance for the excellent program were discussed. Comparisons of the TL results from different designs are made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle" title=" baffle"> baffle</a>, <a href="https://publications.waset.org/abstracts/search?q=chamber" title=" chamber"> chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=muffler" title=" muffler"> muffler</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20loss" title=" transmission loss"> transmission loss</a> </p> <a href="https://publications.waset.org/abstracts/150143/optimization-of-transmission-loss-on-a-series-coupled-muffler-by-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12848</span> Origamic Forms: A New Realm in Improving Acoustical Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Refat%20Ismail">Mostafa Refat Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Eldaly"> Hazem Eldaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adaptation of architecture design to building function is getting highly needed in contemporary designs, especially with the great progression in design methods and tools. This, in turn, requires great flexibility in design strategies, as well as a wider spectrum of space settings to achieve the required environment that special activities imply. Acoustics is an essential factor influencing cognitive acts and behavior as well as, on the extreme end, the physical well-being inside a space. The complexity of this constrain is fueled up by the extended geometric dimensions of multipurpose halls, making acoustic adequateness a great concern that could not easily be achieved for each purpose. To achieve a performance oriented acoustic environment, various parametric shaped false ceilings based on origami folded notion are simulated. These parametric origami shapes are able to fold and unfold forming an interactive structure that changes the mutual acoustic environment according to the geometric shapes' position and its changing exposed surface areas. The mobility of the facets in the origami surface can stretch up the range from a complete plain surface to an unfolded element where a considerable amount of absorption is added to the space. The behavior of the parametric origami shapes are being modeled employing a ray tracing computer simulation package for various shapes topology. The conclusion shows a great variation in the acoustical performance due to the variation in folding faces of the origami surfaces, which cause different reflections and consequently large variations in decay curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric" title="parametric">parametric</a>, <a href="https://publications.waset.org/abstracts/search?q=origami" title=" origami"> origami</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustics" title=" acoustics"> acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a> </p> <a href="https://publications.waset.org/abstracts/6831/origamic-forms-a-new-realm-in-improving-acoustical-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12847</span> The Impact of Acoustic Performance on Neurodiverse Students in K-12 Learning Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Lekan-Kehinde">Michael Lekan-Kehinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20Asojo"> Abimbola Asojo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bonnie%20Sanborn"> Bonnie Sanborn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Good acoustic performance has been identified as one of the critical Indoor Environmental Quality (IEQ) factors for student learning and development by the National Research Council. Childhood presents the opportunity for children to develop lifelong skills that will support them throughout their adult lives. Acoustic performance of a space has been identified as a factor that can impact language acquisition, concentration, information retention, and general comfort within the environment. Increasingly, students learn by communication between both teachers and fellow students, making speaking and listening crucial. Neurodiversity - while initially coined to describe individuals with autism spectrum disorder (ASD) - widely describes anyone with a different brain process. As the understanding from cognitive and neurosciences increases, the number of people identified as neurodiversity is nearly 30% of the population. This research looks at guidelines and standard for spaces with good acoustical quality and relates it with the experiences of students with autism spectrum disorder (ASD), their parents, teachers, and educators through a mixed methods approach, including selected case studies interviews, and mixed surveys. The information obtained from these sources is used to determine if selected materials, especially properties relating to sound absorption and reverberation reduction, are equally useful in small, medium sized, and large learning spaces and methodologically approaching. The results describe the potential impact of acoustics on Neurodiverse students, considering factors that determine the complexity of sound in relation to the auditory processing capabilities of ASD students. In conclusion, this research extends the knowledge of how materials selection influences the better development of acoustical environments for autism students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder%20%28ASD%29" title=" autism spectrum disorder (ASD)"> autism spectrum disorder (ASD)</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20spaces" title=" learning spaces"> learning spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodiversity" title=" neurodiversity"> neurodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=sound" title=" sound"> sound</a> </p> <a href="https://publications.waset.org/abstracts/147891/the-impact-of-acoustic-performance-on-neurodiverse-students-in-k-12-learning-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12846</span> Rock Thickness Measurement by Using Self-Excited Acoustical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Kwa%C5%9Bniewski">Janusz Kwaśniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireneusz%20Dominik"> Ireneusz Dominik</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Lalik"> Krzysztof Lalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-oscillator" title="auto-oscillator">auto-oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20thickness%20measurement" title=" rock thickness measurement"> rock thickness measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnic" title=" geotechnic"> geotechnic</a> </p> <a href="https://publications.waset.org/abstracts/2627/rock-thickness-measurement-by-using-self-excited-acoustical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12845</span> The Acoustic Performance of Double-skin Wind Energy Facade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mota%20Carmo">Sara Mota Carmo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy applied in architecture has been largely abandoned due to the uncomfortable noise it causes. This study aims to investigate the acoustical performance in the urban environment and indoor environment of a double-skin wind energy facade. Measurements for sound transmission were recorded by using a hand-held sound meter device on a reduced-scale prototype of a wind energy façade. The applied wind intensities ranged between 2m/s and 8m/s, and the increase sound produced were proportional to the wind intensity.The study validates the acoustic performance of wind energy façade using a double skin façade system, showing that noise reduction indoor by approximately 30 to 35 dB. However, the results found that above 6m/s win intensity, in urban environment, the wind energy system applied to the façade exceeds the maximum 50dB recommended by world health organization and needs some adjustments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-skin%20wind%20energy%20facade" title="double-skin wind energy facade">double-skin wind energy facade</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20energy%20facade" title=" acoustic energy facade"> acoustic energy facade</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20in%20architecture" title=" wind energy in architecture"> wind energy in architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20prototype" title=" wind energy prototype"> wind energy prototype</a> </p> <a href="https://publications.waset.org/abstracts/171934/the-acoustic-performance-of-double-skin-wind-energy-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12844</span> Integration of Acoustic Solutions for Classrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyibo%20Ebengeobong%20Eddie">Eyibo Ebengeobong Eddie</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Zafer%20Alibaba"> Halil Zafer Alibaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The neglect of classroom acoustics is dominant in most educational facilities, meanwhile, hearing and listening is the learning process in this kind of facilities. A classroom should therefore be an environment that encourages listening, without an obstacles to understanding what is being taught. Although different studies have shown teachers to complain that noise is the everyday factor that causes stress in classroom, the capacity of individuals to understand speech is further affected by Echoes, Reverberation, and room modes. It is therefore necessary for classrooms to have an ideal acoustics to aid the intelligibility of students in the learning process. The influence of these acoustical parameters on learning and teaching in schools needs to be further researched upon to enhance the teaching and learning capacity of both teacher and student. For this reason, there is a strong need to provide and collect data to analyse and define the suitable quality of classrooms needed for a learning environment. Research has shown that acoustical problems are still experienced in both newer and older schools. However, recently, principle of acoustics has been analysed and room acoustics can now be measured with various technologies and sound systems to improve and solve the problem of acoustics in classrooms. These acoustic solutions, materials, construction methods and integration processes would be discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classroom" title="classroom">classroom</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustics" title=" acoustics"> acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20intelligibility" title=" speech intelligibility"> speech intelligibility</a> </p> <a href="https://publications.waset.org/abstracts/26579/integration-of-acoustic-solutions-for-classrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12843</span> The Effect of Mean Pressure on the Performance of a Low-Grade Heat-Driven Thermoacoustic Cooler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irna%20Farikhah">Irna Farikhah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Converting low-grade waste heat into useful energy such as sound energy which can then be used to generate acoustic power in a thermoacoustic engine has become an attracting issue for researchers. The generated power in thermoacoustic engine can be used for driving a thermoacoustic cooler when they are installed in a tube. This cooler system can be called as a heat-driven thermoacoustic cooler. In this study, low heating temperature of the engine is discussed. In addition, having high efficiency of the whole cooler is also essential. To design a thermoacoustic cooler having high efficiency with using low-grade waste heat for the engine, the effect of mean pressure is investigated. By increasing the mean pressure, the heating temperature to generate acoustic power can be decreased from 557 °C to 300 °C. Moreover, the efficiency of the engine and cooler regenerators attain 67% and 47% of the upper limit values, respectively and 49% of the acoustical work generated by the engine regenerator is utilized in the cooler regenerator. As a result, the efficiency of the whole cooler becomes 15% of the upper limit value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooler" title="cooler">cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20pressure" title=" mean pressure"> mean pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustic" title=" thermoacoustic"> thermoacoustic</a> </p> <a href="https://publications.waset.org/abstracts/91261/the-effect-of-mean-pressure-on-the-performance-of-a-low-grade-heat-driven-thermoacoustic-cooler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12842</span> Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shradha%20S.%20Binani">Shradha S. Binani</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Bodke"> P. S. Bodke</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Joat"> R. V. Joat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustical%20parameters" title="acoustical parameters">acoustical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20velocity" title=" ultrasonic velocity"> ultrasonic velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=2-hydroxy%20substituted%20phenyl%20pyrimidine%20derivative" title=" 2-hydroxy substituted phenyl pyrimidine derivative"> 2-hydroxy substituted phenyl pyrimidine derivative</a> </p> <a href="https://publications.waset.org/abstracts/9294/ultrasonic-investigation-as-tool-for-study-of-molecular-interaction-of-2-hydroxy-substituted-pyrimidine-derivative-at-different-concentrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12841</span> Exploring the History of Chinese Music Acoustic Technology through Data Fluctuations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yang">Yang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Xin"> Lu Xin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of extant musical sites can provide a side-by-side picture of historical ethnomusicological information. In their data collection on Chinese opera houses, researchers found that one Ming Dynasty opera house reached a width of nearly 18 meters, while all opera houses of the same period and after it was far from such a width, being significantly smaller than 18 meters. The historical transient fluctuations in the data dimension of width that caused Chinese theatres to fluctuate in the absence of construction scale constraints have piqued the interest of researchers as to why there is data variation in width. What factors have contributed to the lack of further expansion in the width of theatres? To address this question, this study used a comparative approach to conduct a venue experiment between this theater stage and another theater stage for non-heritage opera performances, collecting the subjective perceptions of performers and audiences at different theater stages, as well as combining BK Connect platform software to measure data such as echo and delay. From the subjective and objective results, it is inferred that the Chinese ancients discovered and understood the acoustical phenomenon of the Haas effect by exploring the effect of stage width on musical performance and appreciation of listening states during the Ming Dynasty and utilized this discovery to serve music in subsequent stage construction. This discovery marked a node of evolution in Chinese architectural acoustics technology driven by musical demands. It is also instructive to note that, in contrast to many of the world's "unsuccessful civilizations," China can use a combination of heritage and intangible cultural research to chart a clear, demand-driven course for the evolution of human music technology, and that the findings of such research will complete the course of human exploration of music acoustics. The findings of such research will complete the journey of human exploration of music acoustics, and this practical experience can be applied to the exploration and understanding of other musical heritage base data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haas%20effect" title="Haas effect">Haas effect</a>, <a href="https://publications.waset.org/abstracts/search?q=musical%20acoustics" title=" musical acoustics"> musical acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=history%20of%20acoustical%20technology" title=" history of acoustical technology"> history of acoustical technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20opera%20stage" title=" Chinese opera stage"> Chinese opera stage</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/141000/exploring-the-history-of-chinese-music-acoustic-technology-through-data-fluctuations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12840</span> Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saqib%20Aziz">Saqib Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Alexander"> Brad Alexander</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Gengnagel"> Christoph Gengnagel</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Weinzierl"> Stefan Weinzierl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustical%20design" title="acoustical design">acoustical design</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20design" title=" computational design"> computational design</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20optimization" title=" multimodal optimization"> multimodal optimization</a> </p> <a href="https://publications.waset.org/abstracts/142873/generative-design-of-acoustical-diffuser-and-absorber-elements-using-large-scale-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12839</span> Piezoelectric Approach on Harvesting Acoustic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khin%20Fai%20Chen">Khin Fai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jee-Hou%20Ho"> Jee-Hou Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Hwa%20Yap"> Eng Hwa Yap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title="piezoelectric">piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic" title=" acoustic"> acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvester" title=" energy harvester"> energy harvester</a> </p> <a href="https://publications.waset.org/abstracts/29247/piezoelectric-approach-on-harvesting-acoustic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12838</span> Experimental Verification of Similarity Criteria for Sound Absorption of Perforated Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Majchrzak">Aleksandra Majchrzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Baruch"> Katarzyna Baruch</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Sobolewska"> Monika Sobolewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartlomiej%20Chojnacki"> Bartlomiej Chojnacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Pilch"> Adam Pilch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scaled modeling is very common in the areas of science such as aerodynamics or fluid mechanics, since defining characteristic numbers enables to determine relations between objects under test and their models. In acoustics, scaled modeling is aimed mainly at investigation of room acoustics, sound insulation and sound absorption phenomena. Despite such a range of application, there is no method developed that would enable scaling acoustical perforated panels freely, maintaining their sound absorption coefficient in a desired frequency range. However, conducted theoretical and numerical analyses have proven that it is not physically possible to obtain given sound absorption coefficient in a desired frequency range by directly scaling only all of the physical dimensions of a perforated panel, according to a defined characteristic number. This paper is a continuation of the research mentioned above and presents practical evaluation of theoretical and numerical analyses. The measurements of sound absorption coefficient of perforated panels were performed in order to verify previous analyses and as a result find the relations between full-scale perforated panels and their models which will enable to scale them properly. The measurements were conducted in a one-to-eight model of a reverberation chamber of Technical Acoustics Laboratory, AGH. Obtained results verify theses proposed after theoretical and numerical analyses. Finding the relations between full-scale and modeled perforated panels will allow to produce measurement samples equivalent to the original ones. As a consequence, it will make the process of designing acoustical perforated panels easier and will also lower the costs of prototypes production. Having this knowledge, it will be possible to emulate in a constructed model panels used, or to be used, in a full-scale room more precisely and as a result imitate or predict the acoustics of a modeled space more accurately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20numbers" title="characteristic numbers">characteristic numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20analysis" title=" dimensional analysis"> dimensional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20study" title=" model study"> model study</a>, <a href="https://publications.waset.org/abstracts/search?q=scaled%20modeling" title=" scaled modeling"> scaled modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coefficient" title=" sound absorption coefficient"> sound absorption coefficient</a> </p> <a href="https://publications.waset.org/abstracts/78680/experimental-verification-of-similarity-criteria-for-sound-absorption-of-perforated-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12837</span> The Role of Acoustical Design within Architectural Design in the Early Design Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Wright">O. Wright</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Perkins"> N. Perkins</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Donn"> M. Donn</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Halstead"> M. Halstead</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research responded to anecdotal evidence that suggested inefficiencies within the Architect and Acoustician relationship may lead to ineffective acoustic design decisions.&nbsp; The acoustician spoken to believed that he was approached too late in the design phase. The approached architect valued acoustical qualities, yet, struggled to interpret common measurement parameters. The preliminary investigation of these opinions indicated a gap in the current New Zealand Architectural discourse and currently informs the creation of a 2016 Master of Architecture (Prof) thesis research. Little meaningful information about acoustic intervention in the early design phase could be found from past literature. In the information that was sourced, authors focus on software as an incorporation tool without investigating why the flaws in the relationship originally exist. To further explore this relationship, a survey was designed. It underwent three phases to ensure its consistency, and was delivered to a group of 51 acousticians from one international Acoustics company. The results were then separated between New Zealand and off-shore to identify trends. The survey results suggest that 75% of acousticians meet the architect less than 5 times per project. Instead of regular contact, a mediated method is adopted though a mix of telecommunication and written reports. Acousticians tend to be introduced later into New Zealand building project than the corresponding off-shore building. This delay corresponds to an increase in remedial action for each of the building types in the survey except Auditoria and Office Buildings. 31 participants have had their specifications challenged by an architect. Furthermore, 71% of the acousticians believe that architects do not have the knowledge to understand why the acoustic specifications are in place. The issues raised in this investigation align to the colloquial evidence expressed by the two consultants. It identifies a larger gap in the industry were acoustics is remedially treated rather than identified as a possible design driver. Further research through design is suggested to understand the role of acoustics within architectural design and potential tools for its inclusion during, not after, the design process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20acoustics" title="architectural acoustics">architectural acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=early-design" title=" early-design"> early-design</a>, <a href="https://publications.waset.org/abstracts/search?q=interdisciplinary%20communication" title=" interdisciplinary communication"> interdisciplinary communication</a>, <a href="https://publications.waset.org/abstracts/search?q=remedial%20response" title=" remedial response"> remedial response</a> </p> <a href="https://publications.waset.org/abstracts/48661/the-role-of-acoustical-design-within-architectural-design-in-the-early-design-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12836</span> Enhancing Organizational Performance through Adaptive Learning: A Case Study of ASML</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Shadani">Ramin Shadani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces adaptive performance as a key organizational performance dimension and explores the relationship between the dimensions of a learning organization and adaptive performance. A survey was therefore conducted using the dimensions of the Learning Organization Questionnaire (DLOQ), followed by factor analysis and structural equation modeling in order to investigate the dynamics between learning organization practices and adaptive performance. Results confirm that adaptive performance is indeed one important dimension of organizational performance. The study also shows that perceived knowledge and adaptive performance mediate the positive relationship between the practices of a learning organization with perceived financial performance. We extend existing DLOQ research by demonstrating that adaptive performance, as a nonfinancial organizational learning outcome, has a significant impact on financial performance. Our study also provides additional validation of the measures of DLOQ's performance. Indeed, organizations need to take a glance at how the activities of learning and development can provide better overall improvement in performance, especially in enhancing adaptive capability. The study has provided requisite empirical support that activities of learning and development within organizations allow much-improved intangible performance outcomes, especially through adaptive performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20performance" title="adaptive performance">adaptive performance</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20learning" title=" continuous learning"> continuous learning</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20performance" title=" financial performance"> financial performance</a>, <a href="https://publications.waset.org/abstracts/search?q=leadership%20style" title=" leadership style"> leadership style</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20learning" title=" organizational learning"> organizational learning</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20performance" title=" organizational performance"> organizational performance</a> </p> <a href="https://publications.waset.org/abstracts/191916/enhancing-organizational-performance-through-adaptive-learning-a-case-study-of-asml" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12835</span> Transmission Loss Analysis for Panels Laminated with Felt and Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshio%20Kurosawa">Yoshio Kurosawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To reduce the interior noise of cars in high-frequency region, sound proof materials are laminated with the body panels and the interior trims. Therefore, sound proof properties of the laminates play an important role for the efficient acoustical design. A program code which predicts both sound absorption properties and sound insulation properties of the laminates are developed. This program code is used for transfer matrix method by Biot theory. This report described the outline of this program code, and the calculation results almost agreed with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title="porous media">porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20loss" title=" transmission loss"> transmission loss</a>, <a href="https://publications.waset.org/abstracts/search?q=Biot%20theory" title=" Biot theory"> Biot theory</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a> </p> <a href="https://publications.waset.org/abstracts/55769/transmission-loss-analysis-for-panels-laminated-with-felt-and-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12834</span> Development and Characterization of Synthetic Non-Woven for Sound Absorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Sam%20Vimal%20Rajkumar">P. Sam Vimal Rajkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Priyanga"> K. Priyanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre" title=" fibre"> fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=non-woven" title=" non-woven"> non-woven</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20properties" title=" sound absorption properties"> sound absorption properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coefficient" title=" sound absorption coefficient"> sound absorption coefficient</a> </p> <a href="https://publications.waset.org/abstracts/66969/development-and-characterization-of-synthetic-non-woven-for-sound-absorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12833</span> Investigation on the Acoustical Transmission Path of Additive Printed Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Rehmet">Raphael Rehmet</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Lohrengel"> Armin Lohrengel</a>, <a href="https://publications.waset.org/abstracts/search?q=Prof%20Dr-Ing"> Prof Dr-Ing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In terms of making machines more silent and convenient, it is necessary to analyze the transmission path of mechanical vibrations and structure-bone noise. A typical solution for the elimination of structure-bone noise would be to simply add stiffeners or additional masses to change the transmission behavior and, thereby, avoid the propagation of vibrations. Another solution could be to use materials with a different damping behavior, such as elastomers, to isolate the machine dynamically. This research approach investigates the damping behavior of additive printed components made from structural steel or titanium, which have been manufactured in the “Laser Powder Bed Fusion“-process. By using the design flexibility which this process comes with, it will be investigated how a local impedance difference will affect the transmission behavior of the specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D-printed" title="3D-printed">3D-printed</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustics" title=" acoustics"> acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a> </p> <a href="https://publications.waset.org/abstracts/140569/investigation-on-the-acoustical-transmission-path-of-additive-printed-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12832</span> An Approach to Physical Performance Analysis for Judo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Frassinelli">Stefano Frassinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Niccolai"> Alessandro Niccolai</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20E.%20Zich"> Riccardo E. Zich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sport performance analysis is a technique that is becoming every year more important for athletes of every level. Many techniques have been developed to measure and analyse efficiently the performance of athletes in some sports, but in combat sports these techniques found in many times their limits, due to the high interaction between the two opponents during the competition. In this paper the problem will be framed. Moreover the physical performance measurement problem will be analysed and three different techniques to manage it will be presented. All the techniques have been used to analyse the performance of 22 high level Judo athletes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sport%20performance" title="sport performance">sport performance</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20performance" title=" physical performance"> physical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=judo" title=" judo"> judo</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20coefficients" title=" performance coefficients"> performance coefficients</a> </p> <a href="https://publications.waset.org/abstracts/61556/an-approach-to-physical-performance-analysis-for-judo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12831</span> The Mediatory Role of Innovation in the Link between Social and Financial Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bita%20Mashayekhi">Bita Mashayekhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Jahangard"> Amin Jahangard</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Samavat"> Milad Samavat</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Homayoun"> Saeid Homayoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern competitive business environment, one cannot overstate the importance of corporate social responsibility. The controversial link between the social and financial performance of firms has become a topic of interest for scholars. Hence, this study examines the social and financial performance link by taking into account the mediating role of innovation performance. We conducted the Covariance-based Structural Equation Modeling (CB-SEM) method on an international sample of firms provided by the ASSET4 database. In this research, to explore the black box of the social and financial performance relationship, we first examined the effect of social performance separately on financial performance and innovation; then, we measured the mediation role of innovation in the social and financial performance link. While our results indicate the positive effect of social performance on financial performance and innovation, we cannot document the positive mediating role of innovation. This possibly relates to the long-term nature of benefits from investments in innovation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESG" title="ESG">ESG</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20performance" title=" financial performance"> financial performance</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20performance" title=" social performance"> social performance</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a> </p> <a href="https://publications.waset.org/abstracts/160921/the-mediatory-role-of-innovation-in-the-link-between-social-and-financial-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12830</span> Duration of Isolated Vowels in Infants with Cochlear Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paris%20Binos">Paris Binos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates developmental aspects of the duration of isolated vowels in infants with normal hearing compared to those who received cochlear implants (CIs) before two years of age. Infants with normal hearing produced shorter vowel duration since this find related with more mature production abilities. First isolated vowels are transparent during the protophonic stage as evidence of an increased motor and linguistic control. Vowel duration is a crucial factor for the transition of prelexical speech to normal adult speech. Despite current knowledge of data for infants with normal hearing more research is needed to unravel productions skills in early implanted children. Thus, isolated vowel productions by two congenitally hearing-impaired Greek infants (implantation ages 1:4-1:11; post-implant ages 0:6-1:3) were recorded and sampled for six months after implantation with a Nucleus-24. The results compared with the productions of three normal hearing infants (chronological ages 0:8-1:1). Vegetative data and vocalizations masked by external noise or sounds were excluded. Participants had no other disabilities and had unknown deafness etiology. Prior to implantation the infants had an average unaided hearing loss of 95-110 dB HL while the post-implantation PTA decreased to 10-38 dB HL. The current research offers a methodology for the processing of the prelinguistic productions based on a combination of acoustical and auditory analyses. Based on the current methodological framework, duration measured through spectrograms based on wideband analysis, from the voicing onset to the end of the vowel. The end marked by two co-occurring events: 1) The onset of aperiodicity with a rapid change in amplitude in the waveform and 2) a loss in formant’s energy. Cut-off levels of significance were set at 0.05 for all tests. Bonferroni post hoc tests indicated that difference was significant between the mean duration of vowels of infants wearing CIs and their normal hearing peers. Thus, the mean vowel duration of CIs measured longer compared to the normal hearing peers (0.000). The current longitudinal findings contribute to the existing data for the performance of children wearing CIs at a very young age and enrich also the data of the Greek language. The above described weakness for CI’s performance is a challenge for future work in speech processing and CI’s processing strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cochlear%20implant" title="cochlear implant">cochlear implant</a>, <a href="https://publications.waset.org/abstracts/search?q=duration" title=" duration"> duration</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrogram" title=" spectrogram"> spectrogram</a>, <a href="https://publications.waset.org/abstracts/search?q=vowel" title=" vowel"> vowel</a> </p> <a href="https://publications.waset.org/abstracts/64394/duration-of-isolated-vowels-in-infants-with-cochlear-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12829</span> Working Conditions, Motivation and Job Performance of Hotel Workers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thushel%20Jayaweera">Thushel Jayaweera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In performance evaluation literature, there has been no investigation indicating the impact of job characteristics, working conditions and motivation on the job performance among the hotel workers in Britain. This study tested the relationship between working conditions (physical and psychosocial working conditions) and job performance (task and contextual performance) with motivators (e.g. recognition, achievement, the work itself, the possibility for growth and work significance) as the mediating variable. A total of 254 hotel workers in 25 hotels in Bristol, United Kingdom participated in this study. Working conditions influenced job performance and motivation moderated the relationship between working conditions and job performance. Poor workplace conditions resulted in decreasing employee performance. The results point to the importance of motivators among hotel workers and highlighted that work be designed to provide recognition and sense of autonomy on the job to enhance job performance of the hotel workers. These findings have implications for organizational interventions aimed at increasing employee job performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hotel%20workers" title="hotel workers">hotel workers</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20conditions" title=" working conditions"> working conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20characteristics" title=" job characteristics"> job characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20performance" title=" job performance"> job performance</a> </p> <a href="https://publications.waset.org/abstracts/21337/working-conditions-motivation-and-job-performance-of-hotel-workers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">598</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12828</span> Factors Affecting Employee Performance: A Case Study in Marketing and Trading Directorate, Pertamina Ltd.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saptiadi%20Nugroho">Saptiadi Nugroho</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nur%20Muhamad%20Afif"> A. Nur Muhamad Afif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding factors that influence employee performance is very important. By finding the significant factors, organization could intervene to improve the employee performance that simultaneously will affect organization itself. In this research, four aspects consist of PCCD training, education level, corrective action, and work location were tested to identify their influence on employee performance. By using correlation analysis and T-Test, it was found that employee performance significantly influenced by PCCD training, work location, and corrective action. Meanwhile the education level did not influence employee performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=employee%20development" title="employee development">employee development</a>, <a href="https://publications.waset.org/abstracts/search?q=employee%20performance" title=" employee performance"> employee performance</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20management%20system" title=" performance management system"> performance management system</a>, <a href="https://publications.waset.org/abstracts/search?q=organization" title=" organization"> organization</a> </p> <a href="https://publications.waset.org/abstracts/6460/factors-affecting-employee-performance-a-case-study-in-marketing-and-trading-directorate-pertamina-ltd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12827</span> Examining the Role of Corporate Culture in Driving Firm Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lovorka%20Galeti%C4%87">Lovorka Galetić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Na%C4%8Dinovi%C4%87%20Braje"> Ivana Načinović Braje</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevenka%20%C4%8Cavlek"> Nevenka Čavlek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to analyze the relationship between corporate culture and firm performance. Extensive theoretical and empirical evidence on this issue is provided. A quantitative methodology was used to explore relationship between corporate culture and performance among large Croatian companies. Corporate culture was explored by using Denison framework. The research revealed a positive, statistically significant relationship between mission and performance. Other dimensions of corporate culture (involvement, consistency and adaptability) show only partial relationship with performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20culture" title="corporate culture">corporate culture</a>, <a href="https://publications.waset.org/abstracts/search?q=Croatia" title=" Croatia"> Croatia</a>, <a href="https://publications.waset.org/abstracts/search?q=Denison%20culture%20model" title=" Denison culture model"> Denison culture model</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/25799/examining-the-role-of-corporate-culture-in-driving-firm-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12826</span> The Impact of Environmental Social and Governance (ESG) on Corporate Financial Performance (CFP): Evidence from New Zealand Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Akhtaruzzaman">Muhammad Akhtaruzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of corporate environmental social and governance (ESG) on financial performance is often difficult to quantify despite the ESG related theories predict that ESG performance improves financial performance of a company. This research examines the link between corporate ESG performance and the financial performance of the NZX (New Zealand Stock Exchange) listed companies. For this purpose, this research utilizes mixed methods approaches to examine and understand this link. While quantitative results found no robust evidence of such a link, however, the qualitative analysis of content data suggests a strong cooccurrence exists between ESG performance and financial performance. The findings of this research have important implications for policymakers to support higher ESG-performing companies and for management practitioners to develop ESG-related strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESG" title="ESG">ESG</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20performance" title=" financial performance"> financial performance</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20Zealand%20firms" title=" New Zealand firms"> New Zealand firms</a>, <a href="https://publications.waset.org/abstracts/search?q=thematic%20analysis" title=" thematic analysis"> thematic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20methods" title=" mixed methods"> mixed methods</a> </p> <a href="https://publications.waset.org/abstracts/183647/the-impact-of-environmental-social-and-governance-esg-on-corporate-financial-performance-cfp-evidence-from-new-zealand-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12825</span> Effect of Communication Pattern on Agricultural Employees&#039; Job Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Abiona">B. G. Abiona</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Fakoya"> E. O. Fakoya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Adeogun"> S. O. Adeogun</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Blessed"> J. O. Blessed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assessed the influence of communication pattern on agricultural employees’ job performance. Data were collected from 61 randomly selected respondents using a structured questionnaire. Perceived communication pattern that influence job performance include: the attitude of the administrators (x̅ = 3.41, physical barriers to communication flow among employees (x̅ = 3.21). Major challenges to respondents’ job performance were different language among employees (x̅ = 3.12), employees perception on organizational issues (x̅ = 3.09), networking (x̅ = 2.88), and unclear definition of work (x̅ = 2.74). A significant relationship was found between employees’ perceived communication pattern (r = 0.423, p < 0.00) and job performance. Information must be well designed in such a way that would positively influence employees’ job performance as this is essential in any agricultural organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication%20pattern" title="communication pattern">communication pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20performance" title=" job performance"> job performance</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20employees" title=" agricultural employees"> agricultural employees</a>, <a href="https://publications.waset.org/abstracts/search?q=constraint" title=" constraint"> constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=administrators" title=" administrators"> administrators</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude "> attitude </a> </p> <a href="https://publications.waset.org/abstracts/31891/effect-of-communication-pattern-on-agricultural-employees-job-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12824</span> Increasing a Computer Performance by Overclocking Central Processing Unit (CPU)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Witthaya%20Mekhum">Witthaya Mekhum</a>, <a href="https://publications.waset.org/abstracts/search?q=Wutthikorn%20Malikong"> Wutthikorn Malikong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the increasing desktop computer performance after overclocking central processing unit or CPU by running a computer component at a higher clock rate (more clock cycles per second) than it was designed at the rate of 0.1 GHz for each level or 100 MHz starting at 4000 GHz-4500 GHz. The computer performance is tested for each level with 4 programs, i.e. Hyper PI ver. 0.99b, Cinebench R15, LinX ver.0.6.4 and WinRAR . After the CPU overclock, the computer performance increased. When overclocking CPU at 29% the computer performance tested by Hyper PI ver. 0.99b increased by 10.03% and when tested by Cinebench R15 the performance increased by 20.05% and when tested by LinX Program the performance increased by 16.61%. However, the performance increased only 8.14% when tested with Winrar program. The computer performance did not increase according to the overclock rate because the computer consists of many components such as Random Access Memory or RAM, Hard disk Drive, Motherboard and Display Card, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=overclock" title="overclock">overclock</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20processing%20unit" title=" central processing unit"> central processing unit</a>, <a href="https://publications.waset.org/abstracts/search?q=computer" title=" computer"> computer</a> </p> <a href="https://publications.waset.org/abstracts/11975/increasing-a-computer-performance-by-overclocking-central-processing-unit-cpu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=428">428</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=429">429</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustical%20performance&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10