CINXE.COM

Search results for: shake table tests

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shake table tests</title> <meta name="description" content="Search results for: shake table tests"> <meta name="keywords" content="shake table tests"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shake table tests" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shake table tests"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4995</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shake table tests</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4995</span> Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozden%20Saygili">Ozden Saygili</a>, <a href="https://publications.waset.org/abstracts/search?q=Eser%20Cakti"> Eser Cakti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title="dynamic analysis">dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20modeling" title=" non-linear modeling"> non-linear modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests" title=" shake table tests"> shake table tests</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a> </p> <a href="https://publications.waset.org/abstracts/30824/experimental-and-numerical-analysis-of-mustafa-pasa-mosque-in-skopje" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4994</span> Seismic Response of Structure Using a Three Degree of Freedom Shake Table</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketan%20N.%20Bajad">Ketan N. Bajad</a>, <a href="https://publications.waset.org/abstracts/search?q=Manisha%20V.%20Waghmare"> Manisha V. Waghmare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title="accelerometer">accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20degree%20of%20freedom%20shake%20table" title=" three degree of freedom shake table"> three degree of freedom shake table</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20industrial%20shed" title=" steel industrial shed"> steel industrial shed</a> </p> <a href="https://publications.waset.org/abstracts/98669/seismic-response-of-structure-using-a-three-degree-of-freedom-shake-table" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4993</span> 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Kausar%20Alam">Md. Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yazdi"> Mohammad Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiman%20Zogh"> Peiman Zogh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title="foundation settlement">foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20ground%20acceleration" title=" peak ground acceleration"> peak ground acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a> </p> <a href="https://publications.waset.org/abstracts/152038/1-g-shake-table-tests-to-study-the-impact-of-pga-on-foundation-settlement-in-liquefiable-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4992</span> Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Kausar%20Alam">Md. Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20water%20pressure" title="excess pore water pressure">excess pore water pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title=" foundation settlement"> foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=press-in%20sheet%20pile" title=" press-in sheet pile"> press-in sheet pile</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20liquefaction" title=" soil liquefaction"> soil liquefaction</a> </p> <a href="https://publications.waset.org/abstracts/152041/experimental-evaluation-of-foundation-settlement-mitigations-in-liquefiable-soils-using-press-in-sheet-piling-technique-1-g-shake-table-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4991</span> Experiential Learning in an Earthquake Engineering Course Using Online Tools and Shake Table Exercises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20Winston%20Oreta">Andres Winston Oreta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiential Learning (ELE) is a strategy for enhancing the teaching and learning of courses especially in civil engineering. This paper presents the adaption of the ELE framework in the delivery of various course requirements in an earthquake engineering course. Examples of how ELE is integrated using online tools and hands-on laboratory technology to address the course learning outcomes on earthquake engineering are presented. Student feedback shows that ELE using online tools and technology strengthens students’ understanding and intuition of seismic design and earthquake engineering concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title="earthquake engineering">earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=experiential%20learning" title=" experiential learning"> experiential learning</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table" title=" shake table"> shake table</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/189318/experiential-learning-in-an-earthquake-engineering-course-using-online-tools-and-shake-table-exercises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4990</span> Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amaia%20Martinez%20Martinez">Amaia Martinez Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Turek"> Martin Turek</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Ventura"> Carlos Ventura</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Drew"> Jay Drew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arch" title="arch">arch</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20model" title=" discrete element model"> discrete element model</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment"> seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=shake-table%20testing" title=" shake-table testing"> shake-table testing</a> </p> <a href="https://publications.waset.org/abstracts/42608/seismic-assessment-of-a-pre-cast-recycled-concrete-block-arch-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4989</span> Effectiveness of Lowering the Water Table as a Mitigation Measure for Foundation Settlement in Liquefiable Soils Using 1-g Scale Shake Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kausar%20Alam">Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yazdi"> Mohammad Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiman%20Zogh"> Peiman Zogh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An earthquake is an unpredictable natural disaster. It induces liquefaction, which causes considerable damage to the structure, life support, and piping systems because of ground settlement. As a result, people are incredibly concerned about how to resolve the situation. Previous researchers adopted different ground improvement techniques to reduce the settlement of the structure during earthquakes. This study evaluates the effectiveness of lowering the water table as a technique to mitigate foundation settlement in liquefiable soil. The performance will be evaluated based on foundation settlement and the reduction of excessive pore water pressure. In this study, a scaled model was prepared based on a full-scale shale table experiment conducted at the University of California, San Diego (UCSD). The model ground consists of three soil layers having a relative density of 55%, 45%, and 90%, respectively. A shallow foundation is seated over an unsaturated crust layer. After preparation of the model ground, the water table was measured to be at 45, 40, and 35 cm (from the bottom). Then, the input motions were applied for 10 seconds, with a peak acceleration of 0.25g and a constant frequency of 2.73 Hz. Based on the experimental results, the effectiveness of the lowering water table in reducing the foundation settlement and excess pore water pressure was evident. The foundation settlement was reduced from 50 mm to 5 mm. In addition, lowering the water table as a mitigation measure is a cost-effective way to decrease liquefaction-induced building settlement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title="foundation settlement">foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20water%20table" title=" ground water table"> ground water table</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=hake%20table%20test" title=" hake table test"> hake table test</a> </p> <a href="https://publications.waset.org/abstracts/152050/effectiveness-of-lowering-the-water-table-as-a-mitigation-measure-for-foundation-settlement-in-liquefiable-soils-using-1-g-scale-shake-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4988</span> Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiguo%20Shi">Zhiguo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Ning%20Loong"> Cheng Ning Loong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiazeng%20Shan"> Jiazeng Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Weichao%20Wu">Weichao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20damping" title=" eddy current damping"> eddy current damping</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a> </p> <a href="https://publications.waset.org/abstracts/119732/equivalent-circuit-model-for-the-eddy-current-damping-with-frequency-dependence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4987</span> Developing and Shake Table Testing of Semi-Active Hydraulic Damper as Active Interaction Control Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Hsiang%20Shih">Ming-Hsiang Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Pei%20Sung"> Wen-Pei Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Heng%20Tung"> Shih-Heng Tung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semi-active control system for structure under excitation of earthquake provides with the characteristics of being adaptable and requiring low energy. DSHD (Displacement Semi-Active Hydraulic Damper) was developed by our research team. Shake table test results of this DSHD installed in full scale test structure demonstrated that this device brought its energy-dissipating performance into full play for test structure under excitation of earthquake. The objective of this research is to develop a new AIC (Active Interaction Control Device) and apply shake table test to perform its dissipation of energy capability. This new proposed AIC is converting an improved DSHD (Displacement Semi-Active Hydraulic Damper) to AIC with the addition of an accumulator. The main concept of this energy-dissipating AIC is to apply the interaction function of affiliated structure (sub-structure) and protected structure (main structure) to transfer the input seismic force into sub-structure to reduce the structural deformation of main structure. This concept is tested using full-scale multi-degree of freedoms test structure, installed with this proposed AIC subjected to external forces of various magnitudes, for examining the shock absorption influence of predictive control, stiffness of sub-structure, synchronous control, non-synchronous control and insufficient control position. The test results confirm: (1) this developed device is capable of diminishing the structural displacement and acceleration response effectively; (2) the shock absorption of low precision of semi-active control method did twice as much seismic proof efficacy as that of passive control method; (3) active control method may not exert a negative influence of amplifying acceleration response of structure; (4) this AIC comes into being time-delay problem. It is the same problem of ordinary active control method. The proposed predictive control method can overcome this defect; (5) condition switch is an important characteristics of control type. The test results show that synchronism control is very easy to control and avoid stirring high frequency response. This laboratory results confirm that the device developed in this research is capable of applying the mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSHD%20%28Displacement%20Semi-Active%20Hydraulic%20Damper%29" title="DSHD (Displacement Semi-Active Hydraulic Damper)">DSHD (Displacement Semi-Active Hydraulic Damper)</a>, <a href="https://publications.waset.org/abstracts/search?q=AIC%20%28Active%20Interaction%20Control%20Device%29" title=" AIC (Active Interaction Control Device)"> AIC (Active Interaction Control Device)</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20scale%20structure%20test" title=" full scale structure test"> full scale structure test</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-structure" title=" sub-structure"> sub-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=main-structure" title=" main-structure"> main-structure</a> </p> <a href="https://publications.waset.org/abstracts/26128/developing-and-shake-table-testing-of-semi-active-hydraulic-damper-as-active-interaction-control-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4986</span> Behavior Factors Evaluation for Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan">Muhammad Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmad"> Naveed Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Naeem%20Khan"> Akhtar Naeem Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic behavior factors are evaluated for the performance assessment of low rise reinforced concrete RC frame structures based on experimental study of unidirectional dynamic shake table testing of two 1/3rd reduced scaled two storey frames, with a code confirming special moment resisting frame (SMRF) model and a noncompliant model of similar characteristics but built in low strength concrete .The models were subjected to a scaled accelerogram record of 1994 Northridge earthquake to deformed the test models to final collapse stage in order to obtain the structural response parameters. The fully compliant model was observed with more stable beam-sway response, experiencing beam flexure yielding and ground-storey column base yielding upon subjecting to 100% of the record. The response modification factor - R factor obtained for the code complaint and deficient prototype structures were 7.5 and 4.5 respectively, which is about 10% and 40% less than the UBC-97 specified value for special moment resisting reinforced concrete frame structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Northridge%201994%20earthquake" title="Northridge 1994 earthquake">Northridge 1994 earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20frame" title=" reinforced concrete frame"> reinforced concrete frame</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title=" response modification factor"> response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20testing" title=" shake table testing"> shake table testing</a> </p> <a href="https://publications.waset.org/abstracts/98880/behavior-factors-evaluation-for-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4985</span> Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20viscous%20damper" title=" spring viscous damper"> spring viscous damper</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20structures" title=" earthquake resistant structures"> earthquake resistant structures</a> </p> <a href="https://publications.waset.org/abstracts/97455/shaking-table-test-and-seismic-performance-evaluation-of-spring-viscous-damper-cable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4984</span> Evaluation of Natural Frequency of Single and Grouped Helical Piles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Shahbazi">Maryam Shahbazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amy%20B.%20Cerato"> Amy B. Cerato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20pile" title="helical pile">helical pile</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20group" title=" pile group"> pile group</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table" title=" shake table"> shake table</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/103306/evaluation-of-natural-frequency-of-single-and-grouped-helical-piles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4983</span> The Effect of an Infill on the Bearing Capacity and Stiffness of Infilled Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goran%20%20Baloevic">Goran Baloevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Jure%20Radnic"> Jure Radnic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20Grgic"> Nikola Grgic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of frames with masonry or panel infill is common in the engineering practice. In these cases, a frame is often considered to be a primary structure, while an infill is considered to be a secondary structure. In past calculations, the infill was rarely included in the design of frame structures in terms of their bearing capacity and safety. Recent calculations of such structures necessarily include the effect of infill since it contributes to stiffness and bearing capacity of overall system, especially under horizontal loads. In certain cases, if the infill is not included in the seismic design of frame structures, the result can be lower design safety. However, since the different configuration of the infill through the building’s height can be made, it is possible that contribution of such infill to the overall bearing capacity can be lower and seismic forces on the building can be increased due to greater stiffness of the structure. So far, many experimental and numerical researches on the behavior of infilled frames under horizontal static forces and earthquake have been performed. In this paper, several masonry-infilled concrete and steel frames under horizontal static forces and earthquake are analysed. The experimental results by shake-table and numerical results are compared in terms of the bearing capacity of bare and infilled frames. Herein, the stiffness of frames and infill were varied, with different position of the infill and different types of openings. Cases with positive and negative effects of the infill to the bearing capacity of the frames were considered. Finally, main conclusions and recommendations for practical application and design of masonry-infilled concrete and steel frames are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=infilled%20frame" title=" infilled frame"> infilled frame</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table" title=" shake table"> shake table</a> </p> <a href="https://publications.waset.org/abstracts/66473/the-effect-of-an-infill-on-the-bearing-capacity-and-stiffness-of-infilled-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4982</span> Correlation between Physical Fitness and Performance and Grade of Table Tennis of Middle School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yisong%20Cong">Yisong Cong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingming%20Guo"> Mingming Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaozan%20Wang"> Xiaozan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yizhi%20Zhang"> Yizhi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingqing%20Yuan"> Qingqing Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to test the correlation between the Physical Fitness (PF) of middle school students and their performance and sports grade of table tennis. Methods: 398 middle school students from Shanghai Tongji No.2 Middle School participated in the study, including 232 boys and 166 girls. Each participant participated in the Chinese Students’ Physical Fitness Test (CSPFT), including BMI, 50-meter running, vital capacity, sitting body flexion, standing long jump, 800-meter running, 1000-meter running, pull-ups, and sit-ups. Test scores were converted to a percentage score according to the CSPFT guidelines. In addition, each student participated in the Nation Junior Table Tennis grade test, and completed the table tennis sports grade assessment of 1-9. Results: There is a significant positive correlation between the scores of multiple PF tests and the total scores of table tennis, such as BMI (r = 0.15, p < 0.01), standing long jump (r = 0.15, p < 0.05), 800-meter run (r = 0.02, p <0.01); The scores of multiple PF are positively correlated with table tennis grade, such as vital capacity (r = 0.1, p < 0.01) and 50-meter running (r = 0.18, p < 0.05). At the same time, the sit-ups performance showed a significant negative correlation with the table tennis performance (r = -0.08, p < 0.01); There is no significant correlation between the other PF indicators and the performance and grade of table tennis. Conclusions: This study shows that there is a corresponding relationship between some PF indicators of middle school students and their table tennis performance and table tennis grade,but the specific form and reason of the relationship need to be further explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=middle%20school%20students" title="middle school students">middle school students</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20fitness" title=" physical fitness"> physical fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis%20grade" title=" table tennis grade"> table tennis grade</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis%20performance" title=" table tennis performance"> table tennis performance</a> </p> <a href="https://publications.waset.org/abstracts/126554/correlation-between-physical-fitness-and-performance-and-grade-of-table-tennis-of-middle-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4981</span> The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Z.%20Mahmud">Emin Z. Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20of%20masonry%20structures" title="behaviour of masonry structures">behaviour of masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode" title=" Eurocode"> Eurocode</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/117054/the-influence-of-strengthening-on-the-fundamental-frequency-and-stiffness-of-a-confined-masonry-wall-with-an-opening-for-a-window" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4980</span> Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Riascos">Carlos Riascos</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Thomson"> Peter Thomson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title="structural control">structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20simulation" title=" hybrid simulation"> hybrid simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20liquid%20column%20damper" title=" tuned liquid column damper"> tuned liquid column damper</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-active%20sontrol%20strategy" title=" semi-active sontrol strategy "> semi-active sontrol strategy </a> </p> <a href="https://publications.waset.org/abstracts/39360/real-time-hybrid-simulation-for-a-tuned-liquid-column-damper-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4979</span> Experimental Simulation of Soil Boundary Condition for Dynamic Studies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20S.%20Qaftan">Omar S. Qaftan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Sabbagh"> T. T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/74384/experimental-simulation-of-soil-boundary-condition-for-dynamic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4978</span> A Survey on Compression Methods for Table Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gharbi">N. Gharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constraint Satisfaction problems are mathematical problems that are often used to model many real-world problems for which we look if there exists a solution satisfying all its constraints. Table constraints are important for modeling parts of many problems since they list all combinations of allowed or forbidden values. However, they admit practical limitations because they are sometimes too large to be represented in a direct way. In this paper, we present a survey of the different categories of the proposed approaches to compress table constraints in order to reduce both space and time complexities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constraint%20programming" title="constraint programming">constraint programming</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20constraints" title=" table constraints"> table constraints</a> </p> <a href="https://publications.waset.org/abstracts/49933/a-survey-on-compression-methods-for-table-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4977</span> Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-San%20Shin">Young-San Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongsoo%20Lee"> Seongsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1&deg;. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hall%20sensor" title="hall sensor">hall sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20measurement" title=" angle measurement"> angle measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=lookup%20table" title=" lookup table"> lookup table</a>, <a href="https://publications.waset.org/abstracts/search?q=arctangent" title=" arctangent"> arctangent</a> </p> <a href="https://publications.waset.org/abstracts/60862/lookup-table-reduction-and-its-error-analysis-of-hall-sensor-based-rotation-angle-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4976</span> Derivation of Technology Element for Automation in Table Formwork in a Tall Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junehyuck%20Lee">Junehyuck Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongmin%20Lee"> Dongmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunhee%20Cho"> Hunhee Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-In%20Kang"> Kyung-In Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A table formwork method has recently been widely applied in reinforced concrete structures in a tall building construction to improve safety and productivity. However, this method still depended mainly on manpower. Therefore, this study aimed at derivation of technology element to apply the automation in table formwork in a tall building construction. These results will contribute to improve productivity and labor saving in table formwork in tall building construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20form" title="table form">table form</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/61287/derivation-of-technology-element-for-automation-in-table-formwork-in-a-tall-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4975</span> System Identification of Timber Masonry Walls Using Shaking Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timir%20Baran%20Roy">Timir Baran Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Guerreiro"> Luis Guerreiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20decomposition%20%28fdd%29" title="frequency domain decomposition (fdd)">frequency domain decomposition (fdd)</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20parameters" title=" modal parameters"> modal parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20subspace%20identification%20%28ssi%29" title=" stochastic subspace identification (ssi)"> stochastic subspace identification (ssi)</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20decomposition" title=" time domain decomposition "> time domain decomposition </a> </p> <a href="https://publications.waset.org/abstracts/53765/system-identification-of-timber-masonry-walls-using-shaking-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4974</span> The Effect of Static Balance Enhance by Table Tennis Training Intervening on Deaf Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Chun%20Chang">Yi-Chun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Ting%20Hsu"> Ching-Ting Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Hua%20Ho"> Wei-Hua Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueh-Tung%20Kuo"> Yueh-Tung Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children with hearing impairment have deficits of balance and motors. Although most of parents teach deaf children communication skills in early life, but rarely teach the deficits of balance. The purpose of this study was to investigate whether static balance improved after table tennis training. Table tennis training was provided four times a week for eight weeks to two 12-year-old deaf children. The table tennis training included crossover footwork, sideway attack, backhand block-sideways-flutter forehand attack, and one-on-one tight training. Data were gathered weekly and statistical comparisons were made with a paired t-test. We observed that the dominant leg is better than the non-dominant leg in static balance and girl balance ability is better than boy. The final result shows that table tennis training significantly improves the deaf children’s static balance performance. It indicates that table tennis training on deaf children helps the static balance ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deaf%20children" title="deaf children">deaf children</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title=" static balance"> static balance</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis" title=" table tennis"> table tennis</a>, <a href="https://publications.waset.org/abstracts/search?q=vestibular%20structure" title=" vestibular structure"> vestibular structure</a> </p> <a href="https://publications.waset.org/abstracts/45989/the-effect-of-static-balance-enhance-by-table-tennis-training-intervening-on-deaf-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4973</span> The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Z.%20Mahmud">Emin Z. Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door &ndash; specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20of%20masonry%20structures" title="behaviour of masonry structures">behaviour of masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode" title=" Eurocode"> Eurocode</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/117055/the-influence-of-strengthening-on-the-fundamental-frequency-and-stiffness-of-a-confined-masonry-wall-with-an-opening-for-a-door" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4972</span> Preparation of Regional Input-Output Table for Fars Province in 2011: GRIT1Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Akbarzadeh">Maryam Akbarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Esmaeilzadeh"> F. Esmaeilzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Poostvar"> A. Poostvar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Manuchehri"> M. Manuchehri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preparation of regional input-output tables requires statistical methods combined with high costs and too much time. Obtained estimates by non-statistical methods have low confidence coefficient. Therefore, integrated methods for this purpose are suggested by recent input–output studies. In this study, first GRIT method is introduced as an appropriate integrated method for preparation of input-output table of Fars province. Next, input-output table is prepared for Fars province using this method. Therefore, this study is based on input-output table of national economy in 2001. Necessary modifications performed in the field of changes at level of prices and differences of regional trade compared with other areas at national level. Moreover, up to date statistics and information and technical experts view on the various economic sectors along with input-output table 33 was used in 2011 followed by investigation of general structure of the province economy based on the amounts of added value obtained from this table. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grit" title="grit">grit</a>, <a href="https://publications.waset.org/abstracts/search?q=input-output" title=" input-output"> input-output</a>, <a href="https://publications.waset.org/abstracts/search?q=table" title=" table"> table</a>, <a href="https://publications.waset.org/abstracts/search?q=regional" title=" regional "> regional </a> </p> <a href="https://publications.waset.org/abstracts/3237/preparation-of-regional-input-output-table-for-fars-province-in-2011-grit1method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4971</span> Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Snehal%20D.%20Ganjave">Snehal D. Ganjave</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardik%20Dodia"> Hardik Dodia</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20V.%20Sunder"> Avinash V. Sunder</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Madhu"> Swati Madhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramod%20P.%20Wangikar"> Pramod P. Wangikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cybernetic%20model" title="cybernetic model">cybernetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20cell%20density%20cultivation" title=" high cell density cultivation"> high cell density cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/141517/cybernetic-model-based-optimization-of-a-fed-batch-process-for-high-cell-density-cultivation-of-e-coli-in-shake-flasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4970</span> Damage Localization of Deterministic-Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-Po%20Wang">Yen-Po Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chih%20Huang"> Ming-Chih Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Lian%20Chang"> Ming-Lian Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20locating%20vectors" title="damage locating vectors">damage locating vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic-stochastic%20subspace%20system" title=" deterministic-stochastic subspace system"> deterministic-stochastic subspace system</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20tests" title=" shaking table tests"> shaking table tests</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/5097/damage-localization-of-deterministic-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4969</span> Structural Assessment of Low-Rise Reinforced Concrete Frames under Tsunami Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Jiffry">Hussain Jiffry</a>, <a href="https://publications.waset.org/abstracts/search?q=Kypros%20Pilakoutas"> Kypros Pilakoutas</a>, <a href="https://publications.waset.org/abstracts/search?q=Reyes%20Garcia%20Lopez"> Reyes Garcia Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the effect of tsunami loads on reinforced concrete (RC) frame buildings analytically. The impact of tsunami wave loads and waterborne objects are analyzed using a typical substandard full-scale two-story RC frame building tested as part of the EU-funded Ecoleader project. The building was subjected to shake table tests in bare condition and subsequently strengthened using Carbon Fiber Reinforced Polymers (CFRP) composites and retested. Numerical models of the building in both bare and CFRP-strengthened conditions are calibrated in DRAIN-3DX software to match the test results. To investigate the response of wave loads and impact forces, the numerical models are subjected to nonlinear dynamic analyses using force-time history input records. The analytical results are compared in terms of displacements at the floors and the 'impact point' of a boat. The results show that the roof displacement of the CFRP-strengthened building reduced by 63% when compared to the bare building. The results also indicate that strengthening only the mid-height of the impact column using CFRP is more efficient at reducing damage when compared to strengthening other parts of the column. Alternative solutions to mitigate damage due to tsunami loads are suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tsunami%20loads" title="tsunami loads">tsunami loads</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20load" title=" hydrodynamic load"> hydrodynamic load</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title=" impact load"> impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=waterborne%20objects" title=" waterborne objects"> waterborne objects</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings "> RC buildings </a> </p> <a href="https://publications.waset.org/abstracts/24083/structural-assessment-of-low-rise-reinforced-concrete-frames-under-tsunami-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4968</span> Association Between Hip Internal and External Rotation Range of Motion and Low Back Pain in Table Tennis Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaili%20Wang">Kaili Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Botao%20Zhang"> Botao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Enming%20Zhang"> Enming Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Low back pain (LBP) is a common problem affecting athletes' training and competition. Although the association between a limited hip range of motion and prevalence of low back pain has been studied extensively, it has not been studied in table tennis. Aim: The main purposes of this study in table tennis players were (1) to investigate if there is a difference in hip internal rotation (HIR) and external rotation (HER) range of motion (ROM) between players with LBP and players without LBP and (2) to analyze the association between HIR and HER ROM and LBP. Methods: Forty-six table tennis players from the Chinese table tennis team were evaluated for passive maximum HIR and HER ROM. LBP was retrospectively recorded for the last 12 months before the date of ROM assessment by a physical therapist. The data were analyzed the difference in HIR and HER ROM between players with LBP and players without LBP by Mann-Whitney U test, and the association between the difference in HIR and HER ROM and LBP was analyzed via a binary logistic regression. Results: The 54% of players had developed LBP during the retrospective study period. Significant difference between LBP group and the asymptomatic group for HIR ROM (z=4.007, p<0.001) was observed. Difference between LBP group and asymptomatic group for HER ROM (z=1.117, p=0.264) was not significant. Players who had HIR ROM deficit had an increased risk of LBP compared with players without HIR ROM deficit (OR=5.344, 95%CI: 1.006-28.395, P=0.049). Conclusion: HIR ROM of a table tennis player with LBP was less than a table tennis player without LBP. Compared with player whose HIR ROM was normal, player who had HIR ROM deficit appeared to have a higher risk for LBP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=injury%20prevention" title=" injury prevention"> injury prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20back%20pain" title=" low back pain"> low back pain</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis%20players" title=" table tennis players"> table tennis players</a> </p> <a href="https://publications.waset.org/abstracts/154477/association-between-hip-internal-and-external-rotation-range-of-motion-and-low-back-pain-in-table-tennis-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4967</span> Effect of Mica Content in Sand on Site Response Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Isbuga">Volkan Isbuga</a>, <a href="https://publications.waset.org/abstracts/search?q=Joman%20M.%20Mahmood"> Joman M. Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Firat%20Cabalar"> Ali Firat Cabalar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the site response analysis of mica-sand mixtures available in certain parts of the world including Izmir, a highly populated city and located in a seismically active region in western part of Turkey. We performed site response analyses by employing SHAKE, an equivalent linear approach, for the micaceous soil deposits consisting of layers with different amount of mica contents and thicknesses. Dynamic behavior of micaceous sands such as shear modulus reduction and damping ratio curves are input for the ground response analyses. Micaceous sands exhibit a unique dynamic response under a scenario earthquake with a magnitude of Mw=6. Results showed that higher amount of mica caused higher spectral accelerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micaceous%20sands" title="micaceous sands">micaceous sands</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response" title=" site response"> site response</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20linear%20approach" title=" equivalent linear approach"> equivalent linear approach</a>, <a href="https://publications.waset.org/abstracts/search?q=SHAKE" title=" SHAKE"> SHAKE</a> </p> <a href="https://publications.waset.org/abstracts/54831/effect-of-mica-content-in-sand-on-site-response-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4966</span> Seismic Evaluation of Connected and Disconnected Piled Raft Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Fallah%20Yeznabad">Ali Fallah Yeznabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Baziar"> Mohammad H. Baziar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Saedi%20Azizkandi"> Alireza Saedi Azizkandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rafts may be used when a low bearing capacity exists underneath the foundation and may be combined by piles in some special circumstances; such as to reduce settlements or high groundwater to control buoyancy. From structural point of view, these piles could be both connected or disconnected from the raft and are to be classified as Piled Rafts (PR) or Disconnected Piled Rafts (DPR). Although the researches about the behavior of piled rafts subjected to vertical loading is really extensive, in the context of dynamic load and earthquake loading, the studies are very limited. In this study, to clarify these foundations’ performance under dynamic loading, series of Shaking Table tests have been performed. The square raft and four piles in connected and disconnected configurations were used in dry silica sand and the model was experimented using a shaking table under 1-g conditions. Moreover, numerical investigation using finite element software have been conducted to better understand the differences and advantages. Our observations demonstrates that in connected Piled Rafts piles have to bear greater amount of moment in their upper parts, however this moments are approximately 40% lower in disconnected piled rafts in the same conditions and loading. Considering the Rafts’ lateral movement which be of crucial importance in foundations performance evaluation, connected piled rafts show much better performance with about 30% less lateral movement. Further, it was observed on confirmed both through laboratory tests and numerical analysis, that adding the superstructure over the piled raft foundation the raft separates from the soil and it significantly increases rocking of the raft which was observed to be the main reason of increase in piles’ moments under superstructure interaction with the foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piled%20Rafts%20%28PR%29" title="Piled Rafts (PR)">Piled Rafts (PR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Disconnected%20Piled%20Rafts%20%28DPR%29" title=" Disconnected Piled Rafts (DPR)"> Disconnected Piled Rafts (DPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20loading" title=" dynamic loading"> dynamic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance "> seismic performance </a> </p> <a href="https://publications.waset.org/abstracts/37165/seismic-evaluation-of-connected-and-disconnected-piled-raft-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=166">166</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=167">167</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10