CINXE.COM

Spiral of Theodorus - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Spiral of Theodorus - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"0df407d6-58ed-477e-8b65-4ef0f6a3f7a4","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Spiral_of_Theodorus","wgTitle":"Spiral of Theodorus","wgCurRevisionId":1255609368,"wgRevisionId":1255609368,"wgArticleId":17206552,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Spirals","Pythagorean theorem","Pi"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Spiral_of_Theodorus","wgRelevantArticleId":17206552,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1824656","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready", "user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents", "ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/1200px-Spiral_of_Theodorus.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="977"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/800px-Spiral_of_Theodorus.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="651"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/640px-Spiral_of_Theodorus.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="521"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Spiral of Theodorus - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Spiral_of_Theodorus"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Spiral_of_Theodorus"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Spiral_of_Theodorus rootpage-Spiral_of_Theodorus skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Spiral+of+Theodorus" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Spiral+of+Theodorus" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Spiral+of+Theodorus" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Spiral+of+Theodorus" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Construction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Construction</span> </div> </a> <ul id="toc-Construction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History_and_uses" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History_and_uses"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History and uses</span> </div> </a> <ul id="toc-History_and_uses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hypotenuse" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Hypotenuse"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Hypotenuse</span> </div> </a> <button aria-controls="toc-Hypotenuse-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Hypotenuse subsection</span> </button> <ul id="toc-Hypotenuse-sublist" class="vector-toc-list"> <li id="toc-Overlapping" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Overlapping"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Overlapping</span> </div> </a> <ul id="toc-Overlapping-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Extension" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Extension"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Extension</span> </div> </a> <button aria-controls="toc-Extension-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Extension subsection</span> </button> <ul id="toc-Extension-sublist" class="vector-toc-list"> <li id="toc-Growth_rate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Growth_rate"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Growth rate</span> </div> </a> <ul id="toc-Growth_rate-sublist" class="vector-toc-list"> <li id="toc-Angle" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Angle"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Angle</span> </div> </a> <ul id="toc-Angle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Radius" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Radius"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>Radius</span> </div> </a> <ul id="toc-Radius-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Archimedean_spiral" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Archimedean_spiral"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Archimedean spiral</span> </div> </a> <ul id="toc-Archimedean_spiral-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Continuous_curve" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Continuous_curve"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Continuous curve</span> </div> </a> <ul id="toc-Continuous_curve-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Spiral of Theodorus</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 14 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-14" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">14 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Wurzelschnecke" title="Wurzelschnecke – German" lang="de" hreflang="de" data-title="Wurzelschnecke" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%80%CE%B5%CE%AF%CF%81%CE%B1_%CF%84%CE%BF%CF%85_%CE%98%CE%B5%CE%BF%CE%B4%CF%8E%CF%81%CE%BF%CF%85" title="Σπείρα του Θεοδώρου – Greek" lang="el" hreflang="el" data-title="Σπείρα του Θεοδώρου" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espiral_de_Teodoro" title="Espiral de Teodoro – Spanish" lang="es" hreflang="es" data-title="Espiral de Teodoro" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Escargot_de_Pythagore" title="Escargot de Pythagore – French" lang="fr" hreflang="fr" data-title="Escargot de Pythagore" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%85%8C%EC%98%A4%EB%8F%84%EB%A1%9C%EC%8A%A4_%EC%99%80%EC%84%A0" title="테오도로스 와선 – Korean" lang="ko" hreflang="ko" data-title="테오도로스 와선" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spirale_di_Teodoro" title="Spirale di Teodoro – Italian" lang="it" hreflang="it" data-title="Spirale di Teodoro" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Spiraal_van_Theodorus" title="Spiraal van Theodorus – Dutch" lang="nl" hreflang="nl" data-title="Spiraal van Theodorus" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%86%E3%82%AA%E3%83%89%E3%83%AD%E3%82%B9%E3%81%AE%E8%9E%BA%E6%97%8B" title="テオドロスの螺旋 – Japanese" lang="ja" hreflang="ja" data-title="テオドロスの螺旋" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/%C5%9Alimak_Teodorosa" title="Ślimak Teodorosa – Polish" lang="pl" hreflang="pl" data-title="Ślimak Teodorosa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espiral_de_Teodoro" title="Espiral de Teodoro – Portuguese" lang="pt" hreflang="pt" data-title="Espiral de Teodoro" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%80%D0%B0%D0%BB%D1%8C_%D0%A4%D0%B5%D0%BE%D0%B4%D0%BE%D1%80%D0%B0" title="Спираль Феодора – Russian" lang="ru" hreflang="ru" data-title="Спираль Феодора" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B2%D0%B0_%D1%81%D0%BF%D0%B8%D1%80%D0%B0%D0%BB%D0%B0" title="Теодорова спирала – Serbian" lang="sr" hreflang="sr" data-title="Теодорова спирала" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AE%BF%E0%AE%AF%E0%AF%8B%E0%AE%9F%E0%AF%8B%E0%AE%B0%E0%AE%9A%E0%AF%81%E0%AE%9A%E0%AF%8D_%E0%AE%9A%E0%AF%81%E0%AE%B0%E0%AF%81%E0%AE%B3%E0%AF%8D" title="தியோடோரசுச் சுருள் – Tamil" lang="ta" hreflang="ta" data-title="தியோடோரசுச் சுருள்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Theodorus_sarmal%C4%B1" title="Theodorus sarmalı – Turkish" lang="tr" hreflang="tr" data-title="Theodorus sarmalı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1824656#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spiral_of_Theodorus" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Spiral_of_Theodorus" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spiral_of_Theodorus"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Spiral_of_Theodorus"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Spiral_of_Theodorus" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Spiral_of_Theodorus" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Spiral_of_Theodorus&amp;oldid=1255609368" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Spiral_of_Theodorus&amp;id=1255609368&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpiral_of_Theodorus"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpiral_of_Theodorus"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Spiral_of_Theodorus&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Spiral_of_Theodorus&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Spiral_of_Theodorus" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1824656" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Polygonal curve made from right triangles</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Spiral_of_Theodorus.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/400px-Spiral_of_Theodorus.svg.png" decoding="async" width="400" height="326" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/600px-Spiral_of_Theodorus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/800px-Spiral_of_Theodorus.svg.png 2x" data-file-width="700" data-file-height="570" /></a><figcaption>The spiral of Theodorus up to the triangle with a hypotenuse of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {17}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>17</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {17}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d090c5c91c92d2926ceeece2133403c09bdf4dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.261ex; height:3.009ex;" alt="{\displaystyle {\sqrt {17}}}"></span></figcaption></figure> <p>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, the <b>spiral of Theodorus</b> (also called the <b>square root spiral</b>, <b>Pythagorean spiral</b>, or <b>Pythagoras's snail</b>)<sup id="cite_ref-KAHN2_1-0" class="reference"><a href="#cite_note-KAHN2-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> is a <a href="/wiki/Spiral" title="Spiral">spiral</a> composed of <a href="/wiki/Right_triangle" title="Right triangle">right triangles</a>, placed edge-to-edge. It was named after <a href="/wiki/Theodorus_of_Cyrene" title="Theodorus of Cyrene">Theodorus of Cyrene</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Construction">Construction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=1" title="Edit section: Construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The spiral is started with an <a href="/wiki/Isosceles" class="mw-redirect" title="Isosceles">isosceles</a> right triangle, with each <a href="/wiki/Cathetus" title="Cathetus">leg</a> having unit <a href="/wiki/Length" title="Length">length</a>. Another right triangle (which is the <i>only</i> <a href="/wiki/Automedian_triangle" title="Automedian triangle">automedian right triangle</a>) is formed, with one leg being the <a href="/wiki/Hypotenuse" title="Hypotenuse">hypotenuse</a> of the prior right triangle (with length the <a href="/wiki/Square_root_of_2" title="Square root of 2">square root of 2</a>) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the <a href="/wiki/Square_root_of_3" title="Square root of 3">square root of 3</a>. The process then repeats; the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>th triangle in the sequence is a right triangle with the side lengths <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a2994734eae382ce30100fb17b9447fd8e99f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.331ex; height:3.009ex;" alt="{\displaystyle {\sqrt {n}}}"></span> and 1, and with hypotenuse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {n+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68cdb53174acd44e04c3bec369a5abd56eb49492" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.333ex; height:3.009ex;" alt="{\displaystyle {\sqrt {n+1}}}"></span>. For example, the 16th triangle has sides measuring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4={\sqrt {16}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>16</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4={\sqrt {16}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/551e85fcce9266d91cc322e50546b70da13ca34d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.522ex; height:2.843ex;" alt="{\displaystyle 4={\sqrt {16}}}"></span>, 1 and hypotenuse of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {17}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>17</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {17}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d090c5c91c92d2926ceeece2133403c09bdf4dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.261ex; height:3.009ex;" alt="{\displaystyle {\sqrt {17}}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="History_and_uses">History and uses</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=2" title="Edit section: History and uses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although all of Theodorus' work has been lost, <a href="/wiki/Plato" title="Plato">Plato</a> put Theodorus into his dialogue <i><a href="/wiki/Theaetetus_(dialogue)" title="Theaetetus (dialogue)">Theaetetus</a></i>, which tells of his work. It is assumed that Theodorus had proved that all of the square roots of non-square integers from 3 to 17 are <a href="/wiki/Irrational_number" title="Irrational number">irrational</a> by means of the Spiral of Theodorus.<sup id="cite_ref-nahin_2-0" class="reference"><a href="#cite_note-nahin-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Plato does not attribute the irrationality of the <a href="/wiki/Square_root_of_2" title="Square root of 2">square root of 2</a> to Theodorus, because it was well known before him. Theodorus and Theaetetus split the rational numbers and irrational numbers into different categories.<sup id="cite_ref-plato_3-0" class="reference"><a href="#cite_note-plato-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Hypotenuse">Hypotenuse</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=3" title="Edit section: Hypotenuse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Each of the triangles' hypotenuses <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc869ca124a4bbb264113f1b3b40d78e09c055be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.557ex; height:2.509ex;" alt="{\displaystyle h_{n}}"></span> gives the <a href="/wiki/Square_root" title="Square root">square root</a> of the corresponding <a href="/wiki/Natural_number" title="Natural number">natural number</a>, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{1}={\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{1}={\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb4c64897e161b563ca6d8e1efc4b8e4c0025b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.59ex; height:3.009ex;" alt="{\displaystyle h_{1}={\sqrt {2}}}"></span>. </p><p>Plato, tutored by Theodorus, questioned why Theodorus stopped at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {17}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>17</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {17}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d090c5c91c92d2926ceeece2133403c09bdf4dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.261ex; height:3.009ex;" alt="{\displaystyle {\sqrt {17}}}"></span>. The reason is commonly believed to be that the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {17}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>17</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {17}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d090c5c91c92d2926ceeece2133403c09bdf4dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.261ex; height:3.009ex;" alt="{\displaystyle {\sqrt {17}}}"></span> hypotenuse belongs to the last triangle that does not overlap the figure.<sup id="cite_ref-LONG_4-0" class="reference"><a href="#cite_note-LONG-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Overlapping">Overlapping</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=4" title="Edit section: Overlapping"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1958, Kaleb Williams proved that no two hypotenuses will ever coincide, regardless of how far the spiral is continued. Also, if the sides of unit length are extended into a <a href="/wiki/Line_(geometry)" title="Line (geometry)">line</a>, they will never pass through any of the other vertices of the total figure.<sup id="cite_ref-LONG_4-1" class="reference"><a href="#cite_note-LONG-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-teuffel_5-0" class="reference"><a href="#cite_note-teuffel-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Extension">Extension</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=5" title="Edit section: Extension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spiral_of_Theodorus_extended.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Spiral_of_Theodorus_extended.svg/220px-Spiral_of_Theodorus_extended.svg.png" decoding="async" width="220" height="204" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Spiral_of_Theodorus_extended.svg/330px-Spiral_of_Theodorus_extended.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Spiral_of_Theodorus_extended.svg/440px-Spiral_of_Theodorus_extended.svg.png 2x" data-file-width="830" data-file-height="770" /></a><figcaption>Colored extended spiral of Theodorus with 110 triangles</figcaption></figure> <p>Theodorus stopped his spiral at the triangle with a hypotenuse of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {17}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>17</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {17}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d090c5c91c92d2926ceeece2133403c09bdf4dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.261ex; height:3.009ex;" alt="{\displaystyle {\sqrt {17}}}"></span>. If the spiral is continued to infinitely many triangles, many more interesting characteristics are found. </p> <div class="mw-heading mw-heading3"><h3 id="Growth_rate">Growth rate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=6" title="Edit section: Growth rate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Angle">Angle</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=7" title="Edit section: Angle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43c6b983163976c2de92e000fdff880064d1d02c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.739ex; height:2.176ex;" alt="{\displaystyle \varphi _{n}}"></span> is the angle of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>th triangle (or spiral segment), then: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \left(\varphi _{n}\right)={\frac {1}{\sqrt {n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>n</mi> </msqrt> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \left(\varphi _{n}\right)={\frac {1}{\sqrt {n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7206978f1c74d7b50fc8b4fcd06d7900ec4594c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:15.82ex; height:6.176ex;" alt="{\displaystyle \tan \left(\varphi _{n}\right)={\frac {1}{\sqrt {n}}}.}"></span> Therefore, the growth of the angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43c6b983163976c2de92e000fdff880064d1d02c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.739ex; height:2.176ex;" alt="{\displaystyle \varphi _{n}}"></span> of the next triangle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is:<sup id="cite_ref-KAHN2_1-1" class="reference"><a href="#cite_note-KAHN2-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{n}=\arctan \left({\frac {1}{\sqrt {n}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>n</mi> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{n}=\arctan \left({\frac {1}{\sqrt {n}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00ca3e6f5298ee307c0ff90cb795b2cc5655953c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:20.538ex; height:6.509ex;" alt="{\displaystyle \varphi _{n}=\arctan \left({\frac {1}{\sqrt {n}}}\right).}"></span> </p><p>The sum of the angles of the first <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> triangles is called the total angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff43f696ac309619db36e3972102b07da0e20032" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.541ex; height:2.843ex;" alt="{\displaystyle \varphi (k)}"></span> for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>th triangle. It grows proportionally to the square root of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>, with a <a href="/wiki/Bounded_function" title="Bounded function">bounded</a> correction term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b30ba1b247fb8d334580cec68561e749d24aff2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.061ex; height:2.009ex;" alt="{\displaystyle c_{2}}"></span>:<sup id="cite_ref-KAHN2_1-2" class="reference"><a href="#cite_note-KAHN2-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \left(k\right)=\sum _{n=1}^{k}\varphi _{n}=2{\sqrt {k}}+c_{2}(k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \left(k\right)=\sum _{n=1}^{k}\varphi _{n}=2{\sqrt {k}}+c_{2}(k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/473dafed093fead72ad00d125ec51e81bef3858a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.837ex; height:7.343ex;" alt="{\displaystyle \varphi \left(k\right)=\sum _{n=1}^{k}\varphi _{n}=2{\sqrt {k}}+c_{2}(k)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\to \infty }c_{2}(k)=-2.157782996659\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>2.157782996659</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\to \infty }c_{2}(k)=-2.157782996659\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d680e9bddfe3ab4a4098b1626430bc4ecec0f092" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:33.387ex; height:4.009ex;" alt="{\displaystyle \lim _{k\to \infty }c_{2}(k)=-2.157782996659\ldots }"></span> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A105459" class="extiw" title="oeis:A105459">A105459</a></span>). </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spiral_of_Theodorus_triangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Spiral_of_Theodorus_triangle.svg/220px-Spiral_of_Theodorus_triangle.svg.png" decoding="async" width="220" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Spiral_of_Theodorus_triangle.svg/330px-Spiral_of_Theodorus_triangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/Spiral_of_Theodorus_triangle.svg/440px-Spiral_of_Theodorus_triangle.svg.png 2x" data-file-width="302" data-file-height="172" /></a><figcaption>A triangle or section of spiral</figcaption></figure> <div class="mw-heading mw-heading4"><h4 id="Radius">Radius</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=8" title="Edit section: Radius"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The growth of the radius of the spiral at a certain triangle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta r={\sqrt {n+1}}-{\sqrt {n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta r={\sqrt {n+1}}-{\sqrt {n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43c692f11316d33d4e6c504b756a17d8ad105851" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.234ex; height:3.176ex;" alt="{\displaystyle \Delta r={\sqrt {n+1}}-{\sqrt {n}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Archimedean_spiral">Archimedean spiral</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=9" title="Edit section: Archimedean spiral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Spiral of Theodorus <a href="/wiki/Approximate" class="mw-redirect" title="Approximate">approximates</a> the <a href="/wiki/Archimedean_spiral" title="Archimedean spiral">Archimedean spiral</a>.<sup id="cite_ref-KAHN2_1-3" class="reference"><a href="#cite_note-KAHN2-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Just as the distance between two windings of the Archimedean spiral equals <a href="/wiki/Mathematical_constant" title="Mathematical constant">mathematical constant</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>, as the number of spins of the spiral of Theodorus approaches <a href="/wiki/Infinity" title="Infinity">infinity</a>, the distance between two consecutive windings quickly approaches <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>.<sup id="cite_ref-hahn_6-0" class="reference"><a href="#cite_note-hahn-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>The following table shows successive windings of the spiral approaching pi: </p> <table class="wikitable"> <tbody><tr> <th>Winding No.: </th> <th width="200px">Calculated average winding-distance </th> <th width="200px">Accuracy of average winding-distance in comparison to π </th></tr> <tr> <td>2 </td> <td>3.1592037 </td> <td>99.44255% </td></tr> <tr> <td>3 </td> <td>3.1443455 </td> <td>99.91245% </td></tr> <tr> <td>4 </td> <td>3.14428 </td> <td>99.91453% </td></tr> <tr> <td>5 </td> <td>3.142395 </td> <td>99.97447% </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8749399b32a01903a4f3b3dedb86ba54aad93dc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.293ex; height:1.843ex;" alt="{\displaystyle \to \infty }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \to \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \to \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa7625dabffbb44bd801c63473a3c9474477167" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.301ex; height:1.843ex;" alt="{\displaystyle \to \pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \to 100\%}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>100</mn> <mi mathvariant="normal">&#x0025;<!-- % --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \to 100\%}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91c9f1df948250d8be8835ec037a6fbbd6dd6265" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.392ex; height:2.343ex;" alt="{\displaystyle \to 100\%}"></span> </td></tr></tbody></table> <p>As shown, after only the fifth winding, the distance is a 99.97% accurate approximation to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>.<sup id="cite_ref-KAHN2_1-4" class="reference"><a href="#cite_note-KAHN2-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Continuous_curve">Continuous curve</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=10" title="Edit section: Continuous curve"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Theodorus_Wiki.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Theodorus_Wiki.svg/400px-Theodorus_Wiki.svg.png" decoding="async" width="400" height="402" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Theodorus_Wiki.svg/600px-Theodorus_Wiki.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Theodorus_Wiki.svg/800px-Theodorus_Wiki.svg.png 2x" data-file-width="667" data-file-height="671" /></a><figcaption>Philip J. Davis' analytic continuation of the Spiral of Theodorus, including extension in the opposite direction from the origin (negative nodes numbers).</figcaption></figure> <p>The question of how to <a href="/wiki/Interpolation" title="Interpolation">interpolate</a> the discrete points of the spiral of Theodorus by a smooth curve was proposed and answered by <a href="/wiki/Philip_J._Davis" title="Philip J. Davis">Philip J. Davis</a> in 2001 by analogy with Euler's formula for the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a> as an <a href="/wiki/Interpolation" title="Interpolation">interpolant</a> for the <a href="/wiki/Factorial" title="Factorial">factorial</a> function. Davis found the function<sup id="cite_ref-FOOTNOTEDavis200137–38_7-0" class="reference"><a href="#cite_note-FOOTNOTEDavis200137–38-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(x)=\prod _{k=1}^{\infty }{\frac {1+i/{\sqrt {k}}}{1+i/{\sqrt {x+k}}}}\qquad (-1&lt;x&lt;\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> <mo>+</mo> <mi>k</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(x)=\prod _{k=1}^{\infty }{\frac {1+i/{\sqrt {k}}}{1+i/{\sqrt {x+k}}}}\qquad (-1&lt;x&lt;\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a260e4bf982ed758184845ecdf2cf14a5d4d787d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.627ex; height:7.176ex;" alt="{\displaystyle T(x)=\prod _{k=1}^{\infty }{\frac {1+i/{\sqrt {k}}}{1+i/{\sqrt {x+k}}}}\qquad (-1&lt;x&lt;\infty )}"></span> which was further studied by his student <a href="/wiki/Jeffery_J._Leader" title="Jeffery J. Leader">Leader</a><sup id="cite_ref-leader_8-0" class="reference"><a href="#cite_note-leader-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> and by <a href="/wiki/Arieh_Iserles" title="Arieh Iserles">Iserles</a>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> This function can be characterized axiomatically as the unique function that satisfies the <a href="/wiki/Functional_equation" title="Functional equation">functional equation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x+1)=\left(1+{\frac {i}{\sqrt {x+1}}}\right)\cdot f(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <msqrt> <mi>x</mi> <mo>+</mo> <mn>1</mn> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x+1)=\left(1+{\frac {i}{\sqrt {x+1}}}\right)\cdot f(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20ae20ca5de9e91bdbc58f14aeede15aaeb42dbd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:33.791ex; height:6.509ex;" alt="{\displaystyle f(x+1)=\left(1+{\frac {i}{\sqrt {x+1}}}\right)\cdot f(x),}"></span> the initial condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0)=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0)=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4108a04b6e35c7141912e467646ae434ca64e062" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.158ex; height:2.843ex;" alt="{\displaystyle f(0)=1,}"></span> and <a href="/wiki/Monotonic_function" title="Monotonic function">monotonicity</a> in both <a href="/wiki/Argument_(complex_analysis)" title="Argument (complex analysis)">argument</a> and <a href="/wiki/Absolute_value" title="Absolute value">modulus</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>An analytic continuation of Davis' continuous form of the Spiral of Theodorus extends in the opposite direction from the origin.<sup id="cite_ref-FOOTNOTEWaldvogel2009_11-0" class="reference"><a href="#cite_note-FOOTNOTEWaldvogel2009-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the figure the nodes of the original (discrete) Theodorus spiral are shown as small green circles. The blue ones are those, added in the opposite direction of the spiral. Only nodes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> with the integer value of the polar radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{n}=\pm {\sqrt {|n|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{n}=\pm {\sqrt {|n|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1375ab779ac75738f21922a83cea0f44d1630b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.186ex; height:4.843ex;" alt="{\displaystyle r_{n}=\pm {\sqrt {|n|}}}"></span> are numbered in the figure. The dashed circle in the coordinate origin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> is the circle of curvature at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=11" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Fermat%27s_spiral" title="Fermat&#39;s spiral">Fermat's spiral</a></li> <li><a href="/wiki/List_of_spirals" title="List of spirals">List of spirals</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=12" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-KAHN2-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-KAHN2_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KAHN2_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KAHN2_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-KAHN2_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-KAHN2_1-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHahn2007" class="citation cs2">Hahn, Harry K. (2007), <i>The ordered distribution of natural numbers on the square root spiral</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0712.2184">0712.2184</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+ordered+distribution+of+natural+numbers+on+the+square+root+spiral&amp;rft.date=2007&amp;rft_id=info%3Aarxiv%2F0712.2184&amp;rft.aulast=Hahn&amp;rft.aufirst=Harry+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></span> </li> <li id="cite_note-nahin-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-nahin_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNahin1998" class="citation cs2">Nahin, Paul J. (1998), <i>An Imaginary Tale: The Story of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea1ea9ac61e6e1e84ac39130f78143c18865719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.906ex; height:3.009ex;" alt="{\displaystyle {\sqrt {-1}}}"></span></i>, Princeton University Press, p.&#160;33, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-691-02795-1" title="Special:BookSources/0-691-02795-1"><bdi>0-691-02795-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Imaginary+Tale%3A+The+Story+of+MATH+RENDER+ERROR&amp;rft.pages=33&amp;rft.pub=Princeton+University+Press&amp;rft.date=1998&amp;rft.isbn=0-691-02795-1&amp;rft.aulast=Nahin&amp;rft.aufirst=Paul+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></span> </li> <li id="cite_note-plato-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-plato_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlatoDyde1899" class="citation cs2">Plato; Dyde, Samuel Walters (1899), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wt29k-Jz8pIC"><i>The Theaetetus of Plato</i></a>, J. Maclehose, pp.&#160;<span class="nowrap">86–</span>87</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theaetetus+of+Plato&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E86-%3C%2Fspan%3E87&amp;rft.pub=J.+Maclehose&amp;rft.date=1899&amp;rft.au=Plato&amp;rft.au=Dyde%2C+Samuel+Walters&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dwt29k-Jz8pIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></span> </li> <li id="cite_note-LONG-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-LONG_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LONG_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLong" class="citation cs2">Long, Kate, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130411230043/http://courses.wcupa.edu/jkerriga/Lessons/A%20Lesson%20on%20Spirals.html"><i>A Lesson on The Root Spiral</i></a>, archived from <a rel="nofollow" class="external text" href="http://courses.wcupa.edu/jkerriga/Lessons/A%20Lesson%20on%20Spirals.html">the original</a> on 11 April 2013<span class="reference-accessdate">, retrieved <span class="nowrap">30 April</span> 2008</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Lesson+on+The+Root+Spiral&amp;rft.aulast=Long&amp;rft.aufirst=Kate&amp;rft_id=http%3A%2F%2Fcourses.wcupa.edu%2Fjkerriga%2FLessons%2FA%2520Lesson%2520on%2520Spirals.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></span> </li> <li id="cite_note-teuffel-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-teuffel_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeuffel1958" class="citation cs2">Teuffel, Erich (1958), "Eine Eigenschaft der Quadratwurzelschnecke", <i>Mathematisch-Physikalische Semesterberichte zur Pflege des Zusammenhangs von Schule und Universität</i>, <b>6</b>: <span class="nowrap">148–</span>152, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0096160">0096160</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematisch-Physikalische+Semesterberichte+zur+Pflege+des+Zusammenhangs+von+Schule+und+Universit%C3%A4t&amp;rft.atitle=Eine+Eigenschaft+der+Quadratwurzelschnecke&amp;rft.volume=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E148-%3C%2Fspan%3E152&amp;rft.date=1958&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D96160%23id-name%3DMR&amp;rft.aulast=Teuffel&amp;rft.aufirst=Erich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></span> </li> <li id="cite_note-hahn-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-hahn_6-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHahn2008" class="citation cs2">Hahn, Harry K. (2008), <i>The distribution of natural numbers divisible by 2, 3, 5, 7, 11, 13, and 17 on the square root spiral</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0801.4422">0801.4422</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+distribution+of+natural+numbers+divisible+by+2%2C+3%2C+5%2C+7%2C+11%2C+13%2C+and+17+on+the+square+root+spiral&amp;rft.date=2008&amp;rft_id=info%3Aarxiv%2F0801.4422&amp;rft.aulast=Hahn&amp;rft.aufirst=Harry+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEDavis200137–38-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDavis200137–38_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDavis2001">Davis (2001)</a>, pp.&#160;37–38.</span> </li> <li id="cite_note-leader-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-leader_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeader1990" class="citation cs2"><a href="/wiki/Jeffery_J._Leader" title="Jeffery J. Leader">Leader, Jeffery James</a> (1990), <i>The generalized Theodorus iteration</i> (PhD thesis), Brown University, p.&#160;173, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2685516">2685516</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ProQuest" title="ProQuest">ProQuest</a>&#160;<a rel="nofollow" class="external text" href="https://www.proquest.com/docview/303808219">303808219</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+generalized+Theodorus+iteration&amp;rft.pages=173&amp;rft.pub=Brown+University&amp;rft.date=1990&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2685516%23id-name%3DMR&amp;rft.aulast=Leader&amp;rft.aufirst=Jeffery+James&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">In an appendix to (<a href="#CITEREFDavis2001">Davis 2001</a>)</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a href="#CITEREFGronau2004">Gronau (2004)</a>. An alternative derivation is given in <a href="#CITEREFHeuversMoakBoursaw2000">Heuvers, Moak &amp; Boursaw (2000)</a>.</span> </li> <li id="cite_note-FOOTNOTEWaldvogel2009-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWaldvogel2009_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWaldvogel2009">Waldvogel (2009)</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral_of_Theodorus&amp;action=edit&amp;section=13" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavis2001" class="citation cs2"><a href="/wiki/Philip_J._Davis" title="Philip J. Davis">Davis, P. J.</a> (2001), <i>Spirals from Theodorus to Chaos</i>, A K Peters/CRC Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spirals+from+Theodorus+to+Chaos&amp;rft.pub=A+K+Peters%2FCRC+Press&amp;rft.date=2001&amp;rft.aulast=Davis&amp;rft.aufirst=P.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGronau2004" class="citation cs2">Gronau, Detlef (March 2004), "The Spiral of Theodorus", <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>, <b>111</b> (3): <span class="nowrap">230–</span>237, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F4145130">10.2307/4145130</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/4145130">4145130</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+Spiral+of+Theodorus&amp;rft.volume=111&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E230-%3C%2Fspan%3E237&amp;rft.date=2004-03&amp;rft_id=info%3Adoi%2F10.2307%2F4145130&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F4145130%23id-name%3DJSTOR&amp;rft.aulast=Gronau&amp;rft.aufirst=Detlef&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeuversMoakBoursaw2000" class="citation cs2">Heuvers, J.; Moak, D. S.; Boursaw, B (2000), "The functional equation of the square root spiral", in T. M. Rassias (ed.), <i>Functional Equations and Inequalities</i>, pp.&#160;<span class="nowrap">111–</span>117</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+functional+equation+of+the+square+root+spiral&amp;rft.btitle=Functional+Equations+and+Inequalities&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E111-%3C%2Fspan%3E117&amp;rft.date=2000&amp;rft.aulast=Heuvers&amp;rft.aufirst=J.&amp;rft.au=Moak%2C+D.+S.&amp;rft.au=Boursaw%2C+B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldvogel2009" class="citation cs2">Waldvogel, Jörg (2009), <a rel="nofollow" class="external text" href="http://www.math.ethz.ch/~waldvoge/Papers/theopaper.pdf"><i>Analytic Continuation of the Theodorus Spiral</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analytic+Continuation+of+the+Theodorus+Spiral&amp;rft.date=2009&amp;rft.aulast=Waldvogel&amp;rft.aufirst=J%C3%B6rg&amp;rft_id=http%3A%2F%2Fwww.math.ethz.ch%2F~waldvoge%2FPapers%2Ftheopaper.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral+of+Theodorus" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Ancient_Greek_mathematics550" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Ancient_Greek_mathematics" title="Template:Ancient Greek mathematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Ancient_Greek_mathematics" title="Template talk:Ancient Greek mathematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Ancient_Greek_mathematics" title="Special:EditPage/Template:Ancient Greek mathematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Ancient_Greek_mathematics550" style="font-size:114%;margin:0 4em"><a href="/wiki/Greek_mathematics" title="Greek mathematics">Ancient Greek mathematics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_Greek_mathematicians" title="List of Greek mathematicians">Mathematicians</a><br /><a href="/wiki/Timeline_of_ancient_Greek_mathematicians" title="Timeline of ancient Greek mathematicians">(timeline)</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anaxagoras" title="Anaxagoras">Anaxagoras</a></li> <li><a href="/wiki/Anthemius_of_Tralles" title="Anthemius of Tralles">Anthemius</a></li> <li><a href="/wiki/Archytas" title="Archytas">Archytas</a></li> <li><a href="/wiki/Aristaeus_the_Elder" title="Aristaeus the Elder">Aristaeus the Elder</a></li> <li><a href="/wiki/Aristarchus_of_Samos" title="Aristarchus of Samos">Aristarchus</a></li> <li><a href="/wiki/Aristotle" title="Aristotle">Aristotle</a></li> <li><a href="/wiki/Apollonius_of_Perga" title="Apollonius of Perga">Apollonius</a></li> <li><a href="/wiki/Archimedes" title="Archimedes">Archimedes</a></li> <li><a href="/wiki/Autolycus_of_Pitane" title="Autolycus of Pitane">Autolycus</a></li> <li><a href="/wiki/Bion_of_Abdera" title="Bion of Abdera">Bion</a></li> <li><a href="/wiki/Bryson_of_Heraclea" title="Bryson of Heraclea">Bryson</a></li> <li><a href="/wiki/Callippus" title="Callippus">Callippus</a></li> <li><a href="/wiki/Carpus_of_Antioch" title="Carpus of Antioch">Carpus</a></li> <li><a href="/wiki/Chrysippus" title="Chrysippus">Chrysippus</a></li> <li><a href="/wiki/Cleomedes" title="Cleomedes">Cleomedes</a></li> <li><a href="/wiki/Conon_of_Samos" title="Conon of Samos">Conon</a></li> <li><a href="/wiki/Ctesibius" title="Ctesibius">Ctesibius</a></li> <li><a href="/wiki/Democritus" title="Democritus">Democritus</a></li> <li><a href="/wiki/Dicaearchus" title="Dicaearchus">Dicaearchus</a></li> <li><a href="/wiki/Diocles_(mathematician)" title="Diocles (mathematician)">Diocles</a></li> <li><a href="/wiki/Diophantus" title="Diophantus">Diophantus</a></li> <li><a href="/wiki/Dinostratus" title="Dinostratus">Dinostratus</a></li> <li><a href="/wiki/Dionysodorus" title="Dionysodorus">Dionysodorus</a></li> <li><a href="/wiki/Domninus_of_Larissa" title="Domninus of Larissa">Domninus</a></li> <li><a href="/wiki/Eratosthenes" title="Eratosthenes">Eratosthenes</a></li> <li><a href="/wiki/Eudemus_of_Rhodes" title="Eudemus of Rhodes">Eudemus</a></li> <li><a href="/wiki/Euclid" title="Euclid">Euclid</a></li> <li><a href="/wiki/Eudoxus_of_Cnidus" title="Eudoxus of Cnidus">Eudoxus</a></li> <li><a href="/wiki/Eutocius_of_Ascalon" title="Eutocius of Ascalon">Eutocius</a></li> <li><a href="/wiki/Geminus" title="Geminus">Geminus</a></li> <li><a href="/wiki/Heliodorus_of_Larissa" title="Heliodorus of Larissa">Heliodorus</a></li> <li><a href="/wiki/Hero_of_Alexandria" title="Hero of Alexandria">Heron</a></li> <li><a href="/wiki/Hipparchus" title="Hipparchus">Hipparchus</a></li> <li><a href="/wiki/Hippasus" title="Hippasus">Hippasus</a></li> <li><a href="/wiki/Hippias" title="Hippias">Hippias</a></li> <li><a href="/wiki/Hippocrates_of_Chios" title="Hippocrates of Chios">Hippocrates</a></li> <li><a href="/wiki/Hypatia" title="Hypatia">Hypatia</a></li> <li><a href="/wiki/Hypsicles" title="Hypsicles">Hypsicles</a></li> <li><a href="/wiki/Isidore_of_Miletus" title="Isidore of Miletus">Isidore of Miletus</a></li> <li><a href="/wiki/Leon_(mathematician)" title="Leon (mathematician)">Leon</a></li> <li><a href="/wiki/Marinus_of_Neapolis" title="Marinus of Neapolis">Marinus</a></li> <li><a href="/wiki/Menaechmus" title="Menaechmus">Menaechmus</a></li> <li><a href="/wiki/Menelaus_of_Alexandria" title="Menelaus of Alexandria">Menelaus</a></li> <li><a href="/wiki/Metrodorus_(grammarian)" title="Metrodorus (grammarian)">Metrodorus</a></li> <li><a href="/wiki/Nicomachus" title="Nicomachus">Nicomachus</a></li> <li><a href="/wiki/Nicomedes_(mathematician)" title="Nicomedes (mathematician)">Nicomedes</a></li> <li><a href="/wiki/Nicoteles_of_Cyrene" title="Nicoteles of Cyrene">Nicoteles</a></li> <li><a href="/wiki/Oenopides" title="Oenopides">Oenopides</a></li> <li><a href="/wiki/Pappus_of_Alexandria" title="Pappus of Alexandria">Pappus</a></li> <li><a href="/wiki/Perseus_(geometer)" title="Perseus (geometer)">Perseus</a></li> <li><a href="/wiki/Philolaus" title="Philolaus">Philolaus</a></li> <li><a href="/wiki/Philon" title="Philon">Philon</a></li> <li><a href="/wiki/Philonides_of_Laodicea" title="Philonides of Laodicea">Philonides</a></li> <li><a href="/wiki/Plato" title="Plato">Plato</a></li> <li><a href="/wiki/Porphyry_(philosopher)" title="Porphyry (philosopher)">Porphyry</a></li> <li><a href="/wiki/Posidonius" title="Posidonius">Posidonius</a></li> <li><a href="/wiki/Proclus" title="Proclus">Proclus</a></li> <li><a href="/wiki/Ptolemy" title="Ptolemy">Ptolemy</a></li> <li><a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a></li> <li><a href="/wiki/Serenus_of_Antino%C3%B6polis" title="Serenus of Antinoöpolis">Serenus </a></li> <li><a href="/wiki/Simplicius_of_Cilicia" title="Simplicius of Cilicia">Simplicius</a></li> <li><a href="/wiki/Sosigenes_of_Alexandria" class="mw-redirect" title="Sosigenes of Alexandria">Sosigenes</a></li> <li><a href="/wiki/Sporus_of_Nicaea" title="Sporus of Nicaea">Sporus</a></li> <li><a href="/wiki/Thales_of_Miletus" title="Thales of Miletus">Thales</a></li> <li><a href="/wiki/Theaetetus_(mathematician)" title="Theaetetus (mathematician)">Theaetetus</a></li> <li><a href="/wiki/Theano_(philosopher)" title="Theano (philosopher)">Theano</a></li> <li><a href="/wiki/Theodorus_of_Cyrene" title="Theodorus of Cyrene">Theodorus</a></li> <li><a href="/wiki/Theodosius_of_Bithynia" title="Theodosius of Bithynia">Theodosius</a></li> <li><a href="/wiki/Theon_of_Alexandria" title="Theon of Alexandria">Theon of Alexandria</a></li> <li><a href="/wiki/Theon_of_Smyrna" title="Theon of Smyrna">Theon of Smyrna</a></li> <li><a href="/wiki/Thymaridas" title="Thymaridas">Thymaridas</a></li> <li><a href="/wiki/Xenocrates" title="Xenocrates">Xenocrates</a></li> <li><a href="/wiki/Zeno_of_Elea" title="Zeno of Elea">Zeno of Elea</a></li> <li><a href="/wiki/Zeno_of_Sidon" title="Zeno of Sidon">Zeno of Sidon</a></li> <li><a href="/wiki/Zenodorus_(mathematician)" title="Zenodorus (mathematician)">Zenodorus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Treatises</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Almagest" title="Almagest">Almagest</a></i></li> <li><a href="/wiki/Archimedes_Palimpsest" title="Archimedes Palimpsest">Archimedes Palimpsest</a></li> <li><i><a href="/wiki/Arithmetica" title="Arithmetica">Arithmetica</a></i></li> <li><a href="/wiki/Apollonius_of_Perga#Conics" title="Apollonius of Perga"><i>Conics</i> <span style="font-size:85%;">(Apollonius)</span></a></li> <li><i><a href="/wiki/Catoptrics" title="Catoptrics">Catoptrics</a></i></li> <li><a href="/wiki/Data_(Euclid)" class="mw-redirect" title="Data (Euclid)"><i>Data</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements"><i>Elements</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><i><a href="/wiki/Measurement_of_a_Circle" title="Measurement of a Circle">Measurement of a Circle</a></i></li> <li><i><a href="/wiki/On_Conoids_and_Spheroids" title="On Conoids and Spheroids">On Conoids and Spheroids</a></i></li> <li><a href="/wiki/On_the_Sizes_and_Distances_(Aristarchus)" title="On the Sizes and Distances (Aristarchus)"><i>On the Sizes and Distances</i> <span style="font-size:85%;">(Aristarchus)</span></a></li> <li><a href="/wiki/On_Sizes_and_Distances_(Hipparchus)" title="On Sizes and Distances (Hipparchus)"><i>On Sizes and Distances</i> <span style="font-size:85%;">(Hipparchus)</span></a></li> <li><a href="/wiki/Autolycus_of_Pitane" title="Autolycus of Pitane"><i>On the Moving Sphere</i> <span style="font-size:85%;">(Autolycus)</span></a></li> <li><a href="/wiki/Euclid%27s_Optics" title="Euclid&#39;s Optics"><i>Optics</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><i><a href="/wiki/On_Spirals" title="On Spirals">On Spirals</a></i></li> <li><i><a href="/wiki/On_the_Sphere_and_Cylinder" title="On the Sphere and Cylinder">On the Sphere and Cylinder</a></i></li> <li><i><a href="/wiki/Ostomachion" title="Ostomachion">Ostomachion</a></i></li> <li><i><a href="/wiki/Planisphaerium" title="Planisphaerium">Planisphaerium</a></i></li> <li><a href="/wiki/Theodosius%27_Spherics" title="Theodosius&#39; Spherics"><i>Spherics</i> <span style="font-size:85%;">(Theodosius)</span></a></li> <li><a href="/wiki/Menelaus_of_Alexandria" title="Menelaus of Alexandria"><i>Spherics</i> <span style="font-size:85%;">(Menelaus)</span></a></li> <li><i><a href="/wiki/The_Quadrature_of_the_Parabola" class="mw-redirect" title="The Quadrature of the Parabola">The Quadrature of the Parabola</a></i></li> <li><i><a href="/wiki/The_Sand_Reckoner" title="The Sand Reckoner">The Sand Reckoner</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Problems</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Constructible_number" title="Constructible number">Constructible numbers</a> <ul><li><a href="/wiki/Angle_trisection" title="Angle trisection">Angle trisection</a></li> <li><a href="/wiki/Doubling_the_cube" title="Doubling the cube">Doubling the cube</a></li> <li><a href="/wiki/Squaring_the_circle" title="Squaring the circle">Squaring the circle</a></li></ul></li> <li><a href="/wiki/Problem_of_Apollonius" title="Problem of Apollonius">Problem of Apollonius</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts<br />and definitions</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Angle" title="Angle">Angle</a> <ul><li><a href="/wiki/Central_angle" title="Central angle">Central</a></li> <li><a href="/wiki/Inscribed_angle" title="Inscribed angle">Inscribed</a></li></ul></li> <li><a href="/wiki/Axiomatic_system" title="Axiomatic system">Axiomatic system</a> <ul><li><a href="/wiki/Axiom" title="Axiom">Axiom</a></li></ul></li> <li><a href="/wiki/Chord_(geometry)" title="Chord (geometry)">Chord</a></li> <li><a href="/wiki/Circles_of_Apollonius" title="Circles of Apollonius">Circles of Apollonius</a> <ul><li><a href="/wiki/Apollonian_circles" title="Apollonian circles">Apollonian circles</a></li> <li><a href="/wiki/Apollonian_gasket" title="Apollonian gasket">Apollonian gasket</a></li></ul></li> <li><a href="/wiki/Circumscribed_circle" title="Circumscribed circle">Circumscribed circle</a></li> <li><a href="/wiki/Commensurability_(mathematics)" title="Commensurability (mathematics)">Commensurability</a></li> <li><a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a></li> <li><a href="https://en.wikiquote.org/wiki/Doctrine_of_proportion_(mathematics)" class="extiw" title="wikiquote:Doctrine of proportion (mathematics)">Doctrine of proportionality</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Golden_ratio" title="Golden ratio">Golden ratio</a></li> <li><a href="/wiki/Greek_numerals" title="Greek numerals">Greek numerals</a></li> <li><a href="/wiki/Incircle_and_excircles_of_a_triangle" class="mw-redirect" title="Incircle and excircles of a triangle">Incircle and excircles of a triangle</a></li> <li><a href="/wiki/Method_of_exhaustion" title="Method of exhaustion">Method of exhaustion</a></li> <li><a href="/wiki/Parallel_postulate" title="Parallel postulate">Parallel postulate</a></li> <li><a href="/wiki/Platonic_solid" title="Platonic solid">Platonic solid</a></li> <li><a href="/wiki/Lune_of_Hippocrates" title="Lune of Hippocrates">Lune of Hippocrates</a></li> <li><a href="/wiki/Quadratrix_of_Hippias" title="Quadratrix of Hippias">Quadratrix of Hippias</a></li> <li><a href="/wiki/Regular_polygon" title="Regular polygon">Regular polygon</a></li> <li><a href="/wiki/Straightedge_and_compass_construction" title="Straightedge and compass construction">Straightedge and compass construction</a></li> <li><a href="/wiki/Triangle_center" title="Triangle center">Triangle center</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Results</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">In <a href="/wiki/Euclid%27s_elements" class="mw-redirect" title="Euclid&#39;s elements"><i>Elements</i></a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Angle_bisector_theorem" title="Angle bisector theorem">Angle bisector theorem</a></li> <li><a href="/wiki/Exterior_angle_theorem" title="Exterior angle theorem">Exterior angle theorem</a></li> <li><a href="/wiki/Euclidean_algorithm" title="Euclidean algorithm">Euclidean algorithm</a></li> <li><a href="/wiki/Euclid%27s_theorem" title="Euclid&#39;s theorem">Euclid's theorem</a></li> <li><a href="/wiki/Geometric_mean_theorem" title="Geometric mean theorem">Geometric mean theorem</a></li> <li><a href="/wiki/Greek_geometric_algebra" class="mw-redirect" title="Greek geometric algebra">Greek geometric algebra</a></li> <li><a href="/wiki/Hinge_theorem" title="Hinge theorem">Hinge theorem</a></li> <li><a href="/wiki/Inscribed_angle_theorem" class="mw-redirect" title="Inscribed angle theorem">Inscribed angle theorem</a></li> <li><a href="/wiki/Intercept_theorem" title="Intercept theorem">Intercept theorem</a></li> <li><a href="/wiki/Intersecting_chords_theorem" title="Intersecting chords theorem">Intersecting chords theorem</a></li> <li><a href="/wiki/Intersecting_secants_theorem" title="Intersecting secants theorem">Intersecting secants theorem</a></li> <li><a href="/wiki/Law_of_cosines" title="Law of cosines">Law of cosines</a></li> <li><a href="/wiki/Pons_asinorum" title="Pons asinorum">Pons asinorum</a></li> <li><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></li> <li><a href="/wiki/Tangent-secant_theorem" class="mw-redirect" title="Tangent-secant theorem">Tangent-secant theorem</a></li> <li><a href="/wiki/Thales%27s_theorem" title="Thales&#39;s theorem">Thales's theorem</a></li> <li><a href="/wiki/Theorem_of_the_gnomon" title="Theorem of the gnomon">Theorem of the gnomon</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Apollonius_of_Tyana" title="Apollonius of Tyana">Apollonius</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Apollonius%27s_theorem" title="Apollonius&#39;s theorem">Apollonius's theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aristarchus%27s_inequality" title="Aristarchus&#39;s inequality">Aristarchus's inequality</a></li> <li><a href="/wiki/Crossbar_theorem" title="Crossbar theorem">Crossbar theorem</a></li> <li><a href="/wiki/Heron%27s_formula" title="Heron&#39;s formula">Heron's formula</a></li> <li><a href="/wiki/Irrational_number" title="Irrational number">Irrational numbers</a></li> <li><a href="/wiki/Law_of_sines" title="Law of sines">Law of sines</a></li> <li><a href="/wiki/Menelaus%27s_theorem" title="Menelaus&#39;s theorem">Menelaus's theorem</a></li> <li><a href="/wiki/Pappus%27s_area_theorem" title="Pappus&#39;s area theorem">Pappus's area theorem</a></li> <li><a href="/wiki/Diophantus_II.VIII" title="Diophantus II.VIII">Problem II.8 of <i>Arithmetica</i></a></li> <li><a href="/wiki/Ptolemy%27s_inequality" title="Ptolemy&#39;s inequality">Ptolemy's inequality</a></li> <li><a href="/wiki/Ptolemy%27s_table_of_chords" title="Ptolemy&#39;s table of chords">Ptolemy's table of chords</a></li> <li><a href="/wiki/Ptolemy%27s_theorem" title="Ptolemy&#39;s theorem">Ptolemy's theorem</a></li> <li><a class="mw-selflink selflink">Spiral of Theodorus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Centers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cyrene,_Libya" title="Cyrene, Libya">Cyrene</a></li> <li><a href="/wiki/Musaeum" class="mw-redirect" title="Musaeum">Mouseion of Alexandria</a></li> <li><a href="/wiki/Platonic_Academy" title="Platonic Academy">Platonic Academy</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ancient_Greek_astronomy" title="Ancient Greek astronomy">Ancient Greek astronomy</a></li> <li><a href="/wiki/Attic_numerals" title="Attic numerals">Attic numerals</a></li> <li><a href="/wiki/Greek_numerals" title="Greek numerals">Greek numerals</a></li> <li><a href="/wiki/Latin_translations_of_the_12th_century" title="Latin translations of the 12th century">Latin translations of the 12th century</a></li> <li><a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">Non-Euclidean geometry</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Neusis_construction" title="Neusis construction">Neusis construction</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">History of</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/A_History_of_Greek_Mathematics" title="A History of Greek Mathematics">A History of Greek Mathematics</a></i> <ul><li>by <a href="/wiki/Thomas_Heath_(classicist)" title="Thomas Heath (classicist)">Thomas Heath</a></li></ul></li> <li><a href="/wiki/History_of_algebra" title="History of algebra">algebra</a> <ul><li><a href="/wiki/Timeline_of_algebra" title="Timeline of algebra">timeline</a></li></ul></li> <li><a href="/wiki/History_of_arithmetic" class="mw-redirect" title="History of arithmetic">arithmetic</a> <ul><li><a href="/wiki/Timeline_of_numerals_and_arithmetic" title="Timeline of numerals and arithmetic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">calculus</a> <ul><li><a href="/wiki/Timeline_of_calculus_and_mathematical_analysis" title="Timeline of calculus and mathematical analysis">timeline</a></li></ul></li> <li><a href="/wiki/History_of_geometry" title="History of geometry">geometry</a> <ul><li><a href="/wiki/Timeline_of_geometry" title="Timeline of geometry">timeline</a></li></ul></li> <li><a href="/wiki/History_of_logic" title="History of logic">logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_mathematics" title="History of mathematics">mathematics</a> <ul><li><a href="/wiki/Timeline_of_mathematics" title="Timeline of mathematics">timeline</a></li></ul></li> <li><a href="/wiki/History_of_numbers" class="mw-redirect" title="History of numbers">numbers</a> <ul><li><a href="/wiki/Prehistoric_counting" class="mw-redirect" title="Prehistoric counting">prehistoric counting</a></li></ul></li> <li><a href="/wiki/History_of_ancient_numeral_systems" title="History of ancient numeral systems">numeral systems</a> <ul><li><a href="/wiki/List_of_numeral_systems" title="List of numeral systems">list</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other cultures</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematics_in_the_medieval_Islamic_world" title="Mathematics in the medieval Islamic world">Arabian/Islamic</a></li> <li><a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonian</a></li> <li><a href="/wiki/Chinese_mathematics" title="Chinese mathematics">Chinese</a></li> <li><a href="/wiki/Ancient_Egyptian_mathematics" title="Ancient Egyptian mathematics">Egyptian</a></li> <li><a href="/wiki/Mathematics_of_the_Incas" title="Mathematics of the Incas">Incan</a></li> <li><a href="/wiki/Indian_mathematics" title="Indian mathematics">Indian</a></li> <li><a href="/wiki/Japanese_mathematics" title="Japanese mathematics">Japanese</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/16px-Parthenon_from_west.jpg" decoding="async" width="16" height="12" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/24px-Parthenon_from_west.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/32px-Parthenon_from_west.jpg 2x" data-file-width="2048" data-file-height="1536" /></span></span> </span><a href="/wiki/Portal:Ancient_Greece" title="Portal:Ancient Greece">Ancient Greece&#32;portal</a></b>&#160;&#8226;&#32; <b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Spirals,_curves_and_helices65" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Spirals" title="Template:Spirals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Spirals" title="Template talk:Spirals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Spirals" title="Special:EditPage/Template:Spirals"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Spirals,_curves_and_helices65" style="font-size:114%;margin:0 4em"><a href="/wiki/Spiral" title="Spiral">Spirals</a>, <a href="/wiki/Curve" title="Curve">curves</a> and <a href="/wiki/Helix" title="Helix">helices</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Curves</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_curve" title="Algebraic curve">Algebraic</a></li> <li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Gallery_of_curves" title="Gallery of curves">Gallery</a></li> <li><a href="/wiki/List_of_curves" title="List of curves">List</a></li> <li><a href="/wiki/List_of_curves_topics" title="List of curves topics">Topics</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="3" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/59/Golden_spiral_in_triangles.png/60px-Golden_spiral_in_triangles.png" decoding="async" width="60" height="70" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/59/Golden_spiral_in_triangles.png/90px-Golden_spiral_in_triangles.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/59/Golden_spiral_in_triangles.png/120px-Golden_spiral_in_triangles.png 2x" data-file-width="284" data-file-height="329" /></span></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Helices</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Helix_angle" title="Helix angle">Angle</a></li> <li><a href="/wiki/Helical_antenna" title="Helical antenna">Antenna</a></li> <li><a href="/wiki/Boerdijk%E2%80%93Coxeter_helix" title="Boerdijk–Coxeter helix">Boerdijk–Coxeter</a></li> <li><a href="/wiki/Hemihelix" title="Hemihelix">Hemi</a></li> <li><a href="/wiki/Helical_symmetry" class="mw-redirect" title="Helical symmetry">Symmetry</a></li> <li><a href="/wiki/Triple_helix" title="Triple helix">Triple</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Biochemistry12" scope="row" class="navbox-group" style="width:1%;text-align: center;">Biochemistry</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/310_helix" title="310 helix">3<sub>10</sub></a></li> <li><a href="/wiki/Alpha_helix" title="Alpha helix">Alpha</a></li> <li><a href="/wiki/Beta_helix" title="Beta helix">Beta</a></li> <li><a href="/wiki/Nucleic_acid_double_helix" title="Nucleic acid double helix">Double</a></li> <li><a href="/wiki/Pi_helix" title="Pi helix">Pi</a></li> <li><a href="/wiki/Polyproline_helix" title="Polyproline helix">Polyproline</a></li> <li><a href="/wiki/Superhelix" title="Superhelix">Super</a></li> <li><a href="/wiki/Triple_helix" title="Triple helix">Triple</a> <ul><li><a href="/wiki/Collagen_helix" title="Collagen helix">Collagen</a></li></ul></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spirals</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Archimedean_spiral" title="Archimedean spiral">Archimedean</a></li> <li><a href="/wiki/Cotes%27s_spiral" title="Cotes&#39;s spiral">Cotes's</a> <ul><li><a href="/wiki/Epispiral" title="Epispiral">Epispiral</a></li> <li><a href="/wiki/Hyperbolic_spiral" title="Hyperbolic spiral">Hyperbolic</a></li> <li><a href="/wiki/Poinsot%27s_spirals" title="Poinsot&#39;s spirals">Poinsot's</a></li></ul></li> <li><a href="/wiki/Doyle_spiral" title="Doyle spiral">Doyle</a></li> <li><a href="/wiki/Euler_spiral" title="Euler spiral">Euler</a></li> <li><a href="/wiki/Fermat%27s_spiral" title="Fermat&#39;s spiral">Fermat's</a></li> <li><a href="/wiki/Involute" title="Involute">Involute</a></li> <li><a href="/wiki/List_of_spirals" title="List of spirals">List</a></li> <li><a href="/wiki/Logarithmic_spiral" title="Logarithmic spiral">Logarithmic</a> <ul><li><a href="/wiki/Golden_spiral" title="Golden spiral">Golden</a></li></ul></li> <li><i><a href="/wiki/On_Spirals" title="On Spirals">On Spirals</a></i></li> <li><a href="/wiki/Padovan_cuboid_spiral" title="Padovan cuboid spiral">Padovan</a></li> <li><a href="/wiki/Pitch_angle_of_a_spiral" title="Pitch angle of a spiral">Pitch angle</a></li> <li><a class="mw-selflink selflink">Theodorus</a></li> <li><a href="/wiki/Spirangle" title="Spirangle">Spirangle</a></li> <li><a href="/wiki/Ulam_spiral" title="Ulam spiral">Ulam</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐65b64b4b74‐45d2h Cached time: 20250219124446 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.474 seconds Real time usage: 0.735 seconds Preprocessor visited node count: 4188/1000000 Post‐expand include size: 67330/2097152 bytes Template argument size: 1287/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 56593/5000000 bytes Lua time usage: 0.233/10.000 seconds Lua memory usage: 6813016/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 480.001 1 -total 34.40% 165.124 1 Template:Reflist 28.03% 134.553 11 Template:Citation 22.88% 109.838 3 Template:Navbox 22.41% 107.578 1 Template:Ancient_Greek_mathematics 17.96% 86.199 1 Template:Short_description 10.86% 52.132 11 Template:R 9.35% 44.861 12 Template:R/ref 8.89% 42.656 2 Template:Pagetype 7.34% 35.222 2 Template:Sfnp --> <!-- Saved in parser cache with key enwiki:pcache:17206552:|#|:idhash:canonical and timestamp 20250219124446 and revision id 1255609368. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Spiral_of_Theodorus&amp;oldid=1255609368">https://en.wikipedia.org/w/index.php?title=Spiral_of_Theodorus&amp;oldid=1255609368</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Spirals" title="Category:Spirals">Spirals</a></li><li><a href="/wiki/Category:Pythagorean_theorem" title="Category:Pythagorean theorem">Pythagorean theorem</a></li><li><a href="/wiki/Category:Pi" title="Category:Pi">Pi</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 5 November 2024, at 20:25<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Spiral_of_Theodorus&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Spiral of Theodorus</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>14 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7dfdf5498-wdr8h","wgBackendResponseTime":118,"wgPageParseReport":{"limitreport":{"cputime":"0.474","walltime":"0.735","ppvisitednodes":{"value":4188,"limit":1000000},"postexpandincludesize":{"value":67330,"limit":2097152},"templateargumentsize":{"value":1287,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":56593,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 480.001 1 -total"," 34.40% 165.124 1 Template:Reflist"," 28.03% 134.553 11 Template:Citation"," 22.88% 109.838 3 Template:Navbox"," 22.41% 107.578 1 Template:Ancient_Greek_mathematics"," 17.96% 86.199 1 Template:Short_description"," 10.86% 52.132 11 Template:R"," 9.35% 44.861 12 Template:R/ref"," 8.89% 42.656 2 Template:Pagetype"," 7.34% 35.222 2 Template:Sfnp"]},"scribunto":{"limitreport-timeusage":{"value":"0.233","limit":"10.000"},"limitreport-memusage":{"value":6813016,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFDavis2001\"] = 1,\n [\"CITEREFGronau2004\"] = 1,\n [\"CITEREFHahn2007\"] = 1,\n [\"CITEREFHahn2008\"] = 1,\n [\"CITEREFHeuversMoakBoursaw2000\"] = 1,\n [\"CITEREFLeader1990\"] = 1,\n [\"CITEREFLong\"] = 1,\n [\"CITEREFNahin1998\"] = 1,\n [\"CITEREFPlatoDyde1899\"] = 1,\n [\"CITEREFTeuffel1958\"] = 1,\n [\"CITEREFWaldvogel2009\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Ancient Greek mathematics\"] = 1,\n [\"Citation\"] = 11,\n [\"Harv\"] = 1,\n [\"Harvtxt\"] = 2,\n [\"OEIS2C\"] = 1,\n [\"ProQuest\"] = 1,\n [\"R\"] = 11,\n [\"Reflist\"] = 1,\n [\"Sfnp\"] = 2,\n [\"Short description\"] = 1,\n [\"Spirals\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-65b64b4b74-45d2h","timestamp":"20250219124446","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Spiral of Theodorus","url":"https:\/\/en.wikipedia.org\/wiki\/Spiral_of_Theodorus","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1824656","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1824656","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-05-01T03:23:34Z","dateModified":"2024-11-05T20:25:56Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/9f\/Spiral_of_Theodorus.svg","headline":"spiral composed of right triangles, placed edge-to-edge"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10