CINXE.COM

Search results for: neural network

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neural network</title> <meta name="description" content="Search results for: neural network"> <meta name="keywords" content="neural network"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neural network" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neural network"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3076</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neural network</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3016</span> Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20Rasi%20Maezabadi">F. Rasi Maezabadi</a>, <a href="https://publications.waset.org/search?q=M.%20Masdari"> M. Masdari</a>, <a href="https://publications.waset.org/search?q=M.%20R.%20Soltani"> M. R. Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Airfoil" title="Airfoil">Airfoil</a>, <a href="https://publications.waset.org/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/search?q=GRNN" title=" GRNN"> GRNN</a>, <a href="https://publications.waset.org/search?q=Neural%20Network" title=" Neural Network"> Neural Network</a>, <a href="https://publications.waset.org/search?q=Plunging." title="Plunging.">Plunging.</a> </p> <a href="https://publications.waset.org/15072/application-of-artificial-neural-network-for-the-prediction-of-pressure-distribution-of-a-plunging-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15072/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15072/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15072/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15072/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15072/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15072/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15072/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15072/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15072/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15072/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1656</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3015</span> General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Raja%20Das">Raja Das</a>, <a href="https://publications.waset.org/search?q=M.%20K.%20Pradhan"> M. K. Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrical-discharge%20machining" title="Electrical-discharge machining">Electrical-discharge machining</a>, <a href="https://publications.waset.org/search?q=General%20Regression%20Neural%20Network" title=" General Regression Neural Network"> General Regression Neural Network</a>, <a href="https://publications.waset.org/search?q=Back-propagation%20Neural%20Network" title=" Back-propagation Neural Network"> Back-propagation Neural Network</a>, <a href="https://publications.waset.org/search?q=Radial%20Overcut." title=" Radial Overcut."> Radial Overcut.</a> </p> <a href="https://publications.waset.org/9998847/general-regression-neural-network-and-back-propagation-neural-network-modeling-for-predicting-radial-overcut-in-edm-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998847/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998847/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998847/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998847/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998847/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998847/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998847/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998847/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998847/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998847/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3115</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3014</span> Prioritizing Service Quality Dimensions: A Neural Network Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Golmohammadi">A. Golmohammadi</a>, <a href="https://publications.waset.org/search?q=B.%20Jahandideh"> B. Jahandideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue – despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=service%20quality" title="service quality">service quality</a>, <a href="https://publications.waset.org/search?q=customer%20satisfaction" title=" customer satisfaction"> customer satisfaction</a>, <a href="https://publications.waset.org/search?q=relative%20importance" title=" relative importance"> relative importance</a>, <a href="https://publications.waset.org/search?q=artificial%20neural%20network." title=" artificial neural network."> artificial neural network.</a> </p> <a href="https://publications.waset.org/7976/prioritizing-service-quality-dimensions-a-neural-network-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7976/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7976/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7976/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7976/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7976/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7976/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7976/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7976/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7976/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7976/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1643</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3013</span> Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.Mala">K.Mala</a>, <a href="https://publications.waset.org/search?q=V.Sadasivam"> V.Sadasivam</a>, <a href="https://publications.waset.org/search?q=S.Alagappan"> S.Alagappan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20c%20means%20clustering" title="Fuzzy c means clustering">Fuzzy c means clustering</a>, <a href="https://publications.waset.org/search?q=texture%20analysis" title=" texture analysis"> texture analysis</a>, <a href="https://publications.waset.org/search?q=probabilistic%20neural%20network" title=" probabilistic neural network"> probabilistic neural network</a>, <a href="https://publications.waset.org/search?q=LVQ%20neural%20network." title=" LVQ neural network."> LVQ neural network.</a> </p> <a href="https://publications.waset.org/5630/neural-network-based-texture-analysis-of-liver-tumor-from-computed-tomography-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5630/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5630/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5630/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5630/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5630/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5630/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5630/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5630/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5630/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5630/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2988</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3012</span> Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rahib%20Hidayat%20Abiyev">Rahib Hidayat Abiyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20logic" title="Fuzzy logic">Fuzzy logic</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=neuro-fuzzy%20system" title=" neuro-fuzzy system"> neuro-fuzzy system</a>, <a href="https://publications.waset.org/search?q=control%20system." title=" control system."> control system.</a> </p> <a href="https://publications.waset.org/15764/recurrent-neural-network-based-fuzzy-inference-system-for-identification-and-control-of-dynamic-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15764/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15764/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15764/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15764/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15764/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15764/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15764/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15764/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15764/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15764/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2375</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3011</span> MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Amandi">R. Amandi</a>, <a href="https://publications.waset.org/search?q=A.%20Shahbazi"> A. Shahbazi</a>, <a href="https://publications.waset.org/search?q=A.%20Mohebi"> A. Mohebi</a>, <a href="https://publications.waset.org/search?q=M.%20Bazargan"> M. Bazargan</a>, <a href="https://publications.waset.org/search?q=Y.%20Jaberi"> Y. Jaberi</a>, <a href="https://publications.waset.org/search?q=P.%20Emadi"> P. Emadi</a>, <a href="https://publications.waset.org/search?q=A.%20Valizade"> A. Valizade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20Logic" title="Fuzzy Logic">Fuzzy Logic</a>, <a href="https://publications.waset.org/search?q=Probabilistic%20Neural%20Network" title=" Probabilistic Neural Network"> Probabilistic Neural Network</a>, <a href="https://publications.waset.org/search?q=Tachycardia" title=" Tachycardia"> Tachycardia</a>, <a href="https://publications.waset.org/search?q=Wavelet%20Transform." title=" Wavelet Transform."> Wavelet Transform.</a> </p> <a href="https://publications.waset.org/2239/mitautomatic-ecg-beat-tachycardia-detection-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2239/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2239/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2239/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2239/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2239/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2239/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2239/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2239/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2239/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2239/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2290</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3010</span> A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rehab%20Abdulmajed">Rehab Abdulmajed</a>, <a href="https://publications.waset.org/search?q=Amr%20Hamada"> Amr Hamada</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Elsaid"> Ahmed Elsaid</a>, <a href="https://publications.waset.org/search?q=Hisashi%20Hayakawa"> Hisashi Hayakawa</a>, <a href="https://publications.waset.org/search?q=Ayman%20Mahrous"> Ayman Mahrous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/search?q=Coronal%20Hole%20Area%0D%0AFeed-Forward%20neural%20network%20models" title=" Coronal Hole Area Feed-Forward neural network models"> Coronal Hole Area Feed-Forward neural network models</a>, <a href="https://publications.waset.org/search?q=solar%20High-Speed%20Streams" title=" solar High-Speed Streams"> solar High-Speed Streams</a>, <a href="https://publications.waset.org/search?q=HSSs." title=" HSSs."> HSSs.</a> </p> <a href="https://publications.waset.org/10013630/a-comparison-between-artificial-neural-network-prediction-models-for-coronal-hole-related-high-speed-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013630/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013630/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013630/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013630/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013630/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013630/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013630/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013630/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013630/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013630/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3009</span> Adaptive Neural Network Control of Autonomous Underwater Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmad%20Forouzantabar">Ahmad Forouzantabar</a>, <a href="https://publications.waset.org/search?q=Babak%20Gholami"> Babak Gholami</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Azadi"> Mohammad Azadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Autonomous%20Underwater%20Vehicle%20%28AUV%29" title="Autonomous Underwater Vehicle (AUV)">Autonomous Underwater Vehicle (AUV)</a>, <a href="https://publications.waset.org/search?q=Neural%0ANetwork%20Controller" title=" Neural Network Controller"> Neural Network Controller</a>, <a href="https://publications.waset.org/search?q=Composite%20Adaptation." title=" Composite Adaptation."> Composite Adaptation.</a> </p> <a href="https://publications.waset.org/6416/adaptive-neural-network-control-of-autonomous-underwater-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6416/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6416/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6416/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6416/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6416/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6416/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6416/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6416/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6416/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6416/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2529</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3008</span> Input Data Balancing in a Neural Network PM-10 Forecasting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Suk-Hyun%20Yu">Suk-Hyun Yu</a>, <a href="https://publications.waset.org/search?q=Heeyong%20Kwon"> Heeyong Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks&rsquo; learning easy and improves the forecasting rates.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/search?q=air%20quality%20prediction" title=" air quality prediction"> air quality prediction</a>, <a href="https://publications.waset.org/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/search?q=PM-10." title=" PM-10."> PM-10.</a> </p> <a href="https://publications.waset.org/10008220/input-data-balancing-in-a-neural-network-pm-10-forecasting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008220/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008220/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008220/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008220/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008220/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008220/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008220/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008220/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008220/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008220/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">826</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3007</span> Rule Insertion Technique for Dynamic Cell Structure Neural Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Osama%20Elsarrar">Osama Elsarrar</a>, <a href="https://publications.waset.org/search?q=Marjorie%20Darrah"> Marjorie Darrah</a>, <a href="https://publications.waset.org/search?q=Richard%20Devin"> Richard Devin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper discusses the idea of capturing an expert&rsquo;s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=rule%20extraction" title=" rule extraction"> rule extraction</a>, <a href="https://publications.waset.org/search?q=rule%20insertion" title=" rule insertion"> rule insertion</a>, <a href="https://publications.waset.org/search?q=self-organizing%20map." title=" self-organizing map. "> self-organizing map. </a> </p> <a href="https://publications.waset.org/10011370/rule-insertion-technique-for-dynamic-cell-structure-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011370/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011370/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011370/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011370/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011370/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011370/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011370/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011370/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011370/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011370/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3006</span> Modeling of Co-Cu Elution From Clinoptilolite using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=John%20Kabuba">John Kabuba</a>, <a href="https://publications.waset.org/search?q=Antoine%20Mulaba-Bafubiandi"> Antoine Mulaba-Bafubiandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The elution process for the removal of Co and Cu from clinoptilolite as an ion-exchanger was investigated using three parameters: bed volume, pH and contact time. The present paper study has shown quantitatively that acid concentration has a significant effect on the elution process. The favorable eluant concentration was found to be 2 M HCl and 2 M H2SO4, respectively. The multi-component equilibrium relationship in the process can be very complex, and perhaps ill-defined. In such circumstances, it is preferable to use a non-parametric technique such as Neural Network to represent such an equilibrium relationship.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clinoptilolite" title="Clinoptilolite">Clinoptilolite</a>, <a href="https://publications.waset.org/search?q=elution" title=" elution"> elution</a>, <a href="https://publications.waset.org/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/search?q=neural%20network." title=" neural network."> neural network.</a> </p> <a href="https://publications.waset.org/15173/modeling-of-co-cu-elution-from-clinoptilolite-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15173/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15173/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15173/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15173/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15173/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15173/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15173/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15173/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15173/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15173/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1426</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3005</span> Fast Adjustable Threshold for Uniform Neural Network Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alexander%20Goncharenko">Alexander Goncharenko</a>, <a href="https://publications.waset.org/search?q=Andrey%20Denisov"> Andrey Denisov</a>, <a href="https://publications.waset.org/search?q=Sergey%20Alyamkin"> Sergey Alyamkin</a>, <a href="https://publications.waset.org/search?q=Evgeny%20Terentev"> Evgeny Terentev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only &sim; 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Distillation" title="Distillation">Distillation</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/search?q=quantization." title=" quantization."> quantization.</a> </p> <a href="https://publications.waset.org/10010747/fast-adjustable-threshold-for-uniform-neural-network-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010747/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010747/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010747/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010747/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010747/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010747/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010747/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010747/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010747/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010747/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3004</span> Application of Fuzzy Neural Network for Image Tumor Description</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nahla%20Ibraheem%20Jabbar">Nahla Ibraheem Jabbar</a>, <a href="https://publications.waset.org/search?q=Monica%20Mehrotra"> Monica Mehrotra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper used a fuzzy kohonen neural network for medical image segmentation. Image segmentation plays a important role in the many of medical imaging applications by automating or facilitating the diagnostic. The paper analyses the tumor by extraction of the features of (area, entropy, means and standard deviation).These measurements gives a description for a tumor.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=FCM" title="FCM">FCM</a>, <a href="https://publications.waset.org/search?q=features%20extraction" title=" features extraction"> features extraction</a>, <a href="https://publications.waset.org/search?q=medical%20image%20processing" title=" medical image processing"> medical image processing</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=segmentation." title=" segmentation."> segmentation.</a> </p> <a href="https://publications.waset.org/15604/application-of-fuzzy-neural-network-for-image-tumor-description" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15604/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15604/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15604/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15604/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15604/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15604/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15604/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15604/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15604/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15604/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2109</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3003</span> Modified Functional Link Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ashok%20Kumar%20Goel">Ashok Kumar Goel</a>, <a href="https://publications.waset.org/search?q=Suresh%20Chandra%20Saxena"> Suresh Chandra Saxena</a>, <a href="https://publications.waset.org/search?q=Surekha%20Bhanot"> Surekha Bhanot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=DLFANN" title="DLFANN">DLFANN</a>, <a href="https://publications.waset.org/search?q=FLANN" title=" FLANN"> FLANN</a>, <a href="https://publications.waset.org/search?q=M-FLANN" title=" M-FLANN"> M-FLANN</a>, <a href="https://publications.waset.org/search?q=MLP" title=" MLP"> MLP</a> </p> <a href="https://publications.waset.org/5834/modified-functional-link-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5834/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5834/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5834/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5834/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5834/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5834/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5834/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5834/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5834/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5834/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1803</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3002</span> Real-Time Identification of Media in a Laboratory-Scaled Penetrating Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sheng-Hong%20Pong">Sheng-Hong Pong</a>, <a href="https://publications.waset.org/search?q=Herng-Yu%20Huang"> Herng-Yu Huang</a>, <a href="https://publications.waset.org/search?q=Yi-Ju%20Lee"> Yi-Ju Lee</a>, <a href="https://publications.waset.org/search?q=Shih-Hsuan%20Chiu"> Shih-Hsuan Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a neural network technique is applied to real-time classifying media while a projectile is penetrating through them. A laboratory-scaled penetrating setup was built for the experiment. Features used as the network inputs were extracted from the acceleration of penetrator. 6000 set of features from a single penetration with known media and status were used to train the neural network. The trained system was tested on 30 different penetration experiments. The system produced an accuracy of 100% on the training data set. And, their precision could be 99% for the test data from 30 tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=back-propagation" title="back-propagation">back-propagation</a>, <a href="https://publications.waset.org/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=penetration." title="penetration.">penetration.</a> </p> <a href="https://publications.waset.org/6740/real-time-identification-of-media-in-a-laboratory-scaled-penetrating-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6740/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6740/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6740/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6740/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6740/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6740/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6740/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6740/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6740/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6740/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1277</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3001</span> Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.Mohammadi%20Majd">H.Mohammadi Majd</a>, <a href="https://publications.waset.org/search?q=M.Jalali%20Azizpour"> M.Jalali Azizpour</a>, <a href="https://publications.waset.org/search?q=A.V.%20Hoseini"> A.V. Hoseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Back-propagation%20artificial%20neural%20network%28BPANN%29" title="Back-propagation artificial neural network(BPANN)">Back-propagation artificial neural network(BPANN)</a>, <a href="https://publications.waset.org/search?q=deep%20drawing" title=" deep drawing"> deep drawing</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=limiting%20drawing%20ratio%20%28LDR%29." title=" limiting drawing ratio (LDR)."> limiting drawing ratio (LDR).</a> </p> <a href="https://publications.waset.org/13112/application-of-neural-network-and-finite-element-for-prediction-the-limiting-drawing-ratio-in-deep-drawing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13112/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13112/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13112/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13112/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13112/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13112/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13112/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13112/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13112/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13112/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1727</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3000</span> Predicting Extrusion Process Parameters Using Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sachin%20Man%20Bajimaya"> Sachin Man Bajimaya</a>, <a href="https://publications.waset.org/search?q=SangChul%20Park"> SangChul Park</a>, <a href="https://publications.waset.org/search?q=Gi-Nam%20Wang"> Gi-Nam Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network%20%28ANN%29" title="Artificial Neural Network (ANN)">Artificial Neural Network (ANN)</a>, <a href="https://publications.waset.org/search?q=Indirect%0AExtrusion" title=" Indirect Extrusion"> Indirect Extrusion</a>, <a href="https://publications.waset.org/search?q=Finite%20Element%20Analysis" title=" Finite Element Analysis"> Finite Element Analysis</a>, <a href="https://publications.waset.org/search?q=MES." title=" MES."> MES.</a> </p> <a href="https://publications.waset.org/5742/predicting-extrusion-process-parameters-using-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5742/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5742/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5742/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5742/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5742/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5742/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5742/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5742/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5742/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5742/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2368</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2999</span> Block Activity in Metric Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mario%20Gonzalez">Mario Gonzalez</a>, <a href="https://publications.waset.org/search?q=David%20Dominguez"> David Dominguez</a>, <a href="https://publications.waset.org/search?q=Francisco%20B.%20Rodriguez"> Francisco B. Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The model of neural networks on the small-world topology, with metric (local and random connectivity) is investigated. The synaptic weights are random, driving the network towards a chaotic state for the neural activity. An ordered macroscopic neuron state is induced by a bias in the network connections. When the connections are mainly local, the network emulates a block-like structure. It is found that the topology and the bias compete to influence the network to evolve into a global or a block activity ordering, according to the initial conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Block%20attractor" title="Block attractor">Block attractor</a>, <a href="https://publications.waset.org/search?q=random%20interaction" title=" random interaction"> random interaction</a>, <a href="https://publications.waset.org/search?q=small%20world" title=" small world"> small world</a>, <a href="https://publications.waset.org/search?q=spin%20glass." title=" spin glass."> spin glass.</a> </p> <a href="https://publications.waset.org/14975/block-activity-in-metric-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14975/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14975/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14975/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14975/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14975/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14975/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14975/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14975/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14975/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14975/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1337</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2998</span> Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Firas%20Salih">Firas Salih</a>, <a href="https://publications.waset.org/search?q=Luban%20Hameed"> Luban Hameed</a>, <a href="https://publications.waset.org/search?q=Afaf%20Kamil"> Afaf Kamil</a>, <a href="https://publications.waset.org/search?q=Armin%20Bolz"> Armin Bolz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Arterial%20stiffness" title="Arterial stiffness">Arterial stiffness</a>, <a href="https://publications.waset.org/search?q=area%20under%20the%20catacrotic%20phase%20of%20the%20photoplethysmograph%20pulse" title=" area under the catacrotic phase of the photoplethysmograph pulse"> area under the catacrotic phase of the photoplethysmograph pulse</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/13058/arterial-stiffness-detection-depending-on-neural-network-classification-of-the-multi-input-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13058/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13058/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13058/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13058/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13058/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13058/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13058/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13058/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13058/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13058/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1652</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2997</span> Electromagnetic Interference Radiation Prediction and Final Measurement Process Optimization by Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hussam%20Elias">Hussam Elias</a>, <a href="https://publications.waset.org/search?q=Ninovic%20Perez"> Ninovic Perez</a>, <a href="https://publications.waset.org/search?q=Holger%20Hirsch"> Holger Hirsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we present a method to perform the final phase of Electromagnetic Compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the Conventional Neural Network (CNN). The neural network was trained using real EMC measurements which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meet the maximum radiation value.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conventional%20neural%20network" title="Conventional neural network">Conventional neural network</a>, <a href="https://publications.waset.org/search?q=electromagnetic%20compatibility%20measurement" title=" electromagnetic compatibility measurement"> electromagnetic compatibility measurement</a>, <a href="https://publications.waset.org/search?q=mean%20absolute%20error" title=" mean absolute error"> mean absolute error</a>, <a href="https://publications.waset.org/search?q=position%20error." title=" position error."> position error.</a> </p> <a href="https://publications.waset.org/10013070/electromagnetic-interference-radiation-prediction-and-final-measurement-process-optimization-by-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013070/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013070/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013070/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013070/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013070/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013070/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013070/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013070/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013070/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013070/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2996</span> Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Katsumi%20Hirata">Katsumi Hirata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bispectrum" title="Bispectrum">Bispectrum</a>, <a href="https://publications.waset.org/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/search?q=environmental%20sound" title=" environmental sound"> environmental sound</a>, <a href="https://publications.waset.org/search?q=slice%20bispectrogram" title=" slice bispectrogram"> slice bispectrogram</a>, <a href="https://publications.waset.org/search?q=spectrogram." title=" spectrogram."> spectrogram.</a> </p> <a href="https://publications.waset.org/10010936/slice-bispectrogram-analysis-based-classification-of-environmental-sounds-using-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010936/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010936/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010936/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010936/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010936/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010936/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010936/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010936/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010936/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010936/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2995</span> Video Quality assessment Measure with a Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20El%20Khattabi">H. El Khattabi</a>, <a href="https://publications.waset.org/search?q=A.%20Tamtaoui"> A. Tamtaoui</a>, <a href="https://publications.waset.org/search?q=D.%20Aboutajdine"> D. Aboutajdine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the video quality measure estimation via a neural network. This latter predicts MOS (mean opinion score) by providing height parameters extracted from original and coded videos. The eight parameters that are used are: the average of DFT differences, the standard deviation of DFT differences, the average of DCT differences, the standard deviation of DCT differences, the variance of energy of color, the luminance Y, the chrominance U and the chrominance V. We chose Euclidean Distance to make comparison between the calculated and estimated output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=video" title="video">video</a>, <a href="https://publications.waset.org/search?q=neural%20network%20MLP" title=" neural network MLP"> neural network MLP</a>, <a href="https://publications.waset.org/search?q=subjective%20quality" title=" subjective quality"> subjective quality</a>, <a href="https://publications.waset.org/search?q=DCT" title="DCT">DCT</a>, <a href="https://publications.waset.org/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/search?q=Retropropagation" title=" Retropropagation"> Retropropagation</a> </p> <a href="https://publications.waset.org/3381/video-quality-assessment-measure-with-a-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3381/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3381/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3381/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3381/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3381/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3381/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3381/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3381/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3381/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3381/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1806</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2994</span> Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs&#039;&#039; Properties Using Pattern Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20K.%20Adedeji">J. K. Adedeji</a>, <a href="https://publications.waset.org/search?q=S.%20T.%20Ijatuyi"> S. T. Ijatuyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (<em>p</em><sub>1</sub>), fractured layer (<em>p</em><sub>2</sub>), and the depth (h), while the dependent variable is the flow parameter (F=<img height="19" src="file:///C:\Users\merhaba\AppData\Local\Temp\OICE_E62EC5F6-DA79-44AA-AEA1-6C9A5A2AEC3F.0\msohtmlclip1\01\clip_image002.gif" width="14" />&lambda;). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable g<sub>r</sub> (gravitational resistance) can be deduced from the elevation and apparent resistivity <em>p</em><sub>a</sub>. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=gravitational%20resistance" title=" gravitational resistance"> gravitational resistance</a>, <a href="https://publications.waset.org/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/search?q=non-linear." title=" non-linear."> non-linear.</a> </p> <a href="https://publications.waset.org/10009188/neuron-efficiency-in-fluid-dynamics-and-prediction-of-groundwater-reservoirs-properties-using-pattern-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009188/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009188/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009188/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009188/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009188/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009188/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009188/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009188/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009188/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009188/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">801</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2993</span> ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mangesh%20R.%20Phate">Mangesh R. Phate</a>, <a href="https://publications.waset.org/search?q=V.%20H.%20Tatwawadi"> V. H. Tatwawadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.</p> <p>The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Field%20data%20based%20model" title="Field data based model">Field data based model</a>, <a href="https://publications.waset.org/search?q=Artificial%20neural%20network" title=" Artificial neural network"> Artificial neural network</a>, <a href="https://publications.waset.org/search?q=Simulation" title=" Simulation"> Simulation</a>, <a href="https://publications.waset.org/search?q=Convectional%20Turning" title=" Convectional Turning"> Convectional Turning</a>, <a href="https://publications.waset.org/search?q=Material%20removal%20rate." title=" Material removal rate."> Material removal rate.</a> </p> <a href="https://publications.waset.org/9997427/ann-based-model-development-for-material-removal-rate-in-dry-turning-in-indian-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997427/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997427/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997427/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997427/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997427/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997427/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997427/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997427/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997427/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997427/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1970</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2992</span> Neural Networks Learning Improvement using the K-Means Clustering Algorithm to Detect Network Intrusions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20M.%20Faraoun">K. M. Faraoun</a>, <a href="https://publications.waset.org/search?q=A.%20Boukelif"> A. Boukelif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a back propagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20networks" title="Neural networks">Neural networks</a>, <a href="https://publications.waset.org/search?q=Intrusion%20detection" title=" Intrusion detection"> Intrusion detection</a>, <a href="https://publications.waset.org/search?q=learningenhancement" title=" learningenhancement"> learningenhancement</a>, <a href="https://publications.waset.org/search?q=K-means%20clustering" title=" K-means clustering"> K-means clustering</a> </p> <a href="https://publications.waset.org/4738/neural-networks-learning-improvement-using-the-k-means-clustering-algorithm-to-detect-network-intrusions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3612</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2991</span> Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tarik%20Rashid">Tarik Rashid</a>, <a href="https://publications.waset.org/search?q=B.%20Q.%20Huang"> B. Q. Huang</a>, <a href="https://publications.waset.org/search?q=M-T.%20Kechadi"> M-T. Kechadi</a>, <a href="https://publications.waset.org/search?q=B.%20Gleeson"> B. Gleeson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting" title="Daily peak load forecasting">Daily peak load forecasting</a>, <a href="https://publications.waset.org/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/search?q=auto%20regressive%20multi-context%20neural%20network." title=" auto regressive multi-context neural network."> auto regressive multi-context neural network.</a> </p> <a href="https://publications.waset.org/15396/auto-regressive-recurrent-neural-network-approach-for-electricity-load-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15396/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15396/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15396/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15396/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15396/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15396/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15396/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15396/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15396/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15396/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2543</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2990</span> Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jolly%20Shah">Jolly Shah</a>, <a href="https://publications.waset.org/search?q=S.S.Rattan"> S.S.Rattan</a>, <a href="https://publications.waset.org/search?q=B.C.Nakra"> B.C.Nakra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 2-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/search?q=Forward%20Kinematics" title=" Forward Kinematics"> Forward Kinematics</a>, <a href="https://publications.waset.org/search?q=Inverse%20Kinematics" title="Inverse Kinematics">Inverse Kinematics</a>, <a href="https://publications.waset.org/search?q=Robotic%20Manipulator" title=" Robotic Manipulator"> Robotic Manipulator</a> </p> <a href="https://publications.waset.org/3137/kinematic-analysis-of-2-dof-planer-robot-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3137/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3137/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3137/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3137/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3137/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3137/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3137/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3137/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3137/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3137/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4364</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2989</span> Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Mohagheghian">M. Mohagheghian</a>, <a href="https://publications.waset.org/search?q=A.%20M.%20Ghaedi"> A. M. Ghaedi</a>, <a href="https://publications.waset.org/search?q=A.%20Vafaei"> A. Vafaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20neural%20network" title="Artificial neural network">Artificial neural network</a>, <a href="https://publications.waset.org/search?q=kinematic%20viscosity" title=" kinematic viscosity"> kinematic viscosity</a>, <a href="https://publications.waset.org/search?q=poly%0Aethylene%20glycol%20%28PEG%29" title=" poly ethylene glycol (PEG)"> poly ethylene glycol (PEG)</a> </p> <a href="https://publications.waset.org/3844/prediction-of-kinematic-viscosity-of-binary-mixture-of-poly-ethylene-glycol-in-water-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3844/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3844/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3844/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3844/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3844/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3844/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3844/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3844/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3844/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3844/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2531</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2988</span> Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ali%20Hussian%20Ali%20AlTimemy">Ali Hussian Ali AlTimemy</a>, <a href="https://publications.waset.org/search?q=Fawzi%20M.%20Al%20Naima"> Fawzi M. Al Naima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Kidney%20Dysfunction" title="Kidney Dysfunction">Kidney Dysfunction</a>, <a href="https://publications.waset.org/search?q=Prediction" title=" Prediction"> Prediction</a>, <a href="https://publications.waset.org/search?q=SOM" title=" SOM"> SOM</a>, <a href="https://publications.waset.org/search?q=PNN" title=" PNN"> PNN</a>, <a href="https://publications.waset.org/search?q=BPNN" title="BPNN">BPNN</a>, <a href="https://publications.waset.org/search?q=Urea%20and%20Creatinine%20levels." title=" Urea and Creatinine levels."> Urea and Creatinine levels.</a> </p> <a href="https://publications.waset.org/12166/comparison-of-different-neural-network-approaches-for-the-prediction-of-kidney-dysfunction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12166/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12166/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12166/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12166/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12166/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12166/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12166/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12166/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12166/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12166/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1932</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2987</span> Two Day Ahead Short Term Load Forecasting Neural Network Based </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Firas%20M.%20Tuaimah">Firas M. Tuaimah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.</p> <p>The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Short-Term%20Load%20Forecasting" title="Short-Term Load Forecasting">Short-Term Load Forecasting</a>, <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Networks" title=" Artificial Neural Networks"> Artificial Neural Networks</a>, <a href="https://publications.waset.org/search?q=Back%20propagation%20learning." title=" Back propagation learning."> Back propagation learning.</a> </p> <a href="https://publications.waset.org/9998947/two-day-ahead-short-term-load-forecasting-neural-network-based" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998947/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998947/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998947/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998947/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998947/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998947/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998947/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998947/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998947/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998947/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1560</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=2" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=102">102</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=103">103</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network&amp;page=4" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10