CINXE.COM
noetherian ring (Rev #22) in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> noetherian ring (Rev #22) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> noetherian ring (Rev #22) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/7043/#Item_4" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='algebra'>Algebra</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/higher+algebra'>higher algebra</a></strong></p> <p><a class='existingWikiWord' href='/nlab/show/universal+algebra'>universal algebra</a></p> <h2 id='algebraic_theories'>Algebraic theories</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/algebraic+theory'>algebraic theory</a> / <a class='existingWikiWord' href='/nlab/show/2-Lawvere+theory'>2-algebraic theory</a> / <a class='existingWikiWord' href='/nlab/show/%28%E2%88%9E%2C1%29-algebraic+theory'>(∞,1)-algebraic theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/monad'>monad</a> / <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-monad'>(∞,1)-monad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/operad'>operad</a> / <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-operad'>(∞,1)-operad</a></p> </li> </ul> <h2 id='algebras_and_modules'>Algebras and modules</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/algebra+over+a+monad'>algebra over a monad</a></p> <p><a class='existingWikiWord' href='/nlab/show/infinity-algebra+over+an+%28infinity%2C1%29-monad'>∞-algebra over an (∞,1)-monad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/algebra+over+a+Lawvere+theory'>algebra over an algebraic theory</a></p> <p><a class='existingWikiWord' href='/nlab/show/infinity-algebra+over+an+%28infinity%2C1%29-algebraic+theory'>∞-algebra over an (∞,1)-algebraic theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/algebra+over+an+operad'>algebra over an operad</a></p> <p><a class='existingWikiWord' href='/nlab/show/infinity-algebra+over+an+%28infinity%2C1%29-operad'>∞-algebra over an (∞,1)-operad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/action'>action</a>, <a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-action</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/representation'>representation</a>, <a class='existingWikiWord' href='/nlab/show/infinity-representation'>∞-representation</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/module'>module</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-module'>∞-module</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/associated+bundle'>associated bundle</a>, <a class='existingWikiWord' href='/nlab/show/associated+infinity-bundle'>associated ∞-bundle</a></p> </li> </ul> <h2 id='higher_algebras'>Higher algebras</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/monoidal+%28infinity%2C1%29-category'>monoidal (∞,1)-category</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/symmetric+monoidal+%28infinity%2C1%29-category'>symmetric monoidal (∞,1)-category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/monoid+in+a+monoidal+%28infinity%2C1%29-category'>monoid in an (∞,1)-category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/commutative+monoid+in+a+symmetric+monoidal+%28infinity%2C1%29-category'>commutative monoid in an (∞,1)-category</a></p> </li> </ul> </li> <li> <p>symmetric monoidal (∞,1)-category of spectra</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/smash+product+of+spectra'>smash product of spectra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/symmetric+smash+product+of+spectra'>symmetric monoidal smash product of spectra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/ring+spectrum'>ring spectrum</a>, <a class='existingWikiWord' href='/nlab/show/module+spectrum'>module spectrum</a>, <a class='existingWikiWord' href='/nlab/show/algebra+spectrum'>algebra spectrum</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/A-infinity-algebra'>A-∞ algebra</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/A-infinity-ring'>A-∞ ring</a>, <a class='existingWikiWord' href='/nlab/show/A-infinity-space'>A-∞ space</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/C_%E2%88%9E-algebra'>C-∞ algebra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/E-infinity-ring'>E-∞ ring</a>, <a class='existingWikiWord' href='/nlab/show/E-infinity+algebra'>E-∞ algebra</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-module'>∞-module</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-module+bundle'>(∞,1)-module bundle</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/multiplicative+cohomology+theory'>multiplicative cohomology theory</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/L-infinity-algebra'>L-∞ algebra</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/deformation+theory'>deformation theory</a></li> </ul> </li> </ul> <h2 id='model_category_presentations'>Model category presentations</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+algebras'>model structure on simplicial T-algebras</a> / <a class='existingWikiWord' href='/nlab/show/homotopy+T-algebra'>homotopy T-algebra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+operads'>model structure on operads</a></p> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+an+operad'>model structure on algebras over an operad</a></p> </li> </ul> <h2 id='geometry_on_formal_duals_of_algebras'>Geometry on formal duals of algebras</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/Isbell+duality'>Isbell duality</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/derived+geometry'>derived geometry</a></p> </li> </ul> <h2 id='theorems'>Theorems</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/Deligne+conjecture'>Deligne conjecture</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/delooping+hypothesis'>delooping hypothesis</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/monoidal+Dold-Kan+correspondence'>monoidal Dold-Kan correspondence</a></p> </li> </ul> <div> <p> <a href='/nlab/edit/higher+algebra+-+contents'>Edit this sidebar</a> </p> </div></div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a><ul><li><a href='#noetherian_rings'>Noetherian rings</a></li><li><a href='#left_noetherian_rings'>Left Noetherian rings</a></li><li><a href='#right_noetherian_rings'>Right Noetherian rings</a></li></ul></li><li><a href='#examples'>Examples</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#general'>General</a></li><li><a href='#a_homological_characterization'>A homological characterization</a></li></ul></li><li><a href='#noetherian_and_artinian_rings'>Noetherian and Artinian rings</a></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>A Noetherian (or often, as below, noetherian) <a class='existingWikiWord' href='/nlab/show/ring'>ring</a> (or <a class='existingWikiWord' href='/nlab/show/nonunital+ring'>rng</a>) is one where it is possible to do <a class='existingWikiWord' href='/nlab/show/induction'>induction</a> over its ideals, because the ordering of ideals by reverse inclusion is <a class='existingWikiWord' href='/nlab/show/well-founded+relation'>well-founded</a>.</p> <h2 id='definition'>Definition</h2> <h3 id='noetherian_rings'>Noetherian rings</h3> <p>Every <a class='existingWikiWord' href='/nlab/show/ring'>ring</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> has a canonical <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/bimodule'>bimodule</a> structure, with <a class='existingWikiWord' href='/nlab/show/action'>left action</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>α</mi> <mi>L</mi></msub><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\alpha_L:R \times R \to R</annotation></semantics></math> and <a class='existingWikiWord' href='/nlab/show/action'>right action</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>α</mi> <mi>R</mi></msub><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\alpha_R:R \times R \to R</annotation></semantics></math> defined as the multiplicative binary operation on <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> and <a class='existingWikiWord' href='/nlab/show/biaction'>biaction</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>α</mi><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\alpha:R \times R \times R \to R</annotation></semantics></math> defined as the ternary product on <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>:</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>α</mi> <mi>L</mi></msub><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo><mo>≔</mo><mi>a</mi><mo>⋅</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>\alpha_L(a, b) \coloneqq a \cdot b</annotation></semantics></math></div><div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>α</mi> <mi>R</mi></msub><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo><mo>≔</mo><mi>a</mi><mo>⋅</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>\alpha_R(a, b) \coloneqq a \cdot b</annotation></semantics></math></div><div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>α</mi><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>≔</mo><mi>a</mi><mo>⋅</mo><mi>b</mi><mo>⋅</mo><mi>c</mi></mrow><annotation encoding='application/x-tex'>\alpha(a, b, c) \coloneqq a \cdot b \cdot c</annotation></semantics></math></div> <p>Let <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi mathvariant='normal'>TwoSidedIdeals</mi><mo stretchy='false'>(</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathrm{TwoSidedIdeals}(R)</annotation></semantics></math> be the <a class='existingWikiWord' href='/nlab/show/category+of+two-sided+ideals+in+a+ring'>category of two-sided ideals</a> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, whose objects are <a class='existingWikiWord' href='/nlab/show/ideal'>two-sided ideals</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>I</mi></mrow><annotation encoding='application/x-tex'>I</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, <a class='existingWikiWord' href='/nlab/show/bimodule'>sub-$R$-$R$-bimodules</a> of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> with respect to the canonical bimodule structure on <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, and whose <a class='existingWikiWord' href='/nlab/show/morphism'>morphisms</a> are <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/bimodule'>bimodule monomorphisms</a>.</p> <p>An ascending chain of two-sided ideals in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/direct+limit'>direct sequence</a> of two-sided ideals in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, a <a class='existingWikiWord' href='/nlab/show/sequence'>sequence</a> of two-sided ideals <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi mathvariant='normal'>TwoSidedIdeals</mi><mo stretchy='false'>(</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>A:\mathbb{N} \to \mathrm{TwoSidedIdeals}(R)</annotation></semantics></math> with the following <a class='existingWikiWord' href='/nlab/show/dependent+sequence'>dependent sequence</a> of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-bimodule monomorphisms: for natural number <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math>, a dependent <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-bimodule monomorphism <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math>.</p> <p>A <a class='existingWikiWord' href='/nlab/show/ring'>ring</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is <strong>Noetherian</strong> if it satisfies the <a class='existingWikiWord' href='/nlab/show/ascending+chain+condition'>ascending chain condition</a> on its two-sided ideals: for every ascending chain of two-sided ideals <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>A</mi><mo>,</mo><msub><mi>i</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(A, i_n)</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, there exists a natural number <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>m \in \mathbb{N}</annotation></semantics></math> such that for all natural numbers <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>≥</mo><mi>m</mi></mrow><annotation encoding='application/x-tex'>n \geq m</annotation></semantics></math>, the <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-bimodule monomorphism <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math> is an <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/bimodule'>bimodule isomorphism</a>.</p> <h3 id='left_noetherian_rings'>Left Noetherian rings</h3> <p>Let <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi mathvariant='normal'>LeftIdeals</mi><mo stretchy='false'>(</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathrm{LeftIdeals}(R)</annotation></semantics></math> be the category of <a class='existingWikiWord' href='/nlab/show/ideal'>left ideals</a> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, whose objects are <a class='existingWikiWord' href='/nlab/show/ideal'>left ideals</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>I</mi></mrow><annotation encoding='application/x-tex'>I</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, sub-left-<math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-modules of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> with respect to the canonical <a class='existingWikiWord' href='/nlab/show/module'>left module</a> structure <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>⋅</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>(-)\cdot(-):R \times R \to R</annotation></semantics></math> on <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, and whose <a class='existingWikiWord' href='/nlab/show/morphism'>morphisms</a> are left <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module monomorphisms.</p> <p>An ascending chain of left ideals in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/direct+limit'>direct sequence</a> of left ideals in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, a <a class='existingWikiWord' href='/nlab/show/sequence'>sequence</a> of left ideals <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi mathvariant='normal'>LeftIdeals</mi><mo stretchy='false'>(</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>A:\mathbb{N} \to \mathrm{LeftIdeals}(R)</annotation></semantics></math> with the following <a class='existingWikiWord' href='/nlab/show/dependent+sequence'>dependent sequence</a> of left <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module monomorphisms: for natural number <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math>, a dependent left <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module monomorphism <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math>.</p> <p>A <a class='existingWikiWord' href='/nlab/show/ring'>ring</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is <strong>left Noetherian</strong> if it satisfies the <a class='existingWikiWord' href='/nlab/show/ascending+chain+condition'>ascending chain condition</a> on its left ideals: for every ascending chain of left ideals <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>A</mi><mo>,</mo><msub><mi>i</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(A, i_n)</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, there exists a natural number <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>m \in \mathbb{N}</annotation></semantics></math> such that for all natural numbers <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>≥</mo><mi>m</mi></mrow><annotation encoding='application/x-tex'>n \geq m</annotation></semantics></math>, the left <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module monomorphism <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math> is an left <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module isomorphism.</p> <h3 id='right_noetherian_rings'>Right Noetherian rings</h3> <p>Let <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi mathvariant='normal'>RightIdeals</mi><mo stretchy='false'>(</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathrm{RightIdeals}(R)</annotation></semantics></math> be the category of <a class='existingWikiWord' href='/nlab/show/ideal'>right ideals</a> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, whose objects are <a class='existingWikiWord' href='/nlab/show/ideal'>right ideals</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>I</mi></mrow><annotation encoding='application/x-tex'>I</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, sub-right-<math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-modules of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> with respect to the canonical <a class='existingWikiWord' href='/nlab/show/module'>right module</a> structure <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>⋅</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>(-)\cdot(-):R \times R \to R</annotation></semantics></math> on <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_70' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, and whose <a class='existingWikiWord' href='/nlab/show/morphism'>morphisms</a> are right <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_71' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module monomorphisms.</p> <p>An ascending chain of right ideals in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_72' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/direct+limit'>direct sequence</a> of right ideals in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_73' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, a <a class='existingWikiWord' href='/nlab/show/sequence'>sequence</a> of right ideals <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_74' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi mathvariant='normal'>RightIdeals</mi><mo stretchy='false'>(</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>A:\mathbb{N} \to \mathrm{RightIdeals}(R)</annotation></semantics></math> with the following <a class='existingWikiWord' href='/nlab/show/dependent+sequence'>dependent sequence</a> of right <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_75' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module monomorphisms: for natural number <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_76' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math>, a dependent right <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_77' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module monomorphism <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_78' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math>.</p> <p>A <a class='existingWikiWord' href='/nlab/show/ring'>ring</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_79' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is <strong>right Noetherian</strong> if it satisfies the <a class='existingWikiWord' href='/nlab/show/ascending+chain+condition'>ascending chain condition</a> on its right ideals: for every ascending chain of right ideals <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_80' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>A</mi><mo>,</mo><msub><mi>i</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(A, i_n)</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_81' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, there exists a natural number <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_82' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>m \in \mathbb{N}</annotation></semantics></math> such that for all natural numbers <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_83' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>≥</mo><mi>m</mi></mrow><annotation encoding='application/x-tex'>n \geq m</annotation></semantics></math>, the right <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_84' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module monomorphism <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_85' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math> is an right <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_86' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module isomorphism.</p> <h2 id='examples'>Examples</h2> <div class='num_example' id='FieldIsNoetherianRing'> <h6 id='example'>Example</h6> <p>Every <a class='existingWikiWord' href='/nlab/show/field'>field</a> is a noetherian ring.</p> </div> <div class='num_example' id='PIDIsNoetherianRing'> <h6 id='example_2'>Example</h6> <p>Every <a class='existingWikiWord' href='/nlab/show/principal+ideal+domain'>principal ideal domain</a> is a noetherian ring.</p> </div> <div class='num_example' id='PolynomialAlgebraOverNoetherianRingIsNoetherian'> <h6 id='example_3'>Example</h6> <p>For <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_87' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/noetherian+ring'>Noetherian ring</a> (e.g. a <a class='existingWikiWord' href='/nlab/show/field'>field</a> by example <a class='maruku-ref' href='#FieldIsNoetherianRing'>1</a>) then</p> <ol> <li> <p>the <a class='existingWikiWord' href='/nlab/show/polynomial'>polynomial algebra</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_88' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><mo stretchy='false'>[</mo><msub><mi>X</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>X</mi> <mi>n</mi></msub><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>R[X_1, \cdots, X_n]</annotation></semantics></math></p> </li> <li> <p>the <a class='existingWikiWord' href='/nlab/show/power+series'>formal power series algebra</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_89' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><mo stretchy='false'>[</mo><mo stretchy='false'>[</mo><msub><mi>X</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>X</mi> <mi>n</mi></msub><mo stretchy='false'>]</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>R[ [ X_1, \cdots, X_n ] ]</annotation></semantics></math></p> </li> </ol> <p>over R in a <a class='existingWikiWord' href='/nlab/show/finite+number'>finite number</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_90' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> of <a class='existingWikiWord' href='/nlab/show/coordinate+system'>coordinates</a> are Noetherian.</p> </div> <h2 id='properties'>Properties</h2> <p>Spectra of noetherian rings are glued together to define <a class='existingWikiWord' href='/nlab/show/noetherian+scheme'>locally noetherian schemes</a>.</p> <h3 id='general'>General</h3> <p>One of the best-known properties is the Hilbert basis theorem. Let <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_91' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> be a (unital) ring.</p> <div class='num_theorem'> <h6 id='theorem'>Theorem</h6> <p><strong>(Hilbert)</strong> If <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_92' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is left Noetherian, then so is the <a class='existingWikiWord' href='/nlab/show/polynomial'>polynomial algebra</a> <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_93' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><mo stretchy='false'>[</mo><mi>x</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>R[x]</annotation></semantics></math>. (Similarly if “right” is substituted for “left”.)</p> </div> <div class='proof'> <h6 id='proof'>Proof</h6> <p>(We adapt the proof from <a href='https://en.wikipedia.org/wiki/Hilbert%27s_basis_theorem#First_Proof'>Wikipedia</a>.) Suppose <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_94' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>I</mi></mrow><annotation encoding='application/x-tex'>I</annotation></semantics></math> is a left ideal of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_95' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><mo stretchy='false'>[</mo><mi>x</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>R[x]</annotation></semantics></math> that is not finitely generated. Using the <a class='existingWikiWord' href='/nlab/show/dependent+choice'>axiom of dependent choice</a>, there is a <a class='existingWikiWord' href='/nlab/show/sequence'>sequence</a> of polynomials <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_96' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>f</mi> <mi>n</mi></msub><mo>∈</mo><mi>I</mi></mrow><annotation encoding='application/x-tex'>f_n \in I</annotation></semantics></math> such that the left ideals <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_97' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>I</mi> <mi>n</mi></msub><mo>≔</mo><mo stretchy='false'>(</mo><msub><mi>f</mi> <mn>0</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>f</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>I_n \coloneqq (f_0, \ldots, f_{n-1})</annotation></semantics></math> form a strictly increasing chain and <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_98' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>f</mi> <mi>n</mi></msub><mo>∈</mo><mi>I</mi><mo>∖</mo><msub><mi>I</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>f_n \in I \setminus I_n</annotation></semantics></math> is chosen to have degree as small as possible. Putting <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_99' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>d</mi> <mi>n</mi></msub><mo>≔</mo><mi>deg</mi><mo stretchy='false'>(</mo><msub><mi>f</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>d_n \coloneqq \deg(f_n)</annotation></semantics></math>, we have <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_100' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>d</mi> <mn>0</mn></msub><mo>≤</mo><msub><mi>d</mi> <mn>1</mn></msub><mo>≤</mo><mi>…</mi></mrow><annotation encoding='application/x-tex'>d_0 \leq d_1 \leq \ldots</annotation></semantics></math>. Let <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_101' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>a</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>a_n</annotation></semantics></math> be the leading coefficient of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_102' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>f</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>f_n</annotation></semantics></math>. The left ideal <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_103' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><msub><mi>a</mi> <mn>0</mn></msub><mo>,</mo><msub><mi>a</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(a_0, a_1, \ldots)</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_104' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is finitely generated; say <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_105' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><msub><mi>a</mi> <mn>0</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>a</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(a_0, \ldots, a_{k-1})</annotation></semantics></math> generates. Thus we may write</p> <div class='maruku-equation' id='eq:kill'><span class='maruku-eq-number'>(1)</span><math class='maruku-mathml' display='block' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_106' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>a</mi> <mi>k</mi></msub><mo>=</mo><munderover><mo lspace='thinmathspace' rspace='thinmathspace'>∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></munderover><msub><mi>r</mi> <mi>i</mi></msub><msub><mi>a</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'> a_k = \sum_{i=0}^{k-1} r_i a_i</annotation></semantics></math></div> <p>The polynomial <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_107' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>g</mi><mo>=</mo><msubsup><mo lspace='thinmathspace' rspace='thinmathspace'>∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mi>r</mi> <mi>i</mi></msub><msup><mi>x</mi> <mrow><msub><mi>d</mi> <mi>k</mi></msub><mo>−</mo><msub><mi>d</mi> <mi>i</mi></msub></mrow></msup><msub><mi>f</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>g = \sum_{i=0}^{k-1} r_i x^{d_k - d_i} f_i</annotation></semantics></math> belongs to <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_108' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>I_k</annotation></semantics></math>, so <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_109' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub><mo>−</mo><mi>g</mi></mrow><annotation encoding='application/x-tex'>f_k - g</annotation></semantics></math> belongs to <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_110' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>I</mi><mo>∖</mo><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>I \setminus I_k</annotation></semantics></math>. Also <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_111' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math> has degree <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_112' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>d</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>d_k</annotation></semantics></math> or less, and therefore so does <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_113' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub><mo>−</mo><mi>g</mi></mrow><annotation encoding='application/x-tex'>f_k - g</annotation></semantics></math>. But notice that the coefficient of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_114' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>x</mi> <mrow><msub><mi>d</mi> <mi>k</mi></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>x^{d_k}</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_115' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub><mo>−</mo><mi>g</mi></mrow><annotation encoding='application/x-tex'>f_k - g</annotation></semantics></math> is zero, by <a class='maruku-eqref' href='#eq:kill'>(1)</a>. So in fact <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_116' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub><mo>−</mo><mi>g</mi></mrow><annotation encoding='application/x-tex'>f_k - g</annotation></semantics></math> has degree less than <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_117' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>d</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>d_k</annotation></semantics></math>, contradicting how <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_118' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>f_k</annotation></semantics></math> was chosen.</p> </div> <h3 id='a_homological_characterization'>A homological characterization</h3> <div class='num_theorem'> <h6 id='theorem_2'>Theorem</h6> <p>For a unital ring <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_119' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> the following are equivalent:</p> <ol> <li><math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_120' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is left Noetherian</li> <li>Any small direct sum of injective left <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_121' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-modules is injective.</li> <li><math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_122' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mo lspace='0em' rspace='thinmathspace'>Ext</mo> <mi>R</mi> <mi>k</mi></msubsup><mo stretchy='false'>(</mo><mi>A</mi><mo>,</mo><mo>⋅</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\operatorname{Ext}^k_R(A, \cdot)</annotation></semantics></math> commutes with small direct sums for any finitely generated <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_123' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</li> </ol> </div> <p>Direct sums here can be replaced by filtered colimits.</p> <div class='proof'> <h6 id='proof_2'>Proof</h6> <p><math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_124' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo>⇒</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1 \Rightarrow 2</annotation></semantics></math>: assume that <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_125' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is Noetherian and <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_126' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>I</mi> <mi>α</mi></msub></mrow><annotation encoding='application/x-tex'>I_\alpha</annotation></semantics></math> are injective modules. In order to verify that <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_127' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>I</mi><mo>:</mo><mo>=</mo><msub><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo> <mi>α</mi></msub><msub><mi>I</mi> <mi>α</mi></msub></mrow><annotation encoding='application/x-tex'>I := \bigoplus_\alpha I_\alpha</annotation></semantics></math> is injective it is enough to show that for any ideal <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_128' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝔧</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{j}</annotation></semantics></math> any morphism of left modules <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_129' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>f</mi><mo>:</mo><mi>𝔧</mi><mo>→</mo><mi>I</mi></mrow><annotation encoding='application/x-tex'>f : \mathfrak{j} \to I</annotation></semantics></math> factors through <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_130' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝔧</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{j} \to R</annotation></semantics></math>. Since <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_131' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is Notherian, <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_132' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝔧</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{j}</annotation></semantics></math> is finitely generated, so the image of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_133' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math> lies in a finite sum <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_134' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>I</mi> <mrow><msub><mi>α</mi> <mn>1</mn></msub></mrow></msub><mo>⊕</mo><mi>…</mi><mo>⊕</mo><msub><mi>I</mi> <mrow><msub><mi>α</mi> <mi>n</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>I_{\alpha_1} \oplus \dots \oplus I_{\alpha_n}</annotation></semantics></math>. Thus an extension to <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_135' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> exists by the injectivity of each <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_136' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>I</mi> <mrow><msub><mi>α</mi> <mi>k</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>I_{\alpha_k}</annotation></semantics></math>.</p> <p><math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_137' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>2</mn><mo>⇒</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>2 \Rightarrow 1</annotation></semantics></math>: if <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_138' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is not left Noetherian then there is a sequence of left ideals <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_139' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>𝔧</mi> <mn>1</mn></msub><mo>⊊</mo><msub><mi>𝔧</mi> <mn>2</mn></msub><mo>⊊</mo><mi>…</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{j}_1 \subsetneq \mathfrak{j}_2 \subsetneq \dots</annotation></semantics></math>. Take <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_140' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝔧</mi><mo>:</mo><mo>=</mo><msub><mo lspace='thinmathspace' rspace='thinmathspace'>⋃</mo> <mi>k</mi></msub><msub><mi>𝔧</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{j} := \bigcup_k \mathfrak{j}_k</annotation></semantics></math>. The obvious map <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_141' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>j</mi><mo>→</mo><msub><mo lspace='thinmathspace' rspace='thinmathspace'>∏</mo> <mi>k</mi></msub><mo stretchy='false'>(</mo><mi>𝔧</mi><mo stretchy='false'>/</mo><msub><mi>𝔧</mi> <mi>k</mi></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>j \to \prod_k (\mathfrak{j} / \mathfrak{j}_k)</annotation></semantics></math> factors through <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_142' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo> <mi>k</mi></msub><mo stretchy='false'>(</mo><mi>𝔧</mi><mo stretchy='false'>/</mo><msub><mi>𝔧</mi> <mi>k</mi></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\bigoplus_k (\mathfrak{j} / \mathfrak{j}_k)</annotation></semantics></math>, since any element lies in all but finitely many <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_143' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>𝔧</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{j}_k</annotation></semantics></math>. Now take any injective <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_144' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>I_k</annotation></semantics></math> with <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_145' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>→</mo><mi>𝔧</mi><mo stretchy='false'>/</mo><msub><mi>𝔧</mi> <mi>k</mi></msub><mo>→</mo><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>0 \to \mathfrak{j} / \mathfrak{j}_k \to I_k</annotation></semantics></math>. The map <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_146' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝔧</mi><mo>→</mo><msub><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo> <mi>k</mi></msub><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{j} \to \bigoplus_k I_k</annotation></semantics></math> cannot extend to the whole <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_147' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>, since otherwise its image would be contained in a sum of finitely many <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_148' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>I_k</annotation></semantics></math>. Therefore, <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_149' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo> <mi>k</mi></msub><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>\bigoplus_k I_k</annotation></semantics></math> is not injective.</p> <p><math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_150' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>2</mn><mo>⇒</mo><mn>3</mn></mrow><annotation encoding='application/x-tex'>2 \Rightarrow 3</annotation></semantics></math>: <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_151' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mo lspace='0em' rspace='thinmathspace'>Ext</mo> <mi>R</mi> <mi>k</mi></msubsup><mo stretchy='false'>(</mo><mi>A</mi><mo>,</mo><msub><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo> <mi>α</mi></msub><msub><mi>X</mi> <mi>α</mi></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\operatorname{Ext}^k_R(A, \bigoplus_\alpha X_\alpha)</annotation></semantics></math> can be computed by taking an injective resolution of <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_152' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo> <mi>α</mi></msub><msub><mi>X</mi> <mi>α</mi></msub></mrow><annotation encoding='application/x-tex'>\bigoplus_\alpha X_\alpha</annotation></semantics></math>. Since direct sums of injective modules are assumed to be injective, we can take a direct sum of injective resolutions of each <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_153' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>X</mi> <mi>α</mi></msub></mrow><annotation encoding='application/x-tex'>X_\alpha</annotation></semantics></math>. It remains to note that Hom out of a finitely generated module commutes with arbitrary direct sums.</p> <p><math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_154' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>3</mn><mo>⇒</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>3 \Rightarrow 2</annotation></semantics></math>: Follows from the fact that <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_155' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>I</mi></mrow><annotation encoding='application/x-tex'>I</annotation></semantics></math> is injective iff <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_156' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mo lspace='0em' rspace='thinmathspace'>Ext</mo> <mi>R</mi> <mn>1</mn></msubsup><mo stretchy='false'>(</mo><mi>R</mi><mo stretchy='false'>/</mo><mi>𝔦</mi><mo>,</mo><mi>I</mi><mo stretchy='false'>)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\operatorname{Ext}^1_R(R / \mathfrak{i}, I) = 0</annotation></semantics></math> for any ideal <math class='maruku-mathml' display='inline' id='mathml_93cbfb14e8e54213dd72a0baa4cfd1bf9dcb68b8_157' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝔦</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{i}</annotation></semantics></math>.</p> </div> <h2 id='noetherian_and_artinian_rings'>Noetherian and Artinian rings</h2> <p>A dual condition is artinian: an <strong><a class='existingWikiWord' href='/nlab/show/artinian+ring'>artinian ring</a></strong> is a ring satisfying the descending chain condition on ideals. The symmetry is severely broken if one considers unital rings: for example every unital artinian ring is noetherian; artinian rings are intuitively much smaller than generic noetherian rings.</p> <h2 id='related_concepts'>Related concepts</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/Noetherian+module'>Noetherian module</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Noetherian+bimodule'>Noetherian bimodule</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Noetherian+poset'>Noetherian poset</a></p> </li> <li> <p><span class='newWikiWord'>Noetherian E-∞ ring<a href='/nlab/new/Noetherian+E-%E2%88%9E+ring'>?</a></span></p> </li> </ul> <h2 id='references'>References</h2> <p>Introduced by <a class='existingWikiWord' href='/nlab/show/Emmy+Noether'>Emmy Noether</a> in</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/Emmy+Noether'>Emmy Noether</a>, <em>Idealtheorie in Ringbereichen</em>, Mathematische Annalen 83:1 (1921), 24–66. <a href='https://doi.org/10.1007/bf01464225'>doi:10.1007/bf01464225</a>.</p> </li> <li> <p><a href='http://en.wikipedia.org/wiki/Noetherian_ring'>wikipedia</a>, <em><a class='existingWikiWord' href='/nlab/show/noetherian+object'>noetherian object</a></em></p> </li> </ul> <p> </p> </div> <!-- Revision --> <div class="revisedby"> <p> Revision on May 7, 2023 at 21:58:08 by <a href="/nlab/author/Dmitri+Pavlov" style="color: #005c19">Dmitri Pavlov</a> See the <a href="/nlab/history/noetherian+ring" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="https://nforum.ncatlab.org/discussion/7043/#Item_4">Discuss</a><span class="backintime"><a href="/nlab/show/noetherian+ring" accesskey="F" class="navlinkbackintime" id="to_next_revision" rel="nofollow">Next revision</a> (to current)</span><span class="backintime"><a href="/nlab/revision/noetherian+ring/21" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a> (21 more)</span><a href="/nlab/show/noetherian+ring" class="navlink" id="to_current_revision">Current version of page</a><a href="/nlab/revision/diff/noetherian+ring/22" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/noetherian+ring" accesskey="S" class="navlink" id="history" rel="nofollow">History (22 revisions)</a><a href="/nlab/rollback/noetherian+ring?rev=22" class="navlink" id="rollback" rel="nofollow">Rollback</a> <a href="/nlab/revision/noetherian+ring/22/cite" style="color: black">Cite</a> <a href="/nlab/source/noetherian+ring/22" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>