CINXE.COM

Lie group cohomology in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Lie group cohomology in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Lie group cohomology </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/1785/#Item_3" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="cohomology">Cohomology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a>, <a class="existingWikiWord" href="/nlab/show/coboundary">coboundary</a>, <a class="existingWikiWord" href="/nlab/show/coefficient">coefficient</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/chain">chain</a>, <a class="existingWikiWord" href="/nlab/show/cycle">cycle</a>, <a class="existingWikiWord" href="/nlab/show/boundary">boundary</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/characteristic+class">characteristic class</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+characteristic+class">universal characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/secondary+characteristic+class">secondary characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characteristic+class">differential characteristic class</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a>/<a class="existingWikiWord" href="/nlab/show/long+exact+sequence+in+cohomology">long exact sequence in cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/twisted+%E2%88%9E-bundle">twisted ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/obstruction">obstruction</a></p> </li> </ul> <h3 id="special_and_general_types">Special and general types</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+cohomology">cochain cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a>, <a class="existingWikiWord" href="/nlab/show/singular+cohomology">singular cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+group+cohomology">nonabelian group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+group+cohomology">Lie group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+cohomology">Galois cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid+cohomology">groupoid cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+groupoid+cohomology">nonabelian groupoid cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+%28Eilenberg-Steenrod%29+cohomology">generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theory">cobordism cohomology theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+cohomology">elliptic cohomology</a>, <a class="existingWikiWord" href="/nlab/show/tmf">tmf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/taf">taf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+cohomology">de Rham cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+cohomology">Dolbeault cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/etale+cohomology">etale cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group+of+units">group of units</a>, <a class="existingWikiWord" href="/nlab/show/Picard+group">Picard group</a>, <a class="existingWikiWord" href="/nlab/show/Brauer+group">Brauer group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crystalline+cohomology">crystalline cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/syntomic+cohomology">syntomic cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/motivic+cohomology">motivic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+of+operads">cohomology of operads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Hochschild cohomology</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+cohomology">cyclic cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/string+topology">string topology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+cohomology">nonabelian cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/groupal+model+for+universal+principal+%E2%88%9E-bundles">groupal model for universal principal ∞-bundles</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>/<a class="existingWikiWord" href="/nlab/show/gerbe">gerbe</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+constant+%E2%88%9E-stack">covering ∞-bundle</a>/<a class="existingWikiWord" href="/nlab/show/local+system">local system</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-vector+bundle">(∞,1)-vector bundle</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-vector+bundle">(∞,n)-vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+anomaly">quantum anomaly</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/Spin+structure">Spin structure</a>, <a class="existingWikiWord" href="/nlab/show/Spin%5Ec+structure">Spin^c structure</a>, <a class="existingWikiWord" href="/nlab/show/String+structure">String structure</a>, <a class="existingWikiWord" href="/nlab/show/Fivebrane+structure">Fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+with+constant+coefficients">cohomology with constant coefficients</a> / <a class="existingWikiWord" href="/nlab/show/cohomology+with+a+local+system+of+coefficients">with a local system of coefficients</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebra+cohomology">∞-Lie algebra cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+extensions">Lie algebra extensions</a>, <a class="existingWikiWord" href="/nlab/show/Gelfand-Fuks+cohomology">Gelfand-Fuks cohomology</a>,</li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gerstenhaber-Schack+cohomology">bialgebra cohomology</a></p> </li> </ul> <h3 id="special_notions">Special notions</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%3Fech+cohomology">?ech cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hypercohomology">hypercohomology</a></p> </li> </ul> <h3 id="variants">Variants</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+cohomology">equivariant cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant homotopy theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bredon+cohomology">Bredon cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+bundle">twisted bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+K-theory">twisted K-theory</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin+structure">twisted spin structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin%5Ec+structure">twisted spin^c structure</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+differential+c-structures">twisted differential c-structures</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+differential+string+structure">twisted differential string structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+differential+fivebrane+structure">twisted differential fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p>differential cohomology</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+elliptic+cohomology">differential elliptic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/schreiber/show/differential+cohomology+in+a+cohesive+topos">differential cohomology in a cohesive topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relative+cohomology">relative cohomology</a></p> </li> </ul> <h3 id="extra_structure">Extra structure</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">in generalized cohomology</a></p> </li> </ul> <h3 id="operations">Operations</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+operations">cohomology operations</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cup+product">cup product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a>, <a class="existingWikiWord" href="/nlab/show/Bockstein+homomorphism">Bockstein homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration">fiber integration</a>, <a class="existingWikiWord" href="/nlab/show/transgression">transgression</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+localization">cohomology localization</a></p> </li> </ul> <h3 id="theorems">Theorems</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+theorem">de Rham theorem</a>, <a class="existingWikiWord" href="/nlab/show/Poincare+lemma">Poincare lemma</a>, <a class="existingWikiWord" href="/nlab/show/Stokes+theorem">Stokes theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+theory">Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+theorem">Hodge theorem</a></p> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+Hodge+theory">nonabelian Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/noncommutative+Hodge+theory">noncommutative Hodge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">Brown representability theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">hypercovering theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+duality">Eckmann-Hilton-Fuks duality</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/cohomology+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="group_theory">Group Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/group+theory">group theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+object">group object</a>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></li> <li><a class="existingWikiWord" href="/nlab/show/super+abelian+group">super abelian group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></li> <li><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></li> <li><a class="existingWikiWord" href="/nlab/show/progroup">progroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a></li> </ul> <p><strong>Classical groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+group">general linear group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a>. <a class="existingWikiWord" href="/nlab/show/projective+unitary+group">projective unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+group">symplectic group</a></p> </li> </ul> <p><strong>Finite groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+group">finite group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+group">symmetric group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a>, <a class="existingWikiWord" href="/nlab/show/braid+group">braid group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classification+of+finite+simple+groups">classification of finite simple groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sporadic+finite+simple+groups">sporadic finite simple groups</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Monster+group">Monster group</a>, <a class="existingWikiWord" href="/nlab/show/Mathieu+group">Mathieu group</a></li> </ul> </li> </ul> <p><strong>Group schemes</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+variety">abelian variety</a></p> </li> </ul> <p><strong>Topological groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+group">locally compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+group">string group</a></p> </li> </ul> <p><strong>Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kac-Moody+group">Kac-Moody group</a></p> </li> </ul> <p><strong>Super-Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Lie+group">super Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Euclidean+group">super Euclidean group</a></p> </li> </ul> <p><strong>Higher groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-group">2-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+module">crossed module</a>, <a class="existingWikiWord" href="/nlab/show/strict+2-group">strict 2-group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/n-group">n-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+groupal+n-groupoid">k-tuply groupal n-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle n-group</a>, <a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a>, <a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-group">fivebrane Lie 6-group</a></p> </li> </ul> <p><strong>Cohomology and Extensions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a>, <a class="existingWikiWord" href="/nlab/show/Ext-group">Ext-group</a></p> </li> </ul> <p><strong>Related concepts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> </div></div> <h4 id="differential_geometry">Differential geometry</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/synthetic+differential+geometry">synthetic</a> <a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a></strong></p> <p><strong>Introductions</strong></p> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology+--+1">from point-set topology to differentiable manifolds</a></p> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics">geometry of physics</a>: <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+coordinate+systems">coordinate systems</a>, <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+smooth+spaces">smooth spaces</a>, <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+manifolds+and+orbifolds">manifolds</a>, <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+smooth+homotopy+types">smooth homotopy types</a>, <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+supergeometry">supergeometry</a></p> <p><strong>Differentials</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiation">differentiation</a>, <a class="existingWikiWord" href="/nlab/show/chain+rule">chain rule</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiable+function">differentiable function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+space">infinitesimal space</a>, <a class="existingWikiWord" href="/nlab/show/infinitesimally+thickened+point">infinitesimally thickened point</a>, <a class="existingWikiWord" href="/nlab/show/amazing+right+adjoint">amazing right adjoint</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/V-manifolds">V-manifolds</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiable+manifold">differentiable manifold</a>, <a class="existingWikiWord" href="/nlab/show/coordinate+chart">coordinate chart</a>, <a class="existingWikiWord" href="/nlab/show/atlas">atlas</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a>, <a class="existingWikiWord" href="/nlab/show/smooth+structure">smooth structure</a>, <a class="existingWikiWord" href="/nlab/show/exotic+smooth+structure">exotic smooth structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/analytic+manifold">analytic manifold</a>, <a class="existingWikiWord" href="/nlab/show/complex+manifold">complex manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/formal+smooth+manifold">formal smooth manifold</a>, <a class="existingWikiWord" href="/nlab/show/derived+smooth+manifold">derived smooth manifold</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/smooth+space">smooth space</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/diffeological+space">diffeological space</a>, <a class="existingWikiWord" href="/nlab/show/Fr%C3%B6licher+space">Frölicher space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/manifold+structure+of+mapping+spaces">manifold structure of mapping spaces</a></p> </li> </ul> <p><strong>Tangency</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tangent+bundle">tangent bundle</a>, <a class="existingWikiWord" href="/nlab/show/frame+bundle">frame bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+field">vector field</a>, <a class="existingWikiWord" href="/nlab/show/multivector+field">multivector field</a>, <a class="existingWikiWord" href="/nlab/show/tangent+Lie+algebroid">tangent Lie algebroid</a>;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+forms+in+synthetic+differential+geometry">differential forms</a>, <a class="existingWikiWord" href="/nlab/show/de+Rham+complex">de Rham complex</a>, <a class="existingWikiWord" href="/nlab/show/Dolbeault+complex">Dolbeault complex</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pullback+of+differential+forms">pullback of differential forms</a>, <a class="existingWikiWord" href="/nlab/show/invariant+differential+form">invariant differential form</a>, <a class="existingWikiWord" href="/nlab/show/Maurer-Cartan+form">Maurer-Cartan form</a>, <a class="existingWikiWord" href="/nlab/show/horizontal+differential+form">horizontal differential form</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cogerm+differential+form">cogerm differential form</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integration+of+differential+forms">integration of differential forms</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+diffeomorphism">local diffeomorphism</a>, <a class="existingWikiWord" href="/nlab/show/formally+%C3%A9tale+morphism">formally étale morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/submersion">submersion</a>, <a class="existingWikiWord" href="/nlab/show/formally+smooth+morphism">formally smooth morphism</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/immersion">immersion</a>, <a class="existingWikiWord" href="/nlab/show/formally+unramified+morphism">formally unramified morphism</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+space">de Rham space</a>, <a class="existingWikiWord" href="/nlab/show/crystal">crystal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+disk+bundle">infinitesimal disk bundle</a></p> </li> </ul> <p><strong>The magic algebraic facts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras">embedding of smooth manifolds into formal duals of R-algebras</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+Serre-Swan+theorem">smooth Serre-Swan theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivations+of+smooth+functions+are+vector+fields">derivations of smooth functions are vector fields</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hadamard+lemma">Hadamard lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Borel%27s+theorem">Borel's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Boman%27s+theorem">Boman's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitney+extension+theorem">Whitney extension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Steenrod-Wockel+approximation+theorem">Steenrod-Wockel approximation theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitney+embedding+theorem">Whitney embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poincare+lemma">Poincare lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Stokes+theorem">Stokes theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+theorem">de Rham theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild-Kostant-Rosenberg+theorem">Hochschild-Kostant-Rosenberg theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology+hexagon">differential cohomology hexagon</a></p> </li> </ul> <p><strong>Axiomatics</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Kock-Lawvere+axiom">Kock-Lawvere axiom</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+topos">smooth topos</a>, <a class="existingWikiWord" href="/nlab/show/super+smooth+topos">super smooth topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/microlinear+space">microlinear space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integration+axiom">integration axiom</a></p> </li> </ul> </li> </ul> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/cohesion">cohesion</a></strong></p> <ul> <li> <p>(<a class="existingWikiWord" href="/nlab/show/shape+modality">shape modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/flat+modality">flat modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/sharp+modality">sharp modality</a>)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">ʃ</mo><mo>⊣</mo><mo>♭</mo><mo>⊣</mo><mo>♯</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\esh \dashv \flat \dashv \sharp )</annotation></semantics></math></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+object">discrete object</a>, <a class="existingWikiWord" href="/nlab/show/codiscrete+object">codiscrete object</a>, <a class="existingWikiWord" href="/nlab/show/concrete+object">concrete object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/points-to-pieces+transform">points-to-pieces transform</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohesive+%28infinity%2C1%29-topos+--+structures">structures in cohesion</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dR-shape+modality">dR-shape modality</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/dR-flat+modality">dR-flat modality</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">ʃ</mo> <mi>dR</mi></msub><mo>⊣</mo><msub><mo>♭</mo> <mi>dR</mi></msub></mrow><annotation encoding="application/x-tex">\esh_{dR} \dashv \flat_{dR}</annotation></semantics></math></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/infinitesimal+cohesion">infinitesimal cohesion</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/classical+modality">classical modality</a></li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/tangent+cohesive+%28%E2%88%9E%2C1%29-topos">tangent cohesion</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/differential+cohomology+diagram">differential cohomology diagram</a></li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/differential+cohesion">differential cohesion</a></strong></p> <ul> <li> <p>(<a class="existingWikiWord" href="/nlab/show/reduction+modality">reduction modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/infinitesimal+shape+modality">infinitesimal shape modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/infinitesimal+flat+modality">infinitesimal flat modality</a>)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ℜ</mi><mo>⊣</mo><mi>ℑ</mi><mo>⊣</mo><mi>&amp;</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\Re \dashv \Im \dashv \&amp;)</annotation></semantics></math></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/reduced+object">reduced object</a>, <a class="existingWikiWord" href="/nlab/show/coreduced+object">coreduced object</a>, <a class="existingWikiWord" href="/nlab/show/formally+smooth+object">formally smooth object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/formally+%C3%A9tale+map">formally étale map</a></p> </li> <li> <p><a href="cohesive+%28infinity%2C1%29-topos+--+infinitesimal+cohesion#StructuresInDifferentialCohesion">structures in differential cohesion</a></p> </li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/super+smooth+infinity-groupoid">graded differential cohesion</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fermionic+modality">fermionic modality</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/bosonic+modality">bosonic modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/rheonomy+modality">rheonomy modality</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>⇉</mo><mo>⊣</mo><mo>⇝</mo><mo>⊣</mo><mi>Rh</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\rightrightarrows \dashv \rightsquigarrow \dashv Rh)</annotation></semantics></math></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/orbifold+cohomology">singular cohesion</a></strong></p> <div id="Diagram" class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>id</mi></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mi>id</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>fermionic</mi></mover></mtd> <mtd><mo>⇉</mo></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mo>⇝</mo></mtd> <mtd><mover><mrow></mrow><mi>bosonic</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>bosonic</mi></mover></mtd> <mtd><mo>⇝</mo></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mi mathvariant="normal">R</mi><mspace width="negativethinmathspace"></mspace><mspace width="negativethinmathspace"></mspace><mi mathvariant="normal">h</mi></mtd> <mtd><mover><mrow></mrow><mi>rheonomic</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>reduced</mi></mover></mtd> <mtd><mi>ℜ</mi></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mi>ℑ</mi></mtd> <mtd><mover><mrow></mrow><mi>infinitesimal</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>infinitesimal</mi></mover></mtd> <mtd><mi>ℑ</mi></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mi>&amp;</mi></mtd> <mtd><mover><mrow></mrow><mtext>étale</mtext></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>cohesive</mi></mover></mtd> <mtd><mo lspace="0em" rspace="thinmathspace">ʃ</mo></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mo>♭</mo></mtd> <mtd><mover><mrow></mrow><mi>discrete</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>discrete</mi></mover></mtd> <mtd><mo>♭</mo></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mo>♯</mo></mtd> <mtd><mover><mrow></mrow><mi>continuous</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>∅</mi></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mo>*</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ &amp;&amp; id &amp;\dashv&amp; id \\ &amp;&amp; \vee &amp;&amp; \vee \\ &amp;\stackrel{fermionic}{}&amp; \rightrightarrows &amp;\dashv&amp; \rightsquigarrow &amp; \stackrel{bosonic}{} \\ &amp;&amp; \bot &amp;&amp; \bot \\ &amp;\stackrel{bosonic}{} &amp; \rightsquigarrow &amp;\dashv&amp; \mathrm{R}\!\!\mathrm{h} &amp; \stackrel{rheonomic}{} \\ &amp;&amp; \vee &amp;&amp; \vee \\ &amp;\stackrel{reduced}{} &amp; \Re &amp;\dashv&amp; \Im &amp; \stackrel{infinitesimal}{} \\ &amp;&amp; \bot &amp;&amp; \bot \\ &amp;\stackrel{infinitesimal}{}&amp; \Im &amp;\dashv&amp; \&amp; &amp; \stackrel{\text{&amp;#233;tale}}{} \\ &amp;&amp; \vee &amp;&amp; \vee \\ &amp;\stackrel{cohesive}{}&amp; \esh &amp;\dashv&amp; \flat &amp; \stackrel{discrete}{} \\ &amp;&amp; \bot &amp;&amp; \bot \\ &amp;\stackrel{discrete}{}&amp; \flat &amp;\dashv&amp; \sharp &amp; \stackrel{continuous}{} \\ &amp;&amp; \vee &amp;&amp; \vee \\ &amp;&amp; \emptyset &amp;\dashv&amp; \ast } </annotation></semantics></math></div></div> <p id="models_2"><strong>Models</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Models+for+Smooth+Infinitesimal+Analysis">Models for Smooth Infinitesimal Analysis</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+algebra">smooth algebra</a> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mn>∞</mn></msup></mrow><annotation encoding="application/x-tex">C^\infty</annotation></semantics></math>-ring)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+locus">smooth locus</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fermat+theory">Fermat theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cahiers+topos">Cahiers topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/formal+smooth+%E2%88%9E-groupoid">formal smooth ∞-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+formal+smooth+%E2%88%9E-groupoid">super formal smooth ∞-groupoid</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/Lie+theory">Lie theory</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+theory">∞-Lie theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/Lie+n-algebra">Lie n-algebra</a>, <a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>, <a class="existingWikiWord" href="/nlab/show/Lie+2-group">Lie 2-group</a>, <a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-group">smooth ∞-group</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/differential+equations">differential equations</a>, <a class="existingWikiWord" href="/nlab/show/variational+calculus">variational calculus</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/D-geometry">D-geometry</a>, <a class="existingWikiWord" href="/nlab/show/D-module">D-module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/jet+bundle">jet bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/variational+bicomplex">variational bicomplex</a>, <a class="existingWikiWord" href="/nlab/show/Euler-Lagrange+complex">Euler-Lagrange complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euler-Lagrange+equation">Euler-Lagrange equation</a>, <a class="existingWikiWord" href="/nlab/show/de+Donder-Weyl+formalism">de Donder-Weyl formalism</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/phase+space">phase space</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+bundle">connection on a bundle</a>, <a class="existingWikiWord" href="/nlab/show/connection+on+an+%E2%88%9E-bundle">connection on an ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+differential+cohomology">ordinary differential cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Deligne+complex">Deligne complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/parallel+transport">parallel transport</a>, <a class="existingWikiWord" href="/nlab/show/higher+parallel+transport">higher parallel transport</a>, <a class="existingWikiWord" href="/nlab/show/fiber+integration+in+differential+cohomology">fiber integration in differential cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/holonomy">holonomy</a>, <a class="existingWikiWord" href="/nlab/show/higher+holonomy">higher holonomy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a>, <a class="existingWikiWord" href="/nlab/show/higher+gauge+theory">higher gauge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Wilson+line">Wilson line</a>, <a class="existingWikiWord" href="/nlab/show/Wilson+surface">Wilson surface</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/Cartan+geometry">Cartan geometry</a> (<a class="existingWikiWord" href="/nlab/show/super+Cartan+geometry">super</a>, <a class="existingWikiWord" href="/nlab/show/higher+Cartan+geometry">higher</a>)</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Klein+geometry">Klein geometry</a>, (<a class="existingWikiWord" href="/nlab/show/higher+Klein+geometry">higher</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/G-structure">G-structure</a>, <a class="existingWikiWord" href="/nlab/show/torsion+of+a+G-structure">torsion of a G-structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euclidean+geometry">Euclidean geometry</a>, <a class="existingWikiWord" href="/nlab/show/hyperbolic+geometry">hyperbolic geometry</a>, <a class="existingWikiWord" href="/nlab/show/elliptic+geometry">elliptic geometry</a></p> </li> <li> <p>(<a class="existingWikiWord" href="/nlab/show/pseudo-Riemannian+geometry">pseudo</a>-)<a class="existingWikiWord" href="/nlab/show/Riemannian+geometry">Riemannian geometry</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+structure">orthogonal structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/isometry">isometry</a>, <a class="existingWikiWord" href="/nlab/show/Killing+vector+field">Killing vector field</a>, <a class="existingWikiWord" href="/nlab/show/Killing+spinor">Killing spinor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a>, <a class="existingWikiWord" href="/nlab/show/super-spacetime">super-spacetime</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+geometry">complex geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conformal+geometry">conformal geometry</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <ul> <li><a href='#structured_group_cohomology'>Structured group cohomology</a></li> <li><a href='#TopologicalGroupCohomology'>Topological group cohomology</a></li> </ul> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#SequenceDiffCohomology'>Long sequence in differential cohomology</a></li> <li><a href='#relation_to_intrinsic_cohomology_of_smooth_groupoids'>Relation to intrinsic cohomology of smooth <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groupoids</a></li> <li><a href='#relation_to_lie_algebra_cohomology'>Relation to Lie algebra cohomology</a></li> </ul> <li><a href='#related_entries'>Related entries</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p><em>Lie group cohomology</em> generalizes the notion of <a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a> from <a class="existingWikiWord" href="/nlab/show/discrete+group">discrete group</a>s to <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>s.</p> <p>From the <a class="existingWikiWord" href="/nlab/show/nPOV">nPOV</a> on <a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a>, a natural definition is that for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a Lie group, its cohomology is the intrinsic cohomology of its <a class="existingWikiWord" href="/nlab/show/delooping">delooping</a> <a class="existingWikiWord" href="/nlab/show/Lie+groupoid">Lie groupoid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}G</annotation></semantics></math> in the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo>=</mo></mrow><annotation encoding="application/x-tex">\mathbf{H} =</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/smooth+infinity-groupoid">Smth<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mn>∞</mn> </mrow> <annotation encoding="application/x-tex">\infty</annotation> </semantics> </math>Grpd</a>.</p> <p>In the literature one finds a sequence of definitions that approach this intrisic topos-theoretic definition. This is discussed below. For a detailed discussion of the relation of this to the intrinsic topos-theoretic definition see the section <a href="http://ncatlab.org/nlab/show/Lie+infinity-groupoid#CohomologyOfLieGroups">Cohomology of Lie groups</a> at <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">∞-Lie groupoid</a>.</p> <h3 id="structured_group_cohomology">Structured group cohomology</h3> <p>If the groups in question are not <a class="existingWikiWord" href="/nlab/show/group+object">group object</a>s internal to <a class="existingWikiWord" href="/nlab/show/Set">Set</a> but groups with extra structure, such as <a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a>s or <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>s, then their cohomology has to be understood in the corresponding natural context.</p> <p>In parts of the literature cohomology of structured groups <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is defined in direct generalization of the formulas above as homotopy classes of morphisms from the simplicial object</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><mi>⋯</mi><mi>G</mi><mo>×</mo><mi>G</mi><mover><mover><mo>→</mo><mo>→</mo></mover><mo>→</mo></mover><mi>G</mi><mover><mo>→</mo><mo>→</mo></mover><mo>*</mo><mo>)</mo></mrow></mrow><annotation encoding="application/x-tex"> \left( \cdots G \times G\stackrel{\to}{\stackrel{\to}{\to}}G \stackrel{\to}{\to} * \right) </annotation></semantics></math></div> <p>to a simplicial object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">N (\mathbf{B}^n A)</annotation></semantics></math>.</p> <p>This is what is described above. But this does <strong>not</strong> in general give the right answer for structured groups:</p> <p>namely <a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a> is really about homotopy classes of maps in the suitable ambient <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>. For plain groups as in the above entry, we are working in the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-topos <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a>. That may be modeled by the standard <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">model structure on simplicial sets</a>. In that model structure, all objects a cofibrant and <a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a>es are fibrant. That means all objects we are dealing with here are both cofibrant and fibrant, and hence the simplicial set of maps between them is the correct <a class="existingWikiWord" href="/nlab/show/derived+hom-space">derived hom-space</a> between these objects.</p> <p>But this changes as we consider groups with extra structure. For a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>, the object</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><mi>⋯</mi><mi>G</mi><mo>×</mo><mi>G</mi><mover><mover><mo>→</mo><mo>→</mo></mover><mo>→</mo></mover><mi>G</mi><mover><mo>→</mo><mo>→</mo></mover><mo>*</mo><mo>)</mo></mrow></mrow><annotation encoding="application/x-tex"> \left( \cdots G \times G\stackrel{\to}{\stackrel{\to}{\to}}G \stackrel{\to}{\to} * \right) </annotation></semantics></math></div> <p>has to be considered as an <a class="existingWikiWord" href="/nlab/show/Lie+%E2%88%9E-groupoid">Lie ∞-groupoid</a>: an object in the <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+presheaves">model structure on simplicial presheaves</a> over a <a class="existingWikiWord" href="/nlab/show/site">site</a> such as <a class="existingWikiWord" href="/nlab/show/Diff">Diff</a> or <a class="existingWikiWord" href="/nlab/show/CartSp">CartSp</a>. As such it is in general <strong>not</strong> both cofibrant and fibrant. To that extent plain morphisms out of this object do <strong>not</strong> compute the correct <a class="existingWikiWord" href="/nlab/show/derived+hom-space">derived hom-space</a>s. Instead, the right definition of structured group cohomology uses the correct fibrant and cofibrant replacements.</p> <h3 id="TopologicalGroupCohomology">Topological group cohomology</h3> <p>In</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a>, <em>Continuous cohomology of groups and classifying spaces</em> Bull. Amer. Math. Soc. Volume 84, Number 4 (1978), 513-530 (<a href="http://projecteuclid.org/DPubS?service=UI&amp;version=1.0&amp;verb=Display&amp;handle=euclid.bams/1183540920">web</a>)</li> </ul> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-cocycles on a topological group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> with valzues in a topological abelian group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> are considered as <a class="existingWikiWord" href="/nlab/show/continuous+functions">continuous functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>G</mi> <mrow><mo>×</mo><mi>n</mi></mrow></msup><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">G^{\times n}\to A</annotation></semantics></math> (p. 3 ). (“<a class="existingWikiWord" href="/nlab/show/continuous+cohomology">continuous cohomology</a>”)</p> <p>A definition in terms of <a class="existingWikiWord" href="/nlab/show/derived+functor">Ext-functor</a>s and comparison with the naive definition is in</p> <ul> <li>David Wigner, <em>Algebraic cohomology of topological groups</em> Transactions of the American Mathematical Society, volume 178 (1973)(<a href="http://egg.epfl.ch/~nmonod/bonn/Wigner_1973.pdf">pdf</a>)</li> </ul> <p>A classical reference that considers the cohomology of Lie groups as topological spaces is</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Armand+Borel">Armand Borel</a>, <em>Homology and cohomology of compact connected Lie groups</em> (<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063923/pdf/pnas01596-0040.pdf">pdf</a>)</li> </ul> <p>A corrected definition of topological group cohomology has been given by Segal</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Graeme+Segal">Graeme Segal</a>, <em>Cohomology of topological groups</em> In Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pages 377{387. Academic Press, London, (1970).</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Graeme+Segal">Graeme Segal</a>, <em>A classifying space of a topological group in the sense of Gel’fand-Fuks. Funkcional. Anal. i Prilozen., 9(2):48{50, (1975).</em></p> </li> </ul> <h2 id="definition">Definition</h2> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> an abelian Lie group, write</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>naive</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">{</mo><mi>smooth</mi><msup><mi>G</mi> <mrow><mo>×</mo><mi>n</mi></mrow></msup><mo>→</mo><mi>A</mi><mo stretchy="false">}</mo><msub><mo stretchy="false">/</mo> <mo>∼</mo></msub></mrow><annotation encoding="application/x-tex"> H_{naive}^n(G,A) = \{smooth G^{\times n } \to A\}/_\sim </annotation></semantics></math></div> <p>for the naive notion of cohomology on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> <p>A refined definition of Lie group cohomology, denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>diff</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^n_{diff}(G,A)</annotation></semantics></math>, was given in (<a href="#Brylinski">Brylinski</a>) following (<a href="#Blanc">Blanc</a>) and effectively rediscovers Segal’s definition. See section 4 of (<a href="#Shommer-Pries">Schommer-Pries</a>) for a review and applications.</p> <div class="un_defn"> <h6 id="definition_2">Definition</h6> <p><strong>(Brylinski)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a> (<a class="existingWikiWord" href="/nlab/show/paracompact+space">paracompact</a>) and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> an abelian Lie group.</p> <p>For eack <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">k \in \mathbb{N}</annotation></semantics></math> we can pick a <a class="existingWikiWord" href="/nlab/show/good+open+cover">good open cover</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msubsup><mi>U</mi> <mi>i</mi> <mi>k</mi></msubsup><mo>→</mo><msup><mi>G</mi> <mrow><msub><mo>×</mo> <mi>k</mi></msub></mrow></msup><mo stretchy="false">|</mo><mi>i</mi><mo>∈</mo><msub><mi>I</mi> <mi>k</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{U^{k}_{i} \to G^{\times_k}| i \in I_k\}</annotation></semantics></math> such that</p> <ul> <li> <p>the index sets arrange themselves into a <a class="existingWikiWord" href="/nlab/show/simplicial+set">simplicial set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>:</mo><mo stretchy="false">[</mo><mi>k</mi><mo stretchy="false">]</mo><mo>↦</mo><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">I : [k] \mapsto I_k</annotation></semantics></math>;</p> </li> <li> <p>and for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>j</mi></msub><mo stretchy="false">(</mo><msubsup><mi>U</mi> <mi>i</mi> <mi>k</mi></msubsup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d_j(U^k_i)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>s</mi> <mi>j</mi></msub><mo stretchy="false">(</mo><msubsup><mi>U</mi> <mi>i</mi> <mi>k</mi></msubsup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">s_j(U^k_i)</annotation></semantics></math> the images of the face and degeneracy maps of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>G</mi> <mrow><mo>×</mo><mo>•</mo></mrow></msup></mrow><annotation encoding="application/x-tex">G^{\times\bullet}</annotation></semantics></math> we have</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>j</mi></msub><mo stretchy="false">(</mo><msubsup><mi>U</mi> <mi>i</mi> <mi>k</mi></msubsup><mo stretchy="false">)</mo><mo>⊂</mo><msubsup><mi>U</mi> <mrow><msub><mi>d</mi> <mi>j</mi></msub><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mrow><annotation encoding="application/x-tex"> d_j(U^k_i) \subset U^{k-1}_{d_j(i)} </annotation></semantics></math></div> <p>and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>s</mi> <mi>j</mi></msub><mo stretchy="false">(</mo><msubsup><mi>U</mi> <mi>i</mi> <mi>k</mi></msubsup><mo stretchy="false">)</mo><mo>⊂</mo><msubsup><mi>U</mi> <mrow><msub><mi>s</mi> <mi>j</mi></msub><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow> <mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> s_j(U^k_i) \subset U^{k+1}_{s_j(i)} \,. </annotation></semantics></math></div></li> </ul> <p>Then the <strong>differentiable group cohomology</strong> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> with coefficients in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is the cohomology of the total complex of the <a class="existingWikiWord" href="/nlab/show/Cech+cohomology">Cech</a> double complex <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mn>∞</mn></msup><mo stretchy="false">(</mo><msubsup><mi>U</mi> <mrow><msub><mi>i</mi> <mn>0</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>i</mi> <mo>•</mo></msub></mrow> <mo>•</mo></msubsup><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C^\infty( U^{\bullet}_{i_0, \cdots, i_\bullet} , A)</annotation></semantics></math> whose differentials are the alternating sums of the face maps of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>G</mi> <mrow><msub><mo>×</mo> <mo>•</mo></msub></mrow></msup></mrow><annotation encoding="application/x-tex">G^{\times_\bullet}</annotation></semantics></math> and of the <a class="existingWikiWord" href="/nlab/show/Cech+nerve">Cech nerve</a>s, respectively:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>diff</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msup><mi>H</mi> <mi>n</mi></msup><mi>Tot</mi><msup><mi>C</mi> <mn>∞</mn></msup><mo stretchy="false">(</mo><msubsup><mi>U</mi> <mrow><msub><mi>i</mi> <mn>0</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>i</mi> <mo>•</mo></msub></mrow> <mo>•</mo></msubsup><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> H^n_{diff}(G,A) := H^n Tot C^\infty( U^{\bullet}_{i_0, \cdots, i_\bullet} , A) </annotation></semantics></math></div></div> <p>This is definition 1.1 in (<a href="#Brylinski">Brylinski</a>)</p> <p>As discussed there, this is equivalent to other definitions, notably to a definition given earlier by <a class="existingWikiWord" href="/nlab/show/Graeme+Segal">Graeme Segal</a>.</p> <p>There is an evident morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>naive</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>→</mo><msubsup><mi>H</mi> <mi>diff</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> H^n_{naive}(G,A) \to H^n_{diff}(G,A) </annotation></semantics></math></div> <p>obtained by pulling back a globally defined smooth cocycle to a cover.</p> <p>At <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">∞-Lie groupoid</a> it is discussed that there is a further refinement</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>diff</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>H</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> H^n_{diff}(G,A) \to H^n(\mathbf{B}G,A) \,, </annotation></semantics></math></div> <p>where on the right we have the <a class="existingWikiWord" href="/nlab/show/cohomology">intrinsic cohomology</a> of <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">∞-Lie groupoid</a>s.</p> <h2 id="properties">Properties</h2> <h3 id="general">General</h3> <p>From now on, for definiteness by a <em>Lie group</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> we mean (following <a href="http://arxiv.org/PS_cache/math/pdf/0011/0011069v1.pdf#page=3">Bry, page3</a>) a <a class="existingWikiWord" href="/nlab/show/paracompact+space">paracompact</a> <a class="existingWikiWord" href="/nlab/show/Frechet+manifold">Frechet manifold</a> equipped with a group structure such that the product and the inverse maps are smooth, and there is an everywhere defined exponential map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>exp</mi><mo>:</mo><mi>𝔤</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">exp : \mathfrak{g} \to G</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔤</mi></mrow><annotation encoding="application/x-tex">\mathfrak{g}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> <div class="un_prop"> <h6 id="proposition">Proposition</h6> <p>If the coefficient Lie group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a>, then the naive group cohomology <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">{</mo><mi>smooth</mi><msup><mi>G</mi> <mrow><mo>×</mo><mi>n</mi></mrow></msup><mo>→</mo><mi>A</mi><mo stretchy="false">}</mo><msub><mo stretchy="false">/</mo> <mo>∼</mo></msub></mrow><annotation encoding="application/x-tex">H^n(G,A) = \{smooth G^{\times n} \to A\}/_\sim</annotation></semantics></math> coincides with the correct Lie group cohomology</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mi>top</mi><mo>.</mo><mspace width="thickmathspace"></mspace><mi>vect</mi><mo>.</mo><mspace width="thickmathspace"></mspace><mi>space</mi><mo stretchy="false">)</mo><mo>⇒</mo><mo stretchy="false">(</mo><msubsup><mi>H</mi> <mi>naive</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mover><mo>→</mo><mo>≃</mo></mover><msubsup><mi>H</mi> <mi>diff</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> (A top.\;vect.\;space) \Rightarrow (H^n_{naive}(G,A) \stackrel{\simeq}{\to} H^n_{diff}(G,A) ) \,. </annotation></semantics></math></div> <p>If the coefficient Lie group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is discrete, then Lie group cohomology coindices with the topological cohomology of the <a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathcal{B}G</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mi>discrete</mi><mo stretchy="false">)</mo><mo>⇒</mo><mo stretchy="false">(</mo><msup><mi>H</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>≃</mo><msup><mi>H</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>ℬ</mi><mi>G</mi><mo stretchy="false">)</mo><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> (A discrete) \Rightarrow (H^n(G,A) \simeq H^n(\mathcal{B}G), A) \,. </annotation></semantics></math></div></div> <div class="proof"> <h6 id="proof">Proof</h6> <p>This is <a href="http://arxiv.org/PS_cache/math/pdf/0011/0011069v1.pdf#page=4">Bry, prop. 1.3</a> and <a href="http://arxiv.org/PS_cache/math/pdf/0011/0011069v1.pdf#page=5">Bry, lemma 1.5</a>.</p> </div> <div class="un_prop"> <h6 id="proposition_2">Proposition</h6> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>diff</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^2_{diff}(G,A)</annotation></semantics></math> classifies central <a class="existingWikiWord" href="/nlab/show/group+extension">extensions of Lie groups</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mover><mi>G</mi><mo stretchy="false">^</mo></mover><mover><mo>→</mo><mi>π</mi></mover><mi>G</mi></mrow><annotation encoding="application/x-tex"> A \to \hat G \stackrel{\pi}{\to} G </annotation></semantics></math></div> <p>such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo>:</mo><mover><mi>G</mi><mo stretchy="false">^</mo></mover><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\pi : \hat G \to G</annotation></semantics></math> is a locally trivial smooth <a class="existingWikiWord" href="/nlab/show/principal+bundle">principal</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-fibration.</p> <p>The image of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>naive</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>→</mo><msubsup><mi>H</mi> <mi>diff</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^2_{naive}(G,A) \to H^2_{diff}(G,A)</annotation></semantics></math> consists of those central extensions for which is bundle is trivial.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>This is <a href="http://arxiv.org/PS_cache/math/pdf/0011/0011069v1.pdf#page=4">Bry, prop. 1.6</a> and <a href="http://arxiv.org/PS_cache/math/pdf/0011/0011069v1.pdf#page=5">Bry, lemma 1.5</a>.</p> </div> <h3 id="SequenceDiffCohomology">Long sequence in differential cohomology</h3> <p>For the purpose of this section we specifically conceive Lie group cohomology inside the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> <a class="existingWikiWord" href="/nlab/show/%E2%88%9ELieGrpd">∞LieGrpd</a> of <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">∞-Lie groupoid</a>s, as described there.</p> <p>This is a <a class="existingWikiWord" href="/nlab/show/local+%28%E2%88%9E%2C1%29-topos">local (∞,1)-topos</a>, hence in particular an <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">∞-connected (∞,1)-topos</a> and therefore it admits <a class="existingWikiWord" href="/schreiber/show/differential+cohomology+in+an+%28%E2%88%9E%2C1%29-topos">differential cohomology in an (∞,1)-topos</a>. By the theorem about the <a href="http://ncatlab.org/schreiber/show/differential+cohomology+in+an+(%E2%88%9E%2C1)-topos#DiffCohWithGroupalCoeffs">differential fiber sequence</a> we have for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}G</annotation></semantics></math> its <a class="existingWikiWord" href="/nlab/show/delooping">delooping</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{B}^{n} U(1)</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">circle n+1-group</a> a long sequence in cohomology</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mo>→</mo><msubsup><mi>H</mi> <mi>diff</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msubsup><mi>H</mi> <mi>G</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msubsup><mi>H</mi> <mrow><mi>dR</mi><mo>,</mo><mi>G</mi></mrow> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>→</mo><mi>⋯</mi><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \cdots \to H^n_{diff}(G, (1))\to H^n_G(G,U(1)) \to H_{dR, G}^{n+1}(G) \to \cdots \,, </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>H</mi> <mi>G</mi></msub><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H_G(G,-)</annotation></semantics></math> denotes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-equivariant cohomology, in that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>G</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msub><mi>π</mi> <mn>0</mn></msub><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo>,</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> H^n_G(G,A) := \pi_0 \mathbf{H}(\mathbf{B}G, \mathbf{B}^n A) </annotation></semantics></math></div> <p>and so on.</p> <p>The point to note is that we may identify <a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a> inside <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mrow><mi>dR</mi><mo>,</mo><mi>G</mi></mrow> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^n_{dR,G}(G)</annotation></semantics></math> and may therefore regard the map</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mi>G</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msubsup><mi>H</mi> <mrow><mi>dR</mi><mo>,</mo><mi>G</mi></mrow> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> H^n_G(G,U(1)) \to H_{dR, G}^{n+1}(G) </annotation></semantics></math></div> <p>as the differentiation map that take a smooth group cocycle to a Lie algebra cocycle. This morphism operates by putting constructing a <a class="existingWikiWord" href="/nlab/show/circle+n-bundle+with+connection">circle n-bundle with connection</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}G</annotation></semantics></math> and then computing its <a class="existingWikiWord" href="/nlab/show/curvature">curvature</a> forms.</p> <p><strong>Example</strong></p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔤</mi></mrow><annotation encoding="application/x-tex">\mathfrak{g}</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/semisimple+Lie+algebra">semisimple Lie algebra</a>,<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> its simply connected Lie group, let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>3</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{B}G \to \mathbf{B}^3 U(1)</annotation></semantics></math> be the group cocycle that classifies the <a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a>. Its image in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mrow><mi>dR</mi><mo>,</mo><mi>G</mi></mrow> <mn>3</mn></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^3_{dR,G}(G)</annotation></semantics></math> is the curvature of the <a class="existingWikiWord" href="/nlab/show/Chern-Simons+circle+3-bundle">Chern-Simons circle 3-bundle</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}G</annotation></semantics></math>. This is represented by a simplicial differential form consisting of two pieces</p> <ul> <li> <p>on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">⟨</mo><mi>θ</mi><mo>∧</mo><mi>θ</mi><mo>∧</mo><mi>θ</mi><mo stretchy="false">⟩</mo></mrow><annotation encoding="application/x-tex">\langle \theta\wedge \theta \wedge \theta \rangle</annotation></semantics></math> obtained by feeding the <a class="existingWikiWord" href="/nlab/show/Maurer-Cartan+form">Maurer-Cartan form</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> into the canoical Lie algebra cocycle that is <a class="existingWikiWord" href="/nlab/show/Chern-Simons+element">in transtression</a> with the <a class="existingWikiWord" href="/nlab/show/Killing+form">Killing form</a> <a class="existingWikiWord" href="/nlab/show/invariant+polynomial">invariant polynomial</a>;</p> </li> <li> <p>on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>×</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">G \times G</annotation></semantics></math> something like <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">⟨</mo><msub><mi>θ</mi> <mn>1</mn></msub><mo>∧</mo><msub><mi>θ</mi> <mn>2</mn></msub><mo stretchy="false">⟩</mo></mrow><annotation encoding="application/x-tex">\langle \theta_1 \wedge \theta_2\rangle</annotation></semantics></math>.</p> </li> </ul> <p>(…)</p> <h3 id="relation_to_intrinsic_cohomology_of_smooth_groupoids">Relation to intrinsic cohomology of smooth <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groupoids</h3> <p>We may naturally regard a Lie group as an <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a> in the <a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a> <a class="existingWikiWord" href="/nlab/show/Smooth%E2%88%9EGrpd">Smooth∞Grpd</a> of <a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a>s. As such, there is an intrinsic <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>-theoretic notion of its <a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a>.</p> <div class="un_prop"> <h6 id="proposition_3">Proposition</h6> <p>For</p> <ol> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> either a <a class="existingWikiWord" href="/nlab/show/discrete+group">discrete group</a></p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/compact+topological+space">compact</a> <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> the additive Lie group of <a class="existingWikiWord" href="/nlab/show/real+numbers">real numbers</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math> or the <a class="existingWikiWord" href="/nlab/show/circle+group">circle group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi><mo stretchy="false">/</mo><mi>Z</mi><mo>=</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbb{R}/Z = U(1)</annotation></semantics></math></p> </li> </ol> <p>the intrinsic cohomology of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> in <a class="existingWikiWord" href="/nlab/show/Smooth%E2%88%9EGrpd">Smooth∞Grpd</a> coincides with the refined <a class="existingWikiWord" href="/nlab/show/Lie+group+cohomology">Lie group cohomology</a> of (<a href="#Segal">Segal</a>)(<a href="#Brylinski">Brylinski</a>)</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>H</mi> <mrow><mi>Smooth</mi><mn>∞</mn><mi>Grpd</mi></mrow> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo>≃</mo><msubsup><mi>H</mi> <mi>diffr</mi> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> H^n_{Smooth\infty Grpd}(\mathbf{B}G, A) \simeq H^n_{diffr}(G,A) \,. </annotation></semantics></math></div></div> <p>This is discussed in detail at <a class="existingWikiWord" href="/nlab/show/Smooth%E2%88%9EGrpd">Smooth∞Grpd</a> and proven at <a class="existingWikiWord" href="/nlab/show/SynthDiff%E2%88%9EGrpd">SynthDiff∞Grpd</a>.</p> <h3 id="relation_to_lie_algebra_cohomology">Relation to Lie algebra cohomology</h3> <p>The content of a <a class="existingWikiWord" href="/nlab/show/van+Est+isomorphism">van Est isomorphism</a> is that the canonical comparison map from Lie group cohomology to <a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a> (by <a class="existingWikiWord" href="/nlab/show/differentiation">differentiation</a>) is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> whenever the Lie group is sufficiently connected.</p> <h2 id="related_entries">Related entries</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+group+cohomology">nonabelian group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/groupoid+cohomology">groupoid cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+cohomology">∞-group cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a></p> </li> <li> <p><strong>Lie group cohomology</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid+cohomology">∞-Lie groupoid cohomology</a></li> </ul> </li> </ul> <h2 id="references">References</h2> <p>A textbook account of standard material is in chapter V in vol III of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Werner+Greub">Werner Greub</a>, <a class="existingWikiWord" href="/nlab/show/Stephen+Halperin">Stephen Halperin</a>, <a class="existingWikiWord" href="/nlab/show/Ray+Vanstone">Ray Vanstone</a>, <em><a class="existingWikiWord" href="/nlab/show/Connections%2C+Curvature%2C+and+Cohomology">Connections, Curvature, and Cohomology</a></em> Academic Press (1973)</li> </ul> <p>The definition of the refined <a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a> cohomology in terms of degreewise <a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a> was given in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Graeme+Segal">Graeme Segal</a>, <em>Cohomology of topological groups</em>, <p>Symposia mathematica. Volume IV, pp. 377–387. Convegni del Dicembre del 1968 e del Marzo del 1969. Istituto Nazionale di Alta Matematica, Roma. Academic Press, London–New York, 1970. iv+542 pp. <a href="https://dmitripavlov.org/scans/segal-cohomology-of-topological-groups.pdf">PDF</a>.</p> </li> </ul> <p>It was later rediscovered for <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>s in</p> <ul> <li id="Brylinski"><a class="existingWikiWord" href="/nlab/show/Jean-Luc+Brylinski">Jean-Luc Brylinski</a>, <em>Differentiable Cohomology of Gauge Groups</em> (<a href="http://arxiv.org/abs/math/0011069">arXiv</a>)</li> </ul> <p>following</p> <ul> <li id="Blanc">P. Blanc, <em>Cohomologie différentiable et changement de groupes, Astérisque vol. 124-125 (1985), pp. 113-130</em></li> </ul> <p>Further discussion:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Friedrich+Wagemann">Friedrich Wagemann</a>, <a class="existingWikiWord" href="/nlab/show/Christoph+Wockel">Christoph Wockel</a>, <em>A Cocycle Model for Topological and Lie Group Cohomology</em>, Transactions of the American Mathematical Society <strong>367</strong> 3 (2015) 1871-1909 (<a href="https://arxiv.org/abs/1110.3304">arXiv:1110.3304</a>, <a href="https://www.jstor.org/stable/24513021">jstor:24513021</a>)</li> </ul> <p>Relevant background on the theory of abelian sheaf cohomology on simplicial spaces is at the beginning of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Pierre+Deligne">Pierre Deligne</a>, <em>Théorie de Hodge: III</em> Publication mathétematique de l’I.H.E.S, tome 44 (1974), p. 5-77 (<a href="http://www.numdam.org/item?id=PMIHES_1974__44__5_0">numdam</a>)</li> </ul> <p>More discussion of Lie group cohomology along these lines is in</p> <ul id="Schommer-Pries"> <li><a class="existingWikiWord" href="/nlab/show/Chris+Schommer-Pries">Chris Schommer-Pries</a>, <em>A finite-dimensional String 2-group</em> (<a href="http://arxiv.org/abs/0911.2483">arXiv:0911.2483</a>)</li> </ul> <p>A discussion of the relation between <em>local</em> Lie group cohomology and <a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a> is in</p> <ul> <li>S. Świerczkowski, <em>Cohomology of group germs and Lie algebras</em> Pacific Journal of Mathematics, Volume 39, Number 2 (1971), 471-482. (<a href="http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&amp;id=pdf_1&amp;handle=euclid.pjm/1102969572">pdf</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on May 2, 2024 at 23:08:20. See the <a href="/nlab/history/Lie+group+cohomology" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Lie+group+cohomology" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/1785/#Item_3">Discuss</a><span class="backintime"><a href="/nlab/revision/Lie+group+cohomology/19" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Lie+group+cohomology" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Lie+group+cohomology" accesskey="S" class="navlink" id="history" rel="nofollow">History (19 revisions)</a> <a href="/nlab/show/Lie+group+cohomology/cite" style="color: black">Cite</a> <a href="/nlab/print/Lie+group+cohomology" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Lie+group+cohomology" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10