CINXE.COM

Deep Dives – Towards Data Science

<!DOCTYPE html><html xmlns:cc="http://creativecommons.org/ns#"><head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns/fb# medium-com: http://ogp.me/ns/fb/medium-com#"><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0, viewport-fit=contain"><title>Deep Dives – Towards Data Science</title><link rel="canonical" href="https://towardsdatascience.com/deep-dives/home"><meta name="robots" content="index,follow"><meta name="title" content="Deep Dives – Towards Data Science"><meta name="referrer" content="unsafe-url"><meta name="description" content="From data science or data engineering to the inner workings of LLMs, our longer articles cover these topics with nuance, care, and an eye toward practical applications. Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="theme-color" content="#000000"><meta property="og:title" content="Deep Dives – Towards Data Science"><meta property="twitter:title" content="Deep Dives – Towards Data Science"><meta property="og:url" content="https://towardsdatascience.com/deep-dives/home"><meta property="og:image" content="https://cdn-images-1.medium.com/max/1200/1*CJe3891yB1A1mzMdqemkdg.jpeg"><meta property="fb:app_id" content="542599432471018"><meta property="og:description" content="From data science or data engineering to the inner workings of LLMs, our longer articles cover these topics with nuance, care, and an eye toward practical applications. Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="twitter:description" content="From data science or data engineering to the inner workings of LLMs, our longer articles cover these topics with nuance, care, and an eye toward practical applications. Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="twitter:image:src" content="https://cdn-images-1.medium.com/max/1200/1*CJe3891yB1A1mzMdqemkdg.jpeg"><meta property="og:type" content="medium-com:collection"><meta name="twitter:card" content="summary_large_image"><meta name="twitter:site" content="@TDataScience"><meta property="og:site_name" content="Towards Data Science"><meta name="twitter:app:name:iphone" content="Medium"><meta name="twitter:app:id:iphone" content="828256236"><meta property="al:ios:app_name" content="Medium"><meta property="al:ios:app_store_id" content="828256236"><meta property="al:android:package" content="com.medium.reader"><meta property="al:android:app_name" content="Medium"><meta property="al:web:url" content="https://towardsdatascience.com/deep-dives/home"><link rel="search" type="application/opensearchdescription+xml" title="Medium" href="/osd.xml" /><link rel="alternate" href="android-app://com.medium.reader/https/medium.com" /><link rel="stylesheet" href="https://cdn-static-1.medium.com/_/fp/css/main-branding-base.ouwh4uMviI3QQWIjxRhkHA.12.css"><script>!function(n,e){var t,o,i,c=[],f={passive:!0,capture:!0},r=new Date,a="pointerup",u="pointercancel";function p(n,c){t||(t=c,o=n,i=new Date,w(e),s())}function s(){o>=0&&o<i-r&&(c.forEach(function(n){n(o,t)}),c=[])}function l(t){if(t.cancelable){var o=(t.timeStamp>1e12?new Date:performance.now())-t.timeStamp;"pointerdown"==t.type?function(t,o){function i(){p(t,o),r()}function c(){r()}function r(){e(a,i,f),e(u,c,f)}n(a,i,f),n(u,c,f)}(o,t):p(o,t)}}function w(n){["click","mousedown","keydown","touchstart","pointerdown"].forEach(function(e){n(e,l,f)})}w(n),self.perfMetrics=self.perfMetrics||{},self.perfMetrics.onFirstInputDelay=function(n){c.push(n),s()}}(addEventListener,removeEventListener);</script><script>document.domain = document.domain;</script><script>if (window.top !== window.self) window.location = 'about:blank';var OB_startTime = new Date().getTime(); var OB_loadErrors = []; function _onerror(e) { OB_loadErrors.push(e) }; if (document.addEventListener) document.addEventListener("error", _onerror, true); else if (document.attachEvent) document.attachEvent("onerror", _onerror); function _asyncScript(u) {var d = document, f = d.getElementsByTagName("script")[0], s = d.createElement("script"); s.type = "text/javascript"; s.async = true; s.src = u; f.parentNode.insertBefore(s, f);}function _asyncStyles(u) {var d = document, f = d.getElementsByTagName("script")[0], s = d.createElement("link"); s.rel = "stylesheet"; s.href = u; f.parentNode.insertBefore(s, f); return s}(new Image()).src = "/_/stat?event=pixel.load&origin=" + encodeURIComponent(location.origin);</script><script>window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date; ga("create", "G-7JY7T788PK", "auto", {"allowLinker": true, "legacyCookieDomain": window.location.hostname});ga("send", "pageview");</script><script async src="https://www.google-analytics.com/analytics.js"></script><script>(function () {var height = window.innerHeight || document.documentElement.clientHeight || document.body.clientHeight; var width = window.innerWidth || document.documentElement.clientWidth || document.body.clientWidth; document.write("<style>section.section-image--fullBleed.is-backgrounded {padding-top: " + Math.round(1.1 * height) + "px;}section.section-image--fullScreen.is-backgrounded, section.section-image--coverFade.is-backgrounded {min-height: " + height + "px; padding-top: " + Math.round(0.5 * height) + "px;}.u-height100vh {height: " + height + "px !important;}.u-height110vh {height: " + Math.round(1.1 * height) + "px !important;}.u-minHeight100vh {min-height: " + height + "px !important;}.u-maxHeight100vh {max-height: " + height + "px !important;}section.section-image--coverFade {height: " + height + "px;}.section-aspectRatioViewportPlaceholder, .section-aspectRatioViewportCropPlaceholder {max-height: " + height + "px;}.section-aspectRatioViewportBottomSpacer, .section-aspectRatioViewportBottomPlaceholder {max-height: " + Math.round(0.5 * height) + "px;}.zoomable:before {top: " + (-1 * height) + "px; left: " + (-1 * width) + "px; padding: " + height + "px " + width + "px;}</style>");})()</script><!--[if lt IE 9]><script charset="UTF-8" src="https://cdn-static-1.medium.com/_/fp/js/shiv.RI2ePTZ5gFmMgLzG5bEVAA.12.js"></script><![endif]--><link rel="icon" href="https://cdn-images-1.medium.com/fit/c/256/256/1*VzTUkfeGymHP4Bvav-T-lA.png" class="js-favicon"><link rel="apple-touch-icon" sizes="152x152" href="https://cdn-images-1.medium.com/fit/c/304/304/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="120x120" href="https://cdn-images-1.medium.com/fit/c/240/240/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="76x76" href="https://cdn-images-1.medium.com/fit/c/152/152/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="60x60" href="https://cdn-images-1.medium.com/fit/c/120/120/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="mask-icon" href="https://cdn-static-1.medium.com/_/fp/icons/monogram-mask.KPLCSFEZviQN0jQ7veN2RQ.12.svg" color="#171717"></head><body itemscope class=" browser-ie os-windows v-unbound v-glyph v-glyph--m2-unbound-source-serif-pro is-noJs"><script>document.body.className = document.body.className.replace(/(^|\s)is-noJs(\s|$)/, "$1is-js$2")</script><div class="site-main" id="container"><div class="butterBar butterBar--error"></div><div class="surface"><div id="prerendered" class="screenContent"><div class="metabar u-clearfix u-boxShadow4px12pxBlackLighter u-textColorTransparentWhiteDarker js-metabar"><div class="branch-journeys-top"></div><div class="js-metabarMiddle metabar-inner u-marginAuto u-maxWidth1032 u-flexCenter u-justifyContentSpaceBetween u-height65 u-xs-height56 u-paddingHorizontal20"><div class="metabar-block u-flex1 u-flexCenter"><div class="js-metabarLogoLeft"><a href="https://medium.com/" data-log-event="home" class="siteNav-logo u-fillBlack u-flex0 u-flexCenter u-paddingTop0"><span class="svgIcon svgIcon--wordmarkMedium svgIcon--120x26px u-flex"><svg class="svgIcon-use" width="120" height="26" ><path d="M29.57 1.404l.036-.008V1.12h-7.27l-6.75 15.979-6.75-15.98H1.003v.278l.035.008c1.327.302 2 .752 2 2.374v18.993c0 1.623-.676 2.073-2.003 2.374L1 25.153v.279h5.315v-.278l-.035-.008c-1.327-.302-2-.751-2-2.374V4.88l8.67 20.552h.492l8.924-21.125V23.24c-.114 1.282-.782 1.677-1.983 1.95l-.036.009v.275h9.259V25.2l-.036-.008c-1.203-.274-1.886-.67-2-1.95l-.006-19.464h.006c0-1.622.674-2.072 2-2.374zm4.23 12.582c.15-3.412 1.367-5.875 3.41-5.918.629.01 1.157.219 1.568.62.872.852 1.282 2.634 1.219 5.298h-6.198zm-.092.962h10.85v-.046c-.03-2.61-.78-4.64-2.228-6.033-1.25-1.204-3.103-1.867-5.048-1.867h-.043c-1.01 0-2.248.246-3.13.693a7.316 7.316 0 00-2.623 2.086c-1.185 1.479-1.903 3.477-2.078 5.724a13.717 13.717 0 00-.04.755c-.004.195-.005.39-.001.587.117 5.087 2.846 9.153 7.692 9.153 4.254 0 6.73-3.132 7.348-7.336l-.312-.11c-1.085 2.259-3.034 3.628-5.252 3.461-3.028-.228-5.347-3.32-5.137-7.066m23.122 6.893c-.356.85-1.099 1.319-2.094 1.319-.995 0-1.905-.689-2.552-1.939-.694-1.342-1.06-3.24-1.06-5.487 0-4.678 1.445-7.704 3.68-7.704.937 0 1.674.468 2.026 1.284v12.527zm7.198 3.335c-1.327-.316-2-.787-2-2.492V0l-8.062 2.392v.293l.05-.004c1.111-.09 1.866.064 2.304.472.343.32.51.809.51 1.498v3.11C56.033 7.25 55.088 7 53.94 7c-2.326 0-4.453.987-5.986 2.779-1.599 1.867-2.444 4.42-2.444 7.38 0 5.287 2.584 8.84 6.43 8.84 2.25 0 4.06-1.242 4.888-3.336v2.811h7.233v-.29l-.035-.008zM70.94 3.085c0-1.65-1.236-2.896-2.875-2.896-1.632 0-2.908 1.272-2.908 2.896 0 1.624 1.278 2.896 2.908 2.896 1.64 0 2.875-1.245 2.875-2.896zm1.903 22.092c-1.327-.316-2-.787-2-2.492h-.006V7.055l-7.234 2.092v.284l.043.004c1.566.14 1.994.683 1.994 2.525v13.515h7.24v-.29l-.037-.008zm18.536 0c-1.327-.316-2-.787-2-2.492V7.055L82.49 9.078v.285l.04.004c1.28.136 1.65.71 1.65 2.56v9.88c-.426.85-1.227 1.356-2.196 1.39-1.573 0-2.439-1.07-2.439-3.012V7.055l-7.234 2.092v.284l.044.004c1.565.14 1.994.683 1.994 2.525v8.362a9.443 9.443 0 00.15 1.741l.13.57C75.243 24.845 76.848 26 79.362 26c2.129 0 3.996-1.328 4.818-3.405v2.885h7.233v-.291l-.034-.012zm28.102.298v-.291l-.035-.009c-1.44-.334-2.001-.964-2.001-2.248V12.295C117.445 8.98 115.597 7 112.5 7c-2.257 0-4.16 1.314-4.893 3.36-.582-2.168-2.257-3.36-4.734-3.36-2.175 0-3.88 1.156-4.612 3.11V7.056l-7.233 2.006v.286l.043.004c1.547.138 1.994.697 1.994 2.492v13.631h6.75v-.29l-.037-.01c-1.148-.271-1.519-.767-1.519-2.04V10.95c.304-.715.917-1.562 2.127-1.562 1.504 0 2.266 1.05 2.266 3.116v12.972h6.751v-.29l-.035-.01c-1.149-.271-1.52-.767-1.52-2.04V12.294a7.107 7.107 0 00-.095-1.21c.322-.777.97-1.696 2.23-1.696 1.524 0 2.265 1.02 2.265 3.116v12.972h7.233z"/></svg></span><span class="u-textScreenReader">Homepage</span></a></div><div class="u-paddingLeft10 u-sm-show r-paddingRight10"><a href="https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com/towards-data-science%3F~feature=LoMobileNavBar&~channel=ShowCollectionHome&~stage=m2">Open in app</a></div></div><div class="metabar-block u-flex0 u-flexCenter"><div class="u-flexCenter u-height65 u-xs-height56"><div class="buttonSet buttonSet--wide u-lineHeightInherit"><a class="button button--primary button--chromeless u-accentColor--buttonNormal is-inSiteNavBar u-xs-hide js-signInButton" href="https://medium.com/m/signin?redirect=https%3A%2F%2Ftowardsdatascience.com%2Fdeep-dives%2Fhome&amp;source=--------------------------nav_reg&amp;operation=login" data-action="sign-in-prompt" data-redirect="https://towardsdatascience.com/deep-dives/home" data-action-source="--------------------------nav_reg">Sign in</a><a class="button button--primary button--withChrome u-accentColor--buttonNormal is-inSiteNavBar js-signUpButton" href="https://medium.com/m/signin?redirect=https%3A%2F%2Ftowardsdatascience.com%2Fdeep-dives%2Fhome&amp;source=--------------------------nav_reg&amp;operation=register" data-action="sign-up-prompt" data-redirect="https://towardsdatascience.com/deep-dives/home" data-action-source="--------------------------nav_reg">Get started</a></div></div></div></div><div class="u-tintBgColor u-tintSpectrum " ><div class="metabar-inner u-marginAuto u-maxWidth1032 u-paddingHorizontal20 js-metabarBottom"><nav role="navigation" class="metabar-block metabar-block--below u-flexCenter u-overflowHidden u-height54"><div class="u-flexCenter u-overflowHidden"><div class="u-marginRight40"><a href="https://towardsdatascience.com?source=logo-lo_78b2a15b33eb---7f60cf5620c9" class="u-flexCenter js-collectionLogoOrName"><img height="36" width="115" src="https://cdn-images-1.medium.com/letterbox/230/72/50/50/1*cFFKn8rFH4ZndmaYeAs6iQ.png?source=logoAvatar-lo_78b2a15b33eb---7f60cf5620c9" alt="Towards Data Science" /></a></div><div class="u-overflowHidden u-xs-hide"><ul class="u-textAlignLeft u-noWrap u-overflowX u-height80 u-marginTop40 js-collectionNavItems"><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/latest">Latest</a></li><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/editors-picks/home">Editors&#39; Picks</a></li><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darker link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/deep-dives/home">Deep Dives</a></li><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/about-us/home">About</a></li><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/questions-96667b06af5">Contribute</a></li><span class="u-borderLeft1 u-baseColor--borderLight"></span><li class="metabar-navItem js-collectionNavItem is-external u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darkenOnHover u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://medium.com/towards-data-science/newsletter" rel="nofollow noopener" target="_blank">Newsletter</a></li></ul></div></div></nav></div></div></div><div class="metabar metabar--spacer js-metabarSpacer u-tintBgColor u-height119 u-xs-height110"></div><h1 class="u-maxWidth1000 u-marginAuto u-paddingTop10 u-paddingLeft20 u-paddingRight20 u-alignMiddle u-height110 u-fontSize50 u-textColorDark u-contentSansRegular u-noWrapWithEllipsis u-xs-fontSize40 u-xs-height100 u-xs-textAlignCenter">Deep Dives</h1><div class="u-widthFull u-borderBottomLighter"></div><div class="u-marginBottom40 js-categoryStream"><div class="streamItem streamItem--section js-streamItem"><section class="u-marginTop30 u-xs-margin0 u-marginBottom15 u-maxWidth1032 u-sm-paddingLeft20 u-sm-paddingRight20 u-borderBox u-marginAuto"><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size6of12" data-source="collection_category---4------0-----------------------" data-post-id="7f9c6e6b7251" data-index="0"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/mistral-7b-explained-towards-more-efficient-language-models-7f9c6e6b7251?source=collection_category---4------0-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/mistral-7b-explained-towards-more-efficient-language-models-7f9c6e6b7251?source=collection_category---4------0-----------------------" class="u-block u-xs-height170 u-width600 u-height272 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/1200/1*TRfxFbnLDx9IqpvghpbURA.jpeg&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">Mistral 7B Explained: Towards More Efficient Language Models</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/mistral-7b-explained-towards-more-efficient-language-models-7f9c6e6b7251?source=collection_category---4------0-----------------------" data-action-source="collection_category---4------0-----------------------" data-post-id="7f9c6e6b7251"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Mistral 7B Explained: Towards More Efficient Language Models</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">RMS Norm, RoPE, GQA, SWA, KV Cache, and more!</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@bradneysmith" data-action="show-user-card" data-action-value="d18c7303c5a2" data-action-type="hover" data-user-id="d18c7303c5a2" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*tVLKwOvdthd64kORuXntTg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Bradney Smith"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@bradneysmith" data-action="show-user-card" data-action-value="d18c7303c5a2" data-action-type="hover" data-user-id="d18c7303c5a2" data-collection-slug="towards-data-science" dir="auto">Bradney Smith</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-26T18:26:18.729Z">Nov 26</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="42 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size6of12" data-source="collection_category---4------1-----------------------" data-post-id="eee3033baa39" data-index="1"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/the-economics-of-artificial-intelligence-what-does-automation-mean-for-workers-eee3033baa39?source=collection_category---4------1-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/the-economics-of-artificial-intelligence-what-does-automation-mean-for-workers-eee3033baa39?source=collection_category---4------1-----------------------" class="u-block u-xs-height170 u-width600 u-height272 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/1200/1*x8AJtp9Saog3IWmvqNs5Gw.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">The Economics of Artificial Intelligence — what does automation mean for workers?</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/the-economics-of-artificial-intelligence-what-does-automation-mean-for-workers-eee3033baa39?source=collection_category---4------1-----------------------" data-action-source="collection_category---4------1-----------------------" data-post-id="eee3033baa39"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">The Economics of Artificial Intelligence — what does automation mean for workers?</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Despite tremendous progress in AI, the economic implications of AI remain inadequately understood, with unsatisfactory insights from AI…</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@iztham" data-action="show-user-card" data-action-value="8177b59b4815" data-action-type="hover" data-user-id="8177b59b4815" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*gClEVxqI9oy9DFqii1uYzw@2x.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Isaac Tham"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@iztham" data-action="show-user-card" data-action-value="8177b59b4815" data-action-type="hover" data-user-id="8177b59b4815" data-collection-slug="towards-data-science" dir="auto">Isaac Tham</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-25T19:17:40.742Z">Nov 25</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="31 min read"></span></div></div></div></div></div></div></div></section></div><div class="streamItem streamItem--section js-streamItem"><section class="u-marginTop30 u-xs-margin0 u-marginBottom15 u-maxWidth1032 u-sm-paddingLeft20 u-sm-paddingRight20 u-borderBox u-marginAuto"><header class="heading heading--borderedBottom u-fontSize18 u-contentSansThin" ><div class="u-clearfix"><div class="heading-content u-floatLeft"><span class="heading-title heading-title--dark heading-title--lineHeightTight u-fontSize18 u-contentSansThin">Latest</span></div></div></header><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------0-----------------------" data-post-id="5b0789fe27aa" data-index="0"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/llm-routing-intuitively-and-exhaustively-explained-5b0789fe27aa?source=collection_category---4------0-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/llm-routing-intuitively-and-exhaustively-explained-5b0789fe27aa?source=collection_category---4------0-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*Aja1M1MtLsRmsFCTdPeoJg.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">LLM Routing — Intuitively and Exhaustively Explained</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/llm-routing-intuitively-and-exhaustively-explained-5b0789fe27aa?source=collection_category---4------0-----------------------" data-action-source="collection_category---4------0-----------------------" data-post-id="5b0789fe27aa"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">LLM Routing — Intuitively and Exhaustively Explained</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Dynamically Choosing the Right LLM</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@danielwarfield1" data-action="show-user-card" data-action-value="bdc4072cbfdc" data-action-type="hover" data-user-id="bdc4072cbfdc" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*YaEyucgUXLb6TwSFW-ucXg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Daniel Warfield"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@danielwarfield1" data-action="show-user-card" data-action-value="bdc4072cbfdc" data-action-type="hover" data-user-id="bdc4072cbfdc" data-collection-slug="towards-data-science" dir="auto">Daniel Warfield</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-22T17:38:50.694Z">Nov 22</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="49 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------1-----------------------" data-post-id="26f6f067de71" data-index="1"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/how-to-answer-business-questions-with-data-26f6f067de71?source=collection_category---4------1-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/how-to-answer-business-questions-with-data-26f6f067de71?source=collection_category---4------1-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/0*O5HFgbqvEp5PPqck.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">How to Answer Business Questions with Data</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/how-to-answer-business-questions-with-data-26f6f067de71?source=collection_category---4------1-----------------------" data-action-source="collection_category---4------1-----------------------" data-post-id="26f6f067de71"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">How to Answer Business Questions with Data</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Data analysis is the key to drive business decisions through answering abstract business questions but it’s hard to get right</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@tessaxie" data-action="show-user-card" data-action-value="dadb1d33c05a" data-action-type="hover" data-user-id="dadb1d33c05a" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*f7TJIobLYY_GzR0542Kerg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Tessa Xie"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@tessaxie" data-action="show-user-card" data-action-value="dadb1d33c05a" data-action-type="hover" data-user-id="dadb1d33c05a" data-collection-slug="towards-data-science" dir="auto">Tessa Xie</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-19T18:04:51.677Z">Nov 19</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="13 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------2-----------------------" data-post-id="fe25a0f8ae55" data-index="2"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/linear-programming-integer-linear-programming-with-branch-and-bound-fe25a0f8ae55?source=collection_category---4------2-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/linear-programming-integer-linear-programming-with-branch-and-bound-fe25a0f8ae55?source=collection_category---4------2-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*L_5Bs8bJNF6fUV79EiTLtQ.jpeg&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">Linear programming: Integer Linear Programming with Branch and Bound</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/linear-programming-integer-linear-programming-with-branch-and-bound-fe25a0f8ae55?source=collection_category---4------2-----------------------" data-action-source="collection_category---4------2-----------------------" data-post-id="fe25a0f8ae55"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Linear programming: Integer Linear Programming with Branch and Bound</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Part 4: Extending linear programming optimization to discrete decision variables</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@jarom.hulet" data-action="show-user-card" data-action-value="88982a88b4e5" data-action-type="hover" data-user-id="88982a88b4e5" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*JVSdktkDG3J4rxBEmZMciQ.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Jarom Hulet"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@jarom.hulet" data-action="show-user-card" data-action-value="88982a88b4e5" data-action-type="hover" data-user-id="88982a88b4e5" data-collection-slug="towards-data-science" dir="auto">Jarom Hulet</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-19T15:44:23.152Z">Nov 19</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="9 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------3-----------------------" data-post-id="0095a73cf5ab" data-index="3"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/the-root-cause-of-why-organizations-fail-with-data-ai-0095a73cf5ab?source=collection_category---4------3-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/the-root-cause-of-why-organizations-fail-with-data-ai-0095a73cf5ab?source=collection_category---4------3-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*2hDKhHs0wnk3pCO6-31Xww.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">The Root Cause of Why Organizations Fail With Data &amp; AI</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/the-root-cause-of-why-organizations-fail-with-data-ai-0095a73cf5ab?source=collection_category---4------3-----------------------" data-action-source="collection_category---4------3-----------------------" data-post-id="0095a73cf5ab"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">The Root Cause of Why Organizations Fail With Data &amp; AI</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">A guide to be successful with the strategic groundwork required</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@jens-linden" data-action="show-user-card" data-action-value="4a7a0f39dccd" data-action-type="hover" data-user-id="4a7a0f39dccd" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*HwlPPLzZqhFbGHzy8PIECg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Jens Linden, PhD"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@jens-linden" data-action="show-user-card" data-action-value="4a7a0f39dccd" data-action-type="hover" data-user-id="4a7a0f39dccd" data-collection-slug="towards-data-science" dir="auto">Jens Linden, PhD</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-19T12:02:45.366Z">Nov 19</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="26 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------4-----------------------" data-post-id="af352105db56" data-index="4"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/exploring-music-transcription-with-multi-modal-language-models-af352105db56?source=collection_category---4------4-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/exploring-music-transcription-with-multi-modal-language-models-af352105db56?source=collection_category---4------4-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*Xu062EKI7BoyXDh7pWG1mQ.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">Exploring Music Transcription with Multi-Modal Language Models</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/exploring-music-transcription-with-multi-modal-language-models-af352105db56?source=collection_category---4------4-----------------------" data-action-source="collection_category---4------4-----------------------" data-post-id="af352105db56"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Exploring Music Transcription with Multi-Modal Language Models</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Using Qwen2-Audio to transcribe music into sheet music</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@jon.flynn2" data-action="show-user-card" data-action-value="a3ee742fae3" data-action-type="hover" data-user-id="a3ee742fae3" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*16AI0ZxosqDanJ22tGkA_Q.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Jon Flynn"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@jon.flynn2" data-action="show-user-card" data-action-value="a3ee742fae3" data-action-type="hover" data-user-id="a3ee742fae3" data-collection-slug="towards-data-science" dir="auto">Jon Flynn</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-17T12:02:22.797Z">Nov 17</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="17 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------5-----------------------" data-post-id="b556aa97bf7a" data-index="5"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/field-boundary-detection-in-satellite-imagery-using-the-sam2-model-b556aa97bf7a?source=collection_category---4------5-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/field-boundary-detection-in-satellite-imagery-using-the-sam2-model-b556aa97bf7a?source=collection_category---4------5-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*h3utjD4SEKbfGCUXotFbNA.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">Field Boundary Detection in Satellite Imagery Using the SAM2 Model</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/field-boundary-detection-in-satellite-imagery-using-the-sam2-model-b556aa97bf7a?source=collection_category---4------5-----------------------" data-action-source="collection_category---4------5-----------------------" data-post-id="b556aa97bf7a"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Field Boundary Detection in Satellite Imagery Using the SAM2 Model</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Step-by-Step Tutorial on Applying Segment Anything Model Version 2 to Satellite Imagery for Detecting and Exporting Field Boundaries in…</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@mahyar.aboutalebi" data-action="show-user-card" data-action-value="7e6350a085ee" data-action-type="hover" data-user-id="7e6350a085ee" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*1VPJF8M22sDZ9jxSSdAQOg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Mahyar Aboutalebi, Ph.D. 🎓"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@mahyar.aboutalebi" data-action="show-user-card" data-action-value="7e6350a085ee" data-action-type="hover" data-user-id="7e6350a085ee" data-collection-slug="towards-data-science" dir="auto">Mahyar Aboutalebi, Ph.D. 🎓</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-15T12:01:53.902Z">Nov 15</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="13 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------6-----------------------" data-post-id="927c5a9063b9" data-index="6"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/network-analysis-diffusion-models-data-lakehouses-and-more-our-best-recent-deep-dives-927c5a9063b9?source=collection_category---4------6-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/network-analysis-diffusion-models-data-lakehouses-and-more-our-best-recent-deep-dives-927c5a9063b9?source=collection_category---4------6-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/0*N6nQvDagq5tufaNT&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">Network Analysis, Diffusion Models, Data Lakehouses, and More: Our Best Recent Deep Dives</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/network-analysis-diffusion-models-data-lakehouses-and-more-our-best-recent-deep-dives-927c5a9063b9?source=collection_category---4------6-----------------------" data-action-source="collection_category---4------6-----------------------" data-post-id="927c5a9063b9"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Network Analysis, Diffusion Models, Data Lakehouses, and More: Our Best Recent Deep Dives</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Our weekly selection of must-read Editors’ Picks and original features</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@towardsdatascience" data-action="show-user-card" data-action-value="7e12c71dfa81" data-action-type="hover" data-user-id="7e12c71dfa81" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*W8dhinLQHGYmwipTuH0k3A.png" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of TDS Editors"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@towardsdatascience" data-action="show-user-card" data-action-value="7e12c71dfa81" data-action-type="hover" data-user-id="7e12c71dfa81" data-collection-slug="towards-data-science" dir="auto">TDS Editors</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-14T14:32:03.069Z">Nov 14</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="4 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------7-----------------------" data-post-id="b4fac4cabe94" data-index="7"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/evaluating-the-impact-of-outlier-treatment-in-time-series-b4fac4cabe94?source=collection_category---4------7-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/evaluating-the-impact-of-outlier-treatment-in-time-series-b4fac4cabe94?source=collection_category---4------7-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*BEwM2UHKe-QsU-2Gx0UotQ.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">The Ultimate Guide to Evaluating the Impact of Outlier Treatment in Time Series</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/evaluating-the-impact-of-outlier-treatment-in-time-series-b4fac4cabe94?source=collection_category---4------7-----------------------" data-action-source="collection_category---4------7-----------------------" data-post-id="b4fac4cabe94"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">The Ultimate Guide to Evaluating the Impact of Outlier Treatment in Time Series</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Sensitivity Analysis, Model Validation, Feature Importance &amp; More!</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@saranobregafn" data-action="show-user-card" data-action-value="7606b796c9df" data-action-type="hover" data-user-id="7606b796c9df" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*l9Hzr71Wz_D2TGz0X8kr8Q.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Sara Nóbrega"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@saranobregafn" data-action="show-user-card" data-action-value="7606b796c9df" data-action-type="hover" data-user-id="7606b796c9df" data-collection-slug="towards-data-science" dir="auto">Sara Nóbrega</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-13T11:02:00.762Z">Nov 13</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="19 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------8-----------------------" data-post-id="383ce57a6d0a" data-index="8"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/techniques-for-exploratory-data-analysis-and-interpretation-of-statistical-graphs-383ce57a6d0a?source=collection_category---4------8-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/techniques-for-exploratory-data-analysis-and-interpretation-of-statistical-graphs-383ce57a6d0a?source=collection_category---4------8-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*tfYoo-Y6ev2cQUggZr6ATw.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">Techniques for Exploratory Data Analysis and Interpretation of Statistical Graphs</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/techniques-for-exploratory-data-analysis-and-interpretation-of-statistical-graphs-383ce57a6d0a?source=collection_category---4------8-----------------------" data-action-source="collection_category---4------8-----------------------" data-post-id="383ce57a6d0a"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Techniques for Exploratory Data Analysis and Interpretation of Statistical Graphs</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Practical Approaches for Uncovering Insights and Patterns in Statistical Visualizations</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@panData" data-action="show-user-card" data-action-value="1c040843e458" data-action-type="hover" data-user-id="1c040843e458" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*Dn6n6ct8Y_AL4zvtFcUetQ.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Leo Anello"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@panData" data-action="show-user-card" data-action-value="1c040843e458" data-action-type="hover" data-user-id="1c040843e458" data-collection-slug="towards-data-science" dir="auto">Leo Anello</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-12T13:02:26.189Z">Nov 12</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="49 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------9-----------------------" data-post-id="ecf52909e5ef" data-index="9"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/jointly-learning-rewards-and-policies-an-iterative-inverse-reinforcement-learning-framework-with-ecf52909e5ef?source=collection_category---4------9-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/jointly-learning-rewards-and-policies-an-iterative-inverse-reinforcement-learning-framework-with-ecf52909e5ef?source=collection_category---4------9-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/0*FE9Z0CBcmQtKw3YC&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">Jointly learning rewards and policies: an iterative Inverse Reinforcement Learning framework with…</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/jointly-learning-rewards-and-policies-an-iterative-inverse-reinforcement-learning-framework-with-ecf52909e5ef?source=collection_category---4------9-----------------------" data-action-source="collection_category---4------9-----------------------" data-post-id="ecf52909e5ef"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Jointly learning rewards and policies: an iterative Inverse Reinforcement Learning framework with…</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">A novel tractable and interpretable algorithm to learn from expert demonstrations</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@h.fellahi" data-action="show-user-card" data-action-value="0f9f21155c28" data-action-type="hover" data-user-id="0f9f21155c28" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*AN6dPCSfMNT8te_4aWw0cg.png" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Hussein Fellahi"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@h.fellahi" data-action="show-user-card" data-action-value="0f9f21155c28" data-action-type="hover" data-user-id="0f9f21155c28" data-collection-slug="towards-data-science" dir="auto">Hussein Fellahi</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-10T15:14:38.803Z">Nov 10</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="12 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------10-----------------------" data-post-id="ad3166c1acd5" data-index="10"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/battlecode-2024-finalist-ad3166c1acd5?source=collection_category---4------10-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/battlecode-2024-finalist-ad3166c1acd5?source=collection_category---4------10-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*zN7a703ATBaUxyzeIkKEwA.gif&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">MIT Battlecode Reflections: A First-Time Finalist’s Takeaways</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/battlecode-2024-finalist-ad3166c1acd5?source=collection_category---4------10-----------------------" data-action-source="collection_category---4------10-----------------------" data-post-id="ad3166c1acd5"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">MIT Battlecode Reflections: A First-Time Finalist’s Takeaways</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Key Takeaways from a First-Time Contestant</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@davidteather" data-action="show-user-card" data-action-value="db46d46d4d38" data-action-type="hover" data-user-id="db46d46d4d38" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*VQvfsfJPA3hnV794zJj9sA.png" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of David Teather"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@davidteather" data-action="show-user-card" data-action-value="db46d46d4d38" data-action-type="hover" data-user-id="db46d46d4d38" data-collection-slug="towards-data-science" dir="auto">David Teather</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-07T03:08:19.059Z">Nov 6</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="14 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------11-----------------------" data-post-id="2563cec4d10e" data-index="11"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/preference-alignment-for-everyone-2563cec4d10e?source=collection_category---4------11-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/preference-alignment-for-everyone-2563cec4d10e?source=collection_category---4------11-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url(&quot;https://cdn-images-1.medium.com/max/800/1*cbLNScjpzOf80TRVme0VZA.png&quot;); background-position: 50% 50% !important;"><span class="u-textScreenReader">Preference Alignment for Everyone!</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/preference-alignment-for-everyone-2563cec4d10e?source=collection_category---4------11-----------------------" data-action-source="collection_category---4------11-----------------------" data-post-id="2563cec4d10e"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Preference Alignment for Everyone!</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Frugal RLHF with multi-adapter PPO on Amazon SageMaker</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@aris.tsakpinis" data-action="show-user-card" data-action-value="8ab3accce432" data-action-type="hover" data-user-id="8ab3accce432" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*HiuDPBJ3_XhJLRi40lBb7Q.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Aris Tsakpinis"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@aris.tsakpinis" data-action="show-user-card" data-action-value="8ab3accce432" data-action-type="hover" data-user-id="8ab3accce432" data-collection-slug="towards-data-science" dir="auto">Aris Tsakpinis</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-08T17:49:38.975Z">Nov 8</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="26 min read"></span></div></div></div></div></div></div></div></section></div></div><style class="js-collectionStyle"> .u-accentColor--borderLight {border-color: #668AAA !important;} .u-accentColor--borderNormal {border-color: #668AAA !important;} .u-accentColor--borderDark {border-color: #5A7690 !important;} .u-accentColor--iconLight .svgIcon,.u-accentColor--iconLight.svgIcon {fill: #668AAA !important;} .u-accentColor--iconNormal .svgIcon,.u-accentColor--iconNormal.svgIcon {fill: #668AAA !important;} .u-accentColor--iconDark .svgIcon,.u-accentColor--iconDark.svgIcon {fill: #5A7690 !important;} .u-accentColor--textNormal {color: #5A7690 !important;} .u-accentColor--hoverTextNormal:hover {color: #5A7690 !important;} .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: #546C83 !important;} .u-accentColor--textDark {color: #546C83 !important;} .u-accentColor--backgroundLight {background-color: #668AAA !important;} .u-accentColor--backgroundNormal {background-color: #668AAA !important;} .u-accentColor--backgroundDark {background-color: #5A7690 !important;} .u-accentColor--buttonDark {border-color: #5A7690 !important; color: #546C83 !important;} .u-accentColor--buttonDark:hover {border-color: #546C83 !important;} .u-accentColor--buttonDark .icon:before,.u-accentColor--buttonDark .svgIcon{color: #5A7690 !important; fill: #5A7690 !important;} .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: #668AAA !important; color: #5A7690 !important;} .u-accentColor--buttonNormal:hover {border-color: #5A7690 !important;} .u-accentColor--buttonNormal .icon:before,.u-accentColor--buttonNormal .svgIcon{color: #668AAA !important; fill: #668AAA !important;} .u-accentColor--buttonNormal.button--filled .icon:before,.u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-accentColor--buttonDark.button--filled,.u-accentColor--buttonDark.button--withChrome.is-active,.u-accentColor--fillWhenActive.is-active {background-color: #5A7690 !important; border-color: #5A7690 !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: #668AAA !important; border-color: #668AAA !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .postArticle.is-withAccentColors .markup--user,.postArticle.is-withAccentColors .markup--query {color: #5A7690 !important;}.u-tintBgColor {background-color: rgba(53, 88, 118, 1) !important;}.u-tintBgColor .u-fadeLeft:before {background-image: linear-gradient(to right, rgba(53, 88, 118, 1) 0%, rgba(53, 88, 118, 0) 100%) !important;}.u-tintBgColor .u-fadeRight:after {background-image: linear-gradient(to right, rgba(53, 88, 118, 0) 0%, rgba(53, 88, 118, 1) 100%) !important;} .u-tintSpectrum .u-baseColor--borderLight {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--borderNormal {border-color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--borderDark {border-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--iconLight .svgIcon,.u-tintSpectrum .u-baseColor--iconLight.svgIcon {fill: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--iconNormal .svgIcon,.u-tintSpectrum .u-baseColor--iconNormal.svgIcon {fill: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--iconDark .svgIcon,.u-tintSpectrum .u-baseColor--iconDark.svgIcon {fill: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--textNormal {color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--textDark {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--textDarker {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--backgroundLight {background-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--backgroundNormal {background-color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--backgroundDark {background-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonLight {border-color: #9FB3C6 !important; color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonLight:hover {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonLight .icon:before,.u-tintSpectrum .u-baseColor--buttonLight .svgIcon {color: #9FB3C6 !important; fill: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonDark {border-color: #E9F1FA !important; color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--buttonDark:hover {border-color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--buttonDark .icon:before,.u-tintSpectrum .u-baseColor--buttonDark .svgIcon {color: #E9F1FA !important; fill: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonNormal {border-color: #C5D2E1 !important; color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--buttonNormal:hover {border-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonNormal .icon:before,.u-tintSpectrum .u-baseColor--buttonNormal .svgIcon {color: #C5D2E1 !important; fill: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--buttonDark.button--filled,.u-tintSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: #E9F1FA !important; border-color: #E9F1FA !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-baseColor--buttonNormal.button--filled,.u-tintSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: #C5D2E1 !important; border-color: #C5D2E1 !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-baseColor--link {color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--darken:hover,.u-tintSpectrum .u-baseColor--link.link--darken:focus,.u-tintSpectrum .u-baseColor--link.link--darken:active {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--dark {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-tintSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-tintSpectrum .u-baseColor--link.link--dark.link--darken:active {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--darker {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: #9FB3C6;} .u-tintSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: #9FB3C6;} .u-tintSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: #9FB3C6;} .u-tintSpectrum .ui-h1,.u-tintSpectrum .ui-h2,.u-tintSpectrum .ui-h3,.u-tintSpectrum .ui-h4,.u-tintSpectrum .ui-brand1,.u-tintSpectrum .ui-brand2,.u-tintSpectrum .ui-captionStrong {color: #FBFFFF !important; fill: #FBFFFF !important;} .u-tintSpectrum .ui-body,.u-tintSpectrum .ui-caps {color: #FBFFFF !important; fill: #FBFFFF !important;} .u-tintSpectrum .ui-summary,.u-tintSpectrum .ui-caption {color: #9FB3C6 !important; fill: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--borderLight {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--borderNormal {border-color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--borderDark {border-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--iconLight .svgIcon,.u-tintSpectrum .u-accentColor--iconLight.svgIcon {fill: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--iconNormal .svgIcon,.u-tintSpectrum .u-accentColor--iconNormal.svgIcon {fill: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--iconDark .svgIcon,.u-tintSpectrum .u-accentColor--iconDark.svgIcon {fill: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--textNormal {color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--hoverTextNormal:hover {color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--textDark {color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--backgroundLight {background-color: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--backgroundNormal {background-color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--backgroundDark {background-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonDark {border-color: #E9F1FA !important; color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--buttonDark:hover {border-color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--buttonDark .icon:before,.u-tintSpectrum .u-accentColor--buttonDark .svgIcon{color: #E9F1FA !important; fill: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: #C5D2E1 !important; color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--buttonNormal:hover {border-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonNormal .icon:before,.u-tintSpectrum .u-accentColor--buttonNormal .svgIcon{color: #C5D2E1 !important; fill: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-tintSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-accentColor--buttonDark.button--filled,.u-tintSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-tintSpectrum .u-accentColor--fillWhenActive.is-active {background-color: #E9F1FA !important; border-color: #E9F1FA !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-tintSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: #C5D2E1 !important; border-color: #C5D2E1 !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .postArticle.is-withAccentColors .markup--user,.u-tintSpectrum .postArticle.is-withAccentColors .markup--query {color: #C5D2E1 !important;} .u-accentColor--highlightFaint {background-color: rgba(233, 242, 253, 1) !important;} .u-accentColor--highlightStrong.is-active .svgIcon {fill: rgba(200, 228, 255, 1) !important;} .postArticle.is-withAccentColors .markup--quote.is-other {background-color: rgba(233, 242, 253, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-other {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(233, 242, 253, 1), rgba(233, 242, 253, 1));} .postArticle.is-withAccentColors .markup--quote.is-me {background-color: rgba(215, 235, 254, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-me {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(215, 235, 254, 1), rgba(215, 235, 254, 1));} .postArticle.is-withAccentColors .markup--quote.is-targeted {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-targeted {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));} .postArticle.is-withAccentColors .markup--quote.is-selected {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-selected {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));} .postArticle.is-withAccentColors .markup--highlight {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--highlight {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));}</style><style class="js-collectionStyleConstant">.u-imageBgColor {background-color: rgba(0, 0, 0, 0.24705882352941178);} .u-imageSpectrum .u-baseColor--borderLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-baseColor--borderNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-baseColor--borderDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--iconLight .svgIcon,.u-imageSpectrum .u-baseColor--iconLight.svgIcon {fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--iconNormal .svgIcon,.u-imageSpectrum .u-baseColor--iconNormal.svgIcon {fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--iconDark .svgIcon,.u-imageSpectrum .u-baseColor--iconDark.svgIcon {fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textNormal {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textDark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textDarker {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--backgroundLight {background-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-baseColor--backgroundNormal {background-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--backgroundDark {background-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important; color: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--buttonLight:hover {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-baseColor--buttonLight .icon:before,.u-imageSpectrum .u-baseColor--buttonLight .svgIcon {color: rgba(255, 255, 255, 0.8) !important; fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--buttonDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonDark:hover {border-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonDark .icon:before,.u-imageSpectrum .u-baseColor--buttonDark .svgIcon {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important; color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonNormal:hover {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonNormal .icon:before,.u-imageSpectrum .u-baseColor--buttonNormal .svgIcon {color: rgba(255, 255, 255, 0.9490196078431372) !important; fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonDark.button--filled,.u-imageSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: rgba(255, 255, 255, 1) !important; border-color: rgba(255, 255, 255, 1) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-baseColor--buttonNormal.button--filled,.u-imageSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: rgba(255, 255, 255, 0.9490196078431372) !important; border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-baseColor--link {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--darken:hover,.u-imageSpectrum .u-baseColor--link.link--darken:focus,.u-imageSpectrum .u-baseColor--link.link--darken:active {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--dark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-imageSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-imageSpectrum .u-baseColor--link.link--dark.link--darken:active {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--darker {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .ui-h1,.u-imageSpectrum .ui-h2,.u-imageSpectrum .ui-h3,.u-imageSpectrum .ui-h4,.u-imageSpectrum .ui-brand1,.u-imageSpectrum .ui-brand2,.u-imageSpectrum .ui-captionStrong {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .ui-body,.u-imageSpectrum .ui-caps {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .ui-summary,.u-imageSpectrum .ui-caption {color: rgba(255, 255, 255, 0.8) !important; fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-accentColor--borderLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-accentColor--borderNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-accentColor--borderDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--iconLight .svgIcon,.u-imageSpectrum .u-accentColor--iconLight.svgIcon {fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-accentColor--iconNormal .svgIcon,.u-imageSpectrum .u-accentColor--iconNormal.svgIcon {fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--iconDark .svgIcon,.u-imageSpectrum .u-accentColor--iconDark.svgIcon {fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--textNormal {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--hoverTextNormal:hover {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--textDark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--backgroundLight {background-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-accentColor--backgroundNormal {background-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--backgroundDark {background-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark:hover {border-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark .icon:before,.u-imageSpectrum .u-accentColor--buttonDark .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: rgba(255, 255, 255, 0.8980392156862745) !important; color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal:hover {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal .icon:before,.u-imageSpectrum .u-accentColor--buttonNormal .svgIcon{color: rgba(255, 255, 255, 0.9490196078431372) !important; fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-imageSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-accentColor--buttonDark.button--filled,.u-imageSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-imageSpectrum .u-accentColor--fillWhenActive.is-active {background-color: rgba(255, 255, 255, 1) !important; border-color: rgba(255, 255, 255, 1) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-imageSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: rgba(255, 255, 255, 0.9490196078431372) !important; border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .postArticle.is-withAccentColors .markup--user,.u-imageSpectrum .postArticle.is-withAccentColors .markup--query {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--highlightFaint {background-color: rgba(255, 255, 255, 0.2) !important;} .u-imageSpectrum .u-accentColor--highlightStrong.is-active .svgIcon {fill: rgba(255, 255, 255, 0.6) !important;} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-other {background-color: rgba(255, 255, 255, 0.2) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-other {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 0.2));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-me {background-color: rgba(255, 255, 255, 0.4) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-me {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.4), rgba(255, 255, 255, 0.4));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-targeted {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-targeted {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-selected {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-selected {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--highlight {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--highlight {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));}.u-resetSpectrum .u-tintBgColor {background-color: rgba(255, 255, 255, 1) !important;}.u-resetSpectrum .u-tintBgColor .u-fadeLeft:before {background-image: linear-gradient(to right, rgba(255, 255, 255, 1) 0%, rgba(255, 255, 255, 0) 100%) !important;}.u-resetSpectrum .u-tintBgColor .u-fadeRight:after {background-image: linear-gradient(to right, rgba(255, 255, 255, 0) 0%, rgba(255, 255, 255, 1) 100%) !important;} .u-resetSpectrum .u-baseColor--borderLight {border-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--borderNormal {border-color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--borderDark {border-color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--iconLight .svgIcon,.u-resetSpectrum .u-baseColor--iconLight.svgIcon {fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--iconNormal .svgIcon,.u-resetSpectrum .u-baseColor--iconNormal.svgIcon {fill: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--iconDark .svgIcon,.u-resetSpectrum .u-baseColor--iconDark.svgIcon {fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textNormal {color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textDark {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textDarker {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--backgroundLight {background-color: rgba(0, 0, 0, 0.09803921568627451) !important;} .u-resetSpectrum .u-baseColor--backgroundNormal {background-color: rgba(0, 0, 0, 0.2) !important;} .u-resetSpectrum .u-baseColor--backgroundDark {background-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight {border-color: rgba(0, 0, 0, 0.2980392156862745) !important; color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight:hover {border-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight .icon:before,.u-resetSpectrum .u-baseColor--buttonLight .svgIcon {color: rgba(0, 0, 0, 0.2980392156862745) !important; fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonDark {border-color: rgba(0, 0, 0, 0.6) !important; color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonDark:hover {border-color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--buttonDark .icon:before,.u-resetSpectrum .u-baseColor--buttonDark .svgIcon {color: rgba(0, 0, 0, 0.6) !important; fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonNormal {border-color: rgba(0, 0, 0, 0.4980392156862745) !important; color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonNormal:hover {border-color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonNormal .icon:before,.u-resetSpectrum .u-baseColor--buttonNormal .svgIcon {color: rgba(0, 0, 0, 0.4980392156862745) !important; fill: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonDark.button--filled,.u-resetSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: rgba(0, 0, 0, 0.2980392156862745) !important; border-color: rgba(0, 0, 0, 0.2980392156862745) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-baseColor--buttonNormal.button--filled,.u-resetSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: rgba(0, 0, 0, 0.2) !important; border-color: rgba(0, 0, 0, 0.2) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-baseColor--link {color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--darken:hover,.u-resetSpectrum .u-baseColor--link.link--darken:focus,.u-resetSpectrum .u-baseColor--link.link--darken:active {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--dark {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-resetSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-resetSpectrum .u-baseColor--link.link--dark.link--darken:active {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--link.link--darker {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .ui-h1,.u-resetSpectrum .ui-h2,.u-resetSpectrum .ui-h3,.u-resetSpectrum .ui-h4,.u-resetSpectrum .ui-brand1,.u-resetSpectrum .ui-brand2,.u-resetSpectrum .ui-captionStrong {color: rgba(0, 0, 0, 0.8) !important; fill: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .ui-body,.u-resetSpectrum .ui-caps {color: rgba(0, 0, 0, 0.6) !important; fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .ui-summary,.u-resetSpectrum .ui-caption {color: rgba(0, 0, 0, 0.2980392156862745) !important; fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-accentColor--borderLight {border-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--borderNormal {border-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--borderDark {border-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--iconLight .svgIcon,.u-resetSpectrum .u-accentColor--iconLight.svgIcon {fill: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--iconNormal .svgIcon,.u-resetSpectrum .u-accentColor--iconNormal.svgIcon {fill: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--iconDark .svgIcon,.u-resetSpectrum .u-accentColor--iconDark.svgIcon {fill: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--textNormal {color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--hoverTextNormal:hover {color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--textDark {color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundLight {background-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundNormal {background-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundDark {background-color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark {border-color: rgba(17, 128, 14, 1) !important; color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark:hover {border-color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark .icon:before,.u-resetSpectrum .u-accentColor--buttonDark .svgIcon{color: rgba(15, 115, 12, 1) !important; fill: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: rgba(26, 137, 23, 1) !important; color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal:hover {border-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal .icon:before,.u-resetSpectrum .u-accentColor--buttonNormal .svgIcon{color: rgba(17, 128, 14, 1) !important; fill: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-resetSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark.button--filled,.u-resetSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-resetSpectrum .u-accentColor--fillWhenActive.is-active {background-color: rgba(15, 115, 12, 1) !important; border-color: rgba(15, 115, 12, 1) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-resetSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: rgba(17, 128, 14, 1) !important; border-color: rgba(17, 128, 14, 1) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .postArticle.is-withAccentColors .markup--user,.u-resetSpectrum .postArticle.is-withAccentColors .markup--query {color: rgba(17, 128, 14, 1) !important;}</style><div class="container u-maxWidth1072 u-hide"><div class="u-marginTop10 u-paddingTop10 u-paddingBottom30 u-borderTopLighter"><div class="linkSet u-clearfix"><div class="u-floatRight u-textColorNormal u-baseColor--textNormal u-xs-floatLeft"><a class="button button--chromeless u-baseColor--buttonNormal u-marginLeft15 u-lineHeight35 u-xs-block u-xs-marginLeft0" href="https://towardsdatascience.com/about" title="About Towards Data Science" aria-label="About Towards Data Science" data-collection-slug="towards-data-science">About Towards Data Science</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://towardsdatascience.com/latest" title="Latest Stories for Towards Data Science" aria-label="Latest Stories for Towards Data Science" data-collection-slug="towards-data-science">Latest Stories</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://towardsdatascience.com/archive" title="Archive for Towards Data Science" aria-label="Archive for Towards Data Science" data-collection-slug="towards-data-science">Archive</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://medium.com/about">About Medium</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://policy.medium.com/medium-terms-of-service-9db0094a1e0f">Terms</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://policy.medium.com/medium-privacy-policy-f03bf92035c9">Privacy</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://medium.com/business">Teams</a></div></div></div></div></div></div></div><div class="loadingBar"></div><script>// <![CDATA[ window["obvInit"] = function (opt_embedded) {window["obvInit"]["embedded"] = opt_embedded; window["obvInit"]["ready"] = true;} // ]]></script><script>// <![CDATA[ var GLOBALS = {"audioUrl":"https://d1fcbxp97j4nb2.cloudfront.net","baseUrl":"https://towardsdatascience.com","buildLabel":"20241126-1740-root","currentUser":{"userId":"lo_78b2a15b33eb","isVerified":false,"subscriberEmail":"","hasPastMemberships":false,"isEnrolledInHightower":false,"isEligibleForHightower":true,"hightowerLastLockedAt":0,"isWriterProgramEnrolled":true,"isWriterProgramInvited":false,"isWriterProgramOptedOut":false,"writerProgramVersion":0,"writerProgramEnrolledAt":0,"friendLinkOnboarding":0,"hasAdditionalUnlocks":false,"hasApiAccess":false,"writerProgramDistributionSettingOptedIn":false,"isSuspended":false,"collectionOnboardingSeen":0,"atsQualifiedAt":0},"currentUserHasUnverifiedEmail":false,"isAuthenticated":false,"isCurrentUserVerified":false,"miroUrl":"https://cdn-images-1.medium.com","moduleUrls":{"base":"https://cdn-static-1.medium.com/_/fp/gen-js/main-base.bundle.95z8xpkUEidhPbIWsh2BVw.12.js","common-async":"https://cdn-static-1.medium.com/_/fp/gen-js/main-common-async.bundle.zqOu8dxaQRtqDyChHdOWlQ.12.js","hightower":"https://cdn-static-1.medium.com/_/fp/gen-js/main-hightower.bundle.y0UkxCxPBUbLlduk5XbwLQ.12.js","home-screens":"https://cdn-static-1.medium.com/_/fp/gen-js/main-home-screens.bundle.eZhPgaD8AglnbC5Rzxqvhg.12.js","misc-screens":"https://cdn-static-1.medium.com/_/fp/gen-js/main-misc-screens.bundle.XeRjm4FlHTBOsUvoOQ6Ppg.12.js","notes":"https://cdn-static-1.medium.com/_/fp/gen-js/main-notes.bundle.r9MSvtAmj0CMkyIC0CCCbA.12.js","payments":"https://cdn-static-1.medium.com/_/fp/gen-js/main-payments.bundle.AiXyuYj3AvxRA1-7HEyP9Q.12.js","posters":"https://cdn-static-1.medium.com/_/fp/gen-js/main-posters.bundle.fsLyLvZO4VZXL_zb4RXgeg.12.js","power-readers":"https://cdn-static-1.medium.com/_/fp/gen-js/main-power-readers.bundle.6Dyc-nVN2MDV_AM9XDAZug.12.js","pubs":"https://cdn-static-1.medium.com/_/fp/gen-js/main-pubs.bundle.rUyrVjlTpUj61voxnZosQw.12.js","stats":"https://cdn-static-1.medium.com/_/fp/gen-js/main-stats.bundle.2I2tXSo7-rbez_WYXfga0Q.12.js"},"previewConfig":{"weightThreshold":1,"weightImageParagraph":0.51,"weightIframeParagraph":0.8,"weightTextParagraph":0.08,"weightEmptyParagraph":0,"weightP":0.003,"weightH":0.005,"weightBq":0.003,"minPTextLength":60,"truncateBoundaryChars":20,"detectTitle":true,"detectTitleLevThreshold":0.15},"productName":"Medium","supportsEdit":false,"termsUrl":"//policy.medium.com/medium-terms-of-service-9db0094a1e0f","textshotHost":"textshot.textshot-production.svc.cluster.local","transactionId":"1732731033899:b8dabda99b09","useragent":{"browser":"ie","family":"ie","os":"windows","version":7,"supportsDesktopEdit":false,"supportsInteract":false,"supportsView":true,"isMobile":false,"isTablet":false,"isNative":false,"supportsFileAPI":false,"isTier1":false,"clientVersion":"","clientChannel":"","supportsRealScrollEvents":false,"supportsVhUnits":false,"ruinsViewportSections":false,"supportsHtml5Video":false,"supportsMagicUnderlines":false,"isWebView":false,"isFacebookWebView":false,"supportsProgressiveMedia":false,"supportsPromotedPosts":true,"isBot":false,"isNativeIphone":false,"supportsCssVariables":false,"supportsVideoSections":true,"emojiSupportLevel":1,"isSearchBot":false,"isSyndicationBot":false,"isNativeAndroid":false,"isNativeIos":false,"isSeoAuditBot":false,"isInternalApp":false,"supportsApplePay":false,"supportsScrollableMetabar":false},"variants":{"allow_access":true,"allow_signup":true,"allow_test_auth":"disallow","android_enable_editor_new_publishing_flow":true,"android_enable_friend_links_creation":true,"android_enable_friend_links_postpage_banners":true,"android_enable_image_sharer":true,"android_enable_lists_v2":true,"android_enable_syntax_highlight":true,"android_enable_topic_portals":true,"android_rating_prompt_stories_read_threshold":2,"android_two_hour_refresh":true,"available_annual_plan":"2c754bcc2995","available_annual_premium_plan":"4a442ace1476","available_monthly_plan":"60e220181034","available_monthly_premium_plan":"12a660186432","browsable_stream_config_bucket":"curated-topics","can_receive_tips_v0":true,"can_send_tips_v0":true,"coronavirus_topic_recirc":true,"disable_partner_program_enrollment":true,"enable_abandoned_cart_promotion_email":true,"enable_android_dynamic_aspirational_paywall":true,"enable_android_dynamic_programming_paywall":true,"enable_android_miro_v2":true,"enable_android_offline_reading":true,"enable_android_verified_author":true,"enable_app_flirty_thirty":true,"enable_apple_sign_in":true,"enable_apple_webhook":true,"enable_aurora_pub_follower_page":true,"enable_author_cards":true,"enable_author_cards_byline":true,"enable_auto_follow_on_subscribe":true,"enable_automod":true,"enable_bayesian_average_pub_search":true,"enable_bg_post_post":true,"enable_billing_frequency_on_step2":"control","enable_boost_nia_v01":true,"enable_braintree_apple_pay":true,"enable_braintree_client":true,"enable_braintree_google_pay":true,"enable_braintree_integration":true,"enable_braintree_paypal":true,"enable_braintree_trial_membership":true,"enable_braintree_webhook":true,"enable_branch_io":true,"enable_cache_less_following_feed":true,"enable_configure_pronouns":true,"enable_conversion_model_v2":"group_2","enable_conversion_ranker_v2":"control","enable_creator_welcome_email":true,"enable_deprecate_legacy_providers_v3":true,"enable_diversification_rex":true,"enable_entities_to_follow_v2":true,"enable_eventstats_event_processing":true,"enable_explicit_signals":true,"enable_explicit_signals_updated_post_previews":true,"enable_footer_app_buttons":true,"enable_google_one_tap":true,"enable_google_webhook":true,"enable_group_gifting":true,"enable_iceland_forced_android":true,"enable_import":true,"enable_intrinsic_automatic_actions":true,"enable_ios_autorefresh":true,"enable_ios_dynamic_paywall_aspiriational":true,"enable_ios_dynamic_paywall_programming":true,"enable_ios_easy_resubscribe":true,"enable_ios_offline_reading":true,"enable_legacy_feed_in_iceland":true,"enable_lite_archive_page":true,"enable_lite_continue_this_thread":true,"enable_lite_homepage":true,"enable_lite_response_markup":true,"enable_lite_server_upstream_deadlines":true,"enable_lo_homepage":"control","enable_maim_the_meter":true,"enable_marketing_emails":true,"enable_mastodon_avatar_upload":true,"enable_mastodon_for_members":true,"enable_mastodon_for_members_username_selection":true,"enable_medium2_kbfd":true,"enable_members_only_audio":true,"enable_ml_rank_rex_anno":true,"enable_moc_load_processor_all_recs_surfaces":true,"enable_moc_load_processor_c":true,"enable_moc_load_processor_first_story":true,"enable_new_manage_membership_flow":true,"enable_new_stripe_customers":true,"enable_newsletter_lo_flow_custom_domains":true,"enable_pill_based_home_feed":true,"enable_pp_country_expansion":true,"enable_pp_v4":true,"enable_pre_pp_v4":true,"enable_premium_tier":true,"enable_premium_tier_badge":true,"enable_publication_hierarchy_web":true,"enable_ranker_v10":"control","enable_recaptcha_enterprise":true,"enable_recirc_model":true,"enable_recommended_publishers_query":true,"enable_rex_aggregator_v2":true,"enable_rex_new_push_notification_endpoint":true,"enable_rex_reading_history":true,"enable_rito_upstream_deadlines":true,"enable_seamless_social_sharing":true,"enable_see_pronouns":true,"enable_sharer_create_post_share_key":true,"enable_sharer_validate_post_share_key":true,"enable_simplified_digest_v2_b":true,"enable_speechify_ios":true,"enable_speechify_widget":true,"enable_sprig":true,"enable_starspace":true,"enable_susi_redesign_android":true,"enable_susi_redesign_ios":true,"enable_switch_plan_premium_tier":true,"enable_tag_recs":true,"enable_tick_landing_page":true,"enable_tipping_v0_android":true,"enable_tipping_v0_ios":true,"enable_tribute_landing_page":true,"enable_update_explore_wtf":true,"enable_update_topic_portals_wtf":true,"enable_updated_pub_recs_ui":true,"enable_verifications_service":true,"glyph_font_set":"m2-unbound-source-serif-pro","goliath_externalsearch_enable_comment_deindexation":true,"ios_display_paywall_after_onboarding":true,"ios_enable_friend_links_creation":true,"ios_enable_friend_links_postpage_banners":true,"ios_enable_home_post_menu":true,"ios_enable_lock_responses":true,"ios_enable_verified_book_author":true,"ios_iceland_nux":true,"ios_in_app_free_trial":true,"ios_remove_twitter_onboarding_step":true,"ios_social_share_sheet":true,"limit_post_referrers":true,"limit_user_follows":true,"mobile_custom_app_icon":true,"num_post_bottom_responses_to_show":1,"onboarding_tags_from_top_views":true,"reader_fair_distribution_non_qp":true,"redefined_top_posts":true,"reengagement_notification_duration":3,"rex_generator_max_candidates":1000,"signin_services":"twitter,facebook,google,email,google-fastidv,google-one-tap,apple","signup_services":"twitter,facebook,google,email,google-fastidv,google-one-tap,apple","skip_fs_cache_user_vals":true},"xsrfToken":"","iosAppId":"828256236","supportEmail":"yourfriends@medium.com","fp":{"/icons/monogram-mask.svg":"https://cdn-static-1.medium.com/_/fp/icons/monogram-mask.KPLCSFEZviQN0jQ7veN2RQ.12.svg","/icons/favicon-medium-editor.ico":"https://cdn-static-1.medium.com/_/fp/icons/favicon-medium-editor.PiakrZWB7Yb80quUVQWM6g.12.ico"},"authBaseUrl":"https://medium.com","imageUploadSizeMb":25,"isAuthDomainRequest":false,"domainCollectionSlug":"towards-data-science","algoliaApiEndpoint":"https://MQ57UUUQZ2-dsn.algolia.net","algoliaAppId":"MQ57UUUQZ2","algoliaSearchOnlyApiKey":"394474ced050e3911ae2249ecc774921","iosAppStoreUrl":"https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8","iosAppLinkBaseUrl":"medium:","algoliaIndexPrefix":"medium_","androidPlayStoreUrl":"https://play.google.com/store/apps/details?id=com.medium.reader","googleClientId":"216296035834-k1k6qe060s2tp2a2jam4ljdcms00sttg.apps.googleusercontent.com","androidPackage":"com.medium.reader","androidPlayStoreMarketScheme":"market://details?id=com.medium.reader","googleAuthUri":"https://accounts.google.com/o/oauth2/auth","androidScheme":"medium","layoutData":{"useDynamicScripts":false,"googleAnalyticsTrackingCode":"G-7JY7T788PK","jsShivUrl":"https://cdn-static-1.medium.com/_/fp/js/shiv.RI2ePTZ5gFmMgLzG5bEVAA.12.js","useDynamicCss":false,"faviconUrl":"https://miro.medium.com/v2/5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19","faviconImageId":"5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19","fontSets":[{"id":8,"url":"https://glyph.medium.com/css/e/sr/latin/e/ssr/latin/e/ssb/latin/m2-unbound-source-serif-pro.css"},{"id":11,"url":"https://glyph.medium.com/css/m2-unbound-source-serif-pro.css"},{"id":9,"url":"https://glyph.medium.com/css/mkt.css"}],"glyphUrl":"https://glyph.medium.com"},"authBaseUrlRev":"moc.muidem//:sptth","stripePublishableKey":"pk_live_7FReX44VnNIInZwrIIx6ghjl","archiveUploadSizeMb":100,"previewConfig2":{"weightThreshold":1,"weightImageParagraph":0.05,"raiseImage":true,"enforceHeaderHierarchy":true,"isImageInsetRight":true},"isAmp":false,"iosScheme":"medium","facebook":{"key":"542599432471018","namespace":"medium-com","scope":{"default":["public_profile","email"],"connect":["public_profile","email"],"login":["public_profile","email"],"share":["public_profile","email"]}},"memberContentTopicId":"13d7efd82fb2","audioContentTopicId":"3792abbd134","isDoNotAuth":false,"buggle":{"videoUrl":"https://cdn-videos-1.medium.com","audioUrl":"https://cdn-audio-1.medium.com"},"referrerType":5,"partnerProgramEmail":"partnerprogram@medium.com","recaptchaKey":"6Lfc37IUAAAAAKGGtC6rLS13R1Hrw_BqADfS1LRk","countryCode":"SG","bypassMeter":false,"branchKey":"key_live_ofxXr2qTrrU9NqURK8ZwEhknBxiI6KBm","paypal":{"clientMode":"production","oneYearGift":{"name":"Medium Membership (1 Year, Digital Gift Code)","description":"Unlimited access to the best and brightest stories on Medium. Gift codes can be redeemed at medium.com/redeem.","price":"50.00","currency":"USD","sku":"membership-gift-1-yr"}},"collectionConfig":{"mediumOwnedAndOperatedCollectionIds":["8a9336e5bb4","b7e45b22fec3","193b68bd4fba","8d6b8a439e32","54c98c43354d","3f6ecf56618","d944778ce714","92d2092dc598","ae2a65f35510","1285ba81cada","544c7006046e","fc8964313712","40187e704f1c","88d9857e584e","7b6769f2748b","bcc38c8f6edf","cef6983b292","cb8577c9149e","444d13b52878","713d7dbc99b0","ef8e90590e66","191186aaafa0","55760f21cdc5","9dc80918cc93","bdc4052bbdba","8ccfed20cbb2"]},"bypassMeterWithShareKey":false,"recaptcha3Key":"6Lf8R9wUAAAAABMI_85Wb8melS7Zj6ziuf99Yot5","braintreeClientKey":"production_zjkj96jm_m56f8fqpf7ngnrd4","cdcMessaging":[{"text":"For more information on the novel coronavirus and Covid-19, visit ","href":"","type":"text","start":0,"end":0},{"text":"cdc.gov","href":"https://www.cdc.gov/coronavirus/2019-nCoV","type":"link","start":66,"end":73},{"text":".","href":"","type":"text","start":0,"end":0}],"braintree":{"merchantId":"m56f8fqpf7ngnrd4"},"diagnostics":{},"domain":"medium.com"} // ]]></script><script charset="UTF-8" src="https://cdn-static-1.medium.com/_/fp/gen-js/main-base.bundle.95z8xpkUEidhPbIWsh2BVw.12.js" async></script><script>// <![CDATA[ window["obvInit"]({"references":{"Collection":{"7f60cf5620c9":{"id":"7f60cf5620c9","name":"Towards Data Science","slug":"towards-data-science","tags":["DATA SCIENCE","MACHINE LEARNING","ARTIFICIAL INTELLIGENCE","DATA ENGINEERING","DATA"],"creatorId":"9c70285657bb","description":"Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals.","shortDescription":"Your home for data science and AI.","image":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"metadata":{"followerCount":768703,"activeAt":1732726931837},"virtuals":{"permissions":{"canPublish":false,"canPublishAll":false,"canRepublish":false,"canRemove":false,"canManageAll":false,"canSubmit":false,"canEditPosts":false,"canAddWriters":false,"canViewStats":false,"canSendNewsletter":false,"canViewLockedPosts":false,"canViewCloaked":false,"canEditOwnPosts":false,"canBeAssignedAuthor":false,"canEnrollInHightower":false,"canLockPostsForMediumMembers":false,"canLockOwnPostsForMediumMembers":false,"canViewNewsletterV2Stats":false,"canCreateNewsletterV3":false},"isSubscribed":false,"isEnrolledInHightower":false,"isEligibleForHightower":false,"isSubscribedToCollectionEmails":false,"isMuted":false,"canToggleEmail":false,"isWriter":false},"logo":{"imageId":"1*cFFKn8rFH4ZndmaYeAs6iQ.png","filter":"","backgroundSize":"","originalWidth":2381,"originalHeight":743,"strategy":"resample","height":0,"width":0},"twitterUsername":"TDataScience","collectionMastheadId":"8b6aceffde6","domain":"towardsdatascience.com","sections":[{"type":2,"collectionHeaderMetadata":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":2,"postIds":[]}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":9,"postIds":[],"sectionHeader":"Latest"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"f9f3fdba6ebf"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Editors Pick","sectionHeader":"Editors' Picks"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":2,"postIds":[],"tagSlug":"Tds Features","sectionHeader":"Features"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"efaedc412a41"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["60bb69a22759","c57724e9c461","69019493b259"],"sectionHeader":"Trending articles"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["182a5ef6588c","e24b50e1d292","68b2303cc9c5"],"sectionHeader":"Popular from our archive"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Deep Dives","sectionHeader":"Deep Dives"}},{"type":1,"postListMetadata":{"source":3,"layout":5,"number":3,"postIds":["d691af11cc2f","c2c8e712c971","3bf37f75a345"],"sectionHeader":"About"}},{"type":1,"postListMetadata":{"source":1,"layout":5,"number":16,"postIds":[],"sectionHeader":"Latest"}}],"tintColor":"#FF355876","lightText":true,"favicon":{"imageId":"1*VzTUkfeGymHP4Bvav-T-lA.png","filter":"","backgroundSize":"","originalWidth":207,"originalHeight":206,"strategy":"resample","height":0,"width":0},"colorPalette":{"defaultBackgroundSpectrum":{"colorPoints":[{"color":"#FF668AAA","point":0},{"color":"#FF61809D","point":0.1},{"color":"#FF5A7690","point":0.2},{"color":"#FF546C83","point":0.3},{"color":"#FF4D6275","point":0.4},{"color":"#FF455768","point":0.5},{"color":"#FF3D4C5A","point":0.6},{"color":"#FF34414C","point":0.7},{"color":"#FF2B353E","point":0.8},{"color":"#FF21282F","point":0.9},{"color":"#FF161B1F","point":1}],"backgroundColor":"#FFFFFFFF"},"tintBackgroundSpectrum":{"colorPoints":[{"color":"#FF355876","point":0},{"color":"#FF4D6C88","point":0.1},{"color":"#FF637F99","point":0.2},{"color":"#FF7791A8","point":0.3},{"color":"#FF8CA2B7","point":0.4},{"color":"#FF9FB3C6","point":0.5},{"color":"#FFB2C3D4","point":0.6},{"color":"#FFC5D2E1","point":0.7},{"color":"#FFD7E2EE","point":0.8},{"color":"#FFE9F1FA","point":0.9},{"color":"#FFFBFFFF","point":1}],"backgroundColor":"#FF355876"},"highlightSpectrum":{"colorPoints":[{"color":"#FFEDF4FC","point":0},{"color":"#FFE9F2FD","point":0.1},{"color":"#FFE6F1FD","point":0.2},{"color":"#FFE2EFFD","point":0.3},{"color":"#FFDFEEFD","point":0.4},{"color":"#FFDBECFE","point":0.5},{"color":"#FFD7EBFE","point":0.6},{"color":"#FFD4E9FE","point":0.7},{"color":"#FFD0E7FF","point":0.8},{"color":"#FFCCE6FF","point":0.9},{"color":"#FFC8E4FF","point":1}],"backgroundColor":"#FFFFFFFF"},"darkBackgroundSpectrum":{"colorPoints":[{"color":"#FF7EA2C3","point":0},{"color":"#FF8AAAC9","point":0.1},{"color":"#FF95B2CE","point":0.2},{"color":"#FFA0BAD3","point":0.3},{"color":"#FFABC2D9","point":0.4},{"color":"#FFB6CADE","point":0.5},{"color":"#FFC1D2E3","point":0.6},{"color":"#FFCBD9E8","point":0.7},{"color":"#FFD6E1EC","point":0.8},{"color":"#FFE0E8F1","point":0.9},{"color":"#FFEAEFF6","point":1}],"backgroundColor":"#FF000000"}},"navItems":[{"type":8,"title":"Latest","url":"https://towardsdatascience.com/latest"},{"type":4,"title":"Editors' Picks","url":"https://towardsdatascience.com/editors-picks/home","topicId":"20b4f3e27fbe","source":"topicId"},{"type":4,"title":"Deep Dives","url":"https://towardsdatascience.com/deep-dives/home","topicId":"8ad314313527","source":"topicId"},{"type":4,"title":"About","url":"https://towardsdatascience.com/about-us/home","topicId":"e4bc46bb3ab0","source":"topicId"},{"type":2,"title":"Contribute","postId":"96667b06af5","url":"https://towardsdatascience.com/questions-96667b06af5","source":"postId"},{"type":3,"title":"Newsletter","url":"https://medium.com/towards-data-science/newsletter"}],"colorBehavior":2,"collectionFeatures":[29,30,27,25],"ampLogo":{"imageId":"","filter":"","backgroundSize":"","originalWidth":0,"originalHeight":0,"strategy":"resample","height":0,"width":0},"header":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5},"paidForDomainAt":1509037374118,"subscriberCount":768703,"tagline":"A Medium publication sharing concepts, ideas and codes.","isOptedIntoAurora":false,"newsletterV3":{"newsletterV3Id":"d6fe9076899","type":1,"name":"The Variable","description":"Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools.","collectionId":"7f60cf5620c9","newsletterSlug":"the-variable","isSubscribed":false,"showPromo":true,"avatarImageId":"","creatorId":"895063a310f4","showNewsletterPostsInCollectionHome":true,"exportableSubscribersCount":52145,"subscribersCount":132088,"promoHeadline":"","promoBody":"","replyToEmail":""},"isCurationAllowedByDefault":false,"polarisCoverImage":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"ptsQualifiedAt":1616092952992,"type":"Collection"}},"User":{"d18c7303c5a2":{"userId":"d18c7303c5a2","name":"Bradney Smith","username":"bradneysmith","createdAt":1646074158275,"imageId":"1*tVLKwOvdthd64kORuXntTg.jpeg","backgroundImageId":"","bio":"AI Lead @ Spotted Zebra 🦓 My work focuses on Natural Language Processing (NLP) and data science communication. Check out my \"LLMs from Scratch\" series !","twitterScreenName":"","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedAndroidApp":1702116149825,"isMembershipTrialEligible":false,"facebookDisplayName":"Brad Smith","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[48,47,29,12,41,8,50,19,2,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-gb","type":"User"},"8177b59b4815":{"userId":"8177b59b4815","name":"Isaac Tham","username":"iztham","createdAt":1520688682056,"imageId":"1*gClEVxqI9oy9DFqii1uYzw@2x.jpeg","backgroundImageId":"","bio":"economics enthusiast, data science devotee, f1 fanatic, son of God","twitterScreenName":"thamsuppp","allowNotes":1,"mediumMemberAt":1718280937000,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"Isaac Tham","optInToIceland":true,"userFlags":[3],"subdomainCreatedAt":1655251284968,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,47,29,12,42,8,3,19,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"bdc4072cbfdc":{"userId":"bdc4072cbfdc","name":"Daniel Warfield","username":"danielwarfield1","createdAt":1683386100402,"imageId":"1*YaEyucgUXLb6TwSFW-ucXg.jpeg","backgroundImageId":"","bio":"Data Scientist and Educator, teaching machine learning Intuitively and Exhaustively:https://iaee.substack.com/ | contact: https://danielwarfield.dev/","twitterScreenName":"daniel_war50501","allowNotes":1,"mediumMemberAt":1683386175000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedAndroidApp":1686191274510,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[48,47,29,44,50,37,19,10,49],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"dadb1d33c05a":{"userId":"dadb1d33c05a","name":"Tessa Xie","username":"tessaxie","createdAt":1511743309947,"imageId":"1*f7TJIobLYY_GzR0542Kerg.jpeg","backgroundImageId":"","bio":"Data Science Manager in Tech, Ex-McKinsey Data Scientist; Avid Traveler, Diver and Painter. 🤿👩‍🎨 Writing a DS newsletter at https://www.divingintodata.com/","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1601142044000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1600661205486,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,22,21,19,18,12,11,9,8,5,37,3,2,1],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"88982a88b4e5":{"userId":"88982a88b4e5","name":"Jarom Hulet","username":"jarom.hulet","createdAt":1572526741374,"imageId":"1*JVSdktkDG3J4rxBEmZMciQ.jpeg","backgroundImageId":"","bio":"Data Scientist | Self-Proclaimed Data Philosopher","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1691064022000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedAndroidApp":1691842745811,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[48,50,29,37,19,49],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"4a7a0f39dccd":{"userId":"4a7a0f39dccd","name":"Jens Linden, PhD","username":"jens-linden","createdAt":1724441131976,"imageId":"1*HwlPPLzZqhFbGHzy8PIECg.jpeg","backgroundImageId":"","bio":"I am Jens, a data expert with 20 years of professional experience. I help organizations to become data-driven.","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1725993322000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1725217990093,"isMembershipTrialEligible":false,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"userDismissableFlags":[19,47,29],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"de-de","type":"User"},"a3ee742fae3":{"userId":"a3ee742fae3","name":"Jon Flynn","username":"jon.flynn2","createdAt":1574606749926,"imageId":"1*16AI0ZxosqDanJ22tGkA_Q.jpeg","backgroundImageId":"","bio":"Software Developer at The Guardian","twitterScreenName":"willjon100","allowNotes":1,"mediumMemberAt":1673394606000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1697265985777,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"userDismissableFlags":[29,12,8,6,5,19,2,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-gb","type":"User"},"7e6350a085ee":{"userId":"7e6350a085ee","name":"Mahyar Aboutalebi, Ph.D. 🎓","username":"mahyar.aboutalebi","createdAt":1689093790032,"imageId":"1*1VPJF8M22sDZ9jxSSdAQOg.jpeg","backgroundImageId":"","bio":"🌐 Geospatial Data Scientist 💡 Enthusiastic Explorer 📊 Passionate about Large Datasets 🤖 Bringing AI to Life 🚀 From Raw Data To Actionable Insights","twitterScreenName":"Mahyarona","allowNotes":1,"mediumMemberAt":1689775617000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1689775781588,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29,37,19,20],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"7e12c71dfa81":{"userId":"7e12c71dfa81","name":"TDS Editors","username":"towardsdatascience","createdAt":1476923573605,"imageId":"1*W8dhinLQHGYmwipTuH0k3A.png","backgroundImageId":"","bio":"Building a vibrant data science and machine learning community. Share your insights and projects with our global audience: bit.ly/write-for-tds","twitterScreenName":"TDataScience","allowNotes":1,"mediumMemberAt":1573052229000,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"subdomainCreatedAt":1605221457990,"hasCompletedProfile":false,"userDismissableFlags":[32,29,21,19,18,46,12,44,8,6,5,3,2,1,33],"hasSeenIcelandOnboarding":false,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-ca","type":"User"},"7606b796c9df":{"userId":"7606b796c9df","name":"Sara Nóbrega","username":"saranobregafn","createdAt":1654258719613,"imageId":"1*l9Hzr71Wz_D2TGz0X8kr8Q.jpeg","backgroundImageId":"","bio":"Data Scientist specializing in AI Engineering | Physics MSc | Entrepreneur at heart | Passionate Traveler https://www.linkedin.com/in/saranfn/","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1713257747000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedAndroidApp":1713605694870,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[8,48,50,29,19,49],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"pt-pt","type":"User"},"1c040843e458":{"userId":"1c040843e458","name":"Leo Anello","username":"panData","createdAt":1675551357378,"imageId":"1*Dn6n6ct8Y_AL4zvtFcUetQ.jpeg","backgroundImageId":"","bio":"☕ My personal repository showcasing the Projects I've applied, studied, & self-taught skills.","allowNotes":1,"mediumMemberAt":1711738655000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1690592255357,"firstOpenedAndroidApp":1675690938453,"isMembershipTrialEligible":true,"optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29,44,6,50,37,30,36,19,2,33,49],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"0f9f21155c28":{"userId":"0f9f21155c28","name":"Hussein Fellahi","username":"h.fellahi","createdAt":1720359911910,"imageId":"1*AN6dPCSfMNT8te_4aWw0cg.png","backgroundImageId":"","bio":"","twitterScreenName":"","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"userDismissableFlags":[29],"hasSeenIcelandOnboarding":false,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"db46d46d4d38":{"userId":"db46d46d4d38","name":"David Teather","username":"davidteather","createdAt":1594317694291,"imageId":"1*VQvfsfJPA3hnV794zJj9sA.png","backgroundImageId":"","bio":"Most known for TikTokAPI | Working on Everything Web Scraping, check it out here https://github.com/davidteather/everything-web-scraping","twitterScreenName":"david_teather","allowNotes":1,"mediumMemberAt":1731111911168,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1731155160295,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[29,12,9,8,21,19,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"8ab3accce432":{"userId":"8ab3accce432","name":"Aris Tsakpinis","username":"aris.tsakpinis","createdAt":1550346992768,"imageId":"1*HiuDPBJ3_XhJLRi40lBb7Q.jpeg","backgroundImageId":"","bio":"WW Lead GenAI Open-Source @ AWS - PhD candidate for ML Engineering @ University of Regensburg — All opinions are my own","twitterScreenName":"","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1716500889843,"firstOpenedAndroidApp":1574870692980,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"userDismissableFlags":[8,29,12,41],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"}},"Post":{"7f9c6e6b7251":{"id":"7f9c6e6b7251","versionId":"1fbff7f06258","creatorId":"d18c7303c5a2","homeCollectionId":"7f60cf5620c9","title":"Mistral 7B Explained: Towards More Efficient Language Models","detectedLanguage":"en","latestVersion":"1fbff7f06258","latestPublishedVersion":"1fbff7f06258","hasUnpublishedEdits":false,"latestRev":4382,"createdAt":1731444967946,"updatedAt":1732675628818,"acceptedAt":0,"firstPublishedAt":1732645578729,"latestPublishedAt":1732645578729,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"RMS Norm, RoPE, GQA, SWA, KV Cache, and more!","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*TRfxFbnLDx9IqpvghpbURA.jpeg","filter":"","backgroundSize":"","originalWidth":1152,"originalHeight":896,"strategy":"resample","height":0,"width":0},"wordCount":10304,"imageCount":36,"readingTime":41.433018867924524,"subtitle":"RMS Norm, RoPE, GQA, SWA, KV Cache, and more!","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":36,"isBookmarked":false,"tags":[{"slug":"mistral","name":"Mistral","postCount":375,"metadata":{"postCount":375,"coverImage":{"id":"1*TRfxFbnLDx9IqpvghpbURA.jpeg","originalWidth":1152,"originalHeight":896,"isFeatured":true}},"type":"Tag"},{"slug":"large-language-models","name":"Large Language Models","postCount":15001,"metadata":{"postCount":15001,"coverImage":{"id":"1*TRfxFbnLDx9IqpvghpbURA.jpeg","originalWidth":1152,"originalHeight":896,"isFeatured":true}},"type":"Tag"},{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":458956,"metadata":{"postCount":458956,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":354532,"metadata":{"postCount":354532,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"#5dd1","alts":[],"httpStatus":0},{"url":"#2364","alts":[],"httpStatus":0},{"url":"#c780","alts":[],"httpStatus":0},{"url":"#f353","alts":[],"httpStatus":0},{"url":"#d81b","alts":[],"httpStatus":0},{"url":"#a0d1","alts":[],"httpStatus":0},{"url":"#bc24","alts":[],"httpStatus":0},{"url":"#4436","alts":[],"httpStatus":0},{"url":"#a121","alts":[],"httpStatus":0},{"url":"https://huggingface.co/mistralai","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2310.06825","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1803.02155","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1910.07467","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1607.06450","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1910.10683","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2304.06364","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2009.03300","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1901.02860","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2210.09261","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2305.13245","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/1911.02150","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2104.09864","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2004.05150","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/1612.08083","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/1910.10683","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/1706.03762","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2204.02311","alts":[],"httpStatus":200},{"url":"https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py","alts":[],"httpStatus":200},{"url":"https://medium.com/p/cedc9f72de4e","alts":[{"type":2,"url":"medium://p/cedc9f72de4e"},{"type":3,"url":"medium://p/cedc9f72de4e"}],"httpStatus":200},{"url":"https://medium.com/p/eb9326c6ab7c/","alts":[{"type":3,"url":"medium://p/eb9326c6ab7c"},{"type":2,"url":"medium://p/eb9326c6ab7c"}],"httpStatus":200},{"url":"https://link.springer.com/article/10.1007/BF00342633","alts":[],"httpStatus":200},{"url":"https://medium.com/p/d7a9f0f4d94e","alts":[{"type":3,"url":"medium://p/d7a9f0f4d94e"},{"type":2,"url":"medium://p/d7a9f0f4d94e"}],"httpStatus":200},{"url":"https://medium.com/p/eb9326c6ab7c","alts":[{"type":3,"url":"medium://p/eb9326c6ab7c"},{"type":2,"url":"medium://p/eb9326c6ab7c"}],"httpStatus":200},{"url":"https://medium.com/p/9f87602e4a11","alts":[{"type":2,"url":"medium://p/9f87602e4a11"},{"type":3,"url":"medium://p/9f87602e4a11"}],"httpStatus":200}],"version":"0.3","generatedAt":1732645582236},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":204,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"mistral-7b-explained-towards-more-efficient-language-models","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"mistral-7b-explained-towards-more-efficient-language-models-7f9c6e6b7251","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*TRfxFbnLDx9IqpvghpbURA.jpeg","originalWidth":1152,"originalHeight":896,"isFeatured":true}},{"name":"b57a","type":3,"text":"Mistral 7B Explained: Towards More Efficient Language Models","markups":[],"alignment":1},{"name":"9c20","type":13,"text":"RMS Norm, RoPE, GQA, SWA, KV Cache, and…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"RMS Norm, RoPE, GQA, SWA, KV Cache, and more!"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"0f164e675ad2","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"b57a","type":3,"text":"Mistral 7B Explained: Towards More Efficient Language Models","markups":[]},{"name":"9c20","type":13,"text":"RMS Norm, RoPE, GQA, SWA, KV Cache, and more!","markups":[]},{"name":"f08d","type":1,"text":"Part 5 in the “LLMs from Scratch” series — a complete guide to understanding and building Large Language Models. If you are interested in learning more about how these models work I encourage you to read:","markups":[{"type":1,"start":0,"end":204}]},{"name":"1153","type":9,"text":"Part 1: Tokenization — A Complete Guide","markups":[{"type":3,"start":0,"end":39,"href":"https://medium.com/p/cedc9f72de4e","title":"","rel":"","anchorType":0}]},{"name":"ab90","type":9,"text":"Part 2: Word Embeddings with word2vec from…","markups":[{"type":3,"start":0,"end":60,"href":"https://medium.com/p/eb9326c6ab7c/","title":"","rel":"","anchorType":0}]}],"sections":[{"name":"0d80","startIndex":0}]},"isFullContent":false,"subtitle":"RMS Norm, RoPE, GQA, SWA, KV Cache, and more!"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"eee3033baa39":{"id":"eee3033baa39","versionId":"a3e77444ef2c","creatorId":"8177b59b4815","homeCollectionId":"7f60cf5620c9","title":"The Economics of Artificial Intelligence — what does automation mean for workers?","detectedLanguage":"en","latestVersion":"a3e77444ef2c","latestPublishedVersion":"a3e77444ef2c","hasUnpublishedEdits":false,"latestRev":1240,"createdAt":1731916666096,"updatedAt":1732632624118,"acceptedAt":0,"firstPublishedAt":1732562260742,"latestPublishedAt":1732632624118,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Despite tremendous progress in AI, the economic implications of AI remain inadequately understood, with unsatisfactory insights from AI…","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*x8AJtp9Saog3IWmvqNs5Gw.png","filter":"","backgroundSize":"","originalWidth":993,"originalHeight":611,"strategy":"resample","height":0,"width":0},"wordCount":7795,"imageCount":11,"readingTime":30.71509433962264,"subtitle":"Despite tremendous progress in AI, the economic implications of AI remain inadequately understood, with unsatisfactory insights from AI…","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":25,"isBookmarked":false,"tags":[{"slug":"economics","name":"Economics","postCount":122266,"metadata":{"postCount":122266,"coverImage":{"id":"1*gjb0hF7VdnVfnvoG7x2Sjw.jpeg"}},"type":"Tag"},{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":458956,"metadata":{"postCount":458956,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"},{"slug":"generative-ai-tools","name":"Generative Ai Tools","postCount":17213,"metadata":{"postCount":17213,"coverImage":{"id":"1*x8AJtp9Saog3IWmvqNs5Gw.png","originalWidth":993,"originalHeight":611,"isFeatured":true}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":4,"links":{"entries":[{"url":"#_ftnref38","alts":[],"httpStatus":0},{"url":"#_ftnref33","alts":[],"httpStatus":0},{"url":"#717c","alts":[],"httpStatus":0},{"url":"#b150","alts":[],"httpStatus":0},{"url":"#_ftnref16","alts":[],"httpStatus":0},{"url":"#_ftnref20","alts":[],"httpStatus":0},{"url":"#_ftn26","alts":[],"httpStatus":0},{"url":"#e982","alts":[],"httpStatus":0},{"url":"#_ftnref24","alts":[],"httpStatus":0},{"url":"#_ftnref22","alts":[],"httpStatus":0},{"url":"#_ftnref21","alts":[],"httpStatus":0},{"url":"#_ftnref4","alts":[],"httpStatus":0},{"url":"#_ftnref29","alts":[],"httpStatus":0},{"url":"#_ftnref37","alts":[],"httpStatus":0},{"url":"#_ftnref34","alts":[],"httpStatus":0},{"url":"#_ftnref2","alts":[],"httpStatus":0},{"url":"#_ftnref12","alts":[],"httpStatus":0},{"url":"#_ftnref30","alts":[],"httpStatus":0},{"url":"#_ftnref19","alts":[],"httpStatus":0},{"url":"#1a5f","alts":[],"httpStatus":0},{"url":"#_ftnref1","alts":[],"httpStatus":0},{"url":"#_ftnref18","alts":[],"httpStatus":0},{"url":"#_ftnref6","alts":[],"httpStatus":0},{"url":"#_ftnref9","alts":[],"httpStatus":0},{"url":"#_ftnref5","alts":[],"httpStatus":0},{"url":"#_ftnref15","alts":[],"httpStatus":0},{"url":"#_ftnref10","alts":[],"httpStatus":0},{"url":"#d4ba","alts":[],"httpStatus":0},{"url":"#_ftnref8","alts":[],"httpStatus":0},{"url":"#_ftnref17","alts":[],"httpStatus":0},{"url":"#_ftnref35","alts":[],"httpStatus":0},{"url":"#_ftnref23","alts":[],"httpStatus":0},{"url":"#28a3","alts":[],"httpStatus":0},{"url":"#_ftnref3","alts":[],"httpStatus":0},{"url":"#_ftnref31","alts":[],"httpStatus":0},{"url":"#_ftnref32","alts":[],"httpStatus":0},{"url":"#_ftnref36","alts":[],"httpStatus":0},{"url":"#f6d4","alts":[],"httpStatus":0},{"url":"#_ftnref25","alts":[],"httpStatus":0},{"url":"#_ftnref11","alts":[],"httpStatus":0},{"url":"#_ftnref14","alts":[],"httpStatus":0},{"url":"#_ftnref27","alts":[],"httpStatus":0},{"url":"#a643","alts":[],"httpStatus":0},{"url":"#ae2d","alts":[],"httpStatus":0},{"url":"#_ftnref28","alts":[],"httpStatus":0},{"url":"#_ftnref26","alts":[],"httpStatus":0},{"url":"#_ftnref13","alts":[],"httpStatus":0},{"url":"#2da1","alts":[],"httpStatus":0},{"url":"#_ftnref7","alts":[],"httpStatus":0},{"url":"#9d6f","alts":[],"httpStatus":0},{"url":"#a6cf","alts":[],"httpStatus":0},{"url":"https://time.com/6300942/ai-progress-charts/","alts":[],"httpStatus":200},{"url":"https://academic.oup.com/qje/article/139/3/1399/7630187","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/General-purpose_technology","alts":[],"httpStatus":200},{"url":"https://openai.com/global-affairs/openai-chief-economist-announcement/","alts":[],"httpStatus":403},{"url":"https://openai.com/index/sora/","alts":[],"httpStatus":403},{"url":"https://aidantr.github.io/files/AI_innovation.pdf","alts":[],"httpStatus":200},{"url":"https://assets.publishing.service.gov.uk/media/656856b8cc1ec500138eef49/Gov.UK_Impact_of_AI_on_UK_Jobs_and_Training.pdf","alts":[],"httpStatus":200},{"url":"https://economics.mit.edu/sites/default/files/publications/The%20Race%20Between%20Man%20and%20Machine%20-%20Implications%20of.pdf","alts":[],"httpStatus":200},{"url":"https://economics.mit.edu/sites/default/files/2024-04/The%20Simple%20Macroeconomics%20of%20AI.pdf","alts":[],"httpStatus":200},{"url":"https://x.com/swyx/status/1815892458519289946/photo/1","alts":[],"httpStatus":200},{"url":"https://www.hbs.edu/ris/Publication%20Files/25-021_49adad7c-a02c-41ef-b887-ff6d894b06a3.pdf","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Christopher_Nolan","alts":[],"httpStatus":200},{"url":"https://epoch.ai/blog/can-ai-scaling-continue-through-2030","alts":[],"httpStatus":200},{"url":"https://olanipekunayo2012.medium.com/price-elasticity-of-demand-with-python-analysis-c32d70dd5f6","alts":[{"type":3,"url":"medium://p/c32d70dd5f6"},{"type":2,"url":"medium://p/c32d70dd5f6"}],"httpStatus":200},{"url":"https://www.oecd.org/en/publications/is-education-losing-the-race-with-technology_73105f99-en.html","alts":[],"httpStatus":403},{"url":"https://x.com/thamsuppp","alts":[],"httpStatus":200},{"url":"https://x.com/ArnaudDyevre/status/1856074595025203485","alts":[],"httpStatus":200},{"url":"https://www.imf.org/en/Blogs/Articles/2024/01/14/ai-will-transform-the-global-economy-lets-make-sure-it-benefits-humanity","alts":[],"httpStatus":200},{"url":"https://www.nber.org/papers/w31161","alts":[],"httpStatus":200},{"url":"https://cdn.openai.com/papers/gpt-4.pdf","alts":[],"httpStatus":200},{"url":"https://www.hbs.edu/ris/Publication%20Files/24-013_d9b45b68-9e74-42d6-a1c6-c72fb70c7282.pdf","alts":[],"httpStatus":200},{"url":"https://blog.hubspot.com/ai/tiktok-ai-tools","alts":[{"type":1,"url":"https://cdn.ampproject.org/c/s/blog.hubspot.com/ai/tiktok-ai-tools?hs_amp=true"}],"httpStatus":200},{"url":"https://podsmartai.com/","alts":[],"httpStatus":200},{"url":"https://www.sciencedirect.com/science/article/abs/pii/S157406840501018X","alts":[],"httpStatus":403},{"url":"https://darioamodei.com/machines-of-loving-grace","alts":[],"httpStatus":200},{"url":"https://www.pwc.com/gx/en/issues/artificial-intelligence/publications/artificial-intelligence-study.html","alts":[],"httpStatus":200},{"url":"http://airead.me","alts":[],"httpStatus":404},{"url":"https://www.oneusefulthing.org/p/ai-in-organizations-some-tactics","alts":[],"httpStatus":200},{"url":"https://open.spotify.com/episode/3J3AzCbrjZ484moQUhOsZ1?si=4074a8cc39ca4167","alts":[],"httpStatus":200},{"url":"https://medium.com/@iztham/learning-and-doing-whats-the-balance-47cdd91950ab","alts":[{"type":3,"url":"medium://p/47cdd91950ab"},{"type":2,"url":"medium://p/47cdd91950ab"}],"httpStatus":200},{"url":"https://www.oneusefulthing.org/p/latent-expertise-everyone-is-in-r","alts":[],"httpStatus":200},{"url":"https://www.ft.com/content/b2928076-5c52-43e9-8872-08fda2aa2fcf","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/summarize-podcast-transcripts-and-long-texts-better-with-nlp-and-ai-e04c89d3b2cb","alts":[{"type":3,"url":"medium://p/e04c89d3b2cb"},{"type":2,"url":"medium://p/e04c89d3b2cb"}],"httpStatus":200},{"url":"https://www.linkedin.com/in/isaacthamhy/","alts":[],"httpStatus":999},{"url":"https://www.kentuckianaworks.org/news/2019/4/3/what-bank-tellers-can-teach-us-about-how-automation-will-impact-jobs","alts":[],"httpStatus":200},{"url":"https://medium.com/towards-data-science/from-data-scientist-to-ai-developer-lessons-building-an-generative-ai-web-app-in-2023-95959a00a474","alts":[{"type":3,"url":"medium://p/95959a00a474"},{"type":2,"url":"medium://p/95959a00a474"}],"httpStatus":200},{"url":"https://open.spotify.com/episode/7FymGelvi7svYbxgGHTCUl?si=5c3ba2a543b24573","alts":[],"httpStatus":200},{"url":"https://home.treasury.gov/system/files/136/AI-Combined-PDF.pdf","alts":[],"httpStatus":0}],"version":"0.3","generatedAt":1732632634322},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":96,"sectionCount":4,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"40c8e34e04ce","slug":"economy","createdAt":1493947210893,"deletedAt":0,"image":{"id":"1*X8Q-l-JZddGhTLoucGJVyw@2x.jpeg","originalWidth":4928,"originalHeight":3264},"name":"Economy","description":"Follow the money.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Economy News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"the-economics-of-artificial-intelligence-what-does-automation-mean-for-workers","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"the-economics-of-artificial-intelligence-what-does-automation-mean-for-workers-eee3033baa39","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*x8AJtp9Saog3IWmvqNs5Gw.png","originalWidth":993,"originalHeight":611,"isFeatured":true}},{"name":"e8b2","type":3,"text":"The Economics of Artificial Intelligence — What Does Automation Mean for Workers?","markups":[],"alignment":1},{"name":"76fa","type":13,"text":"Despite tremendous…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Despite tremendous progress in AI, the economic implications of AI remain inadequately understood, with unsatisfactory insights from AI…"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"6bbcd559b8f1","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1af65db9c2f8","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"e8b2","type":3,"text":"The Economics of Artificial Intelligence — What Does Automation Mean for Workers?","markups":[]},{"name":"76fa","type":13,"text":"Despite tremendous progress in AI, the economic implications of AI remain inadequately understood, with unsatisfactory insights from AI practitioners and economists","markups":[]},{"name":"54f8","type":4,"text":"Source: Image generated using Grok/X","markups":[],"layout":1,"metadata":{"id":"1*x8AJtp9Saog3IWmvqNs5Gw.png","originalWidth":993,"originalHeight":611,"isFeatured":true}},{"name":"1645","type":13,"text":"Table of Contents","markups":[]},{"name":"7713","type":1,"text":"∘ Introduction to Economic Model\n ∘ Impact of an Advancement in AI\n ∘ Which workers will be automated or augmented?\n ∘ My framework: AI performance relative to humans\n ∘ Measuring AI’s performance relative to humans\n ∘ High-skilled vs low-skilled workers — who benefits from AI?\n ∘ More about the Productivity…","markups":[{"type":3,"start":2,"end":32,"href":"#b150","title":"Introduction to Economic Model","rel":"","anchorType":0},{"type":3,"start":36,"end":66,"href":"#28a3","title":"Impact of an Advancement in AI","rel":"","anchorType":0},{"type":3,"start":70,"end":115,"href":"#ae2d","title":"Which workers will be automated or augmented?","rel":"","anchorType":0},{"type":3,"start":119,"end":166,"href":"#f6d4","title":"My framework: AI performance relative to humans","rel":"","anchorType":0},{"type":3,"start":170,"end":215,"href":"#9d6f","title":"Measuring AI’s performance relative to humans","rel":"","anchorType":0},{"type":3,"start":219,"end":278,"href":"#a643","title":"High-skilled vs low-skilled workers — who benefits from AI?","rel":"","anchorType":0},{"type":3,"start":282,"end":316,"href":"#a6cf","title":"More about the Productivity Effect","rel":"","anchorType":0},{"type":3,"start":320,"end":354,"href":"#1a5f","title":"AI as a General Purpose Technology","rel":"","anchorType":0},{"type":3,"start":358,"end":384,"href":"#717c","title":"So what are the best jobs?","rel":"","anchorType":0},{"type":3,"start":388,"end":418,"href":"#e982","title":"Is AI automation all that bad?","rel":"","anchorType":0},{"type":3,"start":422,"end":432,"href":"#2da1","title":"Conclusion","rel":"","anchorType":0},{"type":3,"start":436,"end":460,"href":"#d4ba","title":"Footnotes and References","rel":"","anchorType":0}]}],"sections":[{"name":"a4fd","startIndex":0}]},"isFullContent":false,"subtitle":"Despite tremendous progress in AI, the economic implications of AI remain inadequately understood, with unsatisfactory insights from AI…"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"5b0789fe27aa":{"id":"5b0789fe27aa","versionId":"eb8bb286e870","creatorId":"bdc4072cbfdc","homeCollectionId":"7f60cf5620c9","title":"LLM Routing — Intuitively and Exhaustively Explained","detectedLanguage":"en","latestVersion":"eb8bb286e870","latestPublishedVersion":"eb8bb286e870","hasUnpublishedEdits":false,"latestRev":7716,"createdAt":1724371437982,"updatedAt":1732330836439,"acceptedAt":0,"firstPublishedAt":1732297130694,"latestPublishedAt":1732297130694,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Dynamically Choosing the Right LLM","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*Aja1M1MtLsRmsFCTdPeoJg.png","filter":"","backgroundSize":"","originalWidth":951,"originalHeight":828,"strategy":"resample","height":0,"width":0},"wordCount":11636,"imageCount":82,"readingTime":48.759433962264154,"subtitle":"Dynamically Choosing the Right LLM","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":128,"isBookmarked":false,"tags":[{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":458956,"metadata":{"postCount":458956,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"},{"slug":"software-development","name":"Software Development","postCount":326803,"metadata":{"postCount":326803,"coverImage":{"id":"1*t5dwn8IabnCdEpoO-6Toog.png","originalWidth":1920,"originalHeight":1080,"isFeatured":true,"alt":"Kubernetes"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":354532,"metadata":{"postCount":354532,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"},{"slug":"llm","name":"Llm","postCount":27765,"metadata":{"postCount":27765,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":9,"links":{"entries":[{"url":"https://medium.com/towards-data-science/retrieval-augmented-generation-intuitively-and-exhaustively-explain-6a39d6fe6fc9","alts":[],"httpStatus":429},{"url":"https://medium.com/towards-data-science/bert-intuitively-and-exhaustively-explained-48a24ecc1c8a","alts":[],"httpStatus":429},{"url":"https://towardsdatascience.com/bert-intuitively-and-exhaustively-explained-48a24ecc1c8a","alts":[],"httpStatus":429},{"url":"https://towardsdatascience.com/lora-intuitively-and-exhaustively-explained-e944a6bff46b","alts":[],"httpStatus":429},{"url":"https://medium.com/towards-data-science/clip-intuitively-and-exhaustively-explained-1d02c07dbf40","alts":[],"httpStatus":429},{"url":"https://towardsdatascience.com/clip-intuitively-and-exhaustively-explained-1d02c07dbf40","alts":[],"httpStatus":429},{"url":"https://lmsys.org/blog/2023-07-20-dataset/","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2305.05176","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2310.12963","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2406.18665","alts":[],"httpStatus":200},{"url":"https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf","alts":[],"httpStatus":200},{"url":"https://huggingface.co/datasets/berkeley-nest/Nectar","alts":[],"httpStatus":200},{"url":"https://iaee.substack.com/","alts":[],"httpStatus":200},{"url":"https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k","alts":[],"httpStatus":200},{"url":"https://huggingface.co/datasets/teknium/OpenHermes-2.5","alts":[],"httpStatus":200},{"url":"https://paperswithcode.com/dataset/mmlu","alts":[],"httpStatus":200},{"url":"https://github.com/DanielWarfield1/MLWritingAndResearch/blob/main/RouteLLM_BT.ipynb","alts":[],"httpStatus":200},{"url":"https://lmarena.ai/","alts":[],"httpStatus":403},{"url":"https://unify.ai/","alts":[],"httpStatus":200},{"url":"https://huggingface.co/models?pipeline_tag=text-generation","alts":[],"httpStatus":200},{"url":"https://github.com/DanielWarfield1/MLWritingAndResearch/blob/main/AutoMix.ipynb","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1732297131698},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":773,"sectionCount":4,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"llm-routing-intuitively-and-exhaustively-explained","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"llm-routing-intuitively-and-exhaustively-explained-5b0789fe27aa","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*Aja1M1MtLsRmsFCTdPeoJg.png","originalWidth":951,"originalHeight":828,"isFeatured":true}},{"name":"6542","type":3,"text":"LLM Routing — Intuitively and Exhaustively Explained","markups":[],"alignment":1},{"name":"bf20","type":13,"text":"Dynamically Choosing the Right Language Model on…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Dynamically Choosing the Right LLM"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"0043454f138d","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731982812471,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"6542","type":3,"text":"LLM Routing — Intuitively and Exhaustively Explained","markups":[]},{"name":"bf20","type":13,"text":"Dynamically Choosing the Right Language Model on Every Query","markups":[]},{"name":"a12b","type":4,"text":"“Harmony” by Daniel Warfield using Midjourney. All images by the author unless otherwise specified. Article…","markups":[{"type":3,"start":137,"end":175,"href":"https://iaee.substack.com/","title":"","rel":"noopener ugc nofollow noopener","anchorType":0}],"layout":1,"metadata":{"id":"1*Aja1M1MtLsRmsFCTdPeoJg.png","originalWidth":951,"originalHeight":828,"isFeatured":true}},{"name":"4bc3","type":1,"text":"In this article we’ll discuss “LLM routing”, an advanced inferencing technique which can automatically choose the right language model, out of a selection of language models, for a given prompt; improving the performance, speed, and cost in LLM-powered systems.","markups":[]},{"name":"ab25","type":1,"text":"We’ll explore four approaches to LLM routing: three from academia and…","markups":[]}],"sections":[{"name":"3370","startIndex":0}]},"isFullContent":false,"subtitle":"Dynamically Choosing the Right LLM"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"26f6f067de71":{"id":"26f6f067de71","versionId":"7d16edb21e64","creatorId":"dadb1d33c05a","homeCollectionId":"7f60cf5620c9","title":"How to Answer Business Questions with Data","detectedLanguage":"en","latestVersion":"7d16edb21e64","latestPublishedVersion":"7d16edb21e64","hasUnpublishedEdits":false,"latestRev":4828,"createdAt":1727047248402,"updatedAt":1732088590384,"acceptedAt":0,"firstPublishedAt":1732039491677,"latestPublishedAt":1732039491677,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Data analysis is the key to drive business decisions through answering abstract business questions but it’s hard to get right","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"0*O5HFgbqvEp5PPqck.png","filter":"","backgroundSize":"","originalWidth":1280,"originalHeight":853,"strategy":"resample","height":0,"width":0},"wordCount":2934,"imageCount":11,"readingTime":12.371698113207549,"subtitle":"Data analysis is the key to drive business decisions through answering abstract business questions but it’s hard to get right","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":115,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"data-analysis","name":"Data Analysis","postCount":60735,"metadata":{"postCount":60735,"coverImage":{"id":"0*O5HFgbqvEp5PPqck.png","originalWidth":1280,"originalHeight":853,"isFeatured":true}},"type":"Tag"},{"slug":"business","name":"Business","postCount":811011,"metadata":{"postCount":811011,"coverImage":{"id":"1*tuAJBvPwEXEoFbimeb33iQ.jpeg"}},"type":"Tag"},{"slug":"interview","name":"Interview","postCount":85857,"metadata":{"postCount":85857,"coverImage":{"id":"1*QGErmcbarI4AAstnTohPJA.png","originalWidth":1396,"originalHeight":1782,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":19,"links":{"entries":[{"url":"https://www.divingintodata.com/p/analytics-frameworks-every-data-scientist","alts":[],"httpStatus":200},{"url":"https://www.operatorshandbook.com/p/never-get-blindsided-again","alts":[],"httpStatus":200},{"url":"https://www.operatorshandbook.com/p/how-to-challenge-your-own-work-so","alts":[],"httpStatus":200},{"url":"https://www.linkedin.com/in/torsten-walbaum/","alts":[],"httpStatus":999},{"url":"https://medium.com/towards-data-science/one-mindset-shift-that-will-make-you-a-better-data-scientist-a015f8000ad7","alts":[{"type":3,"url":"medium://p/a015f8000ad7"},{"type":2,"url":"medium://p/a015f8000ad7"}],"httpStatus":200}],"version":"0.3","generatedAt":1732039492887},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":664,"sectionCount":7,"readingList":0,"topics":[{"topicId":"7b2438b07d33","slug":"business","createdAt":1493947240506,"deletedAt":0,"image":{"id":"1*K-IspU8zRzU2GEh1dmJ4VQ@2x.jpeg","originalWidth":4745,"originalHeight":3029},"name":"Business","description":"From Airbnb to Zappos.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Business News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"how-to-answer-business-questions-with-data","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"how-to-answer-business-questions-with-data-26f6f067de71","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"0*O5HFgbqvEp5PPqck.png","originalWidth":1280,"originalHeight":853,"isFeatured":true}},{"name":"2774","type":3,"text":"How to Answer Business Questions with Data","markups":[],"alignment":1},{"name":"71ed","type":13,"text":"Data analysis is the key to drive business decisions…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Data analysis is the key to drive business decisions through answering abstract business questions but it’s hard to get right"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"2f565f786f3a","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731944138979,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"2774","type":3,"text":"How to Answer Business Questions with Data","markups":[]},{"name":"71ed","type":13,"text":"Data analysis is the key to drive business decisions through answering abstract business questions but it’s hard to get right","markups":[]},{"name":"45cb","type":4,"text":"Image by author","markups":[],"layout":1,"metadata":{"id":"0*O5HFgbqvEp5PPqck.png","originalWidth":1280,"originalHeight":853,"isFeatured":true}},{"name":"2763","type":1,"text":"“We have observed a drop in our core metric, what is going on?”","markups":[]},{"name":"ca97","type":1,"text":"“What are the drivers for churn?”","markups":[]},{"name":"6506","type":1,"text":"As data scientists, we encounter questions like these every day. A stakeholder comes across something they want to understand better, and they look to us to take an open-ended question like…","markups":[]}],"sections":[{"name":"7edc","startIndex":0}]},"isFullContent":false,"subtitle":"Data analysis is the key to drive business decisions through answering abstract business questions but it’s hard to get right"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"fe25a0f8ae55":{"id":"fe25a0f8ae55","versionId":"bb37e663bc11","creatorId":"88982a88b4e5","homeCollectionId":"7f60cf5620c9","title":"Linear programming: Integer Linear Programming with Branch and Bound","detectedLanguage":"en","latestVersion":"bb37e663bc11","latestPublishedVersion":"bb37e663bc11","hasUnpublishedEdits":false,"latestRev":1470,"createdAt":1727344454905,"updatedAt":1732072269075,"acceptedAt":0,"firstPublishedAt":1732031063152,"latestPublishedAt":1732031063152,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Part 4: Extending linear programming optimization to discrete decision variables","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*L_5Bs8bJNF6fUV79EiTLtQ.jpeg","filter":"","backgroundSize":"","originalWidth":4256,"originalHeight":2832,"strategy":"resample","height":0,"width":0},"wordCount":2068,"imageCount":8,"readingTime":8.937106918238994,"subtitle":"Part 4: Extending linear programming optimization to discrete decision variables","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":8,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"optimization","name":"Optimization","postCount":15176,"metadata":{"postCount":15176,"coverImage":{"id":"1*njf0KQvZwF_qK3ZNQfTDhw.png","originalWidth":1390,"originalHeight":1346,"alt":"A picture of an onion cut according to the optimal strategy, along with a text message from the author saying that he has been cutting onions this way ever since his conversation with Gabe."}},"type":"Tag"},{"slug":"python","name":"Python","postCount":259576,"metadata":{"postCount":259576,"coverImage":{"id":"1*uiA0nCufUQs-K64ebSUhew.jpeg","originalWidth":1280,"originalHeight":800,"isFeatured":true}},"type":"Tag"},{"slug":"linear-programming","name":"Linear Programming","postCount":436,"metadata":{"postCount":436,"coverImage":{"id":"1*L_5Bs8bJNF6fUV79EiTLtQ.jpeg","originalWidth":4256,"originalHeight":2832,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://medium.com/@jarom.hulet/list/fe5c1fba2583","alts":[{"type":3,"url":"medium://@jarom.hulet/list/linear-programming-fe5c1fba2583"},{"type":2,"url":"medium://@jarom.hulet/list/linear-programming-fe5c1fba2583"}],"httpStatus":200}],"version":"0.3","generatedAt":1732031063958},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":49,"sectionCount":1,"readingList":0,"topics":[{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"linear-programming-integer-linear-programming-with-branch-and-bound","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"linear-programming-integer-linear-programming-with-branch-and-bound-fe25a0f8ae55","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*L_5Bs8bJNF6fUV79EiTLtQ.jpeg","originalWidth":4256,"originalHeight":2832,"isFeatured":true}},{"name":"395a","type":3,"text":"Linear programming: Integer Linear Programming with Branch and Bound","markups":[],"alignment":1},{"name":"8209","type":13,"text":"Part 4: Extending linear…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Part 4: Extending linear programming optimization to discrete decision variables"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"42fd9cfaa1b1","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":6,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731851132929,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"395a","type":3,"text":"Linear programming: Integer Linear Programming with Branch and Bound","markups":[]},{"name":"8209","type":13,"text":"Part 4: Extending linear programming optimization to discrete decision variables","markups":[]},{"name":"d618","type":4,"text":"Image from Pexels.com by Min An","markups":[],"layout":1,"metadata":{"id":"1*L_5Bs8bJNF6fUV79EiTLtQ.jpeg","originalWidth":4256,"originalHeight":2832,"isFeatured":true}},{"name":"ec20","type":1,"text":"Up until now in this series, we’ve talked about strict linear programming — where the objective function, constraints and decision variables have all been linear and continuous. This linear set up comes with some really nice properties, but it isn’t very flexible. In this article, I’ll discuss how we can…","markups":[{"type":2,"start":364,"end":391}]}],"sections":[{"name":"da38","startIndex":0}]},"isFullContent":false,"subtitle":"Part 4: Extending linear programming optimization to discrete decision variables"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"0095a73cf5ab":{"id":"0095a73cf5ab","versionId":"588352bfe72a","creatorId":"4a7a0f39dccd","homeCollectionId":"7f60cf5620c9","title":"The Root Cause of Why Organizations Fail With Data & AI","detectedLanguage":"en","latestVersion":"588352bfe72a","latestPublishedVersion":"588352bfe72a","hasUnpublishedEdits":false,"latestRev":8386,"createdAt":1730125112218,"updatedAt":1732072302058,"acceptedAt":0,"firstPublishedAt":1732017765366,"latestPublishedAt":1732027811793,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"A guide to be successful with the strategic groundwork required","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*2hDKhHs0wnk3pCO6-31Xww.png","filter":"","backgroundSize":"","originalWidth":3985,"originalHeight":2114,"strategy":"resample","height":0,"width":0},"wordCount":6428,"imageCount":16,"readingTime":25.806603773584907,"subtitle":"A guide to be successful with the strategic groundwork required","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":66,"isBookmarked":false,"tags":[{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":458956,"metadata":{"postCount":458956,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"},{"slug":"business","name":"Business","postCount":811011,"metadata":{"postCount":811011,"coverImage":{"id":"1*tuAJBvPwEXEoFbimeb33iQ.jpeg"}},"type":"Tag"},{"slug":"data-strategy","name":"Data Strategy","postCount":1643,"metadata":{"postCount":1643,"coverImage":{"id":"1*2hDKhHs0wnk3pCO6-31Xww.png","originalWidth":3985,"originalHeight":2114,"isFeatured":true,"alt":"Root cause, problem and symptoms as an analogy of a plant: The symptoms are the leaves, the problem is the trunk, the root cause — surprise — is the root."}},"type":"Tag"},{"slug":"demystify-data-strategy","name":"Demystify Data Strategy","postCount":1,"metadata":{"postCount":1,"coverImage":{"id":"1*2hDKhHs0wnk3pCO6-31Xww.png","originalWidth":3985,"originalHeight":2114,"isFeatured":true,"alt":"Root cause, problem and symptoms as an analogy of a plant: The symptoms are the leaves, the problem is the trunk, the root cause — surprise — is the root."}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":7,"links":{"entries":[{"url":"#9ef8","alts":[],"httpStatus":0},{"url":"#89c0","alts":[],"httpStatus":0},{"url":"#fb6c","alts":[],"httpStatus":0},{"url":"#efe0","alts":[],"httpStatus":0},{"url":"#1e7b","alts":[],"httpStatus":0},{"url":"#d12f","alts":[],"httpStatus":0},{"url":"#5ac8","alts":[],"httpStatus":0},{"url":"#c376","alts":[],"httpStatus":0},{"url":"#7c1b","alts":[],"httpStatus":0},{"url":"#297a","alts":[],"httpStatus":0},{"url":"#6cd5","alts":[],"httpStatus":0},{"url":"#e756","alts":[],"httpStatus":0},{"url":"#57b0","alts":[],"httpStatus":0},{"url":"#7988","alts":[],"httpStatus":0},{"url":"#f643","alts":[],"httpStatus":0},{"url":"#1a13","alts":[],"httpStatus":0},{"url":"#8c27","alts":[],"httpStatus":0},{"url":"#1021","alts":[],"httpStatus":0},{"url":"#be4c","alts":[],"httpStatus":0},{"url":"#8968","alts":[],"httpStatus":0},{"url":"#1fa2","alts":[],"httpStatus":0},{"url":"#5bea","alts":[],"httpStatus":0},{"url":"#959a","alts":[],"httpStatus":0},{"url":"#82b5","alts":[],"httpStatus":0},{"url":"#e97e","alts":[],"httpStatus":0},{"url":"#5947","alts":[],"httpStatus":0},{"url":"#23fa","alts":[],"httpStatus":0},{"url":"https://www.tableau.com/solutions/customer/southwest-airlines-maintains-time-flights-and-optimizes-fleet-performance-tableau","alts":[],"httpStatus":200},{"url":"https://hbr.org/2019/07/the-one-thing-you-need-to-know-about-managing-functions","alts":[],"httpStatus":200},{"url":"https://rogermartin.medium.com/the-best-strategy-icebreaker-0c9b6ae58461","alts":[{"type":3,"url":"medium://p/0c9b6ae58461"},{"type":2,"url":"medium://p/0c9b6ae58461"}],"httpStatus":200},{"url":"https://rogermartin.medium.com/distinguishing-how-to-win-from-capabilities-in-your-strategy-choice-fd190484ccea","alts":[{"type":3,"url":"medium://p/fd190484ccea"},{"type":2,"url":"medium://p/fd190484ccea"}],"httpStatus":200},{"url":"https://rogerlmartin.com/","alts":[],"httpStatus":200},{"url":"https://rogermartin.medium.com/corporate-vs-business-unit-strategy-adb1163665da","alts":[{"type":2,"url":"medium://p/adb1163665da"},{"type":3,"url":"medium://p/adb1163665da"}],"httpStatus":200},{"url":"https://rogermartin.medium.com/on-the-inseparability-of-where-to-play-and-how-to-win-181c2ea5c463","alts":[{"type":3,"url":"medium://p/181c2ea5c463"},{"type":2,"url":"medium://p/181c2ea5c463"}],"httpStatus":200},{"url":"https://rogermartin.medium.com/strategy-vs-planning-complements-not-substitutes-ea08e56809d6","alts":[{"type":2,"url":"medium://p/ea08e56809d6"},{"type":3,"url":"medium://p/ea08e56809d6"}],"httpStatus":200},{"url":"https://barc.com/de/data-culture/","alts":[],"httpStatus":200},{"url":"https://rogerlmartin.com/lets-read/playing-to-win","alts":[],"httpStatus":200},{"url":"https://medium.com/@rogermartin/from-laudable-list-to-how-to-really-win-6aa20498e89","alts":[{"type":3,"url":"medium://p/6aa20498e89"},{"type":2,"url":"medium://p/6aa20498e89"}],"httpStatus":200},{"url":"https://towardsdatascience.com/tagged/demystify-data-strategy","alts":[],"httpStatus":200},{"url":"https://medium.com/@rogermartin/the-strategic-choice-structuring-process-5e116b12ae1f","alts":[{"type":3,"url":"medium://p/5e116b12ae1f"},{"type":2,"url":"medium://p/5e116b12ae1f"}],"httpStatus":200},{"url":"https://medium.com/@rogermartin/playing-to-win-x-5-43fb814a89a6","alts":[{"type":3,"url":"medium://p/43fb814a89a6"},{"type":2,"url":"medium://p/43fb814a89a6"}],"httpStatus":200},{"url":"https://medium.com/@rogermartin/the-origins-of-playing-to-win-1d63af815797","alts":[{"type":3,"url":"medium://p/1d63af815797"},{"type":2,"url":"medium://p/1d63af815797"}],"httpStatus":200},{"url":"https://rogermartin.medium.com/overcoming-the-integrative-strategy-challenge-9af0d670d083","alts":[{"type":3,"url":"medium://p/9af0d670d083"},{"type":2,"url":"medium://p/9af0d670d083"}],"httpStatus":200},{"url":"https://www.youtube.com/watch?v=iuYlGRnC7J8","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/","alts":[{"type":2,"url":"medium://towards-data-science"},{"type":3,"url":"medium://towards-data-science"}],"httpStatus":200},{"url":"https://rogermartin.medium.com/strategic-choice-chartering-3d56d8962ec3","alts":[{"type":3,"url":"medium://p/3d56d8962ec3"},{"type":2,"url":"medium://p/3d56d8962ec3"}],"httpStatus":200},{"url":"https://rogerlmartin.com/archive/medium-posts","alts":[],"httpStatus":200},{"url":"https://rogerlmartin.com/archive/medium-posts/-in-thought-pillars,strategy","alts":[],"httpStatus":200},{"url":"https://www.vahlen.de/wernicke-data-inspired/product/35418267","alts":[],"httpStatus":200},{"url":"https://www.ideou.com/products/activating-strategy","alts":[],"httpStatus":200},{"url":"https://www.linkedin.com/posts/jens-linden_data-first-aid-kit-activity-6890240099456479232-SVjL","alts":[{"type":3,"url":"https://www.linkedin.com/posts/jens-linden_data-first-aid-kit-activity-6890240099456479232-SVjL"},{"type":2,"url":"https://www.linkedin.com/posts/jens-linden_data-first-aid-kit-activity-6890240099456479232-SVjL"}],"httpStatus":200},{"url":"https://medium.com/@rogermartin/strategy-for-natural-monopolies-aecfb3cc6ac9","alts":[{"type":3,"url":"medium://p/aecfb3cc6ac9"},{"type":2,"url":"medium://p/aecfb3cc6ac9"}],"httpStatus":200},{"url":"https://de.statista.com/themen/3996/mittelstand-in-deutschland/#topicOverview","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/the-data-strategy-choice-cascade-9f2742b81bda","alts":[{"type":3,"url":"medium://p/9f2742b81bda"},{"type":2,"url":"medium://p/9f2742b81bda"}],"httpStatus":200},{"url":"https://www.linkedin.com/posts/jens-linden_dataculture-datastrategy-digitaltransformation-activity-7240268684340998144-LGXa","alts":[],"httpStatus":429},{"url":"https://medium.com/towards-data-science/the-data-strategy-choice-cascade-9f2742b81bda","alts":[{"type":3,"url":"medium://p/9f2742b81bda"},{"type":2,"url":"medium://p/9f2742b81bda"}],"httpStatus":200},{"url":"https://www.linkedin.com/posts/jens-linden_datastrategy-datamonetization-activity-7151564352897089537-a1om","alts":[{"type":3,"url":"https://de.linkedin.com/posts/jens-linden_datastrategy-datamonetization-activity-7151564352897089537-a1om"},{"type":2,"url":"https://de.linkedin.com/posts/jens-linden_datastrategy-datamonetization-activity-7151564352897089537-a1om"}],"httpStatus":200}],"version":"0.3","generatedAt":1732027813820},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":332,"sectionCount":11,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"7b2438b07d33","slug":"business","createdAt":1493947240506,"deletedAt":0,"image":{"id":"1*K-IspU8zRzU2GEh1dmJ4VQ@2x.jpeg","originalWidth":4745,"originalHeight":3029},"name":"Business","description":"From Airbnb to Zappos.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Business News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"the-root-cause-of-why-organizations-fail-with-data-ai","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"the-root-cause-of-why-organizations-fail-with-data-ai-0095a73cf5ab","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*2hDKhHs0wnk3pCO6-31Xww.png","originalWidth":3985,"originalHeight":2114,"isFeatured":true,"alt":"Root cause, problem and symptoms as an analogy of a plant: The symptoms are the leaves, the problem is the trunk, the root cause — surprise — is the root."}},{"name":"previewTitle","type":3,"text":"The Root Cause of Why Organizations Fail With Data & AI","alignment":1},{"name":"previewSubtitle","type":13,"text":"A guide to be successful with the strategic…","alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"A guide to be successful with the strategic groundwork required"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"44c81c865184","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"b0ad","type":4,"text":"Wave by CLEANPNG","markups":[],"layout":5,"metadata":{"id":"1*cXrGgccyTVJDEV1KbKxTDw.png","originalWidth":5748,"originalHeight":740,"alt":"Four strategy cascades illustrating the main theme of the four different data business needs."}},{"name":"1b8d","type":13,"text":"DEMYSTIFY DATA STRATEGY","markups":[{"type":3,"start":0,"end":23,"href":"https://towardsdatascience.com/tagged/demystify-data-strategy","title":"","rel":"noopener","anchorType":0}]},{"name":"54a8","type":3,"text":"The Root Cause of Why Organizations Fail With Data & AI","markups":[]},{"name":"bfcb","type":13,"text":"A guide to be successful with the strategic groundwork required","markups":[]},{"name":"eab3","type":1,"text":"Business value through Data and Artificial Intelligence. Everybody talks about it, yet most companies are struggling to monetize their data. I claim that in most cases, this is due to a lack of effective business strategy. This article shows what strategic groundwork is necessary to activate your…","markups":[{"type":2,"start":0,"end":221},{"type":2,"start":222,"end":320}]}],"sections":[{"name":"5999","startIndex":0}]},"isFullContent":false,"subtitle":"A guide to be successful with the strategic groundwork required"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"af352105db56":{"id":"af352105db56","versionId":"54f46d3eab75","creatorId":"a3ee742fae3","homeCollectionId":"7f60cf5620c9","title":"Exploring Music Transcription with Multi-Modal Language Models","detectedLanguage":"en","latestVersion":"54f46d3eab75","latestPublishedVersion":"54f46d3eab75","hasUnpublishedEdits":false,"latestRev":4049,"createdAt":1726574818071,"updatedAt":1732384784823,"acceptedAt":0,"firstPublishedAt":1731844942797,"latestPublishedAt":1732384784823,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Using Qwen2-Audio to transcribe music into sheet music","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*Xu062EKI7BoyXDh7pWG1mQ.png","filter":"","backgroundSize":"","originalWidth":2198,"originalHeight":982,"strategy":"resample","height":0,"width":0},"wordCount":4230,"imageCount":5,"readingTime":16.79559748427673,"subtitle":"Using Qwen2-Audio to transcribe music into sheet music","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":45,"isBookmarked":false,"tags":[{"slug":"music","name":"Music","postCount":362761,"metadata":{"postCount":362761,"coverImage":{"id":"1*IiNmmcwgPtVI77r3VcrGjA.jpeg"}},"type":"Tag"},{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":458956,"metadata":{"postCount":458956,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"},{"slug":"multimodal","name":"Multimodal","postCount":770,"metadata":{"postCount":770,"coverImage":{"id":"1*aw9_bcyqED6GD1ROgC4vZg.png","originalWidth":1920,"originalHeight":1124,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"},{"slug":"audio-transcription","name":"Audio Transcription","postCount":203,"metadata":{"postCount":203,"coverImage":{"id":"1*Xu062EKI7BoyXDh7pWG1mQ.png","originalWidth":2198,"originalHeight":982,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":6,"links":{"entries":[{"url":"http://asdf","alts":[],"httpStatus":0},{"url":"https://llava-vl.github.io/","alts":[],"httpStatus":200},{"url":"https://openai.com/index/whisper/","alts":[],"httpStatus":403},{"url":"https://qwenlm.github.io/blog/qwen2-audio/","alts":[],"httpStatus":200},{"url":"https://openai.com/index/hello-gpt-4o/","alts":[],"httpStatus":403},{"url":"https://openai.com/index/jukebox/","alts":[],"httpStatus":403},{"url":"https://openai.com/index/new-embedding-models-and-api-updates/","alts":[],"httpStatus":403},{"url":"https://huggingface.co/docs/transformers/main/en/model_doc/qwen2_audio","alts":[],"httpStatus":200},{"url":"https://huggingface.co/docs/transformers/main/en/model_doc/vit","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2111.03017","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2107.05677","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2107.09142","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2403.10024","alts":[],"httpStatus":200},{"url":"https://audiocraft.metademolab.com/musicgen.html","alts":[],"httpStatus":200},{"url":"http://www.slakh.com/","alts":[],"httpStatus":200},{"url":"https://huggingface.co/google-t5/t5-small","alts":[],"httpStatus":200},{"url":"https://colab.research.google.com/drive/1jdR5w-XlJQFog47ZJ36ckEVMW0F5qIpl","alts":[],"httpStatus":200},{"url":"https://huggingface.co/jonflynn","alts":[],"httpStatus":200},{"url":"https://www.kaggle.com/datasets/imsparsh/musicnet-dataset","alts":[],"httpStatus":200},{"url":"https://github.com/jonflynng","alts":[],"httpStatus":200},{"url":"https://drive.google.com/file/d/1-0XgJDOhnj1kbffeHcQutgZ1td59WQjI/view?usp=drive_link","alts":[],"httpStatus":200},{"url":"https://magenta.tensorflow.org/","alts":[],"httpStatus":200},{"url":"https://colab.research.google.com/drive/1lpPfn9EFE2rBsasIJNv8Cy9qTvtfXzq-#scrollTo=mOs_gWcjrBgv","alts":[],"httpStatus":200},{"url":"https://colab.research.google.com/drive/1_V5B9ZrwrKtom-N4r-Om3mqlXKPacUBh#scrollTo=72Gv5raTIPqi","alts":[],"httpStatus":200},{"url":"https://www.merl.com/publications/docs/TR2024-032.pdf","alts":[],"httpStatus":200},{"url":"https://colab.research.google.com/drive/1CdQ_PUjhCvCR2VjGt3ya1hNowPrr0Xun","alts":[],"httpStatus":200},{"url":"https://magenta.tensorflow.org/datasets/maestro","alts":[],"httpStatus":200},{"url":"https://trillian.mit.edu/~jc/music/doc/ABC.html","alts":[],"httpStatus":200},{"url":"https://github.com/QwenLM/Qwen2-Audio","alts":[],"httpStatus":200},{"url":"https://colab.research.google.com/drive/1lpPfn9EFE2rBsasIJNv8Cy9qTvtfXzq-","alts":[],"httpStatus":200},{"url":"https://github.com/sshlien/abcmidi","alts":[],"httpStatus":200},{"url":"https://medium.com/search?q=PPO+explained","alts":[],"httpStatus":200},{"url":"https://research.atspotify.com/2023/10/llark-a-multimodal-foundation-model-for-music/","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1732384786124},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":224,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"308a25bedcb5","slug":"music","createdAt":1493946945588,"deletedAt":0,"image":{"id":"1*kA7YuTntJ95Nr4pBagdIzA@2x.jpeg","originalWidth":4486,"originalHeight":2991},"name":"Music","description":"Liner notes.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Music Articles and News — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"exploring-music-transcription-with-multi-modal-language-models","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"exploring-music-transcription-with-multi-modal-language-models-af352105db56","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*Xu062EKI7BoyXDh7pWG1mQ.png","originalWidth":2198,"originalHeight":982,"isFeatured":true}},{"name":"a095","type":3,"text":"Exploring Music Transcription with Multi-Modal Language Models","markups":[],"alignment":1},{"name":"e307","type":13,"text":"Using Qwen2-Audio to transcribe music…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Using Qwen2-Audio to transcribe music into sheet music"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"8676afd9b34c","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"a095","type":3,"text":"Exploring Music Transcription with Multi-Modal Language Models","markups":[]},{"name":"e307","type":13,"text":"Using Qwen2-Audio to transcribe music into sheet music","markups":[]},{"name":"ec71","type":4,"text":"Image by author","markups":[],"layout":1,"metadata":{"id":"1*Xu062EKI7BoyXDh7pWG1mQ.png","originalWidth":2198,"originalHeight":982,"isFeatured":true}},{"name":"2cdb","type":1,"text":"Automatic music transcription is the process of converting audio files like MP3 and WAV into sheet music, guitar tablature, and any format a musician may want to learn a song on their instrument.","markups":[]},{"name":"5a31","type":1,"text":"We’ll go over the best current tools for doing this, which happen to be deep learning-based, and…","markups":[]}],"sections":[{"name":"7b28","startIndex":0}]},"isFullContent":false,"subtitle":"Using Qwen2-Audio to transcribe music into sheet music"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"b556aa97bf7a":{"id":"b556aa97bf7a","versionId":"e719cdaac29e","creatorId":"7e6350a085ee","homeCollectionId":"7f60cf5620c9","title":"Field Boundary Detection in Satellite Imagery Using the SAM2 Model","detectedLanguage":"en","latestVersion":"e719cdaac29e","latestPublishedVersion":"e719cdaac29e","hasUnpublishedEdits":false,"latestRev":1648,"createdAt":1729554111792,"updatedAt":1731725239989,"acceptedAt":0,"firstPublishedAt":1731672113902,"latestPublishedAt":1731672113902,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Step-by-Step Tutorial on Applying Segment Anything Model Version 2 to Satellite Imagery for Detecting and Exporting Field Boundaries in…","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*h3utjD4SEKbfGCUXotFbNA.png","filter":"","backgroundSize":"","originalWidth":1024,"originalHeight":1024,"strategy":"resample","height":0,"width":0},"wordCount":2978,"imageCount":7,"readingTime":12.287735849056604,"subtitle":"Step-by-Step Tutorial on Applying Segment Anything Model Version 2 to Satellite Imagery for Detecting and Exporting Field Boundaries in…","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":68,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"image-processing","name":"Image Processing","postCount":8295,"metadata":{"postCount":8295,"coverImage":{"id":"1*UkQea1WcI-4L4Dt7ea7VMQ.jpeg","originalWidth":1280,"originalHeight":720,"isFeatured":true}},"type":"Tag"},{"slug":"object-detection","name":"Object Detection","postCount":4995,"metadata":{"postCount":4995,"coverImage":{"id":"1*1Tuz-ty8g-SMyJcDUvo_oA.png","originalWidth":1918,"originalHeight":1190,"isFeatured":true}},"type":"Tag"},{"slug":"geospatial","name":"Geospatial","postCount":3127,"metadata":{"postCount":3127,"coverImage":{"id":"1*h3utjD4SEKbfGCUXotFbNA.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":13,"links":{"entries":[{"url":"https://www.researchgate.net/profile/Mahyar-Aboutalebi","alts":[],"httpStatus":403},{"url":"https://samgeo.gishub.org/","alts":[],"httpStatus":200},{"url":"https://twitter.com/mahyarona?lang=en","alts":[],"httpStatus":200},{"url":"https://doi.org/10.21105/joss.05663","alts":[],"httpStatus":200},{"url":"https://github.com/Mahyarona","alts":[],"httpStatus":200},{"url":"https://doi.org/10.1016/j.jag.2023.103540","alts":[],"httpStatus":403},{"url":"https://medium.com/@mahyar.aboutalebi/downloading-sentinel-2-imagery-in-python-with-google-colab-updated-nov-2023-f21d75a92407","alts":[{"type":2,"url":"medium://p/f21d75a92407"},{"type":3,"url":"medium://p/f21d75a92407"}],"httpStatus":200},{"url":"https://towardsdatascience.com/how-many-cars-are-in-this-aerial-imagery-lets-count-them-with-yolov8-from-scratch-7c24a3919d21","alts":[{"type":3,"url":"medium://p/7c24a3919d21"},{"type":2,"url":"medium://p/7c24a3919d21"}],"httpStatus":200},{"url":"https://medium.com/@mahyar.aboutalebi/which-version-of-the-segment-anything-model-sam-can-detect-more-objects-python-2bc7d3d80234","alts":[{"type":3,"url":"medium://p/2bc7d3d80234"},{"type":2,"url":"medium://p/2bc7d3d80234"}],"httpStatus":200},{"url":"https://towardsdatascience.com/tracking-the-great-salt-lakes-shrinkage-using-satellite-images-python-d8b3b04538cf","alts":[{"type":3,"url":"medium://p/d8b3b04538cf"},{"type":2,"url":"medium://p/d8b3b04538cf"}],"httpStatus":200},{"url":"https://ai.meta.com/blog/segment-anything-2/","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/how-to-detect-floods-in-satellite-imagery-case-study-dubai-flooding-831cdf425a22","alts":[{"type":3,"url":"medium://p/831cdf425a22"},{"type":2,"url":"medium://p/831cdf425a22"}],"httpStatus":200},{"url":"https://www.linkedin.com/in/mahyar-aboutalebi-08a91943","alts":[],"httpStatus":999}],"version":"0.3","generatedAt":1731672115800},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":494,"sectionCount":2,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"field-boundary-detection-in-satellite-imagery-using-the-sam2-model","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"field-boundary-detection-in-satellite-imagery-using-the-sam2-model-b556aa97bf7a","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*h3utjD4SEKbfGCUXotFbNA.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},{"name":"990b","type":3,"text":"Field Boundary Detection in Satellite Imagery Using the SAM2 Model","markups":[],"alignment":1},{"name":"dc1a","type":13,"text":"Step-by-Step Tutorial on Applying…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Step-by-Step Tutorial on Applying Segment Anything Model Version 2 to Satellite Imagery for Detecting and Exporting Field Boundaries in…"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"4d93fa1bd872","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731565567429,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"990b","type":3,"text":"Field Boundary Detection in Satellite Imagery Using the SAM2 Model","markups":[]},{"name":"dc1a","type":13,"text":"Step-by-Step Tutorial on Applying Segment Anything Model Version 2 to Satellite Imagery for Detecting and Exporting Field Boundaries in Agricultural Areas","markups":[]},{"name":"4995","type":4,"text":"","markups":[],"layout":1,"metadata":{"id":"1*h3utjD4SEKbfGCUXotFbNA.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},{"name":"d887","type":3,"text":"Table of Contents","markups":[]},{"name":"7faf","type":10,"text":"🌟 Introduction","markups":[{"type":1,"start":0,"end":15}]},{"name":"30a8","type":10,"text":"🏷️ Segment Anything Model","markups":[{"type":1,"start":0,"end":26}]},{"name":"81bf","type":10,"text":"🚀 Setup Google Colab","markups":[{"type":1,"start":2,"end":21}]},{"name":"e638","type":10,"text":"🛰️ Load Clear Sentinel-2 Images","markups":[{"type":1,"start":5,"end":32}]},{"name":"11b5","type":10,"text":"🌍 Apply SAM2 on Sentinel-2 Images","markups":[{"type":1,"start":2,"end":34}]},{"name":"88da","type":10,"text":"📄 Conclusion","markups":[{"type":1,"start":0,"end":13}]},{"name":"1e6d","type":10,"text":"📚 References","markups":[{"type":1,"start":0,"end":13}]},{"name":"ef11","type":13,"text":"🌟 Introduction","markups":[{"type":1,"start":0,"end":15}]},{"name":"cb4a","type":1,"text":"Manually drawing field boundaries is one of the most time-consuming tasks, and its accuracy depends on the performance of the person doing it. However, accurate…","markups":[]}],"sections":[{"name":"c59e","startIndex":0},{"name":"fdaf","startIndex":11}]},"isFullContent":false,"subtitle":"Step-by-Step Tutorial on Applying Segment Anything Model Version 2 to Satellite Imagery for Detecting and Exporting Field Boundaries in…"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"927c5a9063b9":{"id":"927c5a9063b9","versionId":"b196c6dce1ab","creatorId":"7e12c71dfa81","homeCollectionId":"7f60cf5620c9","title":"Network Analysis, Diffusion Models, Data Lakehouses, and More: Our Best Recent Deep Dives","detectedLanguage":"en","latestVersion":"b196c6dce1ab","latestPublishedVersion":"b196c6dce1ab","hasUnpublishedEdits":false,"latestRev":531,"createdAt":1727704938931,"updatedAt":1731639039783,"acceptedAt":0,"firstPublishedAt":1731594723069,"latestPublishedAt":1731594723069,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Our weekly selection of must-read Editors’ Picks and original features","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"0*N6nQvDagq5tufaNT","filter":"","backgroundSize":"","originalWidth":6000,"originalHeight":3376,"strategy":"resample","height":0,"width":0},"wordCount":747,"imageCount":1,"readingTime":3.018867924528302,"subtitle":"Our weekly selection of must-read Editors’ Picks and original features","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":14,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"tds-features","name":"Tds Features","postCount":316,"metadata":{"postCount":316,"coverImage":{"id":"0*y-hG8W4pyf2bXDbb","originalWidth":4272,"originalHeight":2848,"isFeatured":true,"unsplashPhotoId":"3-boLUNFbds"}},"type":"Tag"},{"slug":"the-variable","name":"The Variable","postCount":191,"metadata":{"postCount":191,"coverImage":{"id":"0*y-hG8W4pyf2bXDbb","originalWidth":4272,"originalHeight":2848,"isFeatured":true,"unsplashPhotoId":"3-boLUNFbds"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":354532,"metadata":{"postCount":354532,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":0,"links":{"entries":[{"url":"https://unsplash.com?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@borisview?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/a-gentle-introduction-to-the-dcin-for-decentralized-inference-f42f41367a95","alts":[{"type":3,"url":"medium://p/f42f41367a95"},{"type":2,"url":"medium://p/f42f41367a95"}],"httpStatus":200},{"url":"https://towardsdatascience.com/sql-and-data-modelling-in-action-a-deep-dive-into-data-lakehouses-fcbab9a4b9c2","alts":[{"type":2,"url":"medium://p/fcbab9a4b9c2"},{"type":3,"url":"medium://p/fcbab9a4b9c2"}],"httpStatus":200},{"url":"https://towardsdatascience.com/gen-ai-safety-landscape-a-guide-to-the-mitigation-stack-for-text-to-image-models-0848eb613ce5","alts":[{"type":3,"url":"medium://p/0848eb613ce5"},{"type":2,"url":"medium://p/0848eb613ce5"}],"httpStatus":200},{"url":"https://towardsdatascience.com/les-mis%C3%A9rables-social-network-analysis-using-marimo-notebooks-and-the-networkx-python-library-%EF%B8%8F-%EF%B8%8F-3f433216412f","alts":[{"type":3,"url":"medium://p/3f433216412f"},{"type":2,"url":"medium://p/3f433216412f"}],"httpStatus":200},{"url":"https://towardsdatascience.com/paper-walkthrough-attention-is-all-you-need-80399cdc59e1","alts":[{"type":3,"url":"medium://p/80399cdc59e1"},{"type":2,"url":"medium://p/80399cdc59e1"}],"httpStatus":200},{"url":"https://towardsdatascience.com/a-critical-look-at-ai-image-generation-45001f410147","alts":[{"type":3,"url":"medium://p/45001f410147"},{"type":2,"url":"medium://p/45001f410147"}],"httpStatus":200},{"url":"https://towardsdatascience.com/lessons-in-decision-making-from-the-monty-hall-problem-a6032f4b1032","alts":[{"type":3,"url":"medium://p/a6032f4b1032"},{"type":2,"url":"medium://p/a6032f4b1032"}],"httpStatus":200},{"url":"https://towardsdatascience.com/let-there-be-light-diffusion-models-and-the-future-of-relighting-03af12b8e86c","alts":[{"type":3,"url":"medium://p/03af12b8e86c"},{"type":2,"url":"medium://p/03af12b8e86c"}],"httpStatus":200},{"url":"http://bit.ly/write-for-tds","alts":[{"type":3,"url":"medium://p/96667b06af5"},{"type":2,"url":"medium://p/96667b06af5"}],"httpStatus":200},{"url":"https://towardsdatascience.com/tagged/deep-dives","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1731594724281},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":39,"sectionCount":2,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"network-analysis-diffusion-models-data-lakehouses-and-more-our-best-recent-deep-dives","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"network-analysis-diffusion-models-data-lakehouses-and-more-our-best-recent-deep-dives-927c5a9063b9","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"0*N6nQvDagq5tufaNT","originalWidth":6000,"originalHeight":3376,"isFeatured":true,"unsplashPhotoId":"OFVqnWOAe_E"}},{"name":"71a5","type":3,"text":"Network Analysis, Diffusion Models, Data Lakehouses, and More: Our Best Recent Deep Dives","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Our weekly selection of must-read Editors’ Picks and original features"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":true,"newsletterId":"2c541cd02fc1","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"71a5","type":3,"text":"Network Analysis, Diffusion Models, Data Lakehouses, and More: Our Best Recent Deep Dives","markups":[]},{"name":"2214","type":6,"text":"Feeling inspired to write your first TDS post? We’re always open to contributions from new authors.","markups":[{"type":3,"start":47,"end":98,"href":"http://bit.ly/write-for-tds","title":"","rel":"noopener ugc nofollow noopener noopener noopener noopener noopener noopener noopener noopener noopener noopener noopener noopener noopener noopener noopener noopener","anchorType":0}]},{"name":"ea7b","type":1,"text":"The articles we feature on our Deep Dives page include detailed walkthroughs of cutting-edge research, explainers on mathematical concepts, and patient tutorials on building and deploying LLM-based tools. Collectively, they represent some of our…","markups":[{"type":3,"start":31,"end":46,"href":"https://towardsdatascience.com/tagged/deep-dives","title":"","rel":"","anchorType":0}]}],"sections":[{"name":"fd15","startIndex":0}]},"isFullContent":false,"subtitle":"Our weekly selection of must-read Editors’ Picks and original features"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":false,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"b4fac4cabe94":{"id":"b4fac4cabe94","versionId":"19deae7301df","creatorId":"7606b796c9df","homeCollectionId":"7f60cf5620c9","title":"The Ultimate Guide to Evaluating the Impact of Outlier Treatment in Time Series","detectedLanguage":"en","latestVersion":"19deae7301df","latestPublishedVersion":"19deae7301df","hasUnpublishedEdits":false,"latestRev":2720,"createdAt":1720687185540,"updatedAt":1731923731062,"acceptedAt":0,"firstPublishedAt":1731495720762,"latestPublishedAt":1731923731062,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Sensitivity Analysis, Model Validation, Feature Importance & More!","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*BEwM2UHKe-QsU-2Gx0UotQ.png","filter":"","backgroundSize":"","originalWidth":1024,"originalHeight":1024,"strategy":"resample","height":0,"width":0},"wordCount":4597,"imageCount":4,"readingTime":18.047169811320753,"subtitle":"Sensitivity Analysis, Model Validation, Feature Importance & More!","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":55,"isBookmarked":false,"tags":[{"slug":"outlier-detection","name":"Outlier Detection","postCount":447,"metadata":{"postCount":447,"coverImage":{"id":"1*xSilYlAPKbKt3fJCB9SatA.png","originalWidth":975,"originalHeight":270,"isFeatured":true}},"type":"Tag"},{"slug":"outliers","name":"Outliers","postCount":1199,"metadata":{"postCount":1199,"coverImage":{"id":"0*_yFrgeLoP3QpevzT","originalWidth":7352,"originalHeight":4901,"isFeatured":true,"unsplashPhotoId":"5xYoebAZokc"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":354532,"metadata":{"postCount":354532,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"time-series-analysis","name":"Time Series Analysis","postCount":4165,"metadata":{"postCount":4165,"coverImage":{"id":"1*8-UKYPpVrhdQOewnTzwesw.png","isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":10,"links":{"entries":[{"url":"https://www.geeksforgeeks.org/kolmogorov-smirnov-test-ks-test/","alts":[],"httpStatus":200},{"url":"https://statisticseasily.com/outlier-detection-and-treatment/","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2002.04236","alts":[],"httpStatus":200},{"url":"https://medium.com/@saranobregafn/subscribe","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/evaluating-the-impact-of-outlier-treatment-in-time-series-b4fac4cabe94?sk=ccd20bf556ad7d8ad7e8557b2d513d6e","alts":[{"type":3,"url":"medium://p/b4fac4cabe94"},{"type":2,"url":"medium://p/b4fac4cabe94"}],"httpStatus":200},{"url":"https://towardsdatascience.com/how-to-transition-from-physics-to-data-science-a-comprehensive-guide-ff1951090f65","alts":[{"type":3,"url":"medium://p/ff1951090f65"},{"type":2,"url":"medium://p/ff1951090f65"}],"httpStatus":200},{"url":"https://towardsdatascience.com/5-must-know-techniques-for-mastering-time-series-analysis-a23ccf4d053a","alts":[{"type":3,"url":"medium://p/a23ccf4d053a"},{"type":2,"url":"medium://p/a23ccf4d053a"}],"httpStatus":200},{"url":"https://www.linkedin.com/in/saranfn/","alts":[],"httpStatus":999},{"url":"https://medium.com/@saranobregafn/list/82a4e118270d","alts":[{"type":3,"url":"medium://@saranobregafn/list/saras-data-science-free-resources-82a4e118270d"},{"type":2,"url":"medium://@saranobregafn/list/saras-data-science-free-resources-82a4e118270d"}],"httpStatus":200},{"url":"https://linktr.ee/saranobrega","alts":[],"httpStatus":200},{"url":"https://medium.com/@saranobregafn","alts":[{"type":2,"url":"medium://@saranobregafn"},{"type":3,"url":"medium://@saranobregafn"}],"httpStatus":200},{"url":"https://towardsdatascience.com/the-ultimate-guide-to-finding-outliers-in-your-time-series-data-part-1-1bf81e09ade4","alts":[{"type":3,"url":"medium://p/1bf81e09ade4"},{"type":2,"url":"medium://p/1bf81e09ade4"}],"httpStatus":200},{"url":"https://towardsdatascience.com/the-ultimate-guide-to-finding-outliers-in-your-time-series-data-part-2-674c25837f29","alts":[{"type":3,"url":"medium://p/674c25837f29"},{"type":2,"url":"medium://p/674c25837f29"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/the-ultimate-guide-to-finding-outliers-in-your-time-series-data-part-3-0ff73ce28ca3","alts":[{"type":3,"url":"medium://p/0ff73ce28ca3"},{"type":2,"url":"medium://p/0ff73ce28ca3"}],"httpStatus":200},{"url":"https://topmate.io/sara_nobrega","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1731923732859},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":628,"sectionCount":4,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"evaluating-the-impact-of-outlier-treatment-in-time-series","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"evaluating-the-impact-of-outlier-treatment-in-time-series-b4fac4cabe94","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*BEwM2UHKe-QsU-2Gx0UotQ.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},{"name":"ee6e","type":3,"text":"The Ultimate Guide to Evaluating the Impact of Outlier Treatment in Time Series","markups":[],"alignment":1},{"name":"1e07","type":13,"text":"Sensitivity Analysis…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Sensitivity Analysis, Model Validation, Feature Importance & More!"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"ef0ceabf88e6","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731317760014,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"ee6e","type":3,"text":"The Ultimate Guide to Evaluating the Impact of Outlier Treatment in Time Series","markups":[]},{"name":"1e07","type":13,"text":"Sensitivity Analysis, Model Validation, Feature Importance & More!","markups":[]},{"name":"e06a","type":4,"text":"Source: DaLL-E.","markups":[],"layout":1,"metadata":{"id":"1*BEwM2UHKe-QsU-2Gx0UotQ.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},{"name":"0cd7","type":1,"text":"(If you do not have a membership, read the article here).","markups":[{"type":3,"start":51,"end":56,"href":"https://towardsdatascience.com/evaluating-the-impact-of-outlier-treatment-in-time-series-b4fac4cabe94?sk=ccd20bf556ad7d8ad7e8557b2d513d6e","title":"","rel":"","anchorType":0},{"type":2,"start":0,"end":57}]},{"name":"2279","type":1,"text":"Picture this: You are working with time-series data, searching for patterns and investigating the trends over time.","markups":[{"type":1,"start":0,"end":13}]},{"name":"1ba1","type":1,"text":"You have done an exploratory data analysis to your time-series data and you have looked for the best methods to detect outliers…","markups":[{"type":1,"start":17,"end":42},{"type":1,"start":112,"end":127}]}],"sections":[{"name":"5646","startIndex":0}]},"isFullContent":false,"subtitle":"Sensitivity Analysis, Model Validation, Feature Importance & More!"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"383ce57a6d0a":{"id":"383ce57a6d0a","versionId":"6af8b68f1bf0","creatorId":"1c040843e458","homeCollectionId":"7f60cf5620c9","title":"Techniques for Exploratory Data Analysis and Interpretation of Statistical Graphs","detectedLanguage":"en","latestVersion":"6af8b68f1bf0","latestPublishedVersion":"6af8b68f1bf0","hasUnpublishedEdits":false,"latestRev":4010,"createdAt":1730696439985,"updatedAt":1731525539643,"acceptedAt":0,"firstPublishedAt":1731416546189,"latestPublishedAt":1731416546189,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Practical Approaches for Uncovering Insights and Patterns in Statistical Visualizations","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*tfYoo-Y6ev2cQUggZr6ATw.png","filter":"","backgroundSize":"","originalWidth":1208,"originalHeight":830,"strategy":"resample","height":0,"width":0},"wordCount":11868,"imageCount":62,"readingTime":48.63490566037736,"subtitle":"Practical Approaches for Uncovering Insights and Patterns in Statistical Visualizations","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":174,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"python","name":"Python","postCount":259576,"metadata":{"postCount":259576,"coverImage":{"id":"1*uiA0nCufUQs-K64ebSUhew.jpeg","originalWidth":1280,"originalHeight":800,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"},{"slug":"exploratory-data-analysis","name":"Exploratory Data Analysis","postCount":4282,"metadata":{"postCount":4282,"coverImage":{"id":"1*tlNX2dgL_8zwglEJSE7VTA.jpeg","originalWidth":736,"originalHeight":1840}},"type":"Tag"},{"slug":"data-visualization","name":"Data Visualization","postCount":66742,"metadata":{"postCount":66742,"coverImage":{"id":"0*pv-cTgMuAxVugzu0","originalWidth":7146,"originalHeight":7162,"isFeatured":true,"alt":"Photo by USGS on Unsplash","unsplashPhotoId":"hoS3dzgpHzw"}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":13,"links":{"entries":[{"url":"https://datascience.stackexchange.com/questions/66356/machine-learning-methods-for-finding-outliers","alts":[],"httpStatus":200},{"url":"https://github.com/Anello92/EDA-Techniques-and-Graph-Interpretation/tree/main","alts":[],"httpStatus":200},{"url":"https://www.linkedin.com/in/anello92/","alts":[],"httpStatus":999}],"version":"0.3","generatedAt":1731416547813},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":861,"sectionCount":3,"readingList":0,"topics":[{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"techniques-for-exploratory-data-analysis-and-interpretation-of-statistical-graphs","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"techniques-for-exploratory-data-analysis-and-interpretation-of-statistical-graphs-383ce57a6d0a","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*tfYoo-Y6ev2cQUggZr6ATw.png","originalWidth":1208,"originalHeight":830,"isFeatured":true}},{"name":"132e","type":3,"text":"Techniques for Exploratory Data Analysis and Interpretation of Statistical Graphs","markups":[{"type":1,"start":0,"end":81}],"alignment":1},{"name":"2402","type":13,"text":"Practical Approaches…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Practical Approaches for Uncovering Insights and Patterns in Statistical Visualizations"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"b22a12deb39f","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731069584345,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"132e","type":3,"text":"Techniques for Exploratory Data Analysis and Interpretation of Statistical Graphs","markups":[{"type":1,"start":0,"end":81}]},{"name":"2402","type":13,"text":"Practical Approaches for Uncovering Insights and Patterns in Statistical Visualizations","markups":[]},{"name":"a786","type":4,"text":"https://datascience.stackexchange.com/questions/66356/machine-learning-methods-for-finding-outliers (CC BY-SA)","markups":[{"type":3,"start":0,"end":99,"href":"https://datascience.stackexchange.com/questions/66356/machine-learning-methods-for-finding-outliers","title":"","rel":"","anchorType":0}],"layout":1,"metadata":{"id":"1*BHWR2oYZFkh_gRKmxnEB7A.png","originalWidth":1980,"originalHeight":1032}},{"name":"3eda","type":3,"text":"Overview","markups":[{"type":1,"start":0,"end":8}]},{"name":"6e8d","type":1,"text":"In this project, we’ll explore techniques for exploratory data analysis and dive into the interpretation of statistical graphs. Do you know how to interpret histograms or boxplots?","markups":[{"type":1,"start":31,"end":71},{"type":1,"start":90,"end":126},{"type":1,"start":157,"end":167},{"type":1,"start":171,"end":179}]},{"name":"68e1","type":1,"text":"Can you spot how outliers or missing values impact these visualizations? Are you able to assess data cleaning needs to…","markups":[{"type":1,"start":17,"end":25},{"type":1,"start":29,"end":43},{"type":1,"start":96,"end":115}]}],"sections":[{"name":"36c7","startIndex":0}]},"isFullContent":false,"subtitle":"Practical Approaches for Uncovering Insights and Patterns in Statistical Visualizations"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"ecf52909e5ef":{"id":"ecf52909e5ef","versionId":"2c9885e8a33f","creatorId":"0f9f21155c28","homeCollectionId":"7f60cf5620c9","title":"Jointly learning rewards and policies: an iterative Inverse Reinforcement Learning framework with…","detectedLanguage":"en","latestVersion":"2c9885e8a33f","latestPublishedVersion":"2c9885e8a33f","hasUnpublishedEdits":false,"latestRev":3343,"createdAt":1728005124345,"updatedAt":1731530760940,"acceptedAt":0,"firstPublishedAt":1731251678803,"latestPublishedAt":1731251678803,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"A novel tractable and interpretable algorithm to learn from expert demonstrations","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"0*FE9Z0CBcmQtKw3YC","filter":"","backgroundSize":"","originalWidth":2765,"originalHeight":3456,"strategy":"resample","height":0,"width":0},"wordCount":2665,"imageCount":17,"readingTime":11.656603773584905,"subtitle":"A novel tractable and interpretable algorithm to learn from expert demonstrations","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":8,"isBookmarked":false,"tags":[{"slug":"reinforcement-learning","name":"Reinforcement Learning","postCount":7645,"metadata":{"postCount":7645,"coverImage":{"id":"1*WY6Q8r-32vnZ_lgV3WrnMA.jpeg","originalWidth":1792,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"imitation-learning","name":"Imitation Learning","postCount":75,"metadata":{"postCount":75,"coverImage":{"id":"0*FE9Z0CBcmQtKw3YC","originalWidth":2765,"originalHeight":3456,"isFeatured":true,"unsplashPhotoId":"zwd435-ewb4"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":354532,"metadata":{"postCount":354532,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"applied-mathematics","name":"Applied Mathematics","postCount":193,"metadata":{"postCount":193,"coverImage":{"id":"1*XR6HQ32H4g7WYN9CKGjwpA.png","originalWidth":766,"originalHeight":366,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":0,"links":{"entries":[{"url":"https://unsplash.com?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@santesson89?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://proceedings.mlr.press/v202/uchendu23a.html","alts":[],"httpStatus":200},{"url":"https://proceedings.mlr.press/v97/brown19a/brown19a.pdf","alts":[],"httpStatus":200},{"url":"https://proceedings.mlr.press/v100/brown20a/brown20a.pdf","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2201.03544","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1907.13411","alts":[],"httpStatus":200},{"url":"https://openreview.net/forum?id=B80WUNhTAw","alts":[],"httpStatus":200},{"url":"https://web.stanford.edu/class/cs237b/","alts":[],"httpStatus":200},{"url":"https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/uncertainty-in-markov-decisions-processes-a-robust-linear-programming-approach-b01e6e26e463","alts":[{"type":3,"url":"medium://p/b01e6e26e463"},{"type":2,"url":"medium://p/b01e6e26e463"}],"httpStatus":200}],"version":"0.3","generatedAt":1731251680878},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":78,"sectionCount":8,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"jointly-learning-rewards-and-policies-an-iterative-inverse-reinforcement-learning-framework-with","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"jointly-learning-rewards-and-policies-an-iterative-inverse-reinforcement-learning-framework-with-ecf52909e5ef","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"0*FE9Z0CBcmQtKw3YC","originalWidth":2765,"originalHeight":3456,"isFeatured":true,"unsplashPhotoId":"zwd435-ewb4"}},{"name":"a6c2","type":3,"text":"Jointly learning rewards and policies: an iterative Inverse Reinforcement Learning framework with ranked synthetic…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"A novel tractable and interpretable algorithm to learn from expert demonstrations"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"f120549cc591","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1af65db9c2f8","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"a6c2","type":3,"text":"Jointly learning rewards and policies: an iterative Inverse Reinforcement Learning framework with ranked synthetic trajectories","markups":[]},{"name":"1fda","type":13,"text":"A novel tractable and interpretable algorithm to learn from expert demonstrations","markups":[]},{"name":"8f3c","type":4,"text":"Photo by Andrea De Santis on Unsplash","markups":[{"type":3,"start":9,"end":25,"href":"https://unsplash.com/@santesson89?utm_source=medium&utm_medium=referral","title":"","rel":"photo-creator","anchorType":0},{"type":3,"start":29,"end":37,"href":"https://unsplash.com?utm_source=medium&utm_medium=referral","title":"","rel":"photo-source","anchorType":0}],"layout":1,"metadata":{"id":"0*FE9Z0CBcmQtKw3YC","originalWidth":2765,"originalHeight":3456,"isFeatured":true,"unsplashPhotoId":"zwd435-ewb4"}},{"name":"66f3","type":3,"text":"Introduction","markups":[]},{"name":"b814","type":1,"text":"Imitation Learning has recently gained increasing attention in the Machine Learning community, as it enables the transfer of expert knowledge to autonomous agents through observed behaviors. A first category of algorithm is Behavioral Cloning (BC), which aims to directly replicate expert demonstrations, treating the imitation process as a supervised learning…","markups":[{"type":1,"start":224,"end":242},{"type":1,"start":341,"end":360},{"type":1,"start":529,"end":548}]}],"sections":[{"name":"2391","startIndex":0}]},"isFullContent":false,"subtitle":"A novel tractable and interpretable algorithm to learn from expert demonstrations"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"ad3166c1acd5":{"id":"ad3166c1acd5","versionId":"ee680e0e4e3e","creatorId":"db46d46d4d38","homeCollectionId":"7f60cf5620c9","title":"MIT Battlecode Reflections: A First-Time Finalist’s Takeaways","detectedLanguage":"en","latestVersion":"ee680e0e4e3e","latestPublishedVersion":"ee680e0e4e3e","hasUnpublishedEdits":false,"latestRev":399,"createdAt":1730948056691,"updatedAt":1731538500103,"acceptedAt":0,"firstPublishedAt":1730948899059,"latestPublishedAt":1731113113089,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Key Takeaways from a First-Time Contestant","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*zN7a703ATBaUxyzeIkKEwA.gif","filter":"","backgroundSize":"","originalWidth":1512,"originalHeight":915,"strategy":"resample","height":0,"width":0},"wordCount":3344,"imageCount":4,"readingTime":13.318867924528302,"subtitle":"Key Takeaways from a First-Time Contestant","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":9,"isBookmarked":false,"tags":[{"slug":"battlecode","name":"Battlecode","postCount":5,"metadata":{"postCount":5,"coverImage":{"id":"1*zN7a703ATBaUxyzeIkKEwA.gif","originalWidth":1512,"originalHeight":915,"isFeatured":true}},"type":"Tag"},{"slug":"programming-contest","name":"Programming Contest","postCount":40,"metadata":{"postCount":40,"coverImage":{"id":"1*zN7a703ATBaUxyzeIkKEwA.gif","originalWidth":1512,"originalHeight":915,"isFeatured":true}},"type":"Tag"},{"slug":"mit","name":"MIT","postCount":2763,"metadata":{"postCount":2763,"coverImage":{"id":"1*t3GsDKzes4wXByn3ITCZGg.png","originalWidth":2083,"originalHeight":1167,"isFeatured":true,"alt":"An illustration of a red table with plates of food and the hands of four people grabbing food."}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"},{"slug":"gaming","name":"Gaming","postCount":199039,"metadata":{"postCount":199039,"coverImage":{"id":"1*t8qglKFRFa_Iasp2Bh4j2Q.jpeg"}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":0,"links":{"entries":[{"url":"https://dteather.com/blogs/battlecode24/","alts":[],"httpStatus":200},{"url":"https://www.battlecode.org/","alts":[],"httpStatus":0},{"url":"https://github.com/battlecode/battlecode24","alts":[],"httpStatus":200},{"url":"https://github.com/chenyx512/battlecode24/blob/main/compare_bots.py","alts":[],"httpStatus":200},{"url":"https://www.youtube.com/watch?v=-2-E2DP2t6A","alts":[],"httpStatus":200},{"url":"https://github.com/shrimpkin/battlecode_24","alts":[],"httpStatus":200},{"url":"https://www.youtube.com/watch?v=F0jzPA_6YB4","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1731113113849},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":35,"sectionCount":1,"readingList":0,"topics":[{"topicId":"137f52891b6b","slug":"gaming","createdAt":1527184510547,"deletedAt":0,"image":{"id":"1*3BZYZyK4cVHJanh-pHnZRg@2x.jpeg","originalWidth":4752,"originalHeight":3168},"name":"Gaming","description":"Ready, player one?","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Gaming News and Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"battlecode-2024-finalist","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"battlecode-2024-finalist-ad3166c1acd5","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*zN7a703ATBaUxyzeIkKEwA.gif","originalWidth":1512,"originalHeight":915,"isFeatured":true}},{"name":"cd7f","type":3,"text":"MIT Battlecode Reflections: A First-Time Finalist’s Takeaways","markups":[],"alignment":1},{"name":"f30a","type":13,"text":"Key Takeaways from a First-Time…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Key Takeaways from a First-Time Contestant"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"c87279a5362f","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"decb52b64abf","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"cd7f","type":3,"text":"MIT Battlecode Reflections: A First-Time Finalist’s Takeaways","markups":[]},{"name":"f30a","type":13,"text":"Key Takeaways from a First-Time Contestant","markups":[]},{"name":"297f","type":4,"text":"Image created by the author, using Battlecode’s Engine","markups":[{"type":3,"start":35,"end":54,"href":"https://github.com/battlecode/battlecode24","title":"","rel":"","anchorType":0}],"layout":1,"metadata":{"id":"1*zN7a703ATBaUxyzeIkKEwA.gif","originalWidth":1512,"originalHeight":915,"isFeatured":true}},{"name":"d9f6","type":1,"text":"I was dragged into Battlecode 2024 by one of our teammates. I had never heard of Battlecode before, but I was excited to try it out. I had a lot of fun and I’m glad I did it, and we ended up qualifying for the finals and placing 13th overall…","markups":[]}],"sections":[{"name":"b9d4","startIndex":0}]},"isFullContent":false,"subtitle":"Key Takeaways from a First-Time Contestant"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"2563cec4d10e":{"id":"2563cec4d10e","versionId":"0e0fee157177","creatorId":"8ab3accce432","homeCollectionId":"7f60cf5620c9","title":"Preference Alignment for Everyone!","detectedLanguage":"en","latestVersion":"0e0fee157177","latestPublishedVersion":"0e0fee157177","hasUnpublishedEdits":false,"latestRev":1722,"createdAt":1725848819569,"updatedAt":1731536051211,"acceptedAt":0,"firstPublishedAt":1731088178975,"latestPublishedAt":1731088236261,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Frugal RLHF with multi-adapter PPO on Amazon SageMaker","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*cbLNScjpzOf80TRVme0VZA.png","filter":"","backgroundSize":"","originalWidth":1024,"originalHeight":1024,"strategy":"resample","height":0,"width":0},"wordCount":6355,"imageCount":11,"readingTime":25.2811320754717,"subtitle":"Frugal RLHF with multi-adapter PPO on Amazon SageMaker","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":33,"isBookmarked":false,"tags":[{"slug":"llm","name":"Llm","postCount":27765,"metadata":{"postCount":27765,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"fine-tuning","name":"Fine Tuning","postCount":1956,"metadata":{"postCount":1956,"coverImage":{"id":"1*RfVrOxzmxJamOqv-Q4oyWA.png","originalWidth":3756,"originalHeight":2317,"isFeatured":true}},"type":"Tag"},{"slug":"rlhf","name":"Rlhf","postCount":202,"metadata":{"postCount":202,"coverImage":{"id":"1*_49ovv4oxmQMxJ3rGUaHrA.png","originalWidth":800,"originalHeight":712,"isFeatured":true}},"type":"Tag"},{"slug":"reinforcement-learning","name":"Reinforcement Learning","postCount":7645,"metadata":{"postCount":7645,"coverImage":{"id":"1*WY6Q8r-32vnZ_lgV3WrnMA.jpeg","originalWidth":1792,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"deep-dives","name":"Deep Dives","postCount":2280,"metadata":{"postCount":2280,"coverImage":{"id":"1*D4g3iA4mxYzEFle59k_S-g.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true,"alt":"A glowing heart surrounded by cracks, symbolizing love and resilience through pain."}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":2,"links":{"entries":[{"url":"https://rajpurkar.github.io/SQuAD-explorer/","alts":[],"httpStatus":200},{"url":"https://aws.amazon.com/blogs/machine-learning/announcing-the-launch-of-new-hugging-face-llm-inference-containers-on-amazon-sagemaker/","alts":[],"httpStatus":200},{"url":"https://huggingface.co/docs/text-generation-inference/en/index","alts":[],"httpStatus":200},{"url":"https://creativecommons.org/licenses/by-sa/4.0/deed.en","alts":[],"httpStatus":200},{"url":"https://explore.skillbuilder.aws/learn/course/external/view/elearning/17556/building-language-models-on-aws","alts":[],"httpStatus":200},{"url":"https://opensource.org/license/mit","alts":[],"httpStatus":403},{"url":"https://huggingface.co/datasets/Anthropic/hh-rlhf","alts":[],"httpStatus":200},{"url":"https://github.com/meta-llama/llama-recipes","alts":[],"httpStatus":200},{"url":"https://github.com/aws-samples/build-language-models-on-aws/tree/main/align-models-with-amazon-sagemaker/rlhf-with-multi-adapter-ppo","alts":[],"httpStatus":200},{"url":"https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct","alts":[],"httpStatus":200},{"url":"https://medium.com/@gilinachum","alts":[{"type":2,"url":"medium://@gilinachum"},{"type":3,"url":"medium://@gilinachum"}],"httpStatus":200},{"url":"https://anastasia-tzeveleka.medium.com/","alts":[{"type":2,"url":"medium://@anastasia-tzeveleka"},{"type":3,"url":"medium://@anastasia-tzeveleka"}],"httpStatus":200},{"url":"https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1#llama-3.1-instruct","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/stepping-out-of-the-comfort-zone-through-domain-adaptation-a-deep-dive-into-dynamic-prompting-4860c6d16224","alts":[{"type":3,"url":"medium://p/4860c6d16224"},{"type":2,"url":"medium://p/4860c6d16224"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/stepping-out-of-the-comfort-zone-through-domain-adaptation-a-deep-dive-into-dynamic-prompting-4860c6d16224","alts":[{"type":3,"url":"medium://p/4860c6d16224"},{"type":2,"url":"medium://p/4860c6d16224"}],"httpStatus":200}],"version":"0.3","generatedAt":1731088237418},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":261,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"preference-alignment-for-everyone","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"preference-alignment-for-everyone-2563cec4d10e","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*cbLNScjpzOf80TRVme0VZA.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},{"name":"8aa2","type":3,"text":"Preference Alignment for Everyone!","markups":[{"type":1,"start":0,"end":34}],"alignment":1},{"name":"c070","type":13,"text":"Frugal RLHF with multi-adapter PPO on Amazon SageMaker","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Frugal RLHF with multi-adapter PPO on Amazon SageMaker"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"b1dcc4619fd9","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"8aa2","type":3,"text":"Preference Alignment for Everyone!","markups":[{"type":1,"start":0,"end":34}]},{"name":"c070","type":13,"text":"Frugal RLHF with multi-adapter PPO on Amazon SageMaker","markups":[]},{"name":"70ad","type":4,"text":"Photo by StableDiffusionXL on Amazon Web Services","markups":[],"layout":1,"metadata":{"id":"1*cbLNScjpzOf80TRVme0VZA.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},{"name":"0b70","type":1,"text":"Note: All images, unless otherwise noted, are by the author.","markups":[]},{"name":"a521","type":3,"text":"What is this about and why is it important?","markups":[]},{"name":"2fac","type":1,"text":"Over the last 2 years, research and practice have delivered plenty of proof that preference alignment (PA) is a game changer for boosting Large Language Models (LLMs) performance, especially (but not exclusively) for models directly exposed to humans. PA uses…","markups":[{"type":3,"start":482,"end":496,"href":"https://towardsdatascience.com/stepping-out-of-the-comfort-zone-through-domain-adaptation-a-deep-dive-into-dynamic-prompting-4860c6d16224","title":"","rel":"","anchorType":0}]}],"sections":[{"name":"0940","startIndex":0}]},"isFullContent":false,"subtitle":"Frugal RLHF with multi-adapter PPO on Amazon SageMaker"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"}}},"paging":{"path":"/_/api/collections/7f60cf5620c9/topics/8ad314313527","next":{"to":"1732731033958","ignoredIds":["7f9c6e6b7251","eee3033baa39","5b0789fe27aa","26f6f067de71","fe25a0f8ae55","0095a73cf5ab","af352105db56","b556aa97bf7a","927c5a9063b9","b4fac4cabe94","383ce57a6d0a","ecf52909e5ef","ad3166c1acd5","2563cec4d10e"],"page":3}},"collection":{"id":"7f60cf5620c9","name":"Towards Data Science","slug":"towards-data-science","tags":["DATA SCIENCE","MACHINE LEARNING","ARTIFICIAL INTELLIGENCE","DATA ENGINEERING","DATA"],"creatorId":"9c70285657bb","description":"Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals.","shortDescription":"Your home for data science and AI.","image":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"metadata":{"followerCount":768703,"activeAt":1732726931837},"virtuals":{"permissions":{"canPublish":false,"canPublishAll":false,"canRepublish":false,"canRemove":false,"canManageAll":false,"canSubmit":false,"canEditPosts":false,"canAddWriters":false,"canViewStats":false,"canSendNewsletter":false,"canViewLockedPosts":false,"canViewCloaked":false,"canEditOwnPosts":false,"canBeAssignedAuthor":false,"canEnrollInHightower":false,"canLockPostsForMediumMembers":false,"canLockOwnPostsForMediumMembers":false,"canViewNewsletterV2Stats":false,"canCreateNewsletterV3":false},"isSubscribed":false,"isEnrolledInHightower":false,"isEligibleForHightower":false,"isSubscribedToCollectionEmails":false,"isMuted":false,"canToggleEmail":false,"isWriter":false},"logo":{"imageId":"1*cFFKn8rFH4ZndmaYeAs6iQ.png","filter":"","backgroundSize":"","originalWidth":2381,"originalHeight":743,"strategy":"resample","height":0,"width":0},"twitterUsername":"TDataScience","collectionMastheadId":"8b6aceffde6","domain":"towardsdatascience.com","sections":[{"type":2,"collectionHeaderMetadata":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":2,"postIds":[]}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":9,"postIds":[],"sectionHeader":"Latest"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"f9f3fdba6ebf"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Editors Pick","sectionHeader":"Editors' Picks"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":2,"postIds":[],"tagSlug":"Tds Features","sectionHeader":"Features"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"efaedc412a41"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["60bb69a22759","c57724e9c461","69019493b259"],"sectionHeader":"Trending articles"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["182a5ef6588c","e24b50e1d292","68b2303cc9c5"],"sectionHeader":"Popular from our archive"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Deep Dives","sectionHeader":"Deep Dives"}},{"type":1,"postListMetadata":{"source":3,"layout":5,"number":3,"postIds":["d691af11cc2f","c2c8e712c971","3bf37f75a345"],"sectionHeader":"About"}},{"type":1,"postListMetadata":{"source":1,"layout":5,"number":16,"postIds":[],"sectionHeader":"Latest"}}],"tintColor":"#FF355876","lightText":true,"favicon":{"imageId":"1*VzTUkfeGymHP4Bvav-T-lA.png","filter":"","backgroundSize":"","originalWidth":207,"originalHeight":206,"strategy":"resample","height":0,"width":0},"colorPalette":{"defaultBackgroundSpectrum":{"colorPoints":[{"color":"#FF668AAA","point":0},{"color":"#FF61809D","point":0.1},{"color":"#FF5A7690","point":0.2},{"color":"#FF546C83","point":0.3},{"color":"#FF4D6275","point":0.4},{"color":"#FF455768","point":0.5},{"color":"#FF3D4C5A","point":0.6},{"color":"#FF34414C","point":0.7},{"color":"#FF2B353E","point":0.8},{"color":"#FF21282F","point":0.9},{"color":"#FF161B1F","point":1}],"backgroundColor":"#FFFFFFFF"},"tintBackgroundSpectrum":{"colorPoints":[{"color":"#FF355876","point":0},{"color":"#FF4D6C88","point":0.1},{"color":"#FF637F99","point":0.2},{"color":"#FF7791A8","point":0.3},{"color":"#FF8CA2B7","point":0.4},{"color":"#FF9FB3C6","point":0.5},{"color":"#FFB2C3D4","point":0.6},{"color":"#FFC5D2E1","point":0.7},{"color":"#FFD7E2EE","point":0.8},{"color":"#FFE9F1FA","point":0.9},{"color":"#FFFBFFFF","point":1}],"backgroundColor":"#FF355876"},"highlightSpectrum":{"colorPoints":[{"color":"#FFEDF4FC","point":0},{"color":"#FFE9F2FD","point":0.1},{"color":"#FFE6F1FD","point":0.2},{"color":"#FFE2EFFD","point":0.3},{"color":"#FFDFEEFD","point":0.4},{"color":"#FFDBECFE","point":0.5},{"color":"#FFD7EBFE","point":0.6},{"color":"#FFD4E9FE","point":0.7},{"color":"#FFD0E7FF","point":0.8},{"color":"#FFCCE6FF","point":0.9},{"color":"#FFC8E4FF","point":1}],"backgroundColor":"#FFFFFFFF"},"darkBackgroundSpectrum":{"colorPoints":[{"color":"#FF7EA2C3","point":0},{"color":"#FF8AAAC9","point":0.1},{"color":"#FF95B2CE","point":0.2},{"color":"#FFA0BAD3","point":0.3},{"color":"#FFABC2D9","point":0.4},{"color":"#FFB6CADE","point":0.5},{"color":"#FFC1D2E3","point":0.6},{"color":"#FFCBD9E8","point":0.7},{"color":"#FFD6E1EC","point":0.8},{"color":"#FFE0E8F1","point":0.9},{"color":"#FFEAEFF6","point":1}],"backgroundColor":"#FF000000"}},"navItems":[{"type":8,"title":"Latest","url":"https://towardsdatascience.com/latest"},{"type":4,"title":"Editors' Picks","url":"https://towardsdatascience.com/editors-picks/home","topicId":"20b4f3e27fbe","source":"topicId"},{"type":4,"title":"Deep Dives","url":"https://towardsdatascience.com/deep-dives/home","topicId":"8ad314313527","source":"topicId"},{"type":4,"title":"About","url":"https://towardsdatascience.com/about-us/home","topicId":"e4bc46bb3ab0","source":"topicId"},{"type":2,"title":"Contribute","postId":"96667b06af5","url":"https://towardsdatascience.com/questions-96667b06af5","source":"postId"},{"type":3,"title":"Newsletter","url":"https://medium.com/towards-data-science/newsletter"}],"colorBehavior":2,"collectionFeatures":[29,30,27,25],"ampLogo":{"imageId":"","filter":"","backgroundSize":"","originalWidth":0,"originalHeight":0,"strategy":"resample","height":0,"width":0},"header":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5},"paidForDomainAt":1509037374118,"subscriberCount":768703,"tagline":"A Medium publication sharing concepts, ideas and codes.","isOptedIntoAurora":false,"newsletterV3":{"newsletterV3Id":"d6fe9076899","type":1,"name":"The Variable","description":"Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools.","collectionId":"7f60cf5620c9","newsletterSlug":"the-variable","isSubscribed":false,"showPromo":true,"avatarImageId":"","creatorId":"895063a310f4","showNewsletterPostsInCollectionHome":true,"exportableSubscribersCount":52145,"subscribersCount":132088,"promoHeadline":"","promoBody":"","replyToEmail":""},"isCurationAllowedByDefault":false,"polarisCoverImage":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"ptsQualifiedAt":1616092952992,"type":"Collection"},"topic":{"topicId":"8ad314313527","collectionId":"7f60cf5620c9","createdAt":0,"slug":"deep-dives","header":{},"sections":[{"source":4,"layout":4,"number":2,"title":"","items":[{"postId":"7f9c6e6b7251","itemType":"postId"},{"postId":"eee3033baa39","itemType":"postId"}],"tagSlug":"Deep Dives"},{"source":4,"layout":4,"number":12,"title":"Latest","items":[{"postId":"5b0789fe27aa","itemType":"postId"},{"postId":"26f6f067de71","itemType":"postId"},{"postId":"fe25a0f8ae55","itemType":"postId"},{"postId":"0095a73cf5ab","itemType":"postId"},{"postId":"af352105db56","itemType":"postId"},{"postId":"b556aa97bf7a","itemType":"postId"},{"postId":"927c5a9063b9","itemType":"postId"},{"postId":"b4fac4cabe94","itemType":"postId"},{"postId":"383ce57a6d0a","itemType":"postId"},{"postId":"ecf52909e5ef","itemType":"postId"},{"postId":"ad3166c1acd5","itemType":"postId"},{"postId":"2563cec4d10e","itemType":"postId"}],"tagSlug":"Deep Dives"},{"source":4,"layout":4,"number":2,"title":"Features","tagSlug":"Tds Features"},{"source":4,"layout":4,"number":9,"title":"Latest","tagSlug":"Deep Dives"},{"source":4,"layout":4,"number":6,"title":"Editors' Picks","tagSlug":"Editors Pick"},{"source":3,"layout":4,"number":3,"title":"Popular from our archive","items":[{"postId":"182a5ef6588c","itemType":"postId"},{"postId":"e24b50e1d292","itemType":"postId"},{"postId":"68b2303cc9c5","itemType":"postId"}],"tagSlug":""},{"source":3,"layout":2,"number":1,"title":"Contribute","items":[{"postId":"96667b06af5","itemType":"postId"}],"tagSlug":""},{"source":4,"layout":4,"number":15,"title":"Last chance to read","tagSlug":"Deep Dives"}],"title":"Deep Dives","description":"From data science or data engineering to the inner workings of LLMs, our longer articles cover these topics with nuance, care, and an eye toward practical applications.","type":"CollectionTopic"},"header":{"title":"Deep Dives","description":"From data science or data engineering to the inner workings of LLMs, our longer articles cover these topics with nuance, care, and an eye toward practical applications.","alignment":1},"streamItems":[{"createdAt":1732731034006,"randomId":"2d43afe8c756","section":{"items":[{"post":{"postId":"7f9c6e6b7251"},"itemType":"post"},{"post":{"postId":"eee3033baa39"},"itemType":"post"}],"layout":4},"itemType":"section","type":"StreamItem"},{"createdAt":1732731034006,"randomId":"ec0589248cb0","section":{"items":[{"post":{"postId":"5b0789fe27aa"},"itemType":"post"},{"post":{"postId":"26f6f067de71"},"itemType":"post"},{"post":{"postId":"fe25a0f8ae55"},"itemType":"post"},{"post":{"postId":"0095a73cf5ab"},"itemType":"post"},{"post":{"postId":"af352105db56"},"itemType":"post"},{"post":{"postId":"b556aa97bf7a"},"itemType":"post"},{"post":{"postId":"927c5a9063b9"},"itemType":"post"},{"post":{"postId":"b4fac4cabe94"},"itemType":"post"},{"post":{"postId":"383ce57a6d0a"},"itemType":"post"},{"post":{"postId":"ecf52909e5ef"},"itemType":"post"},{"post":{"postId":"ad3166c1acd5"},"itemType":"post"},{"post":{"postId":"2563cec4d10e"},"itemType":"post"}],"layout":4,"heading":{"fallbackTitle":"Latest","headingBasic":{"title":"Latest"},"headingType":"headingBasic"}},"itemType":"section","type":"StreamItem"}]}) // ]]></script><script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e941360dbcc8337',t:'MTczMjczMTAzNC4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10