CINXE.COM

Noura Farra | Columbia University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Noura Farra | Columbia University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="lSc+1E7m2xBMV+/bUFdijpkJ0n2ZNujplFzu6lBww/0aPvcyEsO3DRBl9rvOwpf3nsmh2A3aOiZ5Jf4FeCM+TQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="noura farra" /> <meta name="description" content="Noura Farra, Columbia University: 47 Followers, 30 Following, 18 Research papers. Research interests: Machine Learning, Computational Linguistics, and Natural…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277210403,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732495249000); window.Aedu.timeDifference = new Date().getTime() - 1732495249000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://columbia.academia.edu/NouraFarra" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra","photo":"https://0.academia-photos.com/794499/270898/3058652/s65_noura.farra.jpg","has_photo":true,"department":{"id":299,"name":"Computer Science","url":"https://columbia.academia.edu/Departments/Computer_Science/Documents","university":{"id":77,"name":"Columbia University","url":"https://columbia.academia.edu/"}},"position":"Graduate Student","position_id":3,"is_analytics_public":false,"interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":3268,"name":"Computational Linguistics","url":"https://www.academia.edu/Documents/in/Computational_Linguistics"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":69100,"name":"Data Science","url":"https://www.academia.edu/Documents/in/Data_Science"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://columbia.academia.edu/NouraFarra&quot;,&quot;location&quot;:&quot;/NouraFarra&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;columbia.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/NouraFarra&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-c237d39c-18c1-423a-b32c-c8406cbdf662"></div> <div id="ProfileCheckPaperUpdate-react-component-c237d39c-18c1-423a-b32c-c8406cbdf662"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Noura Farra" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/794499/270898/3058652/s200_noura.farra.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Noura Farra</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://columbia.academia.edu/">Columbia University</a>, <a class="u-tcGrayDarker" href="https://columbia.academia.edu/Departments/Computer_Science/Documents">Computer Science</a>, <span class="u-tcGrayDarker">Graduate Student</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Noura" data-follow-user-id="794499" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="794499"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">47</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">30</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="794499" href="https://www.academia.edu/Documents/in/Machine_Learning"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://columbia.academia.edu/NouraFarra&quot;,&quot;location&quot;:&quot;/NouraFarra&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;columbia.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/NouraFarra&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Machine Learning&quot;]}" data-trace="false" data-dom-id="Pill-react-component-70aaadcb-08b6-42d6-871a-bf842f294dd6"></div> <div id="Pill-react-component-70aaadcb-08b6-42d6-871a-bf842f294dd6"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="794499" href="https://www.academia.edu/Documents/in/Computational_Linguistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Computational Linguistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-41f93275-ac14-49b9-870f-27e737eee283"></div> <div id="Pill-react-component-41f93275-ac14-49b9-870f-27e737eee283"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="794499" href="https://www.academia.edu/Documents/in/Natural_Language_Processing"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Natural Language Processing&quot;]}" data-trace="false" data-dom-id="Pill-react-component-54c9a16a-6659-4c5b-accd-67aa6f2c8e78"></div> <div id="Pill-react-component-54c9a16a-6659-4c5b-accd-67aa6f2c8e78"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="794499" href="https://www.academia.edu/Documents/in/Data_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Data Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-6971294e-5200-4539-9b1e-37b03f9eb485"></div> <div id="Pill-react-component-6971294e-5200-4539-9b1e-37b03f9eb485"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Noura Farra</h3></div><div class="js-work-strip profile--work_container" data-work-id="123437086"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123437086/RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Multilingual_Scenarios"><img alt="Research paper thumbnail of RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?" class="work-thumbnail" src="https://attachments.academia-assets.com/117867625/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123437086/RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Multilingual_Scenarios">RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 22, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="84e19e981f22013693f448b6ac3a5ecb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117867625,&quot;asset_id&quot;:123437086,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117867625/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123437086"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123437086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123437086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123437086]").text(description); $(".js-view-count[data-work-id=123437086]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123437086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123437086']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 123437086, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "84e19e981f22013693f448b6ac3a5ecb" } } $('.js-work-strip[data-work-id=123437086]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123437086,"title":"RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?","translated_title":"","metadata":{"publication_date":{"day":22,"month":4,"year":2024,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123437086/RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Multilingual_Scenarios","translated_internal_url":"","created_at":"2024-09-01T04:15:44.900-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117867625,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117867625/thumbnails/1.jpg","file_name":"2404.14397.pdf","download_url":"https://www.academia.edu/attachments/117867625/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117867625/2404.14397-libre.pdf?1725191636=\u0026response-content-disposition=attachment%3B+filename%3DRTP_LX_Can_LLMs_Evaluate_Toxicity_in_Mul.pdf\u0026Expires=1732498848\u0026Signature=He6VJ5uG0WeTp9EMuowQ2lCRcZus8dQm0P8S5Mc4UNAT7GtVKpx2jctLcguOzYSR9DadBG7LD-aVHqdGwAGn6YhmRqBbHloAgDfDUcoUJda68idjU6Wp431Zrvntp6RdbYffuFo8L2pfw2lMHNeaTWUJjspeNES6gEsbS~nZ2Pk8~SJHRj1Tlc8auliEGBludRrXAuXT8hOUzfi0O7GyYt-6MI0V4cXexUKpeWj1-KsFUSzyoF5nS1L4KMfh7H~x~wBr9VQyQepFkqu8B6akTGPqDKKwr9F3e3oz9iED6yIjmTWyp-dywkugglRODFem-GzbKqJvGbg4~-knxxh2sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Multilingual_Scenarios","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":117867625,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117867625/thumbnails/1.jpg","file_name":"2404.14397.pdf","download_url":"https://www.academia.edu/attachments/117867625/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117867625/2404.14397-libre.pdf?1725191636=\u0026response-content-disposition=attachment%3B+filename%3DRTP_LX_Can_LLMs_Evaluate_Toxicity_in_Mul.pdf\u0026Expires=1732498848\u0026Signature=He6VJ5uG0WeTp9EMuowQ2lCRcZus8dQm0P8S5Mc4UNAT7GtVKpx2jctLcguOzYSR9DadBG7LD-aVHqdGwAGn6YhmRqBbHloAgDfDUcoUJda68idjU6Wp431Zrvntp6RdbYffuFo8L2pfw2lMHNeaTWUJjspeNES6gEsbS~nZ2Pk8~SJHRj1Tlc8auliEGBludRrXAuXT8hOUzfi0O7GyYt-6MI0V4cXexUKpeWj1-KsFUSzyoF5nS1L4KMfh7H~x~wBr9VQyQepFkqu8B6akTGPqDKKwr9F3e3oz9iED6yIjmTWyp-dywkugglRODFem-GzbKqJvGbg4~-knxxh2sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":67405,"name":"Toxicity","url":"https://www.academia.edu/Documents/in/Toxicity"}],"urls":[{"id":44386540,"url":"https://arxiv.org/pdf/2404.14397"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190332"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190332/The_ARIEL_CMU_Systems_for_LoReHLT18"><img alt="Research paper thumbnail of The ARIEL-CMU Systems for LoReHLT18" class="work-thumbnail" src="https://attachments.academia-assets.com/92211198/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190332/The_ARIEL_CMU_Systems_for_LoReHLT18">The ARIEL-CMU Systems for LoReHLT18</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (L...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41d947d0043c83d554f34379954427b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211198,&quot;asset_id&quot;:88190332,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211198/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190332"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190332"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190332; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190332]").text(description); $(".js-view-count[data-work-id=88190332]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190332; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190332']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190332, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41d947d0043c83d554f34379954427b2" } } $('.js-work-strip[data-work-id=88190332]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190332,"title":"The ARIEL-CMU Systems for LoReHLT18","translated_title":"","metadata":{"abstract":"This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech).","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech).","internal_url":"https://www.academia.edu/88190332/The_ARIEL_CMU_Systems_for_LoReHLT18","translated_internal_url":"","created_at":"2022-10-09T15:29:02.230-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211198,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211198/thumbnails/1.jpg","file_name":"1902.08899v1.pdf","download_url":"https://www.academia.edu/attachments/92211198/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_ARIEL_CMU_Systems_for_LoReHLT18.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211198/1902.08899v1-libre.pdf?1665355137=\u0026response-content-disposition=attachment%3B+filename%3DThe_ARIEL_CMU_Systems_for_LoReHLT18.pdf\u0026Expires=1732498848\u0026Signature=RR5cSKzmm5C5T4OdGccusiOSQ0Al~FsVTvQ~4cla4Lz-ncCE2W54-~L-I73FXGa3tEBqa~8wsAzPIfEpRMIwOgYlh6jKFKFfnhBreOpGnz6gIYO84nW1VXBy1hOYi9isocSgYln4zsuMo04OSeBNpz1sh~iXYeJplll8Etykdo42l7wixYfUJ-r0reIa0gwODC9iic4PxKuStDAk10KIN7IMMsdpXxf9X6OWm1bgh0-MbyGGYe1N3IOJCk0SBh3RFgqfCfPZKYO-lH6FeflVw6K1TtJLaZMdii72NK2mxwYz0FRs5-qu~7kpSDBUYoJMQ617qY0ZcOnhqLYBFS1wPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_ARIEL_CMU_Systems_for_LoReHLT18","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211198,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211198/thumbnails/1.jpg","file_name":"1902.08899v1.pdf","download_url":"https://www.academia.edu/attachments/92211198/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_ARIEL_CMU_Systems_for_LoReHLT18.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211198/1902.08899v1-libre.pdf?1665355137=\u0026response-content-disposition=attachment%3B+filename%3DThe_ARIEL_CMU_Systems_for_LoReHLT18.pdf\u0026Expires=1732498848\u0026Signature=RR5cSKzmm5C5T4OdGccusiOSQ0Al~FsVTvQ~4cla4Lz-ncCE2W54-~L-I73FXGa3tEBqa~8wsAzPIfEpRMIwOgYlh6jKFKFfnhBreOpGnz6gIYO84nW1VXBy1hOYi9isocSgYln4zsuMo04OSeBNpz1sh~iXYeJplll8Etykdo42l7wixYfUJ-r0reIa0gwODC9iic4PxKuStDAk10KIN7IMMsdpXxf9X6OWm1bgh0-MbyGGYe1N3IOJCk0SBh3RFgqfCfPZKYO-lH6FeflVw6K1TtJLaZMdii72NK2mxwYz0FRs5-qu~7kpSDBUYoJMQ617qY0ZcOnhqLYBFS1wPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":92211197,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211197/thumbnails/1.jpg","file_name":"1902.08899v1.pdf","download_url":"https://www.academia.edu/attachments/92211197/download_file","bulk_download_file_name":"The_ARIEL_CMU_Systems_for_LoReHLT18.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211197/1902.08899v1-libre.pdf?1665355139=\u0026response-content-disposition=attachment%3B+filename%3DThe_ARIEL_CMU_Systems_for_LoReHLT18.pdf\u0026Expires=1732498848\u0026Signature=Ld35E3yTP~brycMH~gPouHXQ8CHY1EJC5-j4Aq3UttFO0RDOh4Hu101XPgH~YOZ3zClbt4BEh8h7bq5xts~uM5sHDwDfva1RcPYpGx3sqlNZ-HDfmuhSW-UcJ2HzjsMRG-0njutyoemUlG72x97ZwkG2XXBPmCsFAwVvoIfNClJIml1iwQ8Hlff23~VatQ~eo1vDlgmTsdzCZ1h6yTnM6dkfHQi-q8Ji9LLFUN6SRBV~nXytr08-aCrO9n-2YqJ6keyVdQfkG0kBriabBDxTWaBrBzDYrKT5i16qBbsp0ctMy7lv7deZHEeLB-MDXnMuyAQM42BnxNMol1fpMPS9bQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":24620481,"url":"https://arxiv.org/pdf/1902.08899v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190331"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190331/SemEval_2019_Task_6_Identifying_and_Categorizing_Offensive_Language_in_Social_Media_OffensEval_"><img alt="Research paper thumbnail of SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)" class="work-thumbnail" src="https://attachments.academia-assets.com/92211251/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190331/SemEval_2019_Task_6_Identifying_and_Categorizing_Offensive_Language_in_Social_Media_OffensEval_">SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)</a></div><div class="wp-workCard_item"><span>Proceedings of the 13th International Workshop on Semantic Evaluation</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7514d4492187f7cd5fb3e33775080066" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211251,&quot;asset_id&quot;:88190331,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211251/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190331"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190331"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190331; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190331]").text(description); $(".js-view-count[data-work-id=88190331]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190331; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190331']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190331, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7514d4492187f7cd5fb3e33775080066" } } $('.js-work-strip[data-work-id=88190331]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190331,"title":"SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"We present the results and the main findings of SemEval-2019 Task 6 on Identifying and Categorizing Offensive Language in Social Media (OffensEval). The task was based on a new dataset, the Offensive Language Identification Dataset (OLID), which contains over 14,000 English tweets. It featured three sub-tasks. In sub-task A, the goal was to discriminate between offensive and non-offensive posts. In sub-task B, the focus was on the type of offensive content in the post. Finally, in sub-task C, systems had to detect the target of the offensive posts. OffensEval attracted a large number of participants and it was one of the most popular tasks in SemEval-2019. In total, about 800 teams signed up to participate in the task, and 115 of them submitted results, which we present and analyze in this report. 1 http://competitions.codalab.org/ competitions/20011 2 http://scholar.harvard.edu/malmasi/ olid 3 A total of 800 teams signed up to participate in the task, but only 115 teams ended up submitting results eventually.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceedings of the 13th International Workshop on Semantic Evaluation","grobid_abstract_attachment_id":92211251},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190331/SemEval_2019_Task_6_Identifying_and_Categorizing_Offensive_Language_in_Social_Media_OffensEval_","translated_internal_url":"","created_at":"2022-10-09T15:29:02.092-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211251,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211251/thumbnails/1.jpg","file_name":"1903.pdf","download_url":"https://www.academia.edu/attachments/92211251/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SemEval_2019_Task_6_Identifying_and_Cate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211251/1903-libre.pdf?1665355131=\u0026response-content-disposition=attachment%3B+filename%3DSemEval_2019_Task_6_Identifying_and_Cate.pdf\u0026Expires=1732498848\u0026Signature=Yxm1BENjAVyoSDDyJ5uM4GI8fTbMzGPl3vdy74Ck-2cnUp6ZdP3iep~HavTFPQfMmlTBa2qom~fWWWZK38XE1AhTlWICBjo8ag4R-hKz5ist9d~Zlqo-L26I3bCKm96CU06e6AKnzwUbBSqf2BuBr7zgI1QupOWoHKa33YK73OOIWmjtPrQjePnphTesfV6JDoLSe1mK4bkCRP~nWliqaAh~VImF-pEreKkOHjyLVL8P2x5DW2YpVVh853CJ~2s2x~DIDre7oA77ya08K-5VTDPpoJXlhAwVZ5xD6AtXJhN9i2Y0aP21rbne7ZlpyfSxOqZoYR6-Eo6IeCY2~dUgVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SemEval_2019_Task_6_Identifying_and_Categorizing_Offensive_Language_in_Social_Media_OffensEval_","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211251,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211251/thumbnails/1.jpg","file_name":"1903.pdf","download_url":"https://www.academia.edu/attachments/92211251/download_file?st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SemEval_2019_Task_6_Identifying_and_Cate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211251/1903-libre.pdf?1665355131=\u0026response-content-disposition=attachment%3B+filename%3DSemEval_2019_Task_6_Identifying_and_Cate.pdf\u0026Expires=1732498848\u0026Signature=Yxm1BENjAVyoSDDyJ5uM4GI8fTbMzGPl3vdy74Ck-2cnUp6ZdP3iep~HavTFPQfMmlTBa2qom~fWWWZK38XE1AhTlWICBjo8ag4R-hKz5ist9d~Zlqo-L26I3bCKm96CU06e6AKnzwUbBSqf2BuBr7zgI1QupOWoHKa33YK73OOIWmjtPrQjePnphTesfV6JDoLSe1mK4bkCRP~nWliqaAh~VImF-pEreKkOHjyLVL8P2x5DW2YpVVh853CJ~2s2x~DIDre7oA77ya08K-5VTDPpoJXlhAwVZ5xD6AtXJhN9i2Y0aP21rbne7ZlpyfSxOqZoYR6-Eo6IeCY2~dUgVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":544669,"name":"Language Identification","url":"https://www.academia.edu/Documents/in/Language_Identification"},{"id":663814,"name":"Offensive Realism","url":"https://www.academia.edu/Documents/in/Offensive_Realism"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190330"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190330/Cross_lingual_sentiment_transfer_with_limited_resources"><img alt="Research paper thumbnail of Cross-lingual sentiment transfer with limited resources" class="work-thumbnail" src="https://attachments.academia-assets.com/92211255/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190330/Cross_lingual_sentiment_transfer_with_limited_resources">Cross-lingual sentiment transfer with limited resources</a></div><div class="wp-workCard_item"><span>Machine Translation</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="96d4583084ff63d6aeb8d223f05b8acf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211255,&quot;asset_id&quot;:88190330,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211255/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190330"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190330"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190330; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190330]").text(description); $(".js-view-count[data-work-id=88190330]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190330; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190330']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190330, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "96d4583084ff63d6aeb8d223f05b8acf" } } $('.js-work-strip[data-work-id=88190330]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190330,"title":"Cross-lingual sentiment transfer with limited resources","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We describe two transfer approaches for building sentiment analysis systems without having gold labeled data in the target language. Unlike previous work that is focused on using only English as the source language and a small number of target languages, we use multiple source languages to learn a more robust sentiment transfer model for 16 languages from different language families. Our approaches explore the potential of using an annotation projection approach and a direct transfer approach using cross-lingual word representations and neural networks. Whereas most previous work relies on machine translation, we show that we can build cross-lingual sentiment analysis systems without machine translation or even high quality parallel data. We have conducted experiments assessing the availability of different resources such as in-domain parallel data, out-of-domain parallel data, and in-domain comparable data.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Machine Translation","grobid_abstract_attachment_id":92211255},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190330/Cross_lingual_sentiment_transfer_with_limited_resources","translated_internal_url":"","created_at":"2022-10-09T15:29:01.875-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211255,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211255/thumbnails/1.jpg","file_name":"s10590-017-9202-620221009-1-13stnar.pdf","download_url":"https://www.academia.edu/attachments/92211255/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cross_lingual_sentiment_transfer_with_li.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211255/s10590-017-9202-620221009-1-13stnar-libre.pdf?1665355127=\u0026response-content-disposition=attachment%3B+filename%3DCross_lingual_sentiment_transfer_with_li.pdf\u0026Expires=1732498848\u0026Signature=HFjGNu1SmhuUEioo4iq2OYi-wXyHjQe2Q6444YvOiMTFoGQLEdAwvgmpIF-HkzPt36k9Cv99CjcGkCW6Aiwqj3HNhux5gmJ6ft9ex2~-GRWE-E4hfmSKshZ1MjAh2uiWeDOV2Z~0sKAcs1d2sIpxYVZWO2XvY8BbKTtqbb6Y2uLjNm4fR4THYNvliuL2DrQE9K67-8g1kq0g6nVY1tgUwHoJ9OS6scgU-0G0WSRizkOns7fJ~ZP6SbCdG5MUq~pPBmxawNxg~2-K6hv~o3c6GpfZDY2Rm~WVX~Vqj5LIRSsbbjwsgx3YSvaXE28hmS-uiEIaj36Jjo4L2j3UjgU9sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cross_lingual_sentiment_transfer_with_limited_resources","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211255,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211255/thumbnails/1.jpg","file_name":"s10590-017-9202-620221009-1-13stnar.pdf","download_url":"https://www.academia.edu/attachments/92211255/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cross_lingual_sentiment_transfer_with_li.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211255/s10590-017-9202-620221009-1-13stnar-libre.pdf?1665355127=\u0026response-content-disposition=attachment%3B+filename%3DCross_lingual_sentiment_transfer_with_li.pdf\u0026Expires=1732498849\u0026Signature=UFpf28eNp2HxGSiGXMDFlqeID3QZ5pu9gq8X4EgZO669S0R6bUkn6ecHnaV6q8Os4XqjOxK73rEJMQytfuXZyKzyKx-4AdsAiym5rRs3t~kIYuHKw-Md1ODKyHAxQNCmNx0ogjzqEw~9uk-55e2Gj9SNeQSRVHoMWpCbKSmVO1LKzIPxX1tDFzs1fu7M7vzBf~JkSpUJDXjY8naOYw7mtXtySPal5vUTJ~YV16oL9owIX5e-FCqt6cM0oYDJ6-~r~FaDJh2l3~18EyA9BX~NXy~Fl8cEKQFFOUIDs~vCf-9pehdP~Hp22am2EIOfUpiYdf-6z4Sg2anE3a~Zr-TdHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":4696,"name":"Machine Translation","url":"https://www.academia.edu/Documents/in/Machine_Translation"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":596862,"name":"Transfer of Learning","url":"https://www.academia.edu/Documents/in/Transfer_of_Learning"},{"id":2070034,"name":"Data Format","url":"https://www.academia.edu/Documents/in/Data_Format"}],"urls":[{"id":24620480,"url":"http://link.springer.com/article/10.1007/s10590-017-9202-6/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190329"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190329/Predicting_the_Type_and_Target_of_Offensive_Posts_in_Social_Media"><img alt="Research paper thumbnail of Predicting the Type and Target of Offensive Posts in Social Media" class="work-thumbnail" src="https://attachments.academia-assets.com/92211249/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190329/Predicting_the_Type_and_Target_of_Offensive_Posts_in_Social_Media">Predicting the Type and Target of Offensive Posts in Social Media</a></div><div class="wp-workCard_item"><span>Proceedings of the 2019 Conference of the North</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a4f65f8d0a5847f88e70379b669d9604" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211249,&quot;asset_id&quot;:88190329,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211249/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190329"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190329"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190329; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190329]").text(description); $(".js-view-count[data-work-id=88190329]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190329; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190329']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190329, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a4f65f8d0a5847f88e70379b669d9604" } } $('.js-work-strip[data-work-id=88190329]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190329,"title":"Predicting the Type and Target of Offensive Posts in Social Media","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"As offensive content has become pervasive in social media, there has been much research in identifying potentially offensive messages. However, previous work on this topic did not consider the problem as a whole, but rather focused on detecting very specific types of offensive content, e.g., hate speech, cyberbulling, or cyber-aggression. In contrast, here we target several different kinds of offensive content. In particular, we model the task hierarchically, identifying the type and the target of offensive messages in social media. For this purpose, we complied the Offensive Language Identification Dataset (OLID), a new dataset with tweets annotated for offensive content using a fine-grained three-layer annotation scheme, which we make publicly available. We discuss the main similarities and differences between OLID and pre-existing datasets for hate speech identification, aggression detection, and similar tasks. We further experiment with and we compare the performance of different machine learning models on OLID.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceedings of the 2019 Conference of the North","grobid_abstract_attachment_id":92211249},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190329/Predicting_the_Type_and_Target_of_Offensive_Posts_in_Social_Media","translated_internal_url":"","created_at":"2022-10-09T15:29:01.726-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211249,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211249/thumbnails/1.jpg","file_name":"Zampieri_et_al_Predicting_The_type_2019.pdf","download_url":"https://www.academia.edu/attachments/92211249/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_the_Type_and_Target_of_Offens.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211249/Zampieri_et_al_Predicting_The_type_2019-libre.pdf?1665355121=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_the_Type_and_Target_of_Offens.pdf\u0026Expires=1732498849\u0026Signature=e99vAbeEqBfC6vrkH0zo9Svn8nL8qQ3mZ7vXauIBtKfjpxF-b5him~OYr0Z2j3-Ro3E6s3YGDfcXiKM8wW3YX6Dh5qACj7Pem62iLPJRgb1U1AJdPbRTwb~HJg6sQLVNDFm5herG5X5GzHttjFfkZtETRVOtF6Or2C6fZOd1pq4lu8xxSDrpj8d-lud6~KrkyVcM0nV6zxhi1KUYEaVgIPzpQ3nvXs6LeQca0CC1ED8MhFcJ-yHMkgCQVJQ6kVxaJMBBWod0miYdN7w~kpUtzjelxryviIld9lfLiy1GAplY1A00f3ybErI0K5zn28uhbcbqfa-qeLsXwsJtNkyGjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predicting_the_Type_and_Target_of_Offensive_Posts_in_Social_Media","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211249,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211249/thumbnails/1.jpg","file_name":"Zampieri_et_al_Predicting_The_type_2019.pdf","download_url":"https://www.academia.edu/attachments/92211249/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_the_Type_and_Target_of_Offens.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211249/Zampieri_et_al_Predicting_The_type_2019-libre.pdf?1665355121=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_the_Type_and_Target_of_Offens.pdf\u0026Expires=1732498849\u0026Signature=e99vAbeEqBfC6vrkH0zo9Svn8nL8qQ3mZ7vXauIBtKfjpxF-b5him~OYr0Z2j3-Ro3E6s3YGDfcXiKM8wW3YX6Dh5qACj7Pem62iLPJRgb1U1AJdPbRTwb~HJg6sQLVNDFm5herG5X5GzHttjFfkZtETRVOtF6Or2C6fZOd1pq4lu8xxSDrpj8d-lud6~KrkyVcM0nV6zxhi1KUYEaVgIPzpQ3nvXs6LeQca0CC1ED8MhFcJ-yHMkgCQVJQ6kVxaJMBBWod0miYdN7w~kpUtzjelxryviIld9lfLiy1GAplY1A00f3ybErI0K5zn28uhbcbqfa-qeLsXwsJtNkyGjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":9246,"name":"Social Media","url":"https://www.academia.edu/Documents/in/Social_Media"},{"id":82732,"name":"Aggression","url":"https://www.academia.edu/Documents/in/Aggression"},{"id":544669,"name":"Language Identification","url":"https://www.academia.edu/Documents/in/Language_Identification"},{"id":663814,"name":"Offensive Realism","url":"https://www.academia.edu/Documents/in/Offensive_Realism"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190328"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190328/SemEval_2017_Task_4_Sentiment_Analysis_in_Twitter"><img alt="Research paper thumbnail of SemEval-2017 Task 4: Sentiment Analysis in Twitter" class="work-thumbnail" src="https://attachments.academia-assets.com/92211250/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190328/SemEval_2017_Task_4_Sentiment_Analysis_in_Twitter">SemEval-2017 Task 4: Sentiment Analysis in Twitter</a></div><div class="wp-workCard_item"><span>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6dfad8e0f3b05e71da6c270449a71851" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211250,&quot;asset_id&quot;:88190328,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211250/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190328"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190328]").text(description); $(".js-view-count[data-work-id=88190328]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190328']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190328, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6dfad8e0f3b05e71da6c270449a71851" } } $('.js-work-strip[data-work-id=88190328]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190328,"title":"SemEval-2017 Task 4: Sentiment Analysis in Twitter","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"This paper describes the fifth year of the Sentiment Analysis in Twitter task. SemEval-2017 Task 4 continues with a rerun of the subtasks of SemEval-2016 Task 4, which include identifying the overall sentiment of the tweet, sentiment towards a topic with classification on a twopoint and on a five-point ordinal scale, and quantification of the distribution of sentiment towards a topic across a number of tweets: again on a two-point and on a five-point ordinal scale. Compared to 2016, we made two changes: (i) we introduced a new language, Arabic, for all subtasks, and (ii) we made available information from the profiles of the Twitter users who posted the target tweets. The task continues to be very popular, with a total of 48 teams participating this year.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)","grobid_abstract_attachment_id":92211250},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190328/SemEval_2017_Task_4_Sentiment_Analysis_in_Twitter","translated_internal_url":"","created_at":"2022-10-09T15:29:01.596-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211250,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211250/thumbnails/1.jpg","file_name":"S17-2088.pdf","download_url":"https://www.academia.edu/attachments/92211250/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SemEval_2017_Task_4_Sentiment_Analysis_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211250/S17-2088-libre.pdf?1665355131=\u0026response-content-disposition=attachment%3B+filename%3DSemEval_2017_Task_4_Sentiment_Analysis_i.pdf\u0026Expires=1732498849\u0026Signature=OeT~Tb8YT-BbB692duLpy38YqyXeEcyFOx5FB83jptMyRFLkQXEdtt1nDzy1YRfHM55Yy~vvymwUmFvHnHRVc9kOXEmwsQ3wNKhvz3FjoXZZR-FkNtAai8LGg3oYaVYr8TZsP8oOwCOsNKGjpxZj5TFl~xXJbTDO-os7VeMuUqJF1W-QNFzBGDjMkvkZdjmNOP45c4zEBY1xo4~UAFybZtrJVayAvkChS3FKtkILXT4cFxamAaaZf46axNaKVSIVUroWtFXntlA9lW8CWz9JxLKL3Rae3oBthRxV9tcpKxrm~gsazOBp7RiQo7DUeFlBV8UvGlHYG1vwHrPhs45hcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SemEval_2017_Task_4_Sentiment_Analysis_in_Twitter","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211250,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211250/thumbnails/1.jpg","file_name":"S17-2088.pdf","download_url":"https://www.academia.edu/attachments/92211250/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SemEval_2017_Task_4_Sentiment_Analysis_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211250/S17-2088-libre.pdf?1665355131=\u0026response-content-disposition=attachment%3B+filename%3DSemEval_2017_Task_4_Sentiment_Analysis_i.pdf\u0026Expires=1732498849\u0026Signature=OeT~Tb8YT-BbB692duLpy38YqyXeEcyFOx5FB83jptMyRFLkQXEdtt1nDzy1YRfHM55Yy~vvymwUmFvHnHRVc9kOXEmwsQ3wNKhvz3FjoXZZR-FkNtAai8LGg3oYaVYr8TZsP8oOwCOsNKGjpxZj5TFl~xXJbTDO-os7VeMuUqJF1W-QNFzBGDjMkvkZdjmNOP45c4zEBY1xo4~UAFybZtrJVayAvkChS3FKtkILXT4cFxamAaaZf46axNaKVSIVUroWtFXntlA9lW8CWz9JxLKL3Rae3oBthRxV9tcpKxrm~gsazOBp7RiQo7DUeFlBV8UvGlHYG1vwHrPhs45hcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190327"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190327/SMARTies_Sentiment_Models_for_Arabic_Target_entities"><img alt="Research paper thumbnail of SMARTies: Sentiment Models for Arabic Target entities" class="work-thumbnail" src="https://attachments.academia-assets.com/92211252/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190327/SMARTies_Sentiment_Models_for_Arabic_Target_entities">SMARTies: Sentiment Models for Arabic Target entities</a></div><div class="wp-workCard_item"><span>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="85e8c71f4154e187c811ee9bc67bc134" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211252,&quot;asset_id&quot;:88190327,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211252/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190327"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190327"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190327; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190327]").text(description); $(".js-view-count[data-work-id=88190327]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190327; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190327']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190327, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "85e8c71f4154e187c811ee9bc67bc134" } } $('.js-work-strip[data-work-id=88190327]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190327,"title":"SMARTies: Sentiment Models for Arabic Target entities","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"We consider entity-level sentiment analysis in Arabic, a morphologically rich language with increasing resources. We present a system that is applied to complex posts written in response to Arabic newspaper articles. Our goal is to identify important entity \"targets\" within the post along with the polarity expressed about each target. We achieve significant improvements over multiple baselines, demonstrating that the use of specific morphological representations improves the performance of identifying both important targets and their sentiment, and that the use of distributional semantic clusters further boosts performances for these representations, especially when richer linguistic resources are not available.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers","grobid_abstract_attachment_id":92211252},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190327/SMARTies_Sentiment_Models_for_Arabic_Target_entities","translated_internal_url":"","created_at":"2022-10-09T15:29:01.464-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211252,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211252/thumbnails/1.jpg","file_name":"1701.pdf","download_url":"https://www.academia.edu/attachments/92211252/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SMARTies_Sentiment_Models_for_Arabic_Tar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211252/1701-libre.pdf?1665355130=\u0026response-content-disposition=attachment%3B+filename%3DSMARTies_Sentiment_Models_for_Arabic_Tar.pdf\u0026Expires=1732498849\u0026Signature=ZI9Vq0mWy~-ycdeuQhjz~D8KABYRt9eUJv1zBWxGYJXAEO3FtDmH2O9tWMqMDPEyhp3i-q01KJNRXSKxU9I3~5SAAytfcYQ~GOj7ApQZNv5Txy8ArluA-ZcYwVwf~IU5XqMVrTfDwNMm3Leksn8sEoSYUa57DiZ~l~B80EHOMeIT-paWQrnHbVzpKLHrE-GY97MN~MMF8hXaoFAqD1E4poJV3cJB1HbRBuMqOMXuoQuG4OGbFaT1faT9ji7gZ8vGYzxmhCyC2n98OvL1LzETIgpojF7IsyVo-92oBs5W3NJ0V1oedh~EUoflDy6vga4Qjv7U7pnNMwAS7DdprQHJvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SMARTies_Sentiment_Models_for_Arabic_Target_entities","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211252,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211252/thumbnails/1.jpg","file_name":"1701.pdf","download_url":"https://www.academia.edu/attachments/92211252/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SMARTies_Sentiment_Models_for_Arabic_Tar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211252/1701-libre.pdf?1665355130=\u0026response-content-disposition=attachment%3B+filename%3DSMARTies_Sentiment_Models_for_Arabic_Tar.pdf\u0026Expires=1732498849\u0026Signature=ZI9Vq0mWy~-ycdeuQhjz~D8KABYRt9eUJv1zBWxGYJXAEO3FtDmH2O9tWMqMDPEyhp3i-q01KJNRXSKxU9I3~5SAAytfcYQ~GOj7ApQZNv5Txy8ArluA-ZcYwVwf~IU5XqMVrTfDwNMm3Leksn8sEoSYUa57DiZ~l~B80EHOMeIT-paWQrnHbVzpKLHrE-GY97MN~MMF8hXaoFAqD1E4poJV3cJB1HbRBuMqOMXuoQuG4OGbFaT1faT9ji7gZ8vGYzxmhCyC2n98OvL1LzETIgpojF7IsyVo-92oBs5W3NJ0V1oedh~EUoflDy6vga4Qjv7U7pnNMwAS7DdprQHJvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":131567,"name":"Newspaper","url":"https://www.academia.edu/Documents/in/Newspaper"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190326"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190326/Annotating_Targets_of_Opinions_in_Arabic_using_Crowdsourcing"><img alt="Research paper thumbnail of Annotating Targets of Opinions in Arabic using Crowdsourcing" class="work-thumbnail" src="https://attachments.academia-assets.com/92211248/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190326/Annotating_Targets_of_Opinions_in_Arabic_using_Crowdsourcing">Annotating Targets of Opinions in Arabic using Crowdsourcing</a></div><div class="wp-workCard_item"><span>Proceedings of the Second Workshop on Arabic Natural Language Processing</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b9719ba17b93796f34f47ac31ec081b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211248,&quot;asset_id&quot;:88190326,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211248/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190326"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190326"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190326; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190326]").text(description); $(".js-view-count[data-work-id=88190326]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190326; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190326']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190326, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b9719ba17b93796f34f47ac31ec081b" } } $('.js-work-strip[data-work-id=88190326]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190326,"title":"Annotating Targets of Opinions in Arabic using Crowdsourcing","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"We present a method for annotating targets of opinions in Arabic in a two-stage process using the crowdsourcing tool Amazon Mechanical Turk. The first stage consists of identifying candidate targets \"entities\" in a given text. The second stage consists of identifying the opinion polarity (positive, negative, or neutral) expressed about a specific entity. We annotate a corpus of Arabic text using this method, selecting our data from online commentaries in different domains. Despite the complexity of the task, we find high agreement. We present detailed analysis.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Proceedings of the Second Workshop on Arabic Natural Language Processing","grobid_abstract_attachment_id":92211248},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190326/Annotating_Targets_of_Opinions_in_Arabic_using_Crowdsourcing","translated_internal_url":"","created_at":"2022-10-09T15:29:01.330-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211248,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211248/thumbnails/1.jpg","file_name":"W15-3210.pdf","download_url":"https://www.academia.edu/attachments/92211248/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Annotating_Targets_of_Opinions_in_Arabic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211248/W15-3210-libre.pdf?1665355125=\u0026response-content-disposition=attachment%3B+filename%3DAnnotating_Targets_of_Opinions_in_Arabic.pdf\u0026Expires=1732498849\u0026Signature=HM6wCpgsM9zHj0eD4M79tPFCRZ1siXsFJwzyS9s6tJYLJxOrvXsfACaoe5pTxe-5uzkR7GdJj36agkpiBwJ-g~JrDb2t2rQg8aCHWk97Uk6OMswd9x~jf7hRyQAFbFKrbqoNMb9jV5QQwZJanDtEA0PGx-dTUg~xmqG2nBKb1xiBfY~ZBRVaex1Nq1IUpSpfeZUrK0XcjNMyoGxX7-ctoiWeKlCt8goPKT3nA8zBiM8AejOLAsKfeewKXJ8ln11WK4A~MCysrTmYW8e49Zezz6kANtGZZN~~AroI6f9kzDUanI1kKA2xS~iWyFt~zSqAoPVRHRRrpnoGH-S9mqn77w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Annotating_Targets_of_Opinions_in_Arabic_using_Crowdsourcing","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211248,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211248/thumbnails/1.jpg","file_name":"W15-3210.pdf","download_url":"https://www.academia.edu/attachments/92211248/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Annotating_Targets_of_Opinions_in_Arabic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211248/W15-3210-libre.pdf?1665355125=\u0026response-content-disposition=attachment%3B+filename%3DAnnotating_Targets_of_Opinions_in_Arabic.pdf\u0026Expires=1732498849\u0026Signature=HM6wCpgsM9zHj0eD4M79tPFCRZ1siXsFJwzyS9s6tJYLJxOrvXsfACaoe5pTxe-5uzkR7GdJj36agkpiBwJ-g~JrDb2t2rQg8aCHWk97Uk6OMswd9x~jf7hRyQAFbFKrbqoNMb9jV5QQwZJanDtEA0PGx-dTUg~xmqG2nBKb1xiBfY~ZBRVaex1Nq1IUpSpfeZUrK0XcjNMyoGxX7-ctoiWeKlCt8goPKT3nA8zBiM8AejOLAsKfeewKXJ8ln11WK4A~MCysrTmYW8e49Zezz6kANtGZZN~~AroI6f9kzDUanI1kKA2xS~iWyFt~zSqAoPVRHRRrpnoGH-S9mqn77w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":21556,"name":"Crowdsourcing","url":"https://www.academia.edu/Documents/in/Crowdsourcing"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190325"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190325/The_Columbia_System_in_the_QALB_2014_Shared_Task_on_Arabic_Error_Correction"><img alt="Research paper thumbnail of The Columbia System in the QALB-2014 Shared Task on Arabic Error Correction" class="work-thumbnail" src="https://attachments.academia-assets.com/92211247/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190325/The_Columbia_System_in_the_QALB_2014_Shared_Task_on_Arabic_Error_Correction">The Columbia System in the QALB-2014 Shared Task on Arabic Error Correction</a></div><div class="wp-workCard_item"><span>Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP)</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3cb58e72e5df15f45efeec38e8b844b1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211247,&quot;asset_id&quot;:88190325,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211247/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190325"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190325"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190325; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190325]").text(description); $(".js-view-count[data-work-id=88190325]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190325; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190325']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190325, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3cb58e72e5df15f45efeec38e8b844b1" } } $('.js-work-strip[data-work-id=88190325]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190325,"title":"The Columbia System in the QALB-2014 Shared Task on Arabic Error Correction","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"The QALB-2014 shared task focuses on correcting errors in texts written in Modern Standard Arabic. In this paper, we describe the Columbia University entry in the shared task. Our system consists of several components that rely on machinelearning techniques and linguistic knowledge. We submitted three versions of the system: these share several core elements but each version also includes additional components. We describe our underlying approach and the special aspects of the different versions of our submission. Our system ranked first out of nine participating teams.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP)","grobid_abstract_attachment_id":92211247},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190325/The_Columbia_System_in_the_QALB_2014_Shared_Task_on_Arabic_Error_Correction","translated_internal_url":"","created_at":"2022-10-09T15:29:01.173-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211247,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211247/thumbnails/1.jpg","file_name":"b681016312a7b7ed9ed72d62e84586c54e1f.pdf","download_url":"https://www.academia.edu/attachments/92211247/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Columbia_System_in_the_QALB_2014_Sha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211247/b681016312a7b7ed9ed72d62e84586c54e1f-libre.pdf?1665355122=\u0026response-content-disposition=attachment%3B+filename%3DThe_Columbia_System_in_the_QALB_2014_Sha.pdf\u0026Expires=1732498849\u0026Signature=KVqMYi0MmquFNaH0XKS8z38lCV1wYaietRZk~jPKt~5Nv6JyijnQtzqx8Gszqthfps3NAUTvQnuehkjqONvnyxFLOTRBHRECrf85gCGLvSpkr~C8C3d3318P2d~zvs54sd18lSFI~-u9qR0fBUxAItMKcaIT~u1NoU~CB9~d0UgUBGCctpDCl-fucds9zx-CPYCome697zFeO-ZtrpMTMEaArnbTbnxzo~0~uadClkQoKYSX~4BeNzq5CMJhPrxZReZJ7CysTLepDIpBiDBp51hwHrZg37FneadOvIDCQEocZttu-NHDOFSPQDQZobLkaWqAqEBdWhynulIPiwSLRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Columbia_System_in_the_QALB_2014_Shared_Task_on_Arabic_Error_Correction","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211247,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211247/thumbnails/1.jpg","file_name":"b681016312a7b7ed9ed72d62e84586c54e1f.pdf","download_url":"https://www.academia.edu/attachments/92211247/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Columbia_System_in_the_QALB_2014_Sha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211247/b681016312a7b7ed9ed72d62e84586c54e1f-libre.pdf?1665355122=\u0026response-content-disposition=attachment%3B+filename%3DThe_Columbia_System_in_the_QALB_2014_Sha.pdf\u0026Expires=1732498849\u0026Signature=KVqMYi0MmquFNaH0XKS8z38lCV1wYaietRZk~jPKt~5Nv6JyijnQtzqx8Gszqthfps3NAUTvQnuehkjqONvnyxFLOTRBHRECrf85gCGLvSpkr~C8C3d3318P2d~zvs54sd18lSFI~-u9qR0fBUxAItMKcaIT~u1NoU~CB9~d0UgUBGCctpDCl-fucds9zx-CPYCome697zFeO-ZtrpMTMEaArnbTbnxzo~0~uadClkQoKYSX~4BeNzq5CMJhPrxZReZJ7CysTLepDIpBiDBp51hwHrZg37FneadOvIDCQEocZttu-NHDOFSPQDQZobLkaWqAqEBdWhynulIPiwSLRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190324"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190324/Large_Scale_Arabic_Error_Annotation_Guidelines_and_Framework"><img alt="Research paper thumbnail of Large Scale Arabic Error Annotation: Guidelines and Framework" class="work-thumbnail" src="https://attachments.academia-assets.com/92211253/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190324/Large_Scale_Arabic_Error_Annotation_Guidelines_and_Framework">Large Scale Arabic Error Annotation: Guidelines and Framework</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present annotation guidelines and a web-based annotation framework developed as part of an eff...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present annotation guidelines and a web-based annotation framework developed as part of an effort to create a manually annotated Arabic corpus of errors and corrections for various text types. Such a corpus will be invaluable for developing Arabic error correction tools, both for training models and as a gold standard for evaluating error correction algorithms. We summarize the guidelines we created. We also describe issues encountered during the training of the annotators, as well as problems that are specific to the Arabic language that arose during the annotation process. Finally, we present the annotation tool that was developed as part of this project, the annotation pipeline, and the quality of the resulting annotations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2525ba2ad785c782e6de0fe3718a4ab0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211253,&quot;asset_id&quot;:88190324,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211253/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190324"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190324"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190324; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190324]").text(description); $(".js-view-count[data-work-id=88190324]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190324; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190324']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190324, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2525ba2ad785c782e6de0fe3718a4ab0" } } $('.js-work-strip[data-work-id=88190324]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190324,"title":"Large Scale Arabic Error Annotation: Guidelines and Framework","translated_title":"","metadata":{"abstract":"We present annotation guidelines and a web-based annotation framework developed as part of an effort to create a manually annotated Arabic corpus of errors and corrections for various text types. Such a corpus will be invaluable for developing Arabic error correction tools, both for training models and as a gold standard for evaluating error correction algorithms. We summarize the guidelines we created. We also describe issues encountered during the training of the annotators, as well as problems that are specific to the Arabic language that arose during the annotation process. Finally, we present the annotation tool that was developed as part of this project, the annotation pipeline, and the quality of the resulting annotations."},"translated_abstract":"We present annotation guidelines and a web-based annotation framework developed as part of an effort to create a manually annotated Arabic corpus of errors and corrections for various text types. Such a corpus will be invaluable for developing Arabic error correction tools, both for training models and as a gold standard for evaluating error correction algorithms. We summarize the guidelines we created. We also describe issues encountered during the training of the annotators, as well as problems that are specific to the Arabic language that arose during the annotation process. Finally, we present the annotation tool that was developed as part of this project, the annotation pipeline, and the quality of the resulting annotations.","internal_url":"https://www.academia.edu/88190324/Large_Scale_Arabic_Error_Annotation_Guidelines_and_Framework","translated_internal_url":"","created_at":"2022-10-09T15:29:01.025-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211253,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211253/thumbnails/1.jpg","file_name":"ZAGHOUANI14.956.L14-1721.pdf","download_url":"https://www.academia.edu/attachments/92211253/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Large_Scale_Arabic_Error_Annotation_Guid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211253/ZAGHOUANI14.956.L14-1721-libre.pdf?1665355125=\u0026response-content-disposition=attachment%3B+filename%3DLarge_Scale_Arabic_Error_Annotation_Guid.pdf\u0026Expires=1732498849\u0026Signature=Pc5XDmi2HsHzNDwDKCDRIa29tT72nbzMmU1fME7BZIvCjJm~HeqokUtIu5qyRUPpSSwCYh4XT8N41VsWh8QZKMraabeSltVKBZ24ej7rGIXtHF1n5KpEPVroc6G3z-i9rLlTAd40-aoWI8xUUE9SFejd3AhXX7-~qOMBu1v5T-~tlOglJVPqEUW90FZudqZ-faUj-6AWjAiZ1puVDNtDyQgvWUsumlYmHSY-ydp6-VBxiMXOFt0AlX7GofV2myF2aoiCeYW0Uzwt8-lrDb5RHdWg92LuVumcXyu8iIU08O~FyE7mVXMMyhaOeH6YdjE-nJoa-OgC5wnNtB~MYxq7pQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Large_Scale_Arabic_Error_Annotation_Guidelines_and_Framework","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211253,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211253/thumbnails/1.jpg","file_name":"ZAGHOUANI14.956.L14-1721.pdf","download_url":"https://www.academia.edu/attachments/92211253/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Large_Scale_Arabic_Error_Annotation_Guid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211253/ZAGHOUANI14.956.L14-1721-libre.pdf?1665355125=\u0026response-content-disposition=attachment%3B+filename%3DLarge_Scale_Arabic_Error_Annotation_Guid.pdf\u0026Expires=1732498849\u0026Signature=Pc5XDmi2HsHzNDwDKCDRIa29tT72nbzMmU1fME7BZIvCjJm~HeqokUtIu5qyRUPpSSwCYh4XT8N41VsWh8QZKMraabeSltVKBZ24ej7rGIXtHF1n5KpEPVroc6G3z-i9rLlTAd40-aoWI8xUUE9SFejd3AhXX7-~qOMBu1v5T-~tlOglJVPqEUW90FZudqZ-faUj-6AWjAiZ1puVDNtDyQgvWUsumlYmHSY-ydp6-VBxiMXOFt0AlX7GofV2myF2aoiCeYW0Uzwt8-lrDb5RHdWg92LuVumcXyu8iIU08O~FyE7mVXMMyhaOeH6YdjE-nJoa-OgC5wnNtB~MYxq7pQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":49267,"name":"Computational Linguistics \u0026 NLP","url":"https://www.academia.edu/Documents/in/Computational_Linguistics_and_NLP"},{"id":235465,"name":"Guidelines","url":"https://www.academia.edu/Documents/in/Guidelines"},{"id":630181,"name":"Error Annotation","url":"https://www.academia.edu/Documents/in/Error_Annotation"},{"id":3425866,"name":"Corpus Compilation","url":"https://www.academia.edu/Documents/in/Corpus_Compilation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190323/Generalized_Character_Level_Spelling_Error_Correction"><img alt="Research paper thumbnail of Generalized Character-Level Spelling Error Correction" class="work-thumbnail" src="https://attachments.academia-assets.com/92211254/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190323/Generalized_Character_Level_Spelling_Error_Correction">Generalized Character-Level Spelling Error Correction</a></div><div class="wp-workCard_item"><span>Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cf692fa42044b275c8dc035a87686fe1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211254,&quot;asset_id&quot;:88190323,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211254/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190323]").text(description); $(".js-view-count[data-work-id=88190323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190323, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cf692fa42044b275c8dc035a87686fe1" } } $('.js-work-strip[data-work-id=88190323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190323,"title":"Generalized Character-Level Spelling Error Correction","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"We present a generalized discriminative model for spelling error correction which targets character-level transformations. While operating at the character level, the model makes use of wordlevel and contextual information. In contrast to previous work, the proposed approach learns to correct a variety of error types without guidance of manuallyselected constraints or language-specific features. We apply the model to correct errors in Egyptian Arabic dialect text, achieving 65% reduction in word error rate over the input baseline, and improving over the earlier state-of-the-art system.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)","grobid_abstract_attachment_id":92211254},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190323/Generalized_Character_Level_Spelling_Error_Correction","translated_internal_url":"","created_at":"2022-10-09T15:29:00.871-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211254,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211254/thumbnails/1.jpg","file_name":"a018b3a3a3114d3776798fea5472b0601087.pdf","download_url":"https://www.academia.edu/attachments/92211254/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Character_Level_Spelling_Err.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211254/a018b3a3a3114d3776798fea5472b0601087-libre.pdf?1665355120=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Character_Level_Spelling_Err.pdf\u0026Expires=1732498849\u0026Signature=CIjSXbMzTL~DF1BzOvPjxuWRWCGE08UIDVt6-GZnSrDx4jRlJX0LFIPKZo9GRPR4ssqcMTstuxQJIyHmTusGVCQHg~9LpuVbzayoDZLrqnNpKq-wlKV8hyKjDolVKIsSrlxJxL-fKpLdOhVSxSc2gQXmyMU94YHarqyXBhAFdCt75qr9C-CmdjLWDFxUzNBEu~HtB~JnShLIeU2LJnoNWUCLIvYOFNVJHeMSZ4Iz7leVmKCiaqhBlfPQKD4atqiU7rLpos7JC6zDnP80LoqSjxxCOMttKtqgo7HwKlPimKBXoFOU0w~mnbq6PVKz41su5bZqU4vZEyJ48kFXSJwaFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generalized_Character_Level_Spelling_Error_Correction","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211254,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211254/thumbnails/1.jpg","file_name":"a018b3a3a3114d3776798fea5472b0601087.pdf","download_url":"https://www.academia.edu/attachments/92211254/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Character_Level_Spelling_Err.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211254/a018b3a3a3114d3776798fea5472b0601087-libre.pdf?1665355120=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Character_Level_Spelling_Err.pdf\u0026Expires=1732498849\u0026Signature=CIjSXbMzTL~DF1BzOvPjxuWRWCGE08UIDVt6-GZnSrDx4jRlJX0LFIPKZo9GRPR4ssqcMTstuxQJIyHmTusGVCQHg~9LpuVbzayoDZLrqnNpKq-wlKV8hyKjDolVKIsSrlxJxL-fKpLdOhVSxSc2gQXmyMU94YHarqyXBhAFdCt75qr9C-CmdjLWDFxUzNBEu~HtB~JnShLIeU2LJnoNWUCLIvYOFNVJHeMSZ4Iz7leVmKCiaqhBlfPQKD4atqiU7rLpos7JC6zDnP80LoqSjxxCOMttKtqgo7HwKlPimKBXoFOU0w~mnbq6PVKz41su5bZqU4vZEyJ48kFXSJwaFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3268,"name":"Computational Linguistics","url":"https://www.academia.edu/Documents/in/Computational_Linguistics"},{"id":17700,"name":"Arabic Dialects","url":"https://www.academia.edu/Documents/in/Arabic_Dialects"},{"id":20492,"name":"Spelling","url":"https://www.academia.edu/Documents/in/Spelling"},{"id":97513,"name":"Spelling Errors","url":"https://www.academia.edu/Documents/in/Spelling_Errors"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190322/A_Mobile_Sensing_and_Imaging_System_for_Real_Time_Monitoring_of_Spine_Health"><img alt="Research paper thumbnail of A Mobile Sensing and Imaging System for Real-Time Monitoring of Spine Health" class="work-thumbnail" src="https://attachments.academia-assets.com/92211245/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190322/A_Mobile_Sensing_and_Imaging_System_for_Real_Time_Monitoring_of_Spine_Health">A Mobile Sensing and Imaging System for Real-Time Monitoring of Spine Health</a></div><div class="wp-workCard_item"><span>Journal of Medical Imaging and Health Informatics</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="411568d475c7bffe936eb9063f7756c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211245,&quot;asset_id&quot;:88190322,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211245/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190322]").text(description); $(".js-view-count[data-work-id=88190322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190322, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "411568d475c7bffe936eb9063f7756c8" } } $('.js-work-strip[data-work-id=88190322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190322,"title":"A Mobile Sensing and Imaging System for Real-Time Monitoring of Spine Health","translated_title":"","metadata":{"publisher":"American Scientific Publishers","grobid_abstract":"Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor posture may reduce out-of-posture tendencies and encourage healthy spinal habits. Spine stress can also worsen existing structural deformities in the spine such as adolescent idiopathic scoliosis (AIS). In this work we developed a system to monitor spine health through both dynamic monitoring and structural imaging. The dynamic sensing method monitors spine stress in real-time by detecting poor back posture and strain on the back due to prolonged sitting or standing, and provides real-time user feedback when poor posture is sustained. The imaging method extracts the structural curvature of the spine and is used for the diagnosis of AIS in a non-invasive and inexpensive manner. Namely, the image is obtained using a photograph where the spinous processes have been marked to trace the shape of the spine. The spine curvature is then extracted automatically and modeled by a curve-fitting polynomial. The approach is simple and practical and allows scoliosis patients to monitor their curvature progress from home while minimizing the use of X-rays. The theme of our work is spine health, which we monitor through the wireless sensing system and the orthopedic imaging system. The two are complementary: the mobile wireless system assesses spine health during daily activity while the imaging system can assess the progression of a patient's structural spine curvature. We demonstrate effectiveness of our sensing system in simultaneously monitoring posture and position by testing in numerous situations. Furthermore, experiments show that our imaging method is accurate and robust under different brightness conditions. X-ray data used for this study was obtained from the international, electronic database of surgical cases of AIS, Scolisoft ® .","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Medical Imaging and Health Informatics","grobid_abstract_attachment_id":92211245},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190322/A_Mobile_Sensing_and_Imaging_System_for_Real_Time_Monitoring_of_Spine_Health","translated_internal_url":"","created_at":"2022-10-09T15:29:00.748-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211245,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211245/thumbnails/1.jpg","file_name":"7de4215f1afbb696464f6e6806ef8eb0e4fe.pdf","download_url":"https://www.academia.edu/attachments/92211245/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Mobile_Sensing_and_Imaging_System_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211245/7de4215f1afbb696464f6e6806ef8eb0e4fe-libre.pdf?1665355122=\u0026response-content-disposition=attachment%3B+filename%3DA_Mobile_Sensing_and_Imaging_System_for.pdf\u0026Expires=1732498849\u0026Signature=QzfFdufG0UDUmWzCHRUqum~kgnMr59X4lLA10h0OSWizqt6ugl0hsrMzsirslcSdSDUYnLxaDsCgmonhaWC74TZ-0fy3IqYlyWFJ-3mzw5wBn~38cIuyDdKEX~Z-pkBf4tdkA6~o7OgtZaFrNYP44aMd0LlOM6ccYnhpdFpHxuNsHWyUrs90yjSE9wKYXu8YTWar-eH-PD32Dfe~4YElDaUvJlz7pLAd5BcqWkcr8omKl1XLBC697kJ0ScPOF-Ywz4ma6siuXMJSwc59eJIaTzsT7am7v8kxek3SZaSBFw70A4nTLY3yRUjg6~MWDRkMeT8MPkFhUJKgs3wmbLiPbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Mobile_Sensing_and_Imaging_System_for_Real_Time_Monitoring_of_Spine_Health","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211245,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211245/thumbnails/1.jpg","file_name":"7de4215f1afbb696464f6e6806ef8eb0e4fe.pdf","download_url":"https://www.academia.edu/attachments/92211245/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Mobile_Sensing_and_Imaging_System_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211245/7de4215f1afbb696464f6e6806ef8eb0e4fe-libre.pdf?1665355122=\u0026response-content-disposition=attachment%3B+filename%3DA_Mobile_Sensing_and_Imaging_System_for.pdf\u0026Expires=1732498849\u0026Signature=QzfFdufG0UDUmWzCHRUqum~kgnMr59X4lLA10h0OSWizqt6ugl0hsrMzsirslcSdSDUYnLxaDsCgmonhaWC74TZ-0fy3IqYlyWFJ-3mzw5wBn~38cIuyDdKEX~Z-pkBf4tdkA6~o7OgtZaFrNYP44aMd0LlOM6ccYnhpdFpHxuNsHWyUrs90yjSE9wKYXu8YTWar-eH-PD32Dfe~4YElDaUvJlz7pLAd5BcqWkcr8omKl1XLBC697kJ0ScPOF-Ywz4ma6siuXMJSwc59eJIaTzsT7am7v8kxek3SZaSBFw70A4nTLY3yRUjg6~MWDRkMeT8MPkFhUJKgs3wmbLiPbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2036633,"name":"Medical","url":"https://www.academia.edu/Documents/in/Medical"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190321"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190321/Reranking_with_Linguistic_and_Semantic_Features_for_Arabic_Optical_Character_Recognition"><img alt="Research paper thumbnail of Reranking with Linguistic and Semantic Features for Arabic Optical Character Recognition" class="work-thumbnail" src="https://attachments.academia-assets.com/92211244/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190321/Reranking_with_Linguistic_and_Semantic_Features_for_Arabic_Optical_Character_Recognition">Reranking with Linguistic and Semantic Features for Arabic Optical Character Recognition</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d578f89624fa9eedc7eeb356849bcc17" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211244,&quot;asset_id&quot;:88190321,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211244/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190321"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190321"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190321; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190321]").text(description); $(".js-view-count[data-work-id=88190321]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190321; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190321']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190321, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d578f89624fa9eedc7eeb356849bcc17" } } $('.js-work-strip[data-work-id=88190321]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190321,"title":"Reranking with Linguistic and Semantic Features for Arabic Optical Character Recognition","translated_title":"","metadata":{"grobid_abstract":"Optical Character Recognition (OCR) systems for Arabic rely on information contained in the scanned images to recognize sequences of characters and on language models to emphasize fluency. In this paper we incorporate linguistically and semantically motivated features to an existing OCR system. To do so we follow an n-best list reranking approach that exploits recent advances in learning to rank techniques. We achieve 10.1% and 11.4% reduction in recognition word error rate (WER) relative to a standard baseline system on typewritten and handwritten Arabic respectively.","grobid_abstract_attachment_id":92211244},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190321/Reranking_with_Linguistic_and_Semantic_Features_for_Arabic_Optical_Character_Recognition","translated_internal_url":"","created_at":"2022-10-09T15:29:00.645-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211244,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211244/thumbnails/1.jpg","file_name":"P13-2098.pdf","download_url":"https://www.academia.edu/attachments/92211244/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reranking_with_Linguistic_and_Semantic_F.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211244/P13-2098-libre.pdf?1665355128=\u0026response-content-disposition=attachment%3B+filename%3DReranking_with_Linguistic_and_Semantic_F.pdf\u0026Expires=1732498849\u0026Signature=B2AStGVLlzsNoUZjRqa8VJKnNnseRlnmZ2uyubZDy~FVAld7KQrTukzgtgzK4UddtKwDbExnmQ6Bx7TEWm-aEKsO7eBlRyEiSlfUdOOqSUTU6N~gWLjfcpxkYxAO0FrmObeoqWtFUFAwAlQAB2yl1IcNCRI1MI2kRbpL6VZeNYvvTyaGcOUm2hl7G4Ni3jORIz8BMnqDneKZhvE1VosC-TZugMo7rnvxOarnEy7d0fuKlBRxnh3KtMmxjtgSJmH5pnTWtHJHZCtZaB6N8VVLOy-dRQ81zXXXSC1AC~0cCIT1jtgEnq9iwTItX5nVAHlXIduIEbR9g2ozr7G~QmAV~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reranking_with_Linguistic_and_Semantic_Features_for_Arabic_Optical_Character_Recognition","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211244,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211244/thumbnails/1.jpg","file_name":"P13-2098.pdf","download_url":"https://www.academia.edu/attachments/92211244/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reranking_with_Linguistic_and_Semantic_F.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211244/P13-2098-libre.pdf?1665355128=\u0026response-content-disposition=attachment%3B+filename%3DReranking_with_Linguistic_and_Semantic_F.pdf\u0026Expires=1732498849\u0026Signature=B2AStGVLlzsNoUZjRqa8VJKnNnseRlnmZ2uyubZDy~FVAld7KQrTukzgtgzK4UddtKwDbExnmQ6Bx7TEWm-aEKsO7eBlRyEiSlfUdOOqSUTU6N~gWLjfcpxkYxAO0FrmObeoqWtFUFAwAlQAB2yl1IcNCRI1MI2kRbpL6VZeNYvvTyaGcOUm2hl7G4Ni3jORIz8BMnqDneKZhvE1VosC-TZugMo7rnvxOarnEy7d0fuKlBRxnh3KtMmxjtgSJmH5pnTWtHJHZCtZaB6N8VVLOy-dRQ81zXXXSC1AC~0cCIT1jtgEnq9iwTItX5nVAHlXIduIEbR9g2ozr7G~QmAV~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":55447,"name":"Learning to Rank","url":"https://www.academia.edu/Documents/in/Learning_to_Rank"},{"id":56546,"name":"ACL","url":"https://www.academia.edu/Documents/in/ACL"},{"id":265584,"name":"Optical Character Recognition","url":"https://www.academia.edu/Documents/in/Optical_Character_Recognition"},{"id":520672,"name":"Language Model","url":"https://www.academia.edu/Documents/in/Language_Model"},{"id":3076786,"name":"Word error rate","url":"https://www.academia.edu/Documents/in/Word_error_rate"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190320"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190320/Energy_efficient_mobile_gesture_recognition_with_computation_offloading"><img alt="Research paper thumbnail of Energy-efficient mobile gesture recognition with computation offloading" class="work-thumbnail" src="https://attachments.academia-assets.com/92211246/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190320/Energy_efficient_mobile_gesture_recognition_with_computation_offloading">Energy-efficient mobile gesture recognition with computation offloading</a></div><div class="wp-workCard_item"><span>2011 International Conference on Energy Aware Computing</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e2f9559823aa27b2151056674fce1f47" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211246,&quot;asset_id&quot;:88190320,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211246/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190320"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190320"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190320; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190320]").text(description); $(".js-view-count[data-work-id=88190320]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190320; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190320']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190320, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e2f9559823aa27b2151056674fce1f47" } } $('.js-work-strip[data-work-id=88190320]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190320,"title":"Energy-efficient mobile gesture recognition with computation offloading","translated_title":"","metadata":{"publisher":"IEEE","grobid_abstract":"Gesture recognition is a novel and compelling user input modality which allows users to interact quickly and naturally with their devices with less demand on their visual attention. Continuous gesture recognition places stringent demands on device power consumption, battery life and processing capability. In this work, we show that we can reduce the energy consumed during continuous gesture recognition on a mobile device with the delegation of the pre-processing stages, which filter out non-gesture segments, to a low power node that is separate from the main CPU. The main CPU can thus be kept in stop mode until a potential gesture is detected by the low power node, invoking the main processor to perform the computationintensive gesture classification to detect which exact gesture has been performed by the user. We present details of the processing performance and power consumed at each step of the processing pipeline, showing the extent of power savings achieved. Experiments were conducted for detailed evaluation of the power consumption of the optimized gesture pipeline.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"2011 International Conference on Energy Aware Computing","grobid_abstract_attachment_id":92211246},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190320/Energy_efficient_mobile_gesture_recognition_with_computation_offloading","translated_internal_url":"","created_at":"2022-10-09T15:29:00.524-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211246,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211246/thumbnails/1.jpg","file_name":"gesture.pdf","download_url":"https://www.academia.edu/attachments/92211246/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Energy_efficient_mobile_gesture_recognit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211246/gesture-libre.pdf?1665355126=\u0026response-content-disposition=attachment%3B+filename%3DEnergy_efficient_mobile_gesture_recognit.pdf\u0026Expires=1732498849\u0026Signature=O7QdVqCbKFh1FZqNPQCHn5cWWkNq1qAgIgJ9OTbJ6v45Ts4E9vAztPd9YMEc1Zxhizola71iguoNzIFVoJTfAH202Fguucs450X1wPMMiWqVWZ-3SjgWJDAyJAKUNREu86T8BAnwq7Iji1spaMBkvEaboRJz5yrEnsX7IimEpId9VKeY6w0YSQ0ijMgt2NAGST5OUmhlq-NVZY2FtjXKsDXuuJMCLViyCxKR~7kbPH4NRCnbIYrcBxKYyutmzUZjz2EXT-K1PllQgt1Wh7U24xfPyZXH30VaoThhWTQZRQ3EtGUtZZ4Kk8lz3JVCRNNM8GkxyzkFNn0vtR3qBBE3JQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Energy_efficient_mobile_gesture_recognition_with_computation_offloading","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211246,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211246/thumbnails/1.jpg","file_name":"gesture.pdf","download_url":"https://www.academia.edu/attachments/92211246/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Energy_efficient_mobile_gesture_recognit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211246/gesture-libre.pdf?1665355126=\u0026response-content-disposition=attachment%3B+filename%3DEnergy_efficient_mobile_gesture_recognit.pdf\u0026Expires=1732498849\u0026Signature=O7QdVqCbKFh1FZqNPQCHn5cWWkNq1qAgIgJ9OTbJ6v45Ts4E9vAztPd9YMEc1Zxhizola71iguoNzIFVoJTfAH202Fguucs450X1wPMMiWqVWZ-3SjgWJDAyJAKUNREu86T8BAnwq7Iji1spaMBkvEaboRJz5yrEnsX7IimEpId9VKeY6w0YSQ0ijMgt2NAGST5OUmhlq-NVZY2FtjXKsDXuuJMCLViyCxKR~7kbPH4NRCnbIYrcBxKYyutmzUZjz2EXT-K1PllQgt1Wh7U24xfPyZXH30VaoThhWTQZRQ3EtGUtZZ4Kk8lz3JVCRNNM8GkxyzkFNn0vtR3qBBE3JQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3147,"name":"Gesture","url":"https://www.academia.edu/Documents/in/Gesture"},{"id":17701,"name":"Gesture Recognition","url":"https://www.academia.edu/Documents/in/Gesture_Recognition"},{"id":154850,"name":"Mobile Device","url":"https://www.academia.edu/Documents/in/Mobile_Device"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190316"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190316/Cross_Lingual_and_Low_Resource_Sentiment_Analysis"><img alt="Research paper thumbnail of Cross-Lingual and Low-Resource Sentiment Analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/92211195/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190316/Cross_Lingual_and_Low_Resource_Sentiment_Analysis">Cross-Lingual and Low-Resource Sentiment Analysis</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1e1e04615bda6da10ff83743c9716b4a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211195,&quot;asset_id&quot;:88190316,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211195/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190316"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190316"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190316; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190316]").text(description); $(".js-view-count[data-work-id=88190316]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190316; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190316']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190316, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1e1e04615bda6da10ff83743c9716b4a" } } $('.js-work-strip[data-work-id=88190316]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190316,"title":"Cross-Lingual and Low-Resource Sentiment Analysis","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190316/Cross_Lingual_and_Low_Resource_Sentiment_Analysis","translated_internal_url":"","created_at":"2022-10-09T15:28:46.432-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211195,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211195/thumbnails/1.jpg","file_name":"noura_farra.pdf","download_url":"https://www.academia.edu/attachments/92211195/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cross_Lingual_and_Low_Resource_Sentiment.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211195/noura_farra-libre.pdf?1665355257=\u0026response-content-disposition=attachment%3B+filename%3DCross_Lingual_and_Low_Resource_Sentiment.pdf\u0026Expires=1732498849\u0026Signature=eZ7ukKgc6aKjuhd1EmvWX9HOm6Rj0M~ij-x2ZXMWCycyVSHvElX~Qg6~AH99PScuXxEFJOkGAbjOvCAwgqdQV~kFU4TqQkTyaTZ5ENSGF5zPJca2EQqy7i1wpFRKAww-IpZgDIZojstZ15x~l0cN99NPlPu1xj03abuEyw93EqUnb1xB8nDvwCj79zvNrlnx608zFd4zYzTl3mhRFnkAy~Wl6q4ZbhTn0zs6DBj7~nqg7qmCYdcD354GomUD06t-MebymPkROJPj2EukzkZij9roZTqtt-z7nr7eK4ncmSBi9zX022HkiCDXTUmJ5suUdKt8S4TN9O8Dx0dCe6oNlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cross_Lingual_and_Low_Resource_Sentiment_Analysis","translated_slug":"","page_count":266,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211195,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211195/thumbnails/1.jpg","file_name":"noura_farra.pdf","download_url":"https://www.academia.edu/attachments/92211195/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cross_Lingual_and_Low_Resource_Sentiment.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211195/noura_farra-libre.pdf?1665355257=\u0026response-content-disposition=attachment%3B+filename%3DCross_Lingual_and_Low_Resource_Sentiment.pdf\u0026Expires=1732498849\u0026Signature=eZ7ukKgc6aKjuhd1EmvWX9HOm6Rj0M~ij-x2ZXMWCycyVSHvElX~Qg6~AH99PScuXxEFJOkGAbjOvCAwgqdQV~kFU4TqQkTyaTZ5ENSGF5zPJca2EQqy7i1wpFRKAww-IpZgDIZojstZ15x~l0cN99NPlPu1xj03abuEyw93EqUnb1xB8nDvwCj79zvNrlnx608zFd4zYzTl3mhRFnkAy~Wl6q4ZbhTn0zs6DBj7~nqg7qmCYdcD354GomUD06t-MebymPkROJPj2EukzkZij9roZTqtt-z7nr7eK4ncmSBi9zX022HkiCDXTUmJ5suUdKt8S4TN9O8Dx0dCe6oNlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3268,"name":"Computational Linguistics","url":"https://www.academia.edu/Documents/in/Computational_Linguistics"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":459269,"name":"Data mining and Text mining","url":"https://www.academia.edu/Documents/in/Data_mining_and_Text_mining"},{"id":593121,"name":"Disaster Relief","url":"https://www.academia.edu/Documents/in/Disaster_Relief"}],"urls":[{"id":24620478,"url":"http://www.cs.columbia.edu/nlp/theses/noura_farra.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8186340"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8186340/Generalized_Character_Level_Spelling_Error_Correction"><img alt="Research paper thumbnail of Generalized Character-Level Spelling Error Correction" class="work-thumbnail" src="https://attachments.academia-assets.com/34618825/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8186340/Generalized_Character_Level_Spelling_Error_Correction">Generalized Character-Level Spelling Error Correction</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="26d22859b5446178d5e4d37f67179407" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34618825,&quot;asset_id&quot;:8186340,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34618825/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8186340"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8186340"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8186340; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8186340]").text(description); $(".js-view-count[data-work-id=8186340]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8186340; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8186340']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8186340, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "26d22859b5446178d5e4d37f67179407" } } $('.js-work-strip[data-work-id=8186340]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8186340,"title":"Generalized Character-Level Spelling Error Correction","translated_title":"","metadata":{"grobid_abstract":"We present a generalized discriminative model for spelling error correction which targets character-level transformations. While operating at the character level, the model makes use of wordlevel and contextual information. In contrast to previous work, the proposed approach learns to correct a variety of error types without guidance of manuallyselected constraints or language-specific features. We apply the model to correct errors in Egyptian Arabic dialect text, achieving 65% reduction in word error rate over the input baseline, and improving over the earlier state-of-the-art system.","grobid_abstract_attachment_id":34618825},"translated_abstract":null,"internal_url":"https://www.academia.edu/8186340/Generalized_Character_Level_Spelling_Error_Correction","translated_internal_url":"","created_at":"2014-09-03T10:52:15.773-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34618825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618825/thumbnails/1.jpg","file_name":"GSEC.pdf","download_url":"https://www.academia.edu/attachments/34618825/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Character_Level_Spelling_Err.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618825/GSEC-libre.pdf?1409766681=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Character_Level_Spelling_Err.pdf\u0026Expires=1732498849\u0026Signature=an--70UL2Zsn-kb4x7PwN9iBySDw5hLCwgIGu8tJafG~rDwdsqMEJXW1~RUc4jWXsLD9ScMZPzG~AK~5Z63bCbs5HfqmYtWhVZEH4v4lOrsB17yz8l13EFk0oH8BP~W2x4hUcFCAcJ3ujN6v9uYBWMeBsDnx9vZ-YjsJkZ0pwpSInmTL9-oN56WTOdNgp-KctlQdHw1TlMGpDc0N21mb89k6ZnevMnH~aqLBaqJ8pr2fiiLd9VxaYYafpO0rf5LOA6TSldkCndYlF0zZGj17VV~SCg4cyI7P2nTkYdC6O~wUh77xFgcejcOqj~1vYgs6wXhEbey1LE9JqMNMfw7BTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generalized_Character_Level_Spelling_Error_Correction","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":34618825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618825/thumbnails/1.jpg","file_name":"GSEC.pdf","download_url":"https://www.academia.edu/attachments/34618825/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Character_Level_Spelling_Err.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618825/GSEC-libre.pdf?1409766681=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Character_Level_Spelling_Err.pdf\u0026Expires=1732498849\u0026Signature=an--70UL2Zsn-kb4x7PwN9iBySDw5hLCwgIGu8tJafG~rDwdsqMEJXW1~RUc4jWXsLD9ScMZPzG~AK~5Z63bCbs5HfqmYtWhVZEH4v4lOrsB17yz8l13EFk0oH8BP~W2x4hUcFCAcJ3ujN6v9uYBWMeBsDnx9vZ-YjsJkZ0pwpSInmTL9-oN56WTOdNgp-KctlQdHw1TlMGpDc0N21mb89k6ZnevMnH~aqLBaqJ8pr2fiiLd9VxaYYafpO0rf5LOA6TSldkCndYlF0zZGj17VV~SCg4cyI7P2nTkYdC6O~wUh77xFgcejcOqj~1vYgs6wXhEbey1LE9JqMNMfw7BTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":17700,"name":"Arabic Dialects","url":"https://www.academia.edu/Documents/in/Arabic_Dialects"},{"id":97513,"name":"Spelling Errors","url":"https://www.academia.edu/Documents/in/Spelling_Errors"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="5011071"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/5011071/A_novel_mobile_wireless_sensing_system_for_realtime_monitoring_of_posture_and_spine_stress"><img alt="Research paper thumbnail of A novel mobile wireless sensing system for realtime monitoring of posture and spine stress" class="work-thumbnail" src="https://attachments.academia-assets.com/34618863/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/5011071/A_novel_mobile_wireless_sensing_system_for_realtime_monitoring_of_posture_and_spine_stress">A novel mobile wireless sensing system for realtime monitoring of posture and spine stress</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor posture may reduce out-of-posture tendencies and encourage healthy spinal habits. We have developed a novel wireless mobile sensing system which monitors spine stress in real-time by detecting poor back posture and strain on the back due to prolonged sitting or standing. The system provides a new method of measuring spine stress at both the back and the feet by integrating posture sensors with strain sensors. Posture and strain data is collected by means of a posture sensor at the neck and weight sensors at the feet. Data is transmitted wirelessly to a central processing station and real-time feedback is provided to the user&#39;s mobile device when sustained bad posture is detected. Moreover, the position of the patient (sitting, standing, or walking) can be determined by analysis of the weight sensor data and is visualized in real-time, along with back posture, at the central station by means of a graphical animation. Finally, data from all sensors is stored in a database to enable post processing and data analysis, and a summary report of daily posture and physical activity is sent to the user&#39;s email. The use of centralized processing allows for high performance data analysis and storage at the central station which enables tracking of the individual&#39;s progress. We demonstrate effectiveness of our system in simultaneously monitoring posture and position by testing in numerous situations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8ff7300afb45599012c91458e83ba61c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34618863,&quot;asset_id&quot;:5011071,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34618863/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="5011071"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="5011071"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5011071; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5011071]").text(description); $(".js-view-count[data-work-id=5011071]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5011071; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='5011071']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 5011071, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8ff7300afb45599012c91458e83ba61c" } } $('.js-work-strip[data-work-id=5011071]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":5011071,"title":"A novel mobile wireless sensing system for realtime monitoring of posture and spine stress","translated_title":"","metadata":{"abstract":"Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor posture may reduce out-of-posture tendencies and encourage healthy spinal habits. We have developed a novel wireless mobile sensing system which monitors spine stress in real-time by detecting poor back posture and strain on the back due to prolonged sitting or standing. The system provides a new method of measuring spine stress at both the back and the feet by integrating posture sensors with strain sensors. Posture and strain data is collected by means of a posture sensor at the neck and weight sensors at the feet. Data is transmitted wirelessly to a central processing station and real-time feedback is provided to the user's mobile device when sustained bad posture is detected. Moreover, the position of the patient (sitting, standing, or walking) can be determined by analysis of the weight sensor data and is visualized in real-time, along with back posture, at the central station by means of a graphical animation. Finally, data from all sensors is stored in a database to enable post processing and data analysis, and a summary report of daily posture and physical activity is sent to the user's email. The use of centralized processing allows for high performance data analysis and storage at the central station which enables tracking of the individual's progress. We demonstrate effectiveness of our system in simultaneously monitoring posture and position by testing in numerous situations.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":"Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor posture may reduce out-of-posture tendencies and encourage healthy spinal habits. We have developed a novel wireless mobile sensing system which monitors spine stress in real-time by detecting poor back posture and strain on the back due to prolonged sitting or standing. The system provides a new method of measuring spine stress at both the back and the feet by integrating posture sensors with strain sensors. Posture and strain data is collected by means of a posture sensor at the neck and weight sensors at the feet. Data is transmitted wirelessly to a central processing station and real-time feedback is provided to the user's mobile device when sustained bad posture is detected. Moreover, the position of the patient (sitting, standing, or walking) can be determined by analysis of the weight sensor data and is visualized in real-time, along with back posture, at the central station by means of a graphical animation. Finally, data from all sensors is stored in a database to enable post processing and data analysis, and a summary report of daily posture and physical activity is sent to the user's email. The use of centralized processing allows for high performance data analysis and storage at the central station which enables tracking of the individual's progress. We demonstrate effectiveness of our system in simultaneously monitoring posture and position by testing in numerous situations.","internal_url":"https://www.academia.edu/5011071/A_novel_mobile_wireless_sensing_system_for_realtime_monitoring_of_posture_and_spine_stress","translated_internal_url":"","created_at":"2013-11-06T03:51:37.141-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34618863,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618863/thumbnails/1.jpg","file_name":"posture.pdf","download_url":"https://www.academia.edu/attachments/34618863/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_novel_mobile_wireless_sensing_system_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618863/posture-libre.pdf?1409770627=\u0026response-content-disposition=attachment%3B+filename%3DA_novel_mobile_wireless_sensing_system_f.pdf\u0026Expires=1732498849\u0026Signature=Gt0sJUWf9tf64QpyT8p5rkSV0LsRGJwIJb6hddMekjKq83A6yMCQfmsSv5SuR1fk~mm8zw4PQbEu8~K-JYIapTz60k6Ijpgu9gZiXyi3SxXaXlyd534uWP5G5p-vqAhBLzDfM70NruoO6GmOhRoON4YZ6Ixww-CtWgJbUGcRkC1WAUu2aHSJynMLrdO4mTe58ZAaeEwETldg-gavCaknqhAZ8l2CMltU0R7BxunsGcKRY93vr5dNSnPEENWEx~SlrR7ECC0oATR~iDshdMxXgUrVU8GuNEGhJkHSRu~7w4sHNo019IcSaSbWxeTwkxMvLnHCdjMSW9vpngyvyVzFMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_novel_mobile_wireless_sensing_system_for_realtime_monitoring_of_posture_and_spine_stress","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":34618863,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618863/thumbnails/1.jpg","file_name":"posture.pdf","download_url":"https://www.academia.edu/attachments/34618863/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_novel_mobile_wireless_sensing_system_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618863/posture-libre.pdf?1409770627=\u0026response-content-disposition=attachment%3B+filename%3DA_novel_mobile_wireless_sensing_system_f.pdf\u0026Expires=1732498849\u0026Signature=Gt0sJUWf9tf64QpyT8p5rkSV0LsRGJwIJb6hddMekjKq83A6yMCQfmsSv5SuR1fk~mm8zw4PQbEu8~K-JYIapTz60k6Ijpgu9gZiXyi3SxXaXlyd534uWP5G5p-vqAhBLzDfM70NruoO6GmOhRoON4YZ6Ixww-CtWgJbUGcRkC1WAUu2aHSJynMLrdO4mTe58ZAaeEwETldg-gavCaknqhAZ8l2CMltU0R7BxunsGcKRY93vr5dNSnPEENWEx~SlrR7ECC0oATR~iDshdMxXgUrVU8GuNEGhJkHSRu~7w4sHNo019IcSaSbWxeTwkxMvLnHCdjMSW9vpngyvyVzFMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3132,"name":"Biomechanics","url":"https://www.academia.edu/Documents/in/Biomechanics"},{"id":4122,"name":"Computer Animation","url":"https://www.academia.edu/Documents/in/Computer_Animation"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":9112,"name":"Physical Activity","url":"https://www.academia.edu/Documents/in/Physical_Activity"},{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks"},{"id":18391,"name":"Mobile Communication","url":"https://www.academia.edu/Documents/in/Mobile_Communication"},{"id":96959,"name":"Back Pain","url":"https://www.academia.edu/Documents/in/Back_Pain"},{"id":102883,"name":"Real Time Systems","url":"https://www.academia.edu/Documents/in/Real_Time_Systems"},{"id":129388,"name":"Patient Monitoring","url":"https://www.academia.edu/Documents/in/Patient_Monitoring"},{"id":154850,"name":"Mobile Device","url":"https://www.academia.edu/Documents/in/Mobile_Device"},{"id":188095,"name":"Legged Locomotion","url":"https://www.academia.edu/Documents/in/Legged_Locomotion"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time"},{"id":297691,"name":"High performance","url":"https://www.academia.edu/Documents/in/High_performance"},{"id":571336,"name":"Real Time Monitoring","url":"https://www.academia.edu/Documents/in/Real_Time_Monitoring"},{"id":741308,"name":"Wireless Sensing","url":"https://www.academia.edu/Documents/in/Wireless_Sensing"}],"urls":[{"id":1877757,"url":"http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5752156"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="5011069"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/5011069/Sentence_Level_and_Document_Level_Sentiment_Mining_for_Arabic_Texts"><img alt="Research paper thumbnail of Sentence-Level and Document-Level Sentiment Mining for Arabic Texts" class="work-thumbnail" src="https://attachments.academia-assets.com/34618848/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/5011069/Sentence_Level_and_Document_Level_Sentiment_Mining_for_Arabic_Texts">Sentence-Level and Document-Level Sentiment Mining for Arabic Texts</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, we investigate sentiment mining of Arabic text at both the sentence level and the d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, we investigate sentiment mining of Arabic text at both the sentence level and the document level. Existing research in Arabic sentiment mining remains very limited. For sentence-level classification, we investigate two approaches. The first is a novel grammatical approach that employs the use of a general structure for the Arabic sentence. The second approach is based on the semantic orientation of words and their corresponding frequencies, to do this we built an interactive learning semantic dictionary which stores the polarities of the roots of different words and identifies new polarities based on these roots. For document-level classification, we use sentences of known classes to classify whole documents, using a novel approach whereby documents are divided dynamically into chunks and classification is based on the semantic contributions of different chunks in the document. This dynamic chunking approach can also be investigated for sentiment mining in other languages. Finally, we propose a hierarchical classification scheme that uses the results of the sentence-level classifier as input to the document-level classifier, an approach which has not been investigated previously for Arabic documents. We also pinpoint the various challenges that are faced by sentiment mining for Arabic texts and propose suggestions for its development. We demonstrate promising results with our sentence-level approach, and our document-level experiments show, with high accuracy, that it is feasible to extract the sentiment of an Arabic document based on the classes of its sentences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eb6622038d4f2b6ce03c803f7ee7242d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34618848,&quot;asset_id&quot;:5011069,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34618848/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="5011069"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="5011069"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5011069; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5011069]").text(description); $(".js-view-count[data-work-id=5011069]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5011069; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='5011069']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 5011069, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eb6622038d4f2b6ce03c803f7ee7242d" } } $('.js-work-strip[data-work-id=5011069]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":5011069,"title":"Sentence-Level and Document-Level Sentiment Mining for Arabic Texts","translated_title":"","metadata":{"abstract":"In this work, we investigate sentiment mining of Arabic text at both the sentence level and the document level. Existing research in Arabic sentiment mining remains very limited. For sentence-level classification, we investigate two approaches. The first is a novel grammatical approach that employs the use of a general structure for the Arabic sentence. The second approach is based on the semantic orientation of words and their corresponding frequencies, to do this we built an interactive learning semantic dictionary which stores the polarities of the roots of different words and identifies new polarities based on these roots. For document-level classification, we use sentences of known classes to classify whole documents, using a novel approach whereby documents are divided dynamically into chunks and classification is based on the semantic contributions of different chunks in the document. This dynamic chunking approach can also be investigated for sentiment mining in other languages. Finally, we propose a hierarchical classification scheme that uses the results of the sentence-level classifier as input to the document-level classifier, an approach which has not been investigated previously for Arabic documents. We also pinpoint the various challenges that are faced by sentiment mining for Arabic texts and propose suggestions for its development. We demonstrate promising results with our sentence-level approach, and our document-level experiments show, with high accuracy, that it is feasible to extract the sentiment of an Arabic document based on the classes of its sentences.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"In this work, we investigate sentiment mining of Arabic text at both the sentence level and the document level. Existing research in Arabic sentiment mining remains very limited. For sentence-level classification, we investigate two approaches. The first is a novel grammatical approach that employs the use of a general structure for the Arabic sentence. The second approach is based on the semantic orientation of words and their corresponding frequencies, to do this we built an interactive learning semantic dictionary which stores the polarities of the roots of different words and identifies new polarities based on these roots. For document-level classification, we use sentences of known classes to classify whole documents, using a novel approach whereby documents are divided dynamically into chunks and classification is based on the semantic contributions of different chunks in the document. This dynamic chunking approach can also be investigated for sentiment mining in other languages. Finally, we propose a hierarchical classification scheme that uses the results of the sentence-level classifier as input to the document-level classifier, an approach which has not been investigated previously for Arabic documents. We also pinpoint the various challenges that are faced by sentiment mining for Arabic texts and propose suggestions for its development. We demonstrate promising results with our sentence-level approach, and our document-level experiments show, with high accuracy, that it is feasible to extract the sentiment of an Arabic document based on the classes of its sentences.","internal_url":"https://www.academia.edu/5011069/Sentence_Level_and_Document_Level_Sentiment_Mining_for_Arabic_Texts","translated_internal_url":"","created_at":"2013-11-06T03:51:32.641-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34618848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618848/thumbnails/1.jpg","file_name":"ICDM_paper.pdf","download_url":"https://www.academia.edu/attachments/34618848/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sentence_Level_and_Document_Level_Sentim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618848/ICDM_paper-libre.pdf?1409766913=\u0026response-content-disposition=attachment%3B+filename%3DSentence_Level_and_Document_Level_Sentim.pdf\u0026Expires=1732498849\u0026Signature=MCoVMG7-L~jyAV0CeLezyEVLcImT8G1RXtMGbmzFRhms-KjXod8doh2Z0SXNnQzBnrwiV3VqtnBiQ8paJ6Is2fO2NcXfBRNvXte2gZh0vdLPGm8JxF9ax4VGuyC5IzkL23PBLHtzy10zPWHWIAqrBQ32R6~Bf0Hf7uzAmSBJvnnumh8bV~wRhnrqXRkidHciyPffMKri01uADT2mV4KGPACWKrs-FivPuCMXd5kUsjaPqKsPB0F2UDuG5Uf5xEE8u2BcV7QKi0XrxNHEADNhMod8zIVSqCbkzqcinkuCy3g5HWUraL8W6PrNXZWd0FhnNkVAY2Ru8PLwkF7OjSj~Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sentence_Level_and_Document_Level_Sentiment_Mining_for_Arabic_Texts","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":34618848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618848/thumbnails/1.jpg","file_name":"ICDM_paper.pdf","download_url":"https://www.academia.edu/attachments/34618848/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sentence_Level_and_Document_Level_Sentim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618848/ICDM_paper-libre.pdf?1409766913=\u0026response-content-disposition=attachment%3B+filename%3DSentence_Level_and_Document_Level_Sentim.pdf\u0026Expires=1732498849\u0026Signature=MCoVMG7-L~jyAV0CeLezyEVLcImT8G1RXtMGbmzFRhms-KjXod8doh2Z0SXNnQzBnrwiV3VqtnBiQ8paJ6Is2fO2NcXfBRNvXte2gZh0vdLPGm8JxF9ax4VGuyC5IzkL23PBLHtzy10zPWHWIAqrBQ32R6~Bf0Hf7uzAmSBJvnnumh8bV~wRhnrqXRkidHciyPffMKri01uADT2mV4KGPACWKrs-FivPuCMXd5kUsjaPqKsPB0F2UDuG5Uf5xEE8u2BcV7QKi0XrxNHEADNhMod8zIVSqCbkzqcinkuCy3g5HWUraL8W6PrNXZWd0FhnNkVAY2Ru8PLwkF7OjSj~Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":220007,"name":"Arabic Natural Language Processing","url":"https://www.academia.edu/Documents/in/Arabic_Natural_Language_Processing"}],"urls":[{"id":1877755,"url":"http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5693419"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="877132" id="papers"><div class="js-work-strip profile--work_container" data-work-id="123437086"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123437086/RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Multilingual_Scenarios"><img alt="Research paper thumbnail of RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?" class="work-thumbnail" src="https://attachments.academia-assets.com/117867625/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123437086/RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Multilingual_Scenarios">RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 22, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="84e19e981f22013693f448b6ac3a5ecb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117867625,&quot;asset_id&quot;:123437086,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117867625/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123437086"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123437086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123437086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123437086]").text(description); $(".js-view-count[data-work-id=123437086]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123437086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123437086']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 123437086, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "84e19e981f22013693f448b6ac3a5ecb" } } $('.js-work-strip[data-work-id=123437086]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123437086,"title":"RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?","translated_title":"","metadata":{"publication_date":{"day":22,"month":4,"year":2024,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123437086/RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Multilingual_Scenarios","translated_internal_url":"","created_at":"2024-09-01T04:15:44.900-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117867625,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117867625/thumbnails/1.jpg","file_name":"2404.14397.pdf","download_url":"https://www.academia.edu/attachments/117867625/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117867625/2404.14397-libre.pdf?1725191636=\u0026response-content-disposition=attachment%3B+filename%3DRTP_LX_Can_LLMs_Evaluate_Toxicity_in_Mul.pdf\u0026Expires=1732498848\u0026Signature=He6VJ5uG0WeTp9EMuowQ2lCRcZus8dQm0P8S5Mc4UNAT7GtVKpx2jctLcguOzYSR9DadBG7LD-aVHqdGwAGn6YhmRqBbHloAgDfDUcoUJda68idjU6Wp431Zrvntp6RdbYffuFo8L2pfw2lMHNeaTWUJjspeNES6gEsbS~nZ2Pk8~SJHRj1Tlc8auliEGBludRrXAuXT8hOUzfi0O7GyYt-6MI0V4cXexUKpeWj1-KsFUSzyoF5nS1L4KMfh7H~x~wBr9VQyQepFkqu8B6akTGPqDKKwr9F3e3oz9iED6yIjmTWyp-dywkugglRODFem-GzbKqJvGbg4~-knxxh2sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Multilingual_Scenarios","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":117867625,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117867625/thumbnails/1.jpg","file_name":"2404.14397.pdf","download_url":"https://www.academia.edu/attachments/117867625/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"RTP_LX_Can_LLMs_Evaluate_Toxicity_in_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117867625/2404.14397-libre.pdf?1725191636=\u0026response-content-disposition=attachment%3B+filename%3DRTP_LX_Can_LLMs_Evaluate_Toxicity_in_Mul.pdf\u0026Expires=1732498848\u0026Signature=He6VJ5uG0WeTp9EMuowQ2lCRcZus8dQm0P8S5Mc4UNAT7GtVKpx2jctLcguOzYSR9DadBG7LD-aVHqdGwAGn6YhmRqBbHloAgDfDUcoUJda68idjU6Wp431Zrvntp6RdbYffuFo8L2pfw2lMHNeaTWUJjspeNES6gEsbS~nZ2Pk8~SJHRj1Tlc8auliEGBludRrXAuXT8hOUzfi0O7GyYt-6MI0V4cXexUKpeWj1-KsFUSzyoF5nS1L4KMfh7H~x~wBr9VQyQepFkqu8B6akTGPqDKKwr9F3e3oz9iED6yIjmTWyp-dywkugglRODFem-GzbKqJvGbg4~-knxxh2sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":67405,"name":"Toxicity","url":"https://www.academia.edu/Documents/in/Toxicity"}],"urls":[{"id":44386540,"url":"https://arxiv.org/pdf/2404.14397"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190332"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190332/The_ARIEL_CMU_Systems_for_LoReHLT18"><img alt="Research paper thumbnail of The ARIEL-CMU Systems for LoReHLT18" class="work-thumbnail" src="https://attachments.academia-assets.com/92211198/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190332/The_ARIEL_CMU_Systems_for_LoReHLT18">The ARIEL-CMU Systems for LoReHLT18</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (L...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41d947d0043c83d554f34379954427b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211198,&quot;asset_id&quot;:88190332,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211198/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190332"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190332"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190332; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190332]").text(description); $(".js-view-count[data-work-id=88190332]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190332; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190332']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190332, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41d947d0043c83d554f34379954427b2" } } $('.js-work-strip[data-work-id=88190332]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190332,"title":"The ARIEL-CMU Systems for LoReHLT18","translated_title":"","metadata":{"abstract":"This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech).","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech).","internal_url":"https://www.academia.edu/88190332/The_ARIEL_CMU_Systems_for_LoReHLT18","translated_internal_url":"","created_at":"2022-10-09T15:29:02.230-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211198,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211198/thumbnails/1.jpg","file_name":"1902.08899v1.pdf","download_url":"https://www.academia.edu/attachments/92211198/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_ARIEL_CMU_Systems_for_LoReHLT18.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211198/1902.08899v1-libre.pdf?1665355137=\u0026response-content-disposition=attachment%3B+filename%3DThe_ARIEL_CMU_Systems_for_LoReHLT18.pdf\u0026Expires=1732498848\u0026Signature=RR5cSKzmm5C5T4OdGccusiOSQ0Al~FsVTvQ~4cla4Lz-ncCE2W54-~L-I73FXGa3tEBqa~8wsAzPIfEpRMIwOgYlh6jKFKFfnhBreOpGnz6gIYO84nW1VXBy1hOYi9isocSgYln4zsuMo04OSeBNpz1sh~iXYeJplll8Etykdo42l7wixYfUJ-r0reIa0gwODC9iic4PxKuStDAk10KIN7IMMsdpXxf9X6OWm1bgh0-MbyGGYe1N3IOJCk0SBh3RFgqfCfPZKYO-lH6FeflVw6K1TtJLaZMdii72NK2mxwYz0FRs5-qu~7kpSDBUYoJMQ617qY0ZcOnhqLYBFS1wPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_ARIEL_CMU_Systems_for_LoReHLT18","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211198,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211198/thumbnails/1.jpg","file_name":"1902.08899v1.pdf","download_url":"https://www.academia.edu/attachments/92211198/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_ARIEL_CMU_Systems_for_LoReHLT18.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211198/1902.08899v1-libre.pdf?1665355137=\u0026response-content-disposition=attachment%3B+filename%3DThe_ARIEL_CMU_Systems_for_LoReHLT18.pdf\u0026Expires=1732498848\u0026Signature=RR5cSKzmm5C5T4OdGccusiOSQ0Al~FsVTvQ~4cla4Lz-ncCE2W54-~L-I73FXGa3tEBqa~8wsAzPIfEpRMIwOgYlh6jKFKFfnhBreOpGnz6gIYO84nW1VXBy1hOYi9isocSgYln4zsuMo04OSeBNpz1sh~iXYeJplll8Etykdo42l7wixYfUJ-r0reIa0gwODC9iic4PxKuStDAk10KIN7IMMsdpXxf9X6OWm1bgh0-MbyGGYe1N3IOJCk0SBh3RFgqfCfPZKYO-lH6FeflVw6K1TtJLaZMdii72NK2mxwYz0FRs5-qu~7kpSDBUYoJMQ617qY0ZcOnhqLYBFS1wPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":92211197,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211197/thumbnails/1.jpg","file_name":"1902.08899v1.pdf","download_url":"https://www.academia.edu/attachments/92211197/download_file","bulk_download_file_name":"The_ARIEL_CMU_Systems_for_LoReHLT18.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211197/1902.08899v1-libre.pdf?1665355139=\u0026response-content-disposition=attachment%3B+filename%3DThe_ARIEL_CMU_Systems_for_LoReHLT18.pdf\u0026Expires=1732498848\u0026Signature=Ld35E3yTP~brycMH~gPouHXQ8CHY1EJC5-j4Aq3UttFO0RDOh4Hu101XPgH~YOZ3zClbt4BEh8h7bq5xts~uM5sHDwDfva1RcPYpGx3sqlNZ-HDfmuhSW-UcJ2HzjsMRG-0njutyoemUlG72x97ZwkG2XXBPmCsFAwVvoIfNClJIml1iwQ8Hlff23~VatQ~eo1vDlgmTsdzCZ1h6yTnM6dkfHQi-q8Ji9LLFUN6SRBV~nXytr08-aCrO9n-2YqJ6keyVdQfkG0kBriabBDxTWaBrBzDYrKT5i16qBbsp0ctMy7lv7deZHEeLB-MDXnMuyAQM42BnxNMol1fpMPS9bQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":24620481,"url":"https://arxiv.org/pdf/1902.08899v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190331"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190331/SemEval_2019_Task_6_Identifying_and_Categorizing_Offensive_Language_in_Social_Media_OffensEval_"><img alt="Research paper thumbnail of SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)" class="work-thumbnail" src="https://attachments.academia-assets.com/92211251/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190331/SemEval_2019_Task_6_Identifying_and_Categorizing_Offensive_Language_in_Social_Media_OffensEval_">SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)</a></div><div class="wp-workCard_item"><span>Proceedings of the 13th International Workshop on Semantic Evaluation</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7514d4492187f7cd5fb3e33775080066" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211251,&quot;asset_id&quot;:88190331,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211251/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190331"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190331"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190331; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190331]").text(description); $(".js-view-count[data-work-id=88190331]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190331; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190331']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190331, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7514d4492187f7cd5fb3e33775080066" } } $('.js-work-strip[data-work-id=88190331]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190331,"title":"SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"We present the results and the main findings of SemEval-2019 Task 6 on Identifying and Categorizing Offensive Language in Social Media (OffensEval). The task was based on a new dataset, the Offensive Language Identification Dataset (OLID), which contains over 14,000 English tweets. It featured three sub-tasks. In sub-task A, the goal was to discriminate between offensive and non-offensive posts. In sub-task B, the focus was on the type of offensive content in the post. Finally, in sub-task C, systems had to detect the target of the offensive posts. OffensEval attracted a large number of participants and it was one of the most popular tasks in SemEval-2019. In total, about 800 teams signed up to participate in the task, and 115 of them submitted results, which we present and analyze in this report. 1 http://competitions.codalab.org/ competitions/20011 2 http://scholar.harvard.edu/malmasi/ olid 3 A total of 800 teams signed up to participate in the task, but only 115 teams ended up submitting results eventually.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceedings of the 13th International Workshop on Semantic Evaluation","grobid_abstract_attachment_id":92211251},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190331/SemEval_2019_Task_6_Identifying_and_Categorizing_Offensive_Language_in_Social_Media_OffensEval_","translated_internal_url":"","created_at":"2022-10-09T15:29:02.092-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211251,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211251/thumbnails/1.jpg","file_name":"1903.pdf","download_url":"https://www.academia.edu/attachments/92211251/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SemEval_2019_Task_6_Identifying_and_Cate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211251/1903-libre.pdf?1665355131=\u0026response-content-disposition=attachment%3B+filename%3DSemEval_2019_Task_6_Identifying_and_Cate.pdf\u0026Expires=1732498848\u0026Signature=Yxm1BENjAVyoSDDyJ5uM4GI8fTbMzGPl3vdy74Ck-2cnUp6ZdP3iep~HavTFPQfMmlTBa2qom~fWWWZK38XE1AhTlWICBjo8ag4R-hKz5ist9d~Zlqo-L26I3bCKm96CU06e6AKnzwUbBSqf2BuBr7zgI1QupOWoHKa33YK73OOIWmjtPrQjePnphTesfV6JDoLSe1mK4bkCRP~nWliqaAh~VImF-pEreKkOHjyLVL8P2x5DW2YpVVh853CJ~2s2x~DIDre7oA77ya08K-5VTDPpoJXlhAwVZ5xD6AtXJhN9i2Y0aP21rbne7ZlpyfSxOqZoYR6-Eo6IeCY2~dUgVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SemEval_2019_Task_6_Identifying_and_Categorizing_Offensive_Language_in_Social_Media_OffensEval_","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211251,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211251/thumbnails/1.jpg","file_name":"1903.pdf","download_url":"https://www.academia.edu/attachments/92211251/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SemEval_2019_Task_6_Identifying_and_Cate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211251/1903-libre.pdf?1665355131=\u0026response-content-disposition=attachment%3B+filename%3DSemEval_2019_Task_6_Identifying_and_Cate.pdf\u0026Expires=1732498848\u0026Signature=Yxm1BENjAVyoSDDyJ5uM4GI8fTbMzGPl3vdy74Ck-2cnUp6ZdP3iep~HavTFPQfMmlTBa2qom~fWWWZK38XE1AhTlWICBjo8ag4R-hKz5ist9d~Zlqo-L26I3bCKm96CU06e6AKnzwUbBSqf2BuBr7zgI1QupOWoHKa33YK73OOIWmjtPrQjePnphTesfV6JDoLSe1mK4bkCRP~nWliqaAh~VImF-pEreKkOHjyLVL8P2x5DW2YpVVh853CJ~2s2x~DIDre7oA77ya08K-5VTDPpoJXlhAwVZ5xD6AtXJhN9i2Y0aP21rbne7ZlpyfSxOqZoYR6-Eo6IeCY2~dUgVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":544669,"name":"Language Identification","url":"https://www.academia.edu/Documents/in/Language_Identification"},{"id":663814,"name":"Offensive Realism","url":"https://www.academia.edu/Documents/in/Offensive_Realism"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190330"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190330/Cross_lingual_sentiment_transfer_with_limited_resources"><img alt="Research paper thumbnail of Cross-lingual sentiment transfer with limited resources" class="work-thumbnail" src="https://attachments.academia-assets.com/92211255/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190330/Cross_lingual_sentiment_transfer_with_limited_resources">Cross-lingual sentiment transfer with limited resources</a></div><div class="wp-workCard_item"><span>Machine Translation</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="96d4583084ff63d6aeb8d223f05b8acf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211255,&quot;asset_id&quot;:88190330,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211255/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190330"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190330"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190330; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190330]").text(description); $(".js-view-count[data-work-id=88190330]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190330; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190330']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190330, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "96d4583084ff63d6aeb8d223f05b8acf" } } $('.js-work-strip[data-work-id=88190330]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190330,"title":"Cross-lingual sentiment transfer with limited resources","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We describe two transfer approaches for building sentiment analysis systems without having gold labeled data in the target language. Unlike previous work that is focused on using only English as the source language and a small number of target languages, we use multiple source languages to learn a more robust sentiment transfer model for 16 languages from different language families. Our approaches explore the potential of using an annotation projection approach and a direct transfer approach using cross-lingual word representations and neural networks. Whereas most previous work relies on machine translation, we show that we can build cross-lingual sentiment analysis systems without machine translation or even high quality parallel data. We have conducted experiments assessing the availability of different resources such as in-domain parallel data, out-of-domain parallel data, and in-domain comparable data.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Machine Translation","grobid_abstract_attachment_id":92211255},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190330/Cross_lingual_sentiment_transfer_with_limited_resources","translated_internal_url":"","created_at":"2022-10-09T15:29:01.875-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211255,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211255/thumbnails/1.jpg","file_name":"s10590-017-9202-620221009-1-13stnar.pdf","download_url":"https://www.academia.edu/attachments/92211255/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cross_lingual_sentiment_transfer_with_li.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211255/s10590-017-9202-620221009-1-13stnar-libre.pdf?1665355127=\u0026response-content-disposition=attachment%3B+filename%3DCross_lingual_sentiment_transfer_with_li.pdf\u0026Expires=1732498848\u0026Signature=HFjGNu1SmhuUEioo4iq2OYi-wXyHjQe2Q6444YvOiMTFoGQLEdAwvgmpIF-HkzPt36k9Cv99CjcGkCW6Aiwqj3HNhux5gmJ6ft9ex2~-GRWE-E4hfmSKshZ1MjAh2uiWeDOV2Z~0sKAcs1d2sIpxYVZWO2XvY8BbKTtqbb6Y2uLjNm4fR4THYNvliuL2DrQE9K67-8g1kq0g6nVY1tgUwHoJ9OS6scgU-0G0WSRizkOns7fJ~ZP6SbCdG5MUq~pPBmxawNxg~2-K6hv~o3c6GpfZDY2Rm~WVX~Vqj5LIRSsbbjwsgx3YSvaXE28hmS-uiEIaj36Jjo4L2j3UjgU9sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cross_lingual_sentiment_transfer_with_limited_resources","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211255,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211255/thumbnails/1.jpg","file_name":"s10590-017-9202-620221009-1-13stnar.pdf","download_url":"https://www.academia.edu/attachments/92211255/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cross_lingual_sentiment_transfer_with_li.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211255/s10590-017-9202-620221009-1-13stnar-libre.pdf?1665355127=\u0026response-content-disposition=attachment%3B+filename%3DCross_lingual_sentiment_transfer_with_li.pdf\u0026Expires=1732498849\u0026Signature=UFpf28eNp2HxGSiGXMDFlqeID3QZ5pu9gq8X4EgZO669S0R6bUkn6ecHnaV6q8Os4XqjOxK73rEJMQytfuXZyKzyKx-4AdsAiym5rRs3t~kIYuHKw-Md1ODKyHAxQNCmNx0ogjzqEw~9uk-55e2Gj9SNeQSRVHoMWpCbKSmVO1LKzIPxX1tDFzs1fu7M7vzBf~JkSpUJDXjY8naOYw7mtXtySPal5vUTJ~YV16oL9owIX5e-FCqt6cM0oYDJ6-~r~FaDJh2l3~18EyA9BX~NXy~Fl8cEKQFFOUIDs~vCf-9pehdP~Hp22am2EIOfUpiYdf-6z4Sg2anE3a~Zr-TdHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":4696,"name":"Machine Translation","url":"https://www.academia.edu/Documents/in/Machine_Translation"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":596862,"name":"Transfer of Learning","url":"https://www.academia.edu/Documents/in/Transfer_of_Learning"},{"id":2070034,"name":"Data Format","url":"https://www.academia.edu/Documents/in/Data_Format"}],"urls":[{"id":24620480,"url":"http://link.springer.com/article/10.1007/s10590-017-9202-6/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190329"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190329/Predicting_the_Type_and_Target_of_Offensive_Posts_in_Social_Media"><img alt="Research paper thumbnail of Predicting the Type and Target of Offensive Posts in Social Media" class="work-thumbnail" src="https://attachments.academia-assets.com/92211249/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190329/Predicting_the_Type_and_Target_of_Offensive_Posts_in_Social_Media">Predicting the Type and Target of Offensive Posts in Social Media</a></div><div class="wp-workCard_item"><span>Proceedings of the 2019 Conference of the North</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a4f65f8d0a5847f88e70379b669d9604" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211249,&quot;asset_id&quot;:88190329,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211249/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190329"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190329"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190329; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190329]").text(description); $(".js-view-count[data-work-id=88190329]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190329; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190329']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190329, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a4f65f8d0a5847f88e70379b669d9604" } } $('.js-work-strip[data-work-id=88190329]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190329,"title":"Predicting the Type and Target of Offensive Posts in Social Media","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"As offensive content has become pervasive in social media, there has been much research in identifying potentially offensive messages. However, previous work on this topic did not consider the problem as a whole, but rather focused on detecting very specific types of offensive content, e.g., hate speech, cyberbulling, or cyber-aggression. In contrast, here we target several different kinds of offensive content. In particular, we model the task hierarchically, identifying the type and the target of offensive messages in social media. For this purpose, we complied the Offensive Language Identification Dataset (OLID), a new dataset with tweets annotated for offensive content using a fine-grained three-layer annotation scheme, which we make publicly available. We discuss the main similarities and differences between OLID and pre-existing datasets for hate speech identification, aggression detection, and similar tasks. We further experiment with and we compare the performance of different machine learning models on OLID.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceedings of the 2019 Conference of the North","grobid_abstract_attachment_id":92211249},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190329/Predicting_the_Type_and_Target_of_Offensive_Posts_in_Social_Media","translated_internal_url":"","created_at":"2022-10-09T15:29:01.726-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211249,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211249/thumbnails/1.jpg","file_name":"Zampieri_et_al_Predicting_The_type_2019.pdf","download_url":"https://www.academia.edu/attachments/92211249/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_the_Type_and_Target_of_Offens.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211249/Zampieri_et_al_Predicting_The_type_2019-libre.pdf?1665355121=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_the_Type_and_Target_of_Offens.pdf\u0026Expires=1732498849\u0026Signature=e99vAbeEqBfC6vrkH0zo9Svn8nL8qQ3mZ7vXauIBtKfjpxF-b5him~OYr0Z2j3-Ro3E6s3YGDfcXiKM8wW3YX6Dh5qACj7Pem62iLPJRgb1U1AJdPbRTwb~HJg6sQLVNDFm5herG5X5GzHttjFfkZtETRVOtF6Or2C6fZOd1pq4lu8xxSDrpj8d-lud6~KrkyVcM0nV6zxhi1KUYEaVgIPzpQ3nvXs6LeQca0CC1ED8MhFcJ-yHMkgCQVJQ6kVxaJMBBWod0miYdN7w~kpUtzjelxryviIld9lfLiy1GAplY1A00f3ybErI0K5zn28uhbcbqfa-qeLsXwsJtNkyGjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predicting_the_Type_and_Target_of_Offensive_Posts_in_Social_Media","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211249,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211249/thumbnails/1.jpg","file_name":"Zampieri_et_al_Predicting_The_type_2019.pdf","download_url":"https://www.academia.edu/attachments/92211249/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Predicting_the_Type_and_Target_of_Offens.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211249/Zampieri_et_al_Predicting_The_type_2019-libre.pdf?1665355121=\u0026response-content-disposition=attachment%3B+filename%3DPredicting_the_Type_and_Target_of_Offens.pdf\u0026Expires=1732498849\u0026Signature=e99vAbeEqBfC6vrkH0zo9Svn8nL8qQ3mZ7vXauIBtKfjpxF-b5him~OYr0Z2j3-Ro3E6s3YGDfcXiKM8wW3YX6Dh5qACj7Pem62iLPJRgb1U1AJdPbRTwb~HJg6sQLVNDFm5herG5X5GzHttjFfkZtETRVOtF6Or2C6fZOd1pq4lu8xxSDrpj8d-lud6~KrkyVcM0nV6zxhi1KUYEaVgIPzpQ3nvXs6LeQca0CC1ED8MhFcJ-yHMkgCQVJQ6kVxaJMBBWod0miYdN7w~kpUtzjelxryviIld9lfLiy1GAplY1A00f3ybErI0K5zn28uhbcbqfa-qeLsXwsJtNkyGjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":9246,"name":"Social Media","url":"https://www.academia.edu/Documents/in/Social_Media"},{"id":82732,"name":"Aggression","url":"https://www.academia.edu/Documents/in/Aggression"},{"id":544669,"name":"Language Identification","url":"https://www.academia.edu/Documents/in/Language_Identification"},{"id":663814,"name":"Offensive Realism","url":"https://www.academia.edu/Documents/in/Offensive_Realism"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190328"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190328/SemEval_2017_Task_4_Sentiment_Analysis_in_Twitter"><img alt="Research paper thumbnail of SemEval-2017 Task 4: Sentiment Analysis in Twitter" class="work-thumbnail" src="https://attachments.academia-assets.com/92211250/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190328/SemEval_2017_Task_4_Sentiment_Analysis_in_Twitter">SemEval-2017 Task 4: Sentiment Analysis in Twitter</a></div><div class="wp-workCard_item"><span>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6dfad8e0f3b05e71da6c270449a71851" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211250,&quot;asset_id&quot;:88190328,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211250/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190328"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190328]").text(description); $(".js-view-count[data-work-id=88190328]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190328']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190328, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6dfad8e0f3b05e71da6c270449a71851" } } $('.js-work-strip[data-work-id=88190328]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190328,"title":"SemEval-2017 Task 4: Sentiment Analysis in Twitter","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"This paper describes the fifth year of the Sentiment Analysis in Twitter task. SemEval-2017 Task 4 continues with a rerun of the subtasks of SemEval-2016 Task 4, which include identifying the overall sentiment of the tweet, sentiment towards a topic with classification on a twopoint and on a five-point ordinal scale, and quantification of the distribution of sentiment towards a topic across a number of tweets: again on a two-point and on a five-point ordinal scale. Compared to 2016, we made two changes: (i) we introduced a new language, Arabic, for all subtasks, and (ii) we made available information from the profiles of the Twitter users who posted the target tweets. The task continues to be very popular, with a total of 48 teams participating this year.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)","grobid_abstract_attachment_id":92211250},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190328/SemEval_2017_Task_4_Sentiment_Analysis_in_Twitter","translated_internal_url":"","created_at":"2022-10-09T15:29:01.596-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211250,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211250/thumbnails/1.jpg","file_name":"S17-2088.pdf","download_url":"https://www.academia.edu/attachments/92211250/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SemEval_2017_Task_4_Sentiment_Analysis_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211250/S17-2088-libre.pdf?1665355131=\u0026response-content-disposition=attachment%3B+filename%3DSemEval_2017_Task_4_Sentiment_Analysis_i.pdf\u0026Expires=1732498849\u0026Signature=OeT~Tb8YT-BbB692duLpy38YqyXeEcyFOx5FB83jptMyRFLkQXEdtt1nDzy1YRfHM55Yy~vvymwUmFvHnHRVc9kOXEmwsQ3wNKhvz3FjoXZZR-FkNtAai8LGg3oYaVYr8TZsP8oOwCOsNKGjpxZj5TFl~xXJbTDO-os7VeMuUqJF1W-QNFzBGDjMkvkZdjmNOP45c4zEBY1xo4~UAFybZtrJVayAvkChS3FKtkILXT4cFxamAaaZf46axNaKVSIVUroWtFXntlA9lW8CWz9JxLKL3Rae3oBthRxV9tcpKxrm~gsazOBp7RiQo7DUeFlBV8UvGlHYG1vwHrPhs45hcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SemEval_2017_Task_4_Sentiment_Analysis_in_Twitter","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211250,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211250/thumbnails/1.jpg","file_name":"S17-2088.pdf","download_url":"https://www.academia.edu/attachments/92211250/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SemEval_2017_Task_4_Sentiment_Analysis_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211250/S17-2088-libre.pdf?1665355131=\u0026response-content-disposition=attachment%3B+filename%3DSemEval_2017_Task_4_Sentiment_Analysis_i.pdf\u0026Expires=1732498849\u0026Signature=OeT~Tb8YT-BbB692duLpy38YqyXeEcyFOx5FB83jptMyRFLkQXEdtt1nDzy1YRfHM55Yy~vvymwUmFvHnHRVc9kOXEmwsQ3wNKhvz3FjoXZZR-FkNtAai8LGg3oYaVYr8TZsP8oOwCOsNKGjpxZj5TFl~xXJbTDO-os7VeMuUqJF1W-QNFzBGDjMkvkZdjmNOP45c4zEBY1xo4~UAFybZtrJVayAvkChS3FKtkILXT4cFxamAaaZf46axNaKVSIVUroWtFXntlA9lW8CWz9JxLKL3Rae3oBthRxV9tcpKxrm~gsazOBp7RiQo7DUeFlBV8UvGlHYG1vwHrPhs45hcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190327"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190327/SMARTies_Sentiment_Models_for_Arabic_Target_entities"><img alt="Research paper thumbnail of SMARTies: Sentiment Models for Arabic Target entities" class="work-thumbnail" src="https://attachments.academia-assets.com/92211252/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190327/SMARTies_Sentiment_Models_for_Arabic_Target_entities">SMARTies: Sentiment Models for Arabic Target entities</a></div><div class="wp-workCard_item"><span>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="85e8c71f4154e187c811ee9bc67bc134" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211252,&quot;asset_id&quot;:88190327,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211252/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190327"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190327"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190327; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190327]").text(description); $(".js-view-count[data-work-id=88190327]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190327; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190327']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190327, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "85e8c71f4154e187c811ee9bc67bc134" } } $('.js-work-strip[data-work-id=88190327]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190327,"title":"SMARTies: Sentiment Models for Arabic Target entities","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"We consider entity-level sentiment analysis in Arabic, a morphologically rich language with increasing resources. We present a system that is applied to complex posts written in response to Arabic newspaper articles. Our goal is to identify important entity \"targets\" within the post along with the polarity expressed about each target. We achieve significant improvements over multiple baselines, demonstrating that the use of specific morphological representations improves the performance of identifying both important targets and their sentiment, and that the use of distributional semantic clusters further boosts performances for these representations, especially when richer linguistic resources are not available.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers","grobid_abstract_attachment_id":92211252},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190327/SMARTies_Sentiment_Models_for_Arabic_Target_entities","translated_internal_url":"","created_at":"2022-10-09T15:29:01.464-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211252,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211252/thumbnails/1.jpg","file_name":"1701.pdf","download_url":"https://www.academia.edu/attachments/92211252/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SMARTies_Sentiment_Models_for_Arabic_Tar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211252/1701-libre.pdf?1665355130=\u0026response-content-disposition=attachment%3B+filename%3DSMARTies_Sentiment_Models_for_Arabic_Tar.pdf\u0026Expires=1732498849\u0026Signature=ZI9Vq0mWy~-ycdeuQhjz~D8KABYRt9eUJv1zBWxGYJXAEO3FtDmH2O9tWMqMDPEyhp3i-q01KJNRXSKxU9I3~5SAAytfcYQ~GOj7ApQZNv5Txy8ArluA-ZcYwVwf~IU5XqMVrTfDwNMm3Leksn8sEoSYUa57DiZ~l~B80EHOMeIT-paWQrnHbVzpKLHrE-GY97MN~MMF8hXaoFAqD1E4poJV3cJB1HbRBuMqOMXuoQuG4OGbFaT1faT9ji7gZ8vGYzxmhCyC2n98OvL1LzETIgpojF7IsyVo-92oBs5W3NJ0V1oedh~EUoflDy6vga4Qjv7U7pnNMwAS7DdprQHJvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SMARTies_Sentiment_Models_for_Arabic_Target_entities","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211252,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211252/thumbnails/1.jpg","file_name":"1701.pdf","download_url":"https://www.academia.edu/attachments/92211252/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SMARTies_Sentiment_Models_for_Arabic_Tar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211252/1701-libre.pdf?1665355130=\u0026response-content-disposition=attachment%3B+filename%3DSMARTies_Sentiment_Models_for_Arabic_Tar.pdf\u0026Expires=1732498849\u0026Signature=ZI9Vq0mWy~-ycdeuQhjz~D8KABYRt9eUJv1zBWxGYJXAEO3FtDmH2O9tWMqMDPEyhp3i-q01KJNRXSKxU9I3~5SAAytfcYQ~GOj7ApQZNv5Txy8ArluA-ZcYwVwf~IU5XqMVrTfDwNMm3Leksn8sEoSYUa57DiZ~l~B80EHOMeIT-paWQrnHbVzpKLHrE-GY97MN~MMF8hXaoFAqD1E4poJV3cJB1HbRBuMqOMXuoQuG4OGbFaT1faT9ji7gZ8vGYzxmhCyC2n98OvL1LzETIgpojF7IsyVo-92oBs5W3NJ0V1oedh~EUoflDy6vga4Qjv7U7pnNMwAS7DdprQHJvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":131567,"name":"Newspaper","url":"https://www.academia.edu/Documents/in/Newspaper"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190326"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190326/Annotating_Targets_of_Opinions_in_Arabic_using_Crowdsourcing"><img alt="Research paper thumbnail of Annotating Targets of Opinions in Arabic using Crowdsourcing" class="work-thumbnail" src="https://attachments.academia-assets.com/92211248/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190326/Annotating_Targets_of_Opinions_in_Arabic_using_Crowdsourcing">Annotating Targets of Opinions in Arabic using Crowdsourcing</a></div><div class="wp-workCard_item"><span>Proceedings of the Second Workshop on Arabic Natural Language Processing</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b9719ba17b93796f34f47ac31ec081b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211248,&quot;asset_id&quot;:88190326,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211248/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190326"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190326"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190326; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190326]").text(description); $(".js-view-count[data-work-id=88190326]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190326; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190326']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190326, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b9719ba17b93796f34f47ac31ec081b" } } $('.js-work-strip[data-work-id=88190326]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190326,"title":"Annotating Targets of Opinions in Arabic using Crowdsourcing","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"We present a method for annotating targets of opinions in Arabic in a two-stage process using the crowdsourcing tool Amazon Mechanical Turk. The first stage consists of identifying candidate targets \"entities\" in a given text. The second stage consists of identifying the opinion polarity (positive, negative, or neutral) expressed about a specific entity. We annotate a corpus of Arabic text using this method, selecting our data from online commentaries in different domains. Despite the complexity of the task, we find high agreement. We present detailed analysis.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Proceedings of the Second Workshop on Arabic Natural Language Processing","grobid_abstract_attachment_id":92211248},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190326/Annotating_Targets_of_Opinions_in_Arabic_using_Crowdsourcing","translated_internal_url":"","created_at":"2022-10-09T15:29:01.330-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211248,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211248/thumbnails/1.jpg","file_name":"W15-3210.pdf","download_url":"https://www.academia.edu/attachments/92211248/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Annotating_Targets_of_Opinions_in_Arabic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211248/W15-3210-libre.pdf?1665355125=\u0026response-content-disposition=attachment%3B+filename%3DAnnotating_Targets_of_Opinions_in_Arabic.pdf\u0026Expires=1732498849\u0026Signature=HM6wCpgsM9zHj0eD4M79tPFCRZ1siXsFJwzyS9s6tJYLJxOrvXsfACaoe5pTxe-5uzkR7GdJj36agkpiBwJ-g~JrDb2t2rQg8aCHWk97Uk6OMswd9x~jf7hRyQAFbFKrbqoNMb9jV5QQwZJanDtEA0PGx-dTUg~xmqG2nBKb1xiBfY~ZBRVaex1Nq1IUpSpfeZUrK0XcjNMyoGxX7-ctoiWeKlCt8goPKT3nA8zBiM8AejOLAsKfeewKXJ8ln11WK4A~MCysrTmYW8e49Zezz6kANtGZZN~~AroI6f9kzDUanI1kKA2xS~iWyFt~zSqAoPVRHRRrpnoGH-S9mqn77w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Annotating_Targets_of_Opinions_in_Arabic_using_Crowdsourcing","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211248,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211248/thumbnails/1.jpg","file_name":"W15-3210.pdf","download_url":"https://www.academia.edu/attachments/92211248/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Annotating_Targets_of_Opinions_in_Arabic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211248/W15-3210-libre.pdf?1665355125=\u0026response-content-disposition=attachment%3B+filename%3DAnnotating_Targets_of_Opinions_in_Arabic.pdf\u0026Expires=1732498849\u0026Signature=HM6wCpgsM9zHj0eD4M79tPFCRZ1siXsFJwzyS9s6tJYLJxOrvXsfACaoe5pTxe-5uzkR7GdJj36agkpiBwJ-g~JrDb2t2rQg8aCHWk97Uk6OMswd9x~jf7hRyQAFbFKrbqoNMb9jV5QQwZJanDtEA0PGx-dTUg~xmqG2nBKb1xiBfY~ZBRVaex1Nq1IUpSpfeZUrK0XcjNMyoGxX7-ctoiWeKlCt8goPKT3nA8zBiM8AejOLAsKfeewKXJ8ln11WK4A~MCysrTmYW8e49Zezz6kANtGZZN~~AroI6f9kzDUanI1kKA2xS~iWyFt~zSqAoPVRHRRrpnoGH-S9mqn77w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":21556,"name":"Crowdsourcing","url":"https://www.academia.edu/Documents/in/Crowdsourcing"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190325"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190325/The_Columbia_System_in_the_QALB_2014_Shared_Task_on_Arabic_Error_Correction"><img alt="Research paper thumbnail of The Columbia System in the QALB-2014 Shared Task on Arabic Error Correction" class="work-thumbnail" src="https://attachments.academia-assets.com/92211247/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190325/The_Columbia_System_in_the_QALB_2014_Shared_Task_on_Arabic_Error_Correction">The Columbia System in the QALB-2014 Shared Task on Arabic Error Correction</a></div><div class="wp-workCard_item"><span>Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP)</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3cb58e72e5df15f45efeec38e8b844b1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211247,&quot;asset_id&quot;:88190325,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211247/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190325"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190325"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190325; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190325]").text(description); $(".js-view-count[data-work-id=88190325]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190325; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190325']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190325, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3cb58e72e5df15f45efeec38e8b844b1" } } $('.js-work-strip[data-work-id=88190325]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190325,"title":"The Columbia System in the QALB-2014 Shared Task on Arabic Error Correction","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"The QALB-2014 shared task focuses on correcting errors in texts written in Modern Standard Arabic. In this paper, we describe the Columbia University entry in the shared task. Our system consists of several components that rely on machinelearning techniques and linguistic knowledge. We submitted three versions of the system: these share several core elements but each version also includes additional components. We describe our underlying approach and the special aspects of the different versions of our submission. Our system ranked first out of nine participating teams.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP)","grobid_abstract_attachment_id":92211247},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190325/The_Columbia_System_in_the_QALB_2014_Shared_Task_on_Arabic_Error_Correction","translated_internal_url":"","created_at":"2022-10-09T15:29:01.173-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211247,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211247/thumbnails/1.jpg","file_name":"b681016312a7b7ed9ed72d62e84586c54e1f.pdf","download_url":"https://www.academia.edu/attachments/92211247/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Columbia_System_in_the_QALB_2014_Sha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211247/b681016312a7b7ed9ed72d62e84586c54e1f-libre.pdf?1665355122=\u0026response-content-disposition=attachment%3B+filename%3DThe_Columbia_System_in_the_QALB_2014_Sha.pdf\u0026Expires=1732498849\u0026Signature=KVqMYi0MmquFNaH0XKS8z38lCV1wYaietRZk~jPKt~5Nv6JyijnQtzqx8Gszqthfps3NAUTvQnuehkjqONvnyxFLOTRBHRECrf85gCGLvSpkr~C8C3d3318P2d~zvs54sd18lSFI~-u9qR0fBUxAItMKcaIT~u1NoU~CB9~d0UgUBGCctpDCl-fucds9zx-CPYCome697zFeO-ZtrpMTMEaArnbTbnxzo~0~uadClkQoKYSX~4BeNzq5CMJhPrxZReZJ7CysTLepDIpBiDBp51hwHrZg37FneadOvIDCQEocZttu-NHDOFSPQDQZobLkaWqAqEBdWhynulIPiwSLRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Columbia_System_in_the_QALB_2014_Shared_Task_on_Arabic_Error_Correction","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211247,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211247/thumbnails/1.jpg","file_name":"b681016312a7b7ed9ed72d62e84586c54e1f.pdf","download_url":"https://www.academia.edu/attachments/92211247/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Columbia_System_in_the_QALB_2014_Sha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211247/b681016312a7b7ed9ed72d62e84586c54e1f-libre.pdf?1665355122=\u0026response-content-disposition=attachment%3B+filename%3DThe_Columbia_System_in_the_QALB_2014_Sha.pdf\u0026Expires=1732498849\u0026Signature=KVqMYi0MmquFNaH0XKS8z38lCV1wYaietRZk~jPKt~5Nv6JyijnQtzqx8Gszqthfps3NAUTvQnuehkjqONvnyxFLOTRBHRECrf85gCGLvSpkr~C8C3d3318P2d~zvs54sd18lSFI~-u9qR0fBUxAItMKcaIT~u1NoU~CB9~d0UgUBGCctpDCl-fucds9zx-CPYCome697zFeO-ZtrpMTMEaArnbTbnxzo~0~uadClkQoKYSX~4BeNzq5CMJhPrxZReZJ7CysTLepDIpBiDBp51hwHrZg37FneadOvIDCQEocZttu-NHDOFSPQDQZobLkaWqAqEBdWhynulIPiwSLRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190324"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190324/Large_Scale_Arabic_Error_Annotation_Guidelines_and_Framework"><img alt="Research paper thumbnail of Large Scale Arabic Error Annotation: Guidelines and Framework" class="work-thumbnail" src="https://attachments.academia-assets.com/92211253/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190324/Large_Scale_Arabic_Error_Annotation_Guidelines_and_Framework">Large Scale Arabic Error Annotation: Guidelines and Framework</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present annotation guidelines and a web-based annotation framework developed as part of an eff...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present annotation guidelines and a web-based annotation framework developed as part of an effort to create a manually annotated Arabic corpus of errors and corrections for various text types. Such a corpus will be invaluable for developing Arabic error correction tools, both for training models and as a gold standard for evaluating error correction algorithms. We summarize the guidelines we created. We also describe issues encountered during the training of the annotators, as well as problems that are specific to the Arabic language that arose during the annotation process. Finally, we present the annotation tool that was developed as part of this project, the annotation pipeline, and the quality of the resulting annotations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2525ba2ad785c782e6de0fe3718a4ab0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211253,&quot;asset_id&quot;:88190324,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211253/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190324"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190324"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190324; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190324]").text(description); $(".js-view-count[data-work-id=88190324]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190324; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190324']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190324, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2525ba2ad785c782e6de0fe3718a4ab0" } } $('.js-work-strip[data-work-id=88190324]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190324,"title":"Large Scale Arabic Error Annotation: Guidelines and Framework","translated_title":"","metadata":{"abstract":"We present annotation guidelines and a web-based annotation framework developed as part of an effort to create a manually annotated Arabic corpus of errors and corrections for various text types. Such a corpus will be invaluable for developing Arabic error correction tools, both for training models and as a gold standard for evaluating error correction algorithms. We summarize the guidelines we created. We also describe issues encountered during the training of the annotators, as well as problems that are specific to the Arabic language that arose during the annotation process. Finally, we present the annotation tool that was developed as part of this project, the annotation pipeline, and the quality of the resulting annotations."},"translated_abstract":"We present annotation guidelines and a web-based annotation framework developed as part of an effort to create a manually annotated Arabic corpus of errors and corrections for various text types. Such a corpus will be invaluable for developing Arabic error correction tools, both for training models and as a gold standard for evaluating error correction algorithms. We summarize the guidelines we created. We also describe issues encountered during the training of the annotators, as well as problems that are specific to the Arabic language that arose during the annotation process. Finally, we present the annotation tool that was developed as part of this project, the annotation pipeline, and the quality of the resulting annotations.","internal_url":"https://www.academia.edu/88190324/Large_Scale_Arabic_Error_Annotation_Guidelines_and_Framework","translated_internal_url":"","created_at":"2022-10-09T15:29:01.025-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211253,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211253/thumbnails/1.jpg","file_name":"ZAGHOUANI14.956.L14-1721.pdf","download_url":"https://www.academia.edu/attachments/92211253/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Large_Scale_Arabic_Error_Annotation_Guid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211253/ZAGHOUANI14.956.L14-1721-libre.pdf?1665355125=\u0026response-content-disposition=attachment%3B+filename%3DLarge_Scale_Arabic_Error_Annotation_Guid.pdf\u0026Expires=1732498849\u0026Signature=Pc5XDmi2HsHzNDwDKCDRIa29tT72nbzMmU1fME7BZIvCjJm~HeqokUtIu5qyRUPpSSwCYh4XT8N41VsWh8QZKMraabeSltVKBZ24ej7rGIXtHF1n5KpEPVroc6G3z-i9rLlTAd40-aoWI8xUUE9SFejd3AhXX7-~qOMBu1v5T-~tlOglJVPqEUW90FZudqZ-faUj-6AWjAiZ1puVDNtDyQgvWUsumlYmHSY-ydp6-VBxiMXOFt0AlX7GofV2myF2aoiCeYW0Uzwt8-lrDb5RHdWg92LuVumcXyu8iIU08O~FyE7mVXMMyhaOeH6YdjE-nJoa-OgC5wnNtB~MYxq7pQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Large_Scale_Arabic_Error_Annotation_Guidelines_and_Framework","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211253,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211253/thumbnails/1.jpg","file_name":"ZAGHOUANI14.956.L14-1721.pdf","download_url":"https://www.academia.edu/attachments/92211253/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Large_Scale_Arabic_Error_Annotation_Guid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211253/ZAGHOUANI14.956.L14-1721-libre.pdf?1665355125=\u0026response-content-disposition=attachment%3B+filename%3DLarge_Scale_Arabic_Error_Annotation_Guid.pdf\u0026Expires=1732498849\u0026Signature=Pc5XDmi2HsHzNDwDKCDRIa29tT72nbzMmU1fME7BZIvCjJm~HeqokUtIu5qyRUPpSSwCYh4XT8N41VsWh8QZKMraabeSltVKBZ24ej7rGIXtHF1n5KpEPVroc6G3z-i9rLlTAd40-aoWI8xUUE9SFejd3AhXX7-~qOMBu1v5T-~tlOglJVPqEUW90FZudqZ-faUj-6AWjAiZ1puVDNtDyQgvWUsumlYmHSY-ydp6-VBxiMXOFt0AlX7GofV2myF2aoiCeYW0Uzwt8-lrDb5RHdWg92LuVumcXyu8iIU08O~FyE7mVXMMyhaOeH6YdjE-nJoa-OgC5wnNtB~MYxq7pQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":49267,"name":"Computational Linguistics \u0026 NLP","url":"https://www.academia.edu/Documents/in/Computational_Linguistics_and_NLP"},{"id":235465,"name":"Guidelines","url":"https://www.academia.edu/Documents/in/Guidelines"},{"id":630181,"name":"Error Annotation","url":"https://www.academia.edu/Documents/in/Error_Annotation"},{"id":3425866,"name":"Corpus Compilation","url":"https://www.academia.edu/Documents/in/Corpus_Compilation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190323/Generalized_Character_Level_Spelling_Error_Correction"><img alt="Research paper thumbnail of Generalized Character-Level Spelling Error Correction" class="work-thumbnail" src="https://attachments.academia-assets.com/92211254/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190323/Generalized_Character_Level_Spelling_Error_Correction">Generalized Character-Level Spelling Error Correction</a></div><div class="wp-workCard_item"><span>Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cf692fa42044b275c8dc035a87686fe1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211254,&quot;asset_id&quot;:88190323,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211254/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190323]").text(description); $(".js-view-count[data-work-id=88190323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190323, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cf692fa42044b275c8dc035a87686fe1" } } $('.js-work-strip[data-work-id=88190323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190323,"title":"Generalized Character-Level Spelling Error Correction","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","grobid_abstract":"We present a generalized discriminative model for spelling error correction which targets character-level transformations. While operating at the character level, the model makes use of wordlevel and contextual information. In contrast to previous work, the proposed approach learns to correct a variety of error types without guidance of manuallyselected constraints or language-specific features. We apply the model to correct errors in Egyptian Arabic dialect text, achieving 65% reduction in word error rate over the input baseline, and improving over the earlier state-of-the-art system.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)","grobid_abstract_attachment_id":92211254},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190323/Generalized_Character_Level_Spelling_Error_Correction","translated_internal_url":"","created_at":"2022-10-09T15:29:00.871-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211254,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211254/thumbnails/1.jpg","file_name":"a018b3a3a3114d3776798fea5472b0601087.pdf","download_url":"https://www.academia.edu/attachments/92211254/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Character_Level_Spelling_Err.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211254/a018b3a3a3114d3776798fea5472b0601087-libre.pdf?1665355120=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Character_Level_Spelling_Err.pdf\u0026Expires=1732498849\u0026Signature=CIjSXbMzTL~DF1BzOvPjxuWRWCGE08UIDVt6-GZnSrDx4jRlJX0LFIPKZo9GRPR4ssqcMTstuxQJIyHmTusGVCQHg~9LpuVbzayoDZLrqnNpKq-wlKV8hyKjDolVKIsSrlxJxL-fKpLdOhVSxSc2gQXmyMU94YHarqyXBhAFdCt75qr9C-CmdjLWDFxUzNBEu~HtB~JnShLIeU2LJnoNWUCLIvYOFNVJHeMSZ4Iz7leVmKCiaqhBlfPQKD4atqiU7rLpos7JC6zDnP80LoqSjxxCOMttKtqgo7HwKlPimKBXoFOU0w~mnbq6PVKz41su5bZqU4vZEyJ48kFXSJwaFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generalized_Character_Level_Spelling_Error_Correction","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211254,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211254/thumbnails/1.jpg","file_name":"a018b3a3a3114d3776798fea5472b0601087.pdf","download_url":"https://www.academia.edu/attachments/92211254/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Character_Level_Spelling_Err.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211254/a018b3a3a3114d3776798fea5472b0601087-libre.pdf?1665355120=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Character_Level_Spelling_Err.pdf\u0026Expires=1732498849\u0026Signature=CIjSXbMzTL~DF1BzOvPjxuWRWCGE08UIDVt6-GZnSrDx4jRlJX0LFIPKZo9GRPR4ssqcMTstuxQJIyHmTusGVCQHg~9LpuVbzayoDZLrqnNpKq-wlKV8hyKjDolVKIsSrlxJxL-fKpLdOhVSxSc2gQXmyMU94YHarqyXBhAFdCt75qr9C-CmdjLWDFxUzNBEu~HtB~JnShLIeU2LJnoNWUCLIvYOFNVJHeMSZ4Iz7leVmKCiaqhBlfPQKD4atqiU7rLpos7JC6zDnP80LoqSjxxCOMttKtqgo7HwKlPimKBXoFOU0w~mnbq6PVKz41su5bZqU4vZEyJ48kFXSJwaFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3268,"name":"Computational Linguistics","url":"https://www.academia.edu/Documents/in/Computational_Linguistics"},{"id":17700,"name":"Arabic Dialects","url":"https://www.academia.edu/Documents/in/Arabic_Dialects"},{"id":20492,"name":"Spelling","url":"https://www.academia.edu/Documents/in/Spelling"},{"id":97513,"name":"Spelling Errors","url":"https://www.academia.edu/Documents/in/Spelling_Errors"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190322/A_Mobile_Sensing_and_Imaging_System_for_Real_Time_Monitoring_of_Spine_Health"><img alt="Research paper thumbnail of A Mobile Sensing and Imaging System for Real-Time Monitoring of Spine Health" class="work-thumbnail" src="https://attachments.academia-assets.com/92211245/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190322/A_Mobile_Sensing_and_Imaging_System_for_Real_Time_Monitoring_of_Spine_Health">A Mobile Sensing and Imaging System for Real-Time Monitoring of Spine Health</a></div><div class="wp-workCard_item"><span>Journal of Medical Imaging and Health Informatics</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="411568d475c7bffe936eb9063f7756c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211245,&quot;asset_id&quot;:88190322,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211245/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190322]").text(description); $(".js-view-count[data-work-id=88190322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190322, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "411568d475c7bffe936eb9063f7756c8" } } $('.js-work-strip[data-work-id=88190322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190322,"title":"A Mobile Sensing and Imaging System for Real-Time Monitoring of Spine Health","translated_title":"","metadata":{"publisher":"American Scientific Publishers","grobid_abstract":"Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor posture may reduce out-of-posture tendencies and encourage healthy spinal habits. Spine stress can also worsen existing structural deformities in the spine such as adolescent idiopathic scoliosis (AIS). In this work we developed a system to monitor spine health through both dynamic monitoring and structural imaging. The dynamic sensing method monitors spine stress in real-time by detecting poor back posture and strain on the back due to prolonged sitting or standing, and provides real-time user feedback when poor posture is sustained. The imaging method extracts the structural curvature of the spine and is used for the diagnosis of AIS in a non-invasive and inexpensive manner. Namely, the image is obtained using a photograph where the spinous processes have been marked to trace the shape of the spine. The spine curvature is then extracted automatically and modeled by a curve-fitting polynomial. The approach is simple and practical and allows scoliosis patients to monitor their curvature progress from home while minimizing the use of X-rays. The theme of our work is spine health, which we monitor through the wireless sensing system and the orthopedic imaging system. The two are complementary: the mobile wireless system assesses spine health during daily activity while the imaging system can assess the progression of a patient's structural spine curvature. We demonstrate effectiveness of our sensing system in simultaneously monitoring posture and position by testing in numerous situations. Furthermore, experiments show that our imaging method is accurate and robust under different brightness conditions. X-ray data used for this study was obtained from the international, electronic database of surgical cases of AIS, Scolisoft ® .","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Medical Imaging and Health Informatics","grobid_abstract_attachment_id":92211245},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190322/A_Mobile_Sensing_and_Imaging_System_for_Real_Time_Monitoring_of_Spine_Health","translated_internal_url":"","created_at":"2022-10-09T15:29:00.748-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211245,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211245/thumbnails/1.jpg","file_name":"7de4215f1afbb696464f6e6806ef8eb0e4fe.pdf","download_url":"https://www.academia.edu/attachments/92211245/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Mobile_Sensing_and_Imaging_System_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211245/7de4215f1afbb696464f6e6806ef8eb0e4fe-libre.pdf?1665355122=\u0026response-content-disposition=attachment%3B+filename%3DA_Mobile_Sensing_and_Imaging_System_for.pdf\u0026Expires=1732498849\u0026Signature=QzfFdufG0UDUmWzCHRUqum~kgnMr59X4lLA10h0OSWizqt6ugl0hsrMzsirslcSdSDUYnLxaDsCgmonhaWC74TZ-0fy3IqYlyWFJ-3mzw5wBn~38cIuyDdKEX~Z-pkBf4tdkA6~o7OgtZaFrNYP44aMd0LlOM6ccYnhpdFpHxuNsHWyUrs90yjSE9wKYXu8YTWar-eH-PD32Dfe~4YElDaUvJlz7pLAd5BcqWkcr8omKl1XLBC697kJ0ScPOF-Ywz4ma6siuXMJSwc59eJIaTzsT7am7v8kxek3SZaSBFw70A4nTLY3yRUjg6~MWDRkMeT8MPkFhUJKgs3wmbLiPbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Mobile_Sensing_and_Imaging_System_for_Real_Time_Monitoring_of_Spine_Health","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211245,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211245/thumbnails/1.jpg","file_name":"7de4215f1afbb696464f6e6806ef8eb0e4fe.pdf","download_url":"https://www.academia.edu/attachments/92211245/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Mobile_Sensing_and_Imaging_System_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211245/7de4215f1afbb696464f6e6806ef8eb0e4fe-libre.pdf?1665355122=\u0026response-content-disposition=attachment%3B+filename%3DA_Mobile_Sensing_and_Imaging_System_for.pdf\u0026Expires=1732498849\u0026Signature=QzfFdufG0UDUmWzCHRUqum~kgnMr59X4lLA10h0OSWizqt6ugl0hsrMzsirslcSdSDUYnLxaDsCgmonhaWC74TZ-0fy3IqYlyWFJ-3mzw5wBn~38cIuyDdKEX~Z-pkBf4tdkA6~o7OgtZaFrNYP44aMd0LlOM6ccYnhpdFpHxuNsHWyUrs90yjSE9wKYXu8YTWar-eH-PD32Dfe~4YElDaUvJlz7pLAd5BcqWkcr8omKl1XLBC697kJ0ScPOF-Ywz4ma6siuXMJSwc59eJIaTzsT7am7v8kxek3SZaSBFw70A4nTLY3yRUjg6~MWDRkMeT8MPkFhUJKgs3wmbLiPbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2036633,"name":"Medical","url":"https://www.academia.edu/Documents/in/Medical"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190321"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190321/Reranking_with_Linguistic_and_Semantic_Features_for_Arabic_Optical_Character_Recognition"><img alt="Research paper thumbnail of Reranking with Linguistic and Semantic Features for Arabic Optical Character Recognition" class="work-thumbnail" src="https://attachments.academia-assets.com/92211244/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190321/Reranking_with_Linguistic_and_Semantic_Features_for_Arabic_Optical_Character_Recognition">Reranking with Linguistic and Semantic Features for Arabic Optical Character Recognition</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d578f89624fa9eedc7eeb356849bcc17" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211244,&quot;asset_id&quot;:88190321,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211244/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190321"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190321"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190321; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190321]").text(description); $(".js-view-count[data-work-id=88190321]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190321; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190321']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190321, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d578f89624fa9eedc7eeb356849bcc17" } } $('.js-work-strip[data-work-id=88190321]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190321,"title":"Reranking with Linguistic and Semantic Features for Arabic Optical Character Recognition","translated_title":"","metadata":{"grobid_abstract":"Optical Character Recognition (OCR) systems for Arabic rely on information contained in the scanned images to recognize sequences of characters and on language models to emphasize fluency. In this paper we incorporate linguistically and semantically motivated features to an existing OCR system. To do so we follow an n-best list reranking approach that exploits recent advances in learning to rank techniques. We achieve 10.1% and 11.4% reduction in recognition word error rate (WER) relative to a standard baseline system on typewritten and handwritten Arabic respectively.","grobid_abstract_attachment_id":92211244},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190321/Reranking_with_Linguistic_and_Semantic_Features_for_Arabic_Optical_Character_Recognition","translated_internal_url":"","created_at":"2022-10-09T15:29:00.645-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211244,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211244/thumbnails/1.jpg","file_name":"P13-2098.pdf","download_url":"https://www.academia.edu/attachments/92211244/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reranking_with_Linguistic_and_Semantic_F.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211244/P13-2098-libre.pdf?1665355128=\u0026response-content-disposition=attachment%3B+filename%3DReranking_with_Linguistic_and_Semantic_F.pdf\u0026Expires=1732498849\u0026Signature=B2AStGVLlzsNoUZjRqa8VJKnNnseRlnmZ2uyubZDy~FVAld7KQrTukzgtgzK4UddtKwDbExnmQ6Bx7TEWm-aEKsO7eBlRyEiSlfUdOOqSUTU6N~gWLjfcpxkYxAO0FrmObeoqWtFUFAwAlQAB2yl1IcNCRI1MI2kRbpL6VZeNYvvTyaGcOUm2hl7G4Ni3jORIz8BMnqDneKZhvE1VosC-TZugMo7rnvxOarnEy7d0fuKlBRxnh3KtMmxjtgSJmH5pnTWtHJHZCtZaB6N8VVLOy-dRQ81zXXXSC1AC~0cCIT1jtgEnq9iwTItX5nVAHlXIduIEbR9g2ozr7G~QmAV~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reranking_with_Linguistic_and_Semantic_Features_for_Arabic_Optical_Character_Recognition","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211244,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211244/thumbnails/1.jpg","file_name":"P13-2098.pdf","download_url":"https://www.academia.edu/attachments/92211244/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reranking_with_Linguistic_and_Semantic_F.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211244/P13-2098-libre.pdf?1665355128=\u0026response-content-disposition=attachment%3B+filename%3DReranking_with_Linguistic_and_Semantic_F.pdf\u0026Expires=1732498849\u0026Signature=B2AStGVLlzsNoUZjRqa8VJKnNnseRlnmZ2uyubZDy~FVAld7KQrTukzgtgzK4UddtKwDbExnmQ6Bx7TEWm-aEKsO7eBlRyEiSlfUdOOqSUTU6N~gWLjfcpxkYxAO0FrmObeoqWtFUFAwAlQAB2yl1IcNCRI1MI2kRbpL6VZeNYvvTyaGcOUm2hl7G4Ni3jORIz8BMnqDneKZhvE1VosC-TZugMo7rnvxOarnEy7d0fuKlBRxnh3KtMmxjtgSJmH5pnTWtHJHZCtZaB6N8VVLOy-dRQ81zXXXSC1AC~0cCIT1jtgEnq9iwTItX5nVAHlXIduIEbR9g2ozr7G~QmAV~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":55447,"name":"Learning to Rank","url":"https://www.academia.edu/Documents/in/Learning_to_Rank"},{"id":56546,"name":"ACL","url":"https://www.academia.edu/Documents/in/ACL"},{"id":265584,"name":"Optical Character Recognition","url":"https://www.academia.edu/Documents/in/Optical_Character_Recognition"},{"id":520672,"name":"Language Model","url":"https://www.academia.edu/Documents/in/Language_Model"},{"id":3076786,"name":"Word error rate","url":"https://www.academia.edu/Documents/in/Word_error_rate"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190320"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190320/Energy_efficient_mobile_gesture_recognition_with_computation_offloading"><img alt="Research paper thumbnail of Energy-efficient mobile gesture recognition with computation offloading" class="work-thumbnail" src="https://attachments.academia-assets.com/92211246/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190320/Energy_efficient_mobile_gesture_recognition_with_computation_offloading">Energy-efficient mobile gesture recognition with computation offloading</a></div><div class="wp-workCard_item"><span>2011 International Conference on Energy Aware Computing</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e2f9559823aa27b2151056674fce1f47" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211246,&quot;asset_id&quot;:88190320,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211246/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190320"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190320"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190320; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190320]").text(description); $(".js-view-count[data-work-id=88190320]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190320; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190320']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190320, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e2f9559823aa27b2151056674fce1f47" } } $('.js-work-strip[data-work-id=88190320]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190320,"title":"Energy-efficient mobile gesture recognition with computation offloading","translated_title":"","metadata":{"publisher":"IEEE","grobid_abstract":"Gesture recognition is a novel and compelling user input modality which allows users to interact quickly and naturally with their devices with less demand on their visual attention. Continuous gesture recognition places stringent demands on device power consumption, battery life and processing capability. In this work, we show that we can reduce the energy consumed during continuous gesture recognition on a mobile device with the delegation of the pre-processing stages, which filter out non-gesture segments, to a low power node that is separate from the main CPU. The main CPU can thus be kept in stop mode until a potential gesture is detected by the low power node, invoking the main processor to perform the computationintensive gesture classification to detect which exact gesture has been performed by the user. We present details of the processing performance and power consumed at each step of the processing pipeline, showing the extent of power savings achieved. Experiments were conducted for detailed evaluation of the power consumption of the optimized gesture pipeline.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"2011 International Conference on Energy Aware Computing","grobid_abstract_attachment_id":92211246},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190320/Energy_efficient_mobile_gesture_recognition_with_computation_offloading","translated_internal_url":"","created_at":"2022-10-09T15:29:00.524-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211246,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211246/thumbnails/1.jpg","file_name":"gesture.pdf","download_url":"https://www.academia.edu/attachments/92211246/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Energy_efficient_mobile_gesture_recognit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211246/gesture-libre.pdf?1665355126=\u0026response-content-disposition=attachment%3B+filename%3DEnergy_efficient_mobile_gesture_recognit.pdf\u0026Expires=1732498849\u0026Signature=O7QdVqCbKFh1FZqNPQCHn5cWWkNq1qAgIgJ9OTbJ6v45Ts4E9vAztPd9YMEc1Zxhizola71iguoNzIFVoJTfAH202Fguucs450X1wPMMiWqVWZ-3SjgWJDAyJAKUNREu86T8BAnwq7Iji1spaMBkvEaboRJz5yrEnsX7IimEpId9VKeY6w0YSQ0ijMgt2NAGST5OUmhlq-NVZY2FtjXKsDXuuJMCLViyCxKR~7kbPH4NRCnbIYrcBxKYyutmzUZjz2EXT-K1PllQgt1Wh7U24xfPyZXH30VaoThhWTQZRQ3EtGUtZZ4Kk8lz3JVCRNNM8GkxyzkFNn0vtR3qBBE3JQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Energy_efficient_mobile_gesture_recognition_with_computation_offloading","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211246,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211246/thumbnails/1.jpg","file_name":"gesture.pdf","download_url":"https://www.academia.edu/attachments/92211246/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Energy_efficient_mobile_gesture_recognit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211246/gesture-libre.pdf?1665355126=\u0026response-content-disposition=attachment%3B+filename%3DEnergy_efficient_mobile_gesture_recognit.pdf\u0026Expires=1732498849\u0026Signature=O7QdVqCbKFh1FZqNPQCHn5cWWkNq1qAgIgJ9OTbJ6v45Ts4E9vAztPd9YMEc1Zxhizola71iguoNzIFVoJTfAH202Fguucs450X1wPMMiWqVWZ-3SjgWJDAyJAKUNREu86T8BAnwq7Iji1spaMBkvEaboRJz5yrEnsX7IimEpId9VKeY6w0YSQ0ijMgt2NAGST5OUmhlq-NVZY2FtjXKsDXuuJMCLViyCxKR~7kbPH4NRCnbIYrcBxKYyutmzUZjz2EXT-K1PllQgt1Wh7U24xfPyZXH30VaoThhWTQZRQ3EtGUtZZ4Kk8lz3JVCRNNM8GkxyzkFNn0vtR3qBBE3JQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3147,"name":"Gesture","url":"https://www.academia.edu/Documents/in/Gesture"},{"id":17701,"name":"Gesture Recognition","url":"https://www.academia.edu/Documents/in/Gesture_Recognition"},{"id":154850,"name":"Mobile Device","url":"https://www.academia.edu/Documents/in/Mobile_Device"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88190316"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88190316/Cross_Lingual_and_Low_Resource_Sentiment_Analysis"><img alt="Research paper thumbnail of Cross-Lingual and Low-Resource Sentiment Analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/92211195/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88190316/Cross_Lingual_and_Low_Resource_Sentiment_Analysis">Cross-Lingual and Low-Resource Sentiment Analysis</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1e1e04615bda6da10ff83743c9716b4a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92211195,&quot;asset_id&quot;:88190316,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92211195/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88190316"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88190316"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88190316; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88190316]").text(description); $(".js-view-count[data-work-id=88190316]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88190316; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88190316']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88190316, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1e1e04615bda6da10ff83743c9716b4a" } } $('.js-work-strip[data-work-id=88190316]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88190316,"title":"Cross-Lingual and Low-Resource Sentiment Analysis","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88190316/Cross_Lingual_and_Low_Resource_Sentiment_Analysis","translated_internal_url":"","created_at":"2022-10-09T15:28:46.432-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92211195,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211195/thumbnails/1.jpg","file_name":"noura_farra.pdf","download_url":"https://www.academia.edu/attachments/92211195/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cross_Lingual_and_Low_Resource_Sentiment.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211195/noura_farra-libre.pdf?1665355257=\u0026response-content-disposition=attachment%3B+filename%3DCross_Lingual_and_Low_Resource_Sentiment.pdf\u0026Expires=1732498849\u0026Signature=eZ7ukKgc6aKjuhd1EmvWX9HOm6Rj0M~ij-x2ZXMWCycyVSHvElX~Qg6~AH99PScuXxEFJOkGAbjOvCAwgqdQV~kFU4TqQkTyaTZ5ENSGF5zPJca2EQqy7i1wpFRKAww-IpZgDIZojstZ15x~l0cN99NPlPu1xj03abuEyw93EqUnb1xB8nDvwCj79zvNrlnx608zFd4zYzTl3mhRFnkAy~Wl6q4ZbhTn0zs6DBj7~nqg7qmCYdcD354GomUD06t-MebymPkROJPj2EukzkZij9roZTqtt-z7nr7eK4ncmSBi9zX022HkiCDXTUmJ5suUdKt8S4TN9O8Dx0dCe6oNlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cross_Lingual_and_Low_Resource_Sentiment_Analysis","translated_slug":"","page_count":266,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":92211195,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92211195/thumbnails/1.jpg","file_name":"noura_farra.pdf","download_url":"https://www.academia.edu/attachments/92211195/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cross_Lingual_and_Low_Resource_Sentiment.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92211195/noura_farra-libre.pdf?1665355257=\u0026response-content-disposition=attachment%3B+filename%3DCross_Lingual_and_Low_Resource_Sentiment.pdf\u0026Expires=1732498849\u0026Signature=eZ7ukKgc6aKjuhd1EmvWX9HOm6Rj0M~ij-x2ZXMWCycyVSHvElX~Qg6~AH99PScuXxEFJOkGAbjOvCAwgqdQV~kFU4TqQkTyaTZ5ENSGF5zPJca2EQqy7i1wpFRKAww-IpZgDIZojstZ15x~l0cN99NPlPu1xj03abuEyw93EqUnb1xB8nDvwCj79zvNrlnx608zFd4zYzTl3mhRFnkAy~Wl6q4ZbhTn0zs6DBj7~nqg7qmCYdcD354GomUD06t-MebymPkROJPj2EukzkZij9roZTqtt-z7nr7eK4ncmSBi9zX022HkiCDXTUmJ5suUdKt8S4TN9O8Dx0dCe6oNlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3268,"name":"Computational Linguistics","url":"https://www.academia.edu/Documents/in/Computational_Linguistics"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":459269,"name":"Data mining and Text mining","url":"https://www.academia.edu/Documents/in/Data_mining_and_Text_mining"},{"id":593121,"name":"Disaster Relief","url":"https://www.academia.edu/Documents/in/Disaster_Relief"}],"urls":[{"id":24620478,"url":"http://www.cs.columbia.edu/nlp/theses/noura_farra.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8186340"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8186340/Generalized_Character_Level_Spelling_Error_Correction"><img alt="Research paper thumbnail of Generalized Character-Level Spelling Error Correction" class="work-thumbnail" src="https://attachments.academia-assets.com/34618825/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8186340/Generalized_Character_Level_Spelling_Error_Correction">Generalized Character-Level Spelling Error Correction</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="26d22859b5446178d5e4d37f67179407" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34618825,&quot;asset_id&quot;:8186340,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34618825/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8186340"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8186340"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8186340; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8186340]").text(description); $(".js-view-count[data-work-id=8186340]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8186340; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8186340']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8186340, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "26d22859b5446178d5e4d37f67179407" } } $('.js-work-strip[data-work-id=8186340]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8186340,"title":"Generalized Character-Level Spelling Error Correction","translated_title":"","metadata":{"grobid_abstract":"We present a generalized discriminative model for spelling error correction which targets character-level transformations. While operating at the character level, the model makes use of wordlevel and contextual information. In contrast to previous work, the proposed approach learns to correct a variety of error types without guidance of manuallyselected constraints or language-specific features. We apply the model to correct errors in Egyptian Arabic dialect text, achieving 65% reduction in word error rate over the input baseline, and improving over the earlier state-of-the-art system.","grobid_abstract_attachment_id":34618825},"translated_abstract":null,"internal_url":"https://www.academia.edu/8186340/Generalized_Character_Level_Spelling_Error_Correction","translated_internal_url":"","created_at":"2014-09-03T10:52:15.773-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34618825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618825/thumbnails/1.jpg","file_name":"GSEC.pdf","download_url":"https://www.academia.edu/attachments/34618825/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Character_Level_Spelling_Err.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618825/GSEC-libre.pdf?1409766681=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Character_Level_Spelling_Err.pdf\u0026Expires=1732498849\u0026Signature=an--70UL2Zsn-kb4x7PwN9iBySDw5hLCwgIGu8tJafG~rDwdsqMEJXW1~RUc4jWXsLD9ScMZPzG~AK~5Z63bCbs5HfqmYtWhVZEH4v4lOrsB17yz8l13EFk0oH8BP~W2x4hUcFCAcJ3ujN6v9uYBWMeBsDnx9vZ-YjsJkZ0pwpSInmTL9-oN56WTOdNgp-KctlQdHw1TlMGpDc0N21mb89k6ZnevMnH~aqLBaqJ8pr2fiiLd9VxaYYafpO0rf5LOA6TSldkCndYlF0zZGj17VV~SCg4cyI7P2nTkYdC6O~wUh77xFgcejcOqj~1vYgs6wXhEbey1LE9JqMNMfw7BTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generalized_Character_Level_Spelling_Error_Correction","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":34618825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618825/thumbnails/1.jpg","file_name":"GSEC.pdf","download_url":"https://www.academia.edu/attachments/34618825/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Character_Level_Spelling_Err.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618825/GSEC-libre.pdf?1409766681=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Character_Level_Spelling_Err.pdf\u0026Expires=1732498849\u0026Signature=an--70UL2Zsn-kb4x7PwN9iBySDw5hLCwgIGu8tJafG~rDwdsqMEJXW1~RUc4jWXsLD9ScMZPzG~AK~5Z63bCbs5HfqmYtWhVZEH4v4lOrsB17yz8l13EFk0oH8BP~W2x4hUcFCAcJ3ujN6v9uYBWMeBsDnx9vZ-YjsJkZ0pwpSInmTL9-oN56WTOdNgp-KctlQdHw1TlMGpDc0N21mb89k6ZnevMnH~aqLBaqJ8pr2fiiLd9VxaYYafpO0rf5LOA6TSldkCndYlF0zZGj17VV~SCg4cyI7P2nTkYdC6O~wUh77xFgcejcOqj~1vYgs6wXhEbey1LE9JqMNMfw7BTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":17700,"name":"Arabic Dialects","url":"https://www.academia.edu/Documents/in/Arabic_Dialects"},{"id":97513,"name":"Spelling Errors","url":"https://www.academia.edu/Documents/in/Spelling_Errors"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="5011071"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/5011071/A_novel_mobile_wireless_sensing_system_for_realtime_monitoring_of_posture_and_spine_stress"><img alt="Research paper thumbnail of A novel mobile wireless sensing system for realtime monitoring of posture and spine stress" class="work-thumbnail" src="https://attachments.academia-assets.com/34618863/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/5011071/A_novel_mobile_wireless_sensing_system_for_realtime_monitoring_of_posture_and_spine_stress">A novel mobile wireless sensing system for realtime monitoring of posture and spine stress</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor posture may reduce out-of-posture tendencies and encourage healthy spinal habits. We have developed a novel wireless mobile sensing system which monitors spine stress in real-time by detecting poor back posture and strain on the back due to prolonged sitting or standing. The system provides a new method of measuring spine stress at both the back and the feet by integrating posture sensors with strain sensors. Posture and strain data is collected by means of a posture sensor at the neck and weight sensors at the feet. Data is transmitted wirelessly to a central processing station and real-time feedback is provided to the user&#39;s mobile device when sustained bad posture is detected. Moreover, the position of the patient (sitting, standing, or walking) can be determined by analysis of the weight sensor data and is visualized in real-time, along with back posture, at the central station by means of a graphical animation. Finally, data from all sensors is stored in a database to enable post processing and data analysis, and a summary report of daily posture and physical activity is sent to the user&#39;s email. The use of centralized processing allows for high performance data analysis and storage at the central station which enables tracking of the individual&#39;s progress. We demonstrate effectiveness of our system in simultaneously monitoring posture and position by testing in numerous situations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8ff7300afb45599012c91458e83ba61c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34618863,&quot;asset_id&quot;:5011071,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34618863/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="5011071"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="5011071"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5011071; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5011071]").text(description); $(".js-view-count[data-work-id=5011071]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5011071; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='5011071']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 5011071, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8ff7300afb45599012c91458e83ba61c" } } $('.js-work-strip[data-work-id=5011071]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":5011071,"title":"A novel mobile wireless sensing system for realtime monitoring of posture and spine stress","translated_title":"","metadata":{"abstract":"Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor posture may reduce out-of-posture tendencies and encourage healthy spinal habits. We have developed a novel wireless mobile sensing system which monitors spine stress in real-time by detecting poor back posture and strain on the back due to prolonged sitting or standing. The system provides a new method of measuring spine stress at both the back and the feet by integrating posture sensors with strain sensors. Posture and strain data is collected by means of a posture sensor at the neck and weight sensors at the feet. Data is transmitted wirelessly to a central processing station and real-time feedback is provided to the user's mobile device when sustained bad posture is detected. Moreover, the position of the patient (sitting, standing, or walking) can be determined by analysis of the weight sensor data and is visualized in real-time, along with back posture, at the central station by means of a graphical animation. Finally, data from all sensors is stored in a database to enable post processing and data analysis, and a summary report of daily posture and physical activity is sent to the user's email. The use of centralized processing allows for high performance data analysis and storage at the central station which enables tracking of the individual's progress. We demonstrate effectiveness of our system in simultaneously monitoring posture and position by testing in numerous situations.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":"Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor posture may reduce out-of-posture tendencies and encourage healthy spinal habits. We have developed a novel wireless mobile sensing system which monitors spine stress in real-time by detecting poor back posture and strain on the back due to prolonged sitting or standing. The system provides a new method of measuring spine stress at both the back and the feet by integrating posture sensors with strain sensors. Posture and strain data is collected by means of a posture sensor at the neck and weight sensors at the feet. Data is transmitted wirelessly to a central processing station and real-time feedback is provided to the user's mobile device when sustained bad posture is detected. Moreover, the position of the patient (sitting, standing, or walking) can be determined by analysis of the weight sensor data and is visualized in real-time, along with back posture, at the central station by means of a graphical animation. Finally, data from all sensors is stored in a database to enable post processing and data analysis, and a summary report of daily posture and physical activity is sent to the user's email. The use of centralized processing allows for high performance data analysis and storage at the central station which enables tracking of the individual's progress. We demonstrate effectiveness of our system in simultaneously monitoring posture and position by testing in numerous situations.","internal_url":"https://www.academia.edu/5011071/A_novel_mobile_wireless_sensing_system_for_realtime_monitoring_of_posture_and_spine_stress","translated_internal_url":"","created_at":"2013-11-06T03:51:37.141-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34618863,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618863/thumbnails/1.jpg","file_name":"posture.pdf","download_url":"https://www.academia.edu/attachments/34618863/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_novel_mobile_wireless_sensing_system_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618863/posture-libre.pdf?1409770627=\u0026response-content-disposition=attachment%3B+filename%3DA_novel_mobile_wireless_sensing_system_f.pdf\u0026Expires=1732498849\u0026Signature=Gt0sJUWf9tf64QpyT8p5rkSV0LsRGJwIJb6hddMekjKq83A6yMCQfmsSv5SuR1fk~mm8zw4PQbEu8~K-JYIapTz60k6Ijpgu9gZiXyi3SxXaXlyd534uWP5G5p-vqAhBLzDfM70NruoO6GmOhRoON4YZ6Ixww-CtWgJbUGcRkC1WAUu2aHSJynMLrdO4mTe58ZAaeEwETldg-gavCaknqhAZ8l2CMltU0R7BxunsGcKRY93vr5dNSnPEENWEx~SlrR7ECC0oATR~iDshdMxXgUrVU8GuNEGhJkHSRu~7w4sHNo019IcSaSbWxeTwkxMvLnHCdjMSW9vpngyvyVzFMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_novel_mobile_wireless_sensing_system_for_realtime_monitoring_of_posture_and_spine_stress","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":34618863,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618863/thumbnails/1.jpg","file_name":"posture.pdf","download_url":"https://www.academia.edu/attachments/34618863/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_novel_mobile_wireless_sensing_system_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618863/posture-libre.pdf?1409770627=\u0026response-content-disposition=attachment%3B+filename%3DA_novel_mobile_wireless_sensing_system_f.pdf\u0026Expires=1732498849\u0026Signature=Gt0sJUWf9tf64QpyT8p5rkSV0LsRGJwIJb6hddMekjKq83A6yMCQfmsSv5SuR1fk~mm8zw4PQbEu8~K-JYIapTz60k6Ijpgu9gZiXyi3SxXaXlyd534uWP5G5p-vqAhBLzDfM70NruoO6GmOhRoON4YZ6Ixww-CtWgJbUGcRkC1WAUu2aHSJynMLrdO4mTe58ZAaeEwETldg-gavCaknqhAZ8l2CMltU0R7BxunsGcKRY93vr5dNSnPEENWEx~SlrR7ECC0oATR~iDshdMxXgUrVU8GuNEGhJkHSRu~7w4sHNo019IcSaSbWxeTwkxMvLnHCdjMSW9vpngyvyVzFMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3132,"name":"Biomechanics","url":"https://www.academia.edu/Documents/in/Biomechanics"},{"id":4122,"name":"Computer Animation","url":"https://www.academia.edu/Documents/in/Computer_Animation"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":9112,"name":"Physical Activity","url":"https://www.academia.edu/Documents/in/Physical_Activity"},{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks"},{"id":18391,"name":"Mobile Communication","url":"https://www.academia.edu/Documents/in/Mobile_Communication"},{"id":96959,"name":"Back Pain","url":"https://www.academia.edu/Documents/in/Back_Pain"},{"id":102883,"name":"Real Time Systems","url":"https://www.academia.edu/Documents/in/Real_Time_Systems"},{"id":129388,"name":"Patient Monitoring","url":"https://www.academia.edu/Documents/in/Patient_Monitoring"},{"id":154850,"name":"Mobile Device","url":"https://www.academia.edu/Documents/in/Mobile_Device"},{"id":188095,"name":"Legged Locomotion","url":"https://www.academia.edu/Documents/in/Legged_Locomotion"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time"},{"id":297691,"name":"High performance","url":"https://www.academia.edu/Documents/in/High_performance"},{"id":571336,"name":"Real Time Monitoring","url":"https://www.academia.edu/Documents/in/Real_Time_Monitoring"},{"id":741308,"name":"Wireless Sensing","url":"https://www.academia.edu/Documents/in/Wireless_Sensing"}],"urls":[{"id":1877757,"url":"http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5752156"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="5011069"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/5011069/Sentence_Level_and_Document_Level_Sentiment_Mining_for_Arabic_Texts"><img alt="Research paper thumbnail of Sentence-Level and Document-Level Sentiment Mining for Arabic Texts" class="work-thumbnail" src="https://attachments.academia-assets.com/34618848/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/5011069/Sentence_Level_and_Document_Level_Sentiment_Mining_for_Arabic_Texts">Sentence-Level and Document-Level Sentiment Mining for Arabic Texts</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, we investigate sentiment mining of Arabic text at both the sentence level and the d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, we investigate sentiment mining of Arabic text at both the sentence level and the document level. Existing research in Arabic sentiment mining remains very limited. For sentence-level classification, we investigate two approaches. The first is a novel grammatical approach that employs the use of a general structure for the Arabic sentence. The second approach is based on the semantic orientation of words and their corresponding frequencies, to do this we built an interactive learning semantic dictionary which stores the polarities of the roots of different words and identifies new polarities based on these roots. For document-level classification, we use sentences of known classes to classify whole documents, using a novel approach whereby documents are divided dynamically into chunks and classification is based on the semantic contributions of different chunks in the document. This dynamic chunking approach can also be investigated for sentiment mining in other languages. Finally, we propose a hierarchical classification scheme that uses the results of the sentence-level classifier as input to the document-level classifier, an approach which has not been investigated previously for Arabic documents. We also pinpoint the various challenges that are faced by sentiment mining for Arabic texts and propose suggestions for its development. We demonstrate promising results with our sentence-level approach, and our document-level experiments show, with high accuracy, that it is feasible to extract the sentiment of an Arabic document based on the classes of its sentences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eb6622038d4f2b6ce03c803f7ee7242d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34618848,&quot;asset_id&quot;:5011069,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34618848/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="5011069"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="5011069"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5011069; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5011069]").text(description); $(".js-view-count[data-work-id=5011069]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5011069; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='5011069']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 5011069, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eb6622038d4f2b6ce03c803f7ee7242d" } } $('.js-work-strip[data-work-id=5011069]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":5011069,"title":"Sentence-Level and Document-Level Sentiment Mining for Arabic Texts","translated_title":"","metadata":{"abstract":"In this work, we investigate sentiment mining of Arabic text at both the sentence level and the document level. Existing research in Arabic sentiment mining remains very limited. For sentence-level classification, we investigate two approaches. The first is a novel grammatical approach that employs the use of a general structure for the Arabic sentence. The second approach is based on the semantic orientation of words and their corresponding frequencies, to do this we built an interactive learning semantic dictionary which stores the polarities of the roots of different words and identifies new polarities based on these roots. For document-level classification, we use sentences of known classes to classify whole documents, using a novel approach whereby documents are divided dynamically into chunks and classification is based on the semantic contributions of different chunks in the document. This dynamic chunking approach can also be investigated for sentiment mining in other languages. Finally, we propose a hierarchical classification scheme that uses the results of the sentence-level classifier as input to the document-level classifier, an approach which has not been investigated previously for Arabic documents. We also pinpoint the various challenges that are faced by sentiment mining for Arabic texts and propose suggestions for its development. We demonstrate promising results with our sentence-level approach, and our document-level experiments show, with high accuracy, that it is feasible to extract the sentiment of an Arabic document based on the classes of its sentences.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"In this work, we investigate sentiment mining of Arabic text at both the sentence level and the document level. Existing research in Arabic sentiment mining remains very limited. For sentence-level classification, we investigate two approaches. The first is a novel grammatical approach that employs the use of a general structure for the Arabic sentence. The second approach is based on the semantic orientation of words and their corresponding frequencies, to do this we built an interactive learning semantic dictionary which stores the polarities of the roots of different words and identifies new polarities based on these roots. For document-level classification, we use sentences of known classes to classify whole documents, using a novel approach whereby documents are divided dynamically into chunks and classification is based on the semantic contributions of different chunks in the document. This dynamic chunking approach can also be investigated for sentiment mining in other languages. Finally, we propose a hierarchical classification scheme that uses the results of the sentence-level classifier as input to the document-level classifier, an approach which has not been investigated previously for Arabic documents. We also pinpoint the various challenges that are faced by sentiment mining for Arabic texts and propose suggestions for its development. We demonstrate promising results with our sentence-level approach, and our document-level experiments show, with high accuracy, that it is feasible to extract the sentiment of an Arabic document based on the classes of its sentences.","internal_url":"https://www.academia.edu/5011069/Sentence_Level_and_Document_Level_Sentiment_Mining_for_Arabic_Texts","translated_internal_url":"","created_at":"2013-11-06T03:51:32.641-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":794499,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34618848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618848/thumbnails/1.jpg","file_name":"ICDM_paper.pdf","download_url":"https://www.academia.edu/attachments/34618848/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sentence_Level_and_Document_Level_Sentim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618848/ICDM_paper-libre.pdf?1409766913=\u0026response-content-disposition=attachment%3B+filename%3DSentence_Level_and_Document_Level_Sentim.pdf\u0026Expires=1732498849\u0026Signature=MCoVMG7-L~jyAV0CeLezyEVLcImT8G1RXtMGbmzFRhms-KjXod8doh2Z0SXNnQzBnrwiV3VqtnBiQ8paJ6Is2fO2NcXfBRNvXte2gZh0vdLPGm8JxF9ax4VGuyC5IzkL23PBLHtzy10zPWHWIAqrBQ32R6~Bf0Hf7uzAmSBJvnnumh8bV~wRhnrqXRkidHciyPffMKri01uADT2mV4KGPACWKrs-FivPuCMXd5kUsjaPqKsPB0F2UDuG5Uf5xEE8u2BcV7QKi0XrxNHEADNhMod8zIVSqCbkzqcinkuCy3g5HWUraL8W6PrNXZWd0FhnNkVAY2Ru8PLwkF7OjSj~Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sentence_Level_and_Document_Level_Sentiment_Mining_for_Arabic_Texts","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":794499,"first_name":"Noura","middle_initials":null,"last_name":"Farra","page_name":"NouraFarra","domain_name":"columbia","created_at":"2011-09-27T22:02:49.992-07:00","display_name":"Noura Farra","url":"https://columbia.academia.edu/NouraFarra"},"attachments":[{"id":34618848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34618848/thumbnails/1.jpg","file_name":"ICDM_paper.pdf","download_url":"https://www.academia.edu/attachments/34618848/download_file?st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NTI0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sentence_Level_and_Document_Level_Sentim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34618848/ICDM_paper-libre.pdf?1409766913=\u0026response-content-disposition=attachment%3B+filename%3DSentence_Level_and_Document_Level_Sentim.pdf\u0026Expires=1732498849\u0026Signature=MCoVMG7-L~jyAV0CeLezyEVLcImT8G1RXtMGbmzFRhms-KjXod8doh2Z0SXNnQzBnrwiV3VqtnBiQ8paJ6Is2fO2NcXfBRNvXte2gZh0vdLPGm8JxF9ax4VGuyC5IzkL23PBLHtzy10zPWHWIAqrBQ32R6~Bf0Hf7uzAmSBJvnnumh8bV~wRhnrqXRkidHciyPffMKri01uADT2mV4KGPACWKrs-FivPuCMXd5kUsjaPqKsPB0F2UDuG5Uf5xEE8u2BcV7QKi0XrxNHEADNhMod8zIVSqCbkzqcinkuCy3g5HWUraL8W6PrNXZWd0FhnNkVAY2Ru8PLwkF7OjSj~Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":5379,"name":"Sentiment Analysis","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis"},{"id":220007,"name":"Arabic Natural Language Processing","url":"https://www.academia.edu/Documents/in/Arabic_Natural_Language_Processing"}],"urls":[{"id":1877755,"url":"http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5693419"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "e4f5de5eb09d725f242b22cd9eb3c0aa6b72c7ff65c01508b838564c6a589cec", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="NJzok1SZj4d3T020ndOnALxHeEEUl3tpmfcCuCgIP7u7hSF1CLzjmit9VNQDRlJ5u4cL5IB7qaZ0jhJXAFvCCw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://columbia.academia.edu/NouraFarra" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="F2eIA5SPjNWlSGACKEtf0V1+Bj0f8m5V20W2l5i0gCeYfkHlyKrgyPl6eWK23qqoWr51mIsevJo2PKZ4sOd9lw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10