CINXE.COM
Search results for: large-scale water resources
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: large-scale water resources</title> <meta name="description" content="Search results for: large-scale water resources"> <meta name="keywords" content="large-scale water resources"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="large-scale water resources" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="large-scale water resources"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12938</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: large-scale water resources</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12908</span> Evaluation of Water Quality for the Kurtbogazi Dam Outlet and the Streams Feeding the Dam (Ankara, Turkey)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsen%20Tozsin">Gulsen Tozsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Bakir"> Fatma Bakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Cemil%20Acar"> Cemil Acar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ercument%20Koc"> Ercument Koc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kurtbogazi Dam has gained special meaning for Ankara, Turkey for the last decade due to the rapid depletion of nearby resources of drinking water. In this study, the results of the analyses of Kurtbogazi Dam outlet water and the rivers flowing into the Kurtbogazi Dam were discussed for the period of last five years between 2008 and 2012. The quality of these surface water resources were evaluated in terms of pH, temperature, biochemical oxygen demand (BOD5), nitrate, phosphate and chlorine. They were classified according to the Council Directive (75/440/EEC). Moreover, the properties of these surface waters were assessed to determine the quality of water for drinking and irrigation purposes using Piper, US Salinity Laboratory and Wilcox diagrams. The results revealed that the quality of all the investigated water sources are generally at satisfactory level as surface water except for Pazar Stream in terms of ortho-phosphate and BOD5 concentration for 2008. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kurtbogazi%20dam" title="Kurtbogazi dam">Kurtbogazi dam</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20assessment" title=" water quality assessment"> water quality assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankara%20water" title=" Ankara water"> Ankara water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title=" water supply"> water supply</a> </p> <a href="https://publications.waset.org/abstracts/34379/evaluation-of-water-quality-for-the-kurtbogazi-dam-outlet-and-the-streams-feeding-the-dam-ankara-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12907</span> The Technics of Desalination Water in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aburideh">H. Aburideh</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.Tigrine"> Z.Tigrine</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ziou"> D. Ziou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hout"> S. Hout</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bellatreche"> R. Bellatreche</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Belhout"> D. Belhout</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Belgroun"> Z. Belgroun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abbas"> M. Abbas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Faced with climate hazards in recent decades and the constant increase of the population, Algeria is making considerable efforts to provide water resources and water availability, both for its nascent industry, agriculture and for the drinking water supply of cities and arid region of the country. Following a remarkable worldwide technological breakthrough in seawater and brackish water desalination, known in recent years, the specialists have seen that the use of desalination of sea water in Algeria is a promising alternative as long as it has a coastline of 1200 km. Seawater is clean and virtually inexhaustible resource; mainly for population and industry that have high water consumption and are close to the sea. The purpose of this work is to present information on the number of sea water desalination stations and demineralization plants existing in Algeria. The constraints related to the operation of certain stations; those which are operational, those that are not operational as well as the seawater desalination program that was hired to cover 49 desalination plants across the country at the end of 2019 with the aim of increasing and diversifying water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=demineralization" title=" demineralization"> demineralization</a> </p> <a href="https://publications.waset.org/abstracts/8779/the-technics-of-desalination-water-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12906</span> Impact of Microbial Pathogen on Aquatic Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Younis%20Laghari">Muhammad Younis Laghari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global climate change has had many effects on the aquatic environment, and the major issue is pollution. Along with the other pollutants, there are a significant number of human microbial pathogens that pollute the water bodies. Another concern about the water quality is that the major aquatic resources bring water-borne pathogens and other related diseases. These resources include industrial effluent, untreated domestic sewage, acid mine drainage, etc. However, these water discharges through various routes may have treatment to eliminate the pathogenic microbes. Therefore, it is essential to control the leakage from sewer systems, residential discharge, and agricultural run-off. These pathogenic microbes have been implicated in the lives of water health (fishes), which is harmful and causes diseases. Mostly, the mortality of aquatic species results because of catastrophic floods due to poor water waste treatment and sanitation that introduce pathogenic bacteria into rivers. Pathogens survive in rivers and remain poorly known but essential to control water-borne diseases. The presence of bacteria in watercourses is diverse and constitutes a complicated subject. Many species are autochthonous and play an important role in aquatic ecosystems, while many others arise from untreated or poorly treated waste from industrial and domestic sources. Further, more investigation is required to know the induction of water-borne pathogens in various water resources and the potential impacts of water resource development on pathogen contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20pathogens" title="microbial pathogens">microbial pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20water%20body" title=" river water body"> river water body</a> </p> <a href="https://publications.waset.org/abstracts/171894/impact-of-microbial-pathogen-on-aquatic-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12905</span> The Review and Contribution of Taiwan Government Policies on Environmental Impact Assessment to Water Recycling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng-Ming%20Fan">Feng-Ming Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiu-Hui%20Wen"> Xiu-Hui Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Feng%20Chen"> Po-Feng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ching%20Tu"> Yi-Ching Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of inborn natural conditions and man-made sabotage, the water resources insufficient phenomenon in Taiwan is a very important issue needed to face immediately. The regulations and law of water resources protection and recycling are gradually completed now but still lack of specific water recycling effectiveness checking method. The research focused on the industrial parks that already had been certificated with EIA to establish a professional checking system, carry through and forge ahead to contribute one’s bit in water resources sustainable usage. Taiwan Government Policies of Environmental Impact Assessment established in 1994, some development projects were requested to set certain water recycling ratio for water resources effective usage. The water covers and contains everything because all-inclusive companies enter and be stationed. For control the execution status of industrial park water and waste water recycling ratio about EIA commitment effectively, we invited experts and scholars in this filed to discuss with related organs to formulate the policy and audit plan. Besides, call a meeting to set public version water equilibrium diagrams and recycles parameter. We selected nine industrial parks that were requested set certain water recycling ratio in EIA examination stage and then according to the water usage quantity, we audited 340 factories in these industrial parks with spot and documents examination and got fruitful results – the average water usage of unit area per year of all these examined industrial parks is 31,000 tons/hectare/year, the value is just half of Taiwan industries average. It is obvious that the industrial parks with EIA commitment can decrease the water resources consumption effectively. Taiwan government policies of Environmental Impact Assessment took follow though tracking function into consideration at the beginning. The results of this research verify the importance of the implementing with water recycling to save water resources in EIA commitment. Inducing development units to follow EIA commitment to get the balance between environmental protection and economic development is one of the important EIA value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taiwan%20government%20policies%20of%20environmental%20impact%20assessment" title="Taiwan government policies of environmental impact assessment">Taiwan government policies of environmental impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20recycling%20ratio%20of%20EIA%20commitment" title=" water recycling ratio of EIA commitment"> water recycling ratio of EIA commitment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20sustainable%20usage" title=" water resources sustainable usage"> water resources sustainable usage</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20recycling" title=" water recycling"> water recycling</a> </p> <a href="https://publications.waset.org/abstracts/79495/the-review-and-contribution-of-taiwan-government-policies-on-environmental-impact-assessment-to-water-recycling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12904</span> Comparison between Hardy-Cross Method and Water Software to Solve a Pipe Networking Design Problem for a Small Town</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Emad%20Ahmed">Ahmed Emad Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyad%20Ahmed%20Hussein"> Zeyad Ahmed Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Salama%20Afifi"> Mohamed Salama Afifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohammed%20Eid"> Ahmed Mohammed Eid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water has a great importance in life. In order to deliver water from resources to the users, many procedures should be taken by the water engineers. One of the main procedures to deliver water to the community is by designing pressurizer pipe networks for water. The main aim of this work is to calculate the water demand of a small town and then design a simple water network to distribute water resources among the town with the smallest losses. Literature has been mentioned to cover the main point related to water distribution. Moreover, the methodology has introduced two approaches to solve the research problem, one by the iterative method of Hardy-cross and the other by water software Pipe Flow. The results have introduced two main designs to satisfy the same research requirements. Finally, the researchers have concluded that the use of water software provides more abilities and options for water engineers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=looping%20pipe%20networks" title="looping pipe networks">looping pipe networks</a>, <a href="https://publications.waset.org/abstracts/search?q=hardy%20cross%20networks%20accuracy" title=" hardy cross networks accuracy"> hardy cross networks accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20error%20of%20hardy%20cross%20method" title=" relative error of hardy cross method"> relative error of hardy cross method</a> </p> <a href="https://publications.waset.org/abstracts/156922/comparison-between-hardy-cross-method-and-water-software-to-solve-a-pipe-networking-design-problem-for-a-small-town" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12903</span> Integrated Water Resources Management to Ensure Water Security of Arial Khan River Catchment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kalam%20Azad">Abul Kalam Azad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water security has become an increasingly important issue both at the national and international levels. Bangladesh having an abundance of water during monsoon while the shortage of water during the dry season is far from being water secured. Though water security has been discussed discretely at a different level but a holistic effort to ensure water security is yet to be made. The elements of water security such as sectoral demands of water, conflicting requirements amongst the sectors, balancing between demand and supply including the quality of water can best be understood and managed in a catchment as it is the standard functioning unit. The Arial Khan River catchment consists of parts of Faridpur, Madaripur, Shariatpur and Barishal districts have all the components of water demands such as agriculture, domestic, commercial, industrial, forestry, fisheries, navigation or recreation and e-flow requirements. Based on secondary and primary data, water demands of various sectors have been determined. CROPWAT 8.0 has been used to determine the Agricultural Water Demand. Mean Annual Flow (MAF) and Flow Duration Curve (FDC) have been used to determine the e-flow requirements. Water Evaluation and Planning System (WEAP) based decision support tool as part of Integrated Water Resources Management (IWRM) has been utilized for ensuring the water security of the Arial Khan River catchment. Studies and practice around the globe connected with water security were consulted to mitigate the pressure on demand and supply including the options available to ensure the water security. Combining all the information, a framework for ensuring water security has been suggested for Arial Khan River catchment which can further be projected to river basin as well as for the country. This will assist planners and researchers to introduce the model for integrated water resources management of any catchment/river basins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20security" title="water security">water security</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20demand" title=" water demand"> water demand</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title=" water supply"> water supply</a>, <a href="https://publications.waset.org/abstracts/search?q=WEAP" title=" WEAP"> WEAP</a>, <a href="https://publications.waset.org/abstracts/search?q=CROPWAT" title=" CROPWAT"> CROPWAT</a> </p> <a href="https://publications.waset.org/abstracts/191697/integrated-water-resources-management-to-ensure-water-security-of-arial-khan-river-catchment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12902</span> Water Accessibility at Household Levels in Zambia: A Case Study of Fitobaula Settlement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Sachikumba">Emmanuel Sachikumba</a>, <a href="https://publications.waset.org/abstracts/search?q=Micheal%20Msoni"> Micheal Msoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Westone%20Mafuleka"> Westone Mafuleka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zambia has a good climate with favourable rainfall pattern; this provides sufficient recharge for the surface and groundwater resources. In spite of the sufficient surface and ground water resources, accessibility to water at household levels is problematic both in quality and quantity. The study examined water accessibility as well as water quality at the household level. The research looked at the sources of water for the households and considered the complications of accessibility to water and the available opportunities therein. The investigation involved fifty households and the data was collected by the use of questionnaires (to assess accessibility) and laboratory tests (for ascertaining water quality). In addition to this, government departments such as the health, agriculture, forestry and education as well as the municipal council were interviewed on the topic under study. The study was descriptive in nature where clustered sampling procedures using simple random methods were utilised to select the households which were to participate in the study. The key findings were that; accessibility to water household levels is still a challenge in the settlement as most of the point sources (shallow wells, the stream and the river) were found to be contaminated. In addition to this, it was found that there was no direct relationship between the economic performance of a household and the accessibility to water. The study also observed that there were opportunities for the people in the settlement as they were increasingly getting into the education system, and adult literacy was being encouraged in the settlement. Furthermore, the settlement has groundwater resources which indicate that there can be sufficient water provision for the settlers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility" title="accessibility">accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=household" title=" household"> household</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/19667/water-accessibility-at-household-levels-in-zambia-a-case-study-of-fitobaula-settlement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12901</span> Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeniyi%20G.%20Adeogun">Adeniyi G. Adeogun</a>, <a href="https://publications.waset.org/abstracts/search?q=Bolaji%20F.%20Sule"> Bolaji F. Sule</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo%20W.%20Salami"> Adebayo W. Salami</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20O.%20Daramola"> Michael O. Daramola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20yield" title=" water yield"> water yield</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20level" title=" watershed level"> watershed level</a> </p> <a href="https://publications.waset.org/abstracts/3782/validation-of-swat-model-for-prediction-of-water-yield-and-water-balance-case-study-of-upstream-catchment-of-jebba-dam-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12900</span> Relevance in the Water-Energy-Food nexus: an Opportunity for Promoting Socio Economic Development in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadjib%20Drouiche">Nadjib Drouiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water resources in Algeria are scarce, often low quality, fragile, and unevenly distributed in space and time. The pressure on water resources can be associated with industrial development, a steady population growth, and demanding land irrigation measures. These conditions createa tense competitionfor managing waterresourcesand sharing thembetween agricultural development, drinking water supply, industrial activities, etc. Moreover, the impact of climate change has placed in the forefront national policies focused on the water-energy-food nexus (WEF). In this context, desalination membrane technologies could play an increasing rolefor supporting segments of the Algerian economy that are heavily water-dependent. By implementing water reuse and desalination strategies together in the agricultural sector, there is an opportunity to expand the access to healthy food and clean water, thereby keeping the WEF nexus effects under control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20goals" title=" sustainable development goals"> sustainable development goals</a> </p> <a href="https://publications.waset.org/abstracts/148146/relevance-in-the-water-energy-food-nexus-an-opportunity-for-promoting-socio-economic-development-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12899</span> Crop Price Variation and Water Saving Technologies in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Yazdani">Saeed Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrbanoo%20Bagheri"> Shahrbanoo Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20%20Nikravesh"> Sepideh Nikravesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. Adoption of modern irrigation technology is considered to be a key of increasing the efficiency of water used in agriculture. Policy makers have implemented several ways to induce the adoption of new irrigation technology. The empirical studies show that farmers are reluctant to utilize the use of new irrigation methods. This study aims to assess factors affecting on farmer’s decision on the application of water saving technologies with emphasize on crop price variation and water sources. A Logit model was employed to examine the impact of different variables on use of water saving technology. The required data gathered from a sample of 204 farmers in the year 2012. The results indicate that different variables such as crop price variability, water supply source, high-value crops, farm size, income, education, membership in cooperatives have a positive effect and variables such as age and number of plots have a negative impact on the probability of adopting modern water saving technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20saving%20technology" title=" water saving technology"> water saving technology</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity" title=" scarcity"> scarcity</a> </p> <a href="https://publications.waset.org/abstracts/88628/crop-price-variation-and-water-saving-technologies-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12898</span> Water Crisis Management in a Tourism Dependent Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishath%20Shakeela">Aishath Shakeela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Malé Water and Sewerage Company (MWSC) water crisis event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20policies" title=" government policies"> government policies</a>, <a href="https://publications.waset.org/abstracts/search?q=Maldives" title=" Maldives"> Maldives</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water "> water </a> </p> <a href="https://publications.waset.org/abstracts/34238/water-crisis-management-in-a-tourism-dependent-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12897</span> The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Ebrahimi">Fariba Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ghorbani"> Mehdi Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-management" title="co-management">co-management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network" title=" social network"> social network</a>, <a href="https://publications.waset.org/abstracts/search?q=bridging%20stakeholder" title=" bridging stakeholder"> bridging stakeholder</a>, <a href="https://publications.waset.org/abstracts/search?q=darbandsar%20village" title=" darbandsar village"> darbandsar village</a> </p> <a href="https://publications.waset.org/abstracts/39615/the-role-of-bridging-stakeholder-in-water-management-examining-social-networks-in-working-groups-and-co-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12896</span> [Keynote Talk]: Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shimola">K. Shimola</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Krishnaveni"> M. Krishnaveni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20capacity" title="adaptive capacity">adaptive capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=overlay%20analysis" title=" overlay analysis"> overlay analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/65870/keynote-talk-water-resources-vulnerability-assessment-to-climate-change-in-a-semi-arid-basin-of-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12895</span> [Keynote Talk]: Some Underlying Factors and Partial Solutions to the Global Water Crisis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emery%20Jr.%20Coppola">Emery Jr. Coppola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water resources are being depleted and degraded at an alarming and non-sustainable rate worldwide. In some areas, it is progressing more slowly. In other areas, irreversible damage has already occurred, rendering regions largely unsuitable for human existence with destruction of the environment and the economy. Today, 2.5 billion people or 36 percent of the world population live in water-stressed areas. The convergence of factors that created this global water crisis includes local, regional, and global failures. In this paper, a survey of some of these factors is presented. They include abuse of political power and regulatory acquiescence, improper planning and design, ignoring good science and models, systemic failures, and division between the powerful and the powerless. Increasing water demand imposed by exploding human populations and growing economies with short-falls exacerbated by climate change and continuing water quality degradation will accelerate this growing water crisis in many areas. Without regional measures to improve water efficiencies and protect dwindling and vulnerable water resources, environmental and economic displacement of populations and conflict over water resources will only grow. Perhaps more challenging, a global commitment is necessary to curtail if not reverse the devastating effects of climate change. Factors will be illustrated by real-world examples, followed by some partial solutions offered by water experts for helping to mitigate the growing water crisis. These solutions include more water efficient technologies, education and incentivization for water conservation, wastewater treatment for reuse, and improved data collection and utilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20conservation" title=" water conservation"> water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20crisis" title=" water crisis"> water crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20technologies" title=" water technologies"> water technologies</a> </p> <a href="https://publications.waset.org/abstracts/60880/keynote-talk-some-underlying-factors-and-partial-solutions-to-the-global-water-crisis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12894</span> Pollution-Sources, Controls, and Impact Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Acharya">Aditi Acharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution is threatening the environmental and human health in the most drastic way. This paper provides insight about the affects of environmental pollution in the perspective of water pollution. Sewage in drinking water, the increasing contamination of water bodies and water resources and the human beings are the major contributors, increasing the harsh activities of pollution. The research presents information about the sources of pollution, its impacts and control activities to be undertaken to make our environment free from water pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/27061/pollution-sources-controls-and-impact-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12893</span> Significance of Treated Wasteater in Facing Consequences of Climate Change in Arid Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Radaideh">Jamal A. Radaideh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Radaideh"> A. J. Radaideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being a problem threatening the planet and its ecosystems, the climate change has been considered for a long time as a disturbing topic impacting water resources in Jordan. Jordan is expected for instance to be highly vulnerable to climate change consequences given its unbalanced distribution between water resources availability and existing demands. Thus, action on adaptation to climate impacts is urgently needed to cope with the negative consequences of climate change. Adaptation to global change must include prudent management of treated wastewater as a renewable resource, especially in regions lacking groundwater or where groundwater is already over exploited. This paper highlights the expected negative effects of climate change on the already scarce water sources and to motivate researchers and decision makers to take precautionary measures and find alternatives to keep the level of water supplies at the limits required for different consumption sectors in terms of quantity and quality. The paper will focus on assessing the potential for wastewater recycling as an adaptation measure to cope with water scarcity in Jordan and to consider wastewater as integral part of the national water budget to solve environmental problems. The paper also identified a research topic designed to help the nation progress in making the most appropriate use of the resource, namely for agricultural irrigation. Wastewater is a promising alternative to fill the shortage in water resources, especially due to climate changes, and to preserve the valuable fresh water to give priority to securing drinking water for the population from these resources and at the same time raise the efficiency of the use of available resources. Jordan has more than 36 wastewater treatment plants distributed throughout the country and producing about 386,000 CM/day of reclaimed water. According to the reports of water quality control programs, more than 85 percent of this water is of a quality that is completely identical to the quality suitable for irrigation of field crops and forest trees according to the requirements of Jordanian Standard No. 893/2006. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20effects%20on%20water%20resources" title="climate change effects on water resources">climate change effects on water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20on%20climate%20change" title=" adaptation on climate change"> adaptation on climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=treated%20wastewater%20recycling" title=" treated wastewater recycling"> treated wastewater recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20and%20semi-arid%20regions" title=" arid and semi-arid regions"> arid and semi-arid regions</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/123322/significance-of-treated-wasteater-in-facing-consequences-of-climate-change-in-arid-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12892</span> Solar Aided Vacuum Desalination of Sea-Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miraz%20Hafiz%20Rossy">Miraz Hafiz Rossy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of planning to address shortfalls in fresh water supply for the world, Sea water can be a huge source of fresh water. But Desalinating sea water to get fresh water could require a lots of fossil fuels. To save the fossil fuel in terms of save the green world but meet the up growing need for fresh water, a very useful but energy efficient method needs to be introduced. Vacuum desalination of sea water using only the Renewable energy can be an effective solution to this issue. Taking advantage of sensitivity of water's boiling point to air pressure a vacuum desalination water treatment plant can be designed which would only use sea water as feed water and solar energy as fuel to produce fresh drinking water. The study indicates that reducing the air pressure to a certain value water can be boiled at very low temperature. Using solar energy to provide the condensation and the vacuum creation would be very useful and efficient. Compared to existing resources, desalination is considered to be expensive, but using only renewable energy the cost can be reduced significantly. Despite its very few drawbacks, it can be considered a possible solution to the world's fresh water shortages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity%20of%20fresh%20water" title=" scarcity of fresh water"> scarcity of fresh water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/73292/solar-aided-vacuum-desalination-of-sea-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12891</span> Investigating the Behavior of Water Shortage Indices for Performance Evaluation of a Water Resources System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frederick%20N.%20F.%20Chou">Frederick N. F. Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Thuy%20Linh"> Nguyen Thi Thuy Linh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of water shortages has been increasingly severe as a consequence of population growth, urbanization, economic development, and climate change. The need for improvements in reliable water supply systems is urgent with the increasing living standards of regions. In this study, a suitable shortage index capable of multi-aspect description - frequency, magnitude, and duration - is adopted to more accurately describe the characteristics of a shortage situation. The values of the index were determined to cope with the increasing need for reliability. There are four reservoirs in series located on the Be River of the Dong Nai River Basin in Southern Vietnam. The primary purpose of the three upstream reservoirs is hydropower generation while the primary purpose of the fourth is water supply. A compromise between hydropower generation and water supply can be negotiated for these four reservoirs to reduce the severity of water shortages. A generalized water allocation model was applied to simulate the water supply, and hydropower generation of various management alternatives and the system’s reliability was evaluated using the adopted multiple shortage indices. Modifying management policies of water resources using data-based indexes can improve the reliability of water supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20reservoirs" title="cascade reservoirs">cascade reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropower" title=" hydropower"> hydropower</a>, <a href="https://publications.waset.org/abstracts/search?q=shortage%20index" title=" shortage index"> shortage index</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title=" water supply"> water supply</a> </p> <a href="https://publications.waset.org/abstracts/84967/investigating-the-behavior-of-water-shortage-indices-for-performance-evaluation-of-a-water-resources-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12890</span> Water Purification By Novel Nanocomposite Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Johal">E. S. Johal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Saini"> M. S. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Jha"> M. K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, 1.1 billion people are at risk due to lack of clean water and about 35 % of people in the developed world die from water related problem. To alleviate these problems water purification technology requires new approaches for effective management and conservation of water resources. Electrospun nanofibres membrane has a potential for water purification due to its high large surface area and good mechanical strength. In the present study PAMAM dendrimers composite nynlon-6 nanofibres membrane was prepared by crosslinking method using Glutaraldehyde. Further, the efficacy of the modified membrane can be renewed by mere exposure of the saturated membrane with the solution having acidic pH. The modified membrane can be used as an effective tool for water purification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title="dendrimer">dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20membrane" title=" nanocomposite membrane"> nanocomposite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/9638/water-purification-by-novel-nanocomposite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12889</span> An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahsan%20Ali">Ahsan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Ostwal"> Mayank Ostwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Agarwal"> Nikhil Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20water" title=" smart water"> smart water</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20water%20management" title=" urban water management"> urban water management</a> </p> <a href="https://publications.waset.org/abstracts/55154/an-approach-towards-smart-future-ict-infrastructure-integrated-into-urban-water-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12888</span> Challenges of Water License in Agriculture Sector in British Columbia: An Exploratory Sociological Inquiry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Karimi">Mandana Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20McMahon"> Martha McMahon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important consequences of water scarcity worldwide is the increase in conflicts over water issues, reduced access to clean water, food shortages, energy shortages, and reduced economic development. The extreme weather conditions in British Columbia are because of climate change, which is leading to water scarcity becoming a serious issue affecting British Columbians, aquatic ecosystems, the BC water policy, agriculture, and the economy. In light of climate change and water stress, the British Columbia government introduced a new water legislation in 2016 named the Water Sustainability Act to manage water resources in British Columbia. So, this study aimed to present a deep understanding emanating from the political and social dimensions of the new water policy in BC in the agriculture sector and which sociological paradigm governs the current water policy (WSA) in BC. Policy analysis based on the water problem representation approach was used to present the problem and solutions identified by the water policy in the agricultural sector in BC. The results of the policy analysis highlighted that the Water Sustainability Act is governed by a positivist and modernist approach because the groundwater license is the measurable situation to access the adequate quantity of water for the farmers. In addition, by the positivist paradigm water resources are conceptualized as a commodity to be bought and sold. Under the positivist approach, the measurable parameter of groundwater is also applied based on the top-down approach for water management to show the use of water resources for economic development. In addition, the findings of the policy analysis suggest that alternative paradigms, such as relational ontology, ecofeminism, and indigenous knowledge, could be applied in introducing water policies to shift from the positivist or modernist paradigm. These new paradigms present the potential for environmental policies like the Water Sustainability Act, based on partnership, and collaboration and with an explicit emphasis on protecting water for nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title="water governance">water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=Water%20Sustainability%20Act" title=" Water Sustainability Act"> Water Sustainability Act</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20policy" title=" water policy"> water policy</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20farmer" title=" small-scale farmer"> small-scale farmer</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20analysis" title=" policy analysis"> policy analysis</a> </p> <a href="https://publications.waset.org/abstracts/178917/challenges-of-water-license-in-agriculture-sector-in-british-columbia-an-exploratory-sociological-inquiry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12887</span> Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehaiguene%20Madjid">Mehaiguene Madjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Touhari%20Fadhila"> Touhari Fadhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Meddi%20Mohamed"> Meddi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20assessment" title="hydrological assessment">hydrological assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20resources" title=" surface water resources"> surface water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheliff" title=" Cheliff"> Cheliff</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/36268/hydrologic-balance-and-surface-water-resources-of-the-cheliff-zahrez-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12886</span> An Approach to Spatial Planning for Water Conservation: The Case of Kovada Sub-Watershed (Turkey)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aybike%20Ayfer%20Karada%C4%9F">Aybike Ayfer Karadağ</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the amount of water available is decreasing day by day due to global warming, environmental problems and population increase. To protect water resources, it is necessary to take a lot of measures from the global scale to the local scale. Some of these measures are related to spatial planning studies. In this study, the impact of water process analysis was assessed in the development of spatial planning for water conservation. The study was conducted in the Kovada sub-watershed (Isparta, Turkey). By means of water process analysis, the way to reach underground water of surface water in the study area is mapped. In this context, plant cover, soil and rock permeability were evaluated holistically with geographic information systems technologies. Then, on the map, water permeability is classified and this is spatially expressed. The findings show that the permeability of the water is different in the study case. As a result, the water permeability map needs to be included in the planning for water conservation planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20planning" title=" spatial planning"> spatial planning</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20process%20analysis" title=" water process analysis"> water process analysis</a> </p> <a href="https://publications.waset.org/abstracts/97414/an-approach-to-spatial-planning-for-water-conservation-the-case-of-kovada-sub-watershed-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12885</span> Sustainable Manufacturing Industries and Energy-Water Nexus Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahbaz%20Abbas">Shahbaz Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Han%20Chiang%20Hsieh"> Lin Han Chiang Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-water%20nexus" title="energy-water nexus">energy-water nexus</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20sustainability" title=" industrial sustainability"> industrial sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resource%20management" title=" natural resource management"> natural resource management</a> </p> <a href="https://publications.waset.org/abstracts/112725/sustainable-manufacturing-industries-and-energy-water-nexus-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12884</span> Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Khamoosh">Amin Khamoosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Faramarzifar"> Hamed Faramarzifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20rehabilitation" title="sustainable rehabilitation">sustainable rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20buildings" title=" concrete buildings"> concrete buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=iran" title=" iran"> iran</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=water-efficient%20techniques" title=" water-efficient techniques"> water-efficient techniques</a> </p> <a href="https://publications.waset.org/abstracts/181649/sustainable-rehabilitation-of-concrete-buildings-in-iran-harnessing-sunlight-and-navigating-limited-water-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12883</span> An Overview of Water Governance and Management in the Philippines: Some Key Findings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahara%20Piang%20Brahim">Sahara Piang Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper looks at the current state of water governance in the Philippines. It is mainly descriptive and relies on an analysis of secondary data gathered during the author’s fieldwork as well as those found in available scholarly literature, legal and government policy documents, reports and publicly available information on the official websites of government agencies and departments. This paper finds that despite the Philippines having relatively abundant water resources due to its topographical characteristics, it is facing a number of water-related problems, including the availability of water supply in light of growing water demand, increasing population and urbanization as well as climate change. Another key finding is that the sheer number of agencies, which have overlapping legal mandates and functions in relation to water governance and management, make coordination, planning and data collection difficult especially since they are neither vertically nor horizontally integrated. These findings have obvious implications for water policy and governance in the country. This study also finds that 'predict and control' characterizes the government’s approach to water resources management and allocation. This paper argues that taking such an approach and the existing institutional context into account is quite relevant not only in terms of making sense of how decision-making and policymaking take place but also when contemplating the kinds of alternative governance arrangements that could address water-related issues and challenges and that might work 'best' in the Philippines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philippines" title="Philippines">Philippines</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title=" water governance"> water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20issues" title=" water issues"> water issues</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20policy" title=" water policy"> water policy</a> </p> <a href="https://publications.waset.org/abstracts/104181/an-overview-of-water-governance-and-management-in-the-philippines-some-key-findings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12882</span> Gas Flotation Unit in Kuwait Oil Company Operations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homoud%20Bourisli">Homoud Bourisli</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Safar"> Haitham Safar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20oil%20company" title="Kuwait oil company">Kuwait oil company</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20gas%20flotation%20unit" title=" dissolved gas flotation unit"> dissolved gas flotation unit</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20gas%20flotation%20unit" title=" induced gas flotation unit"> induced gas flotation unit</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-water%20separation" title=" oil-water separation"> oil-water separation</a> </p> <a href="https://publications.waset.org/abstracts/29539/gas-flotation-unit-in-kuwait-oil-company-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12881</span> Evaluation of the Quality Water Irrigation in Region of Lioua (Biskra), Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Hiouani">F. Hiouani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Henouda"> M. Henouda</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Masmoudi"> A. Masmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rechachi"> M. Rechachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the quality of irrigation water of some underground water resources in the region of Lioua (Biskra, Algéria). Analysis of cations (Ca++, Mg++, Na+, K+), anions (Cl-, SO4--, CO3--, HCO3-, NO3-), pH and electrical conductivity (EC) of ten water samples taken during March 2015. The resulted showed that water samples are designated salty and very salty. On the other hand, average SAR values show that there is no alkalinity risk of soil. According to Riverside diagram water samples are grouped into five classes (C3-S1, C4-S1, C4-S3, C5-S2 and C5-S3). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=lioua%20biskra" title=" lioua biskra"> lioua biskra</a> </p> <a href="https://publications.waset.org/abstracts/42913/evaluation-of-the-quality-water-irrigation-in-region-of-lioua-biskra-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12880</span> The Potential Fresh Water Resources of Georgia and Sustainable Water Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nana%20Bolashvili">Nana Bolashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakhtang%20Geladze"> Vakhtang Geladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamazi%20Karalashvili"> Tamazi Karalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Machavariani"> Nino Machavariani</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Geladze"> George Geladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Davit%20Kartvelishvili"> Davit Kartvelishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Karalashvili"> Ana Karalashvili </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=rivers" title=" rivers"> rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a> </p> <a href="https://publications.waset.org/abstracts/74944/the-potential-fresh-water-resources-of-georgia-and-sustainable-water-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12879</span> Governance of the Waters in the Upper Iguazu Watershed: Case Study in Passaúna and Miringuava Watersheds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matheus%20Fonseca%20Dur%C3%A3es">Matheus Fonseca Durães</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20da%20Silva%20Pereira"> Bruno da Silva Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruna%20Stewart"> Bruna Stewart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of Brazil’s water governance has been the topic of discussion and has undergone legal and organizational improvements due to the need to promote a more effective and sustainable relationship with natural resources and stemming from conflicts related to shortcomings in decision-making. The Waters Act has enabled Brazil to create interesting mechanisms for integrated management, but, on the other hand, it has created a challenge that involves the implementation of the principles established in this legal framework. This study aims to evaluate some challenges and opportunities for water governance in two watersheds based on data collection and analysis of concessions, the water use register, and flow data. The elements presented demonstrated, via an analysis of legally instituted criteria, that the level of commitment of water resources is high, especially to public supply, and the adoption of the reference flow constituted one of the main barriers to implementing an efficient system, demonstrating the need for a regulatory policy that considers the hydrological behavior of the watersheds. Finally, the current water management model presents challenges to be addressed to achieve the objectives proposed by the water policy, such as ensuring sustainable, rational, and integrated use of water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=management" title="management">management</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20policies" title=" public policies"> public policies</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazil" title=" Brazil"> Brazil</a> </p> <a href="https://publications.waset.org/abstracts/144761/governance-of-the-waters-in-the-upper-iguazu-watershed-case-study-in-passauna-and-miringuava-watersheds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=431">431</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=432">432</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large-scale%20water%20resources&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>