CINXE.COM
(PDF) Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="vxqSdTSt5N40EhlySwcSSqsEgfuWCaCllzgZiTEJN39IQsa1woaZkDGsTGtBM1gP/yP/Kxs2dmaWNZu0R3GO6g==" /> <meta name="citation_title" content="Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates" /> <meta name="citation_publication_date" content="2010/01/01" /> <meta name="citation_journal_title" content="2010 18th Biennial University/Government/Industry Micro/Nano Symposium" /> <meta name="citation_author" content="Nazmul Islam" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/74688408/Novel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates" /> <meta name="twitter:title" content="Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates" /> <meta name="twitter:description" content="This paper discusses the principle of AC electroosmosis and its use to move the bulk of an electrically conducting fluid in a microchannel as an alternative to mechanical pumping methods. Previous EO driven flow research [1-3] has looked at the" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/74688408/Novel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates" /> <meta property="og:title" content="Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="This paper discusses the principle of AC electroosmosis and its use to move the bulk of an electrically conducting fluid in a microchannel as an alternative to mechanical pumping methods. Previous EO driven flow research [1-3] has looked at the" /> <meta property="article:author" content="https://stcloudstate.academia.edu/NazmulIslam" /> <meta name="description" content="This paper discusses the principle of AC electroosmosis and its use to move the bulk of an electrically conducting fluid in a microchannel as an alternative to mechanical pumping methods. Previous EO driven flow research [1-3] has looked at the" /> <title>(PDF) Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates</title> <link rel="canonical" href="https://www.academia.edu/74688408/Novel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '39314d9bcf4522f48eeb027cf31da0a13496d2ce'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1733906857000); window.Aedu.timeDifference = new Date().getTime() - 1733906857000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Nazmul Islam"}],"contributor":[],"dateCreated":"2022-03-27","datePublished":"2010-01-01","headline":"Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates","image":"https://attachments.academia-assets.com/82749663/thumbnails/1.jpg","inLanguage":"en","keywords":["Flow measurement","Electrophoresis","Osmosis","Flow Rate","Traveling Wave","Electric Field","Electric Conductivity"],"publication":"2010 18th Biennial University/Government/Industry Micro/Nano Symposium","publisher":{"@context":"https://schema.org","@type":"Organization","name":"IEEE"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"stcloudstate"}],"thumbnailUrl":"https://attachments.academia-assets.com/82749663/thumbnails/1.jpg","url":"https://www.academia.edu/74688408/Novel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "b983a4013217ed630d85f6208d845a07578b6d369f9b2e6f2c2b26000e1fc66f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="xSwjhoOV3bGPkHk7tYIlV6paPyo0XRONPfqBr2GOm9wydHdGdb6g/4ouLCK/tm8S/n1B+rlixU489wOSF/YiSQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/74688408/Novel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ylzVWwR6CyeNhDZrutA7E8zrgmPgXzuJFshSOhpJLXc9BIGb8lF2aYg6Y3Kw5HFWmMz8s21g7UoXxdAHbDGU4g==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-85e1f6e5aefed21344b25292b138fad229d4259fa0bd3341a6b90fec2f5f6977.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 141976215; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F74688408%2FNovel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F74688408%2FNovel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":82749663,"identifier":"Attachment_82749663","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":74688408,"created_at":"2022-03-27T05:52:12.319-07:00","from_world_paper_id":199669381,"updated_at":"2024-11-24T19:13:44.631-08:00","_data":{"publisher":"IEEE","grobid_abstract":"This paper discusses the principle of AC electroosmosis and its use to move the bulk of an electrically conducting fluid in a microchannel as an alternative to mechanical pumping methods. Previous EO driven flow research [1-3] has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC bias when generating the electric field needed to impart electroosmosis within a micro-channel [4]. The analysis was done using COMSOL 3.5a in which previously developed equations [1-2] were embedded and used to evaluate the effects of the frequency of excitation, electrode array geometry, and the AC signal with a DC bias on the flow imparted on an electrically conducting fluid. A single type of fluid was simulated to date. For the AC driven flow, the simulation results indicate the existence of an optimized frequency of excitation and an optimum geometry that lead to the maximum net forward flow of the pump. For a specified set of constants [electric conductivity (2.1 mS/m), lagging electrode width (220 µm), micro-channel height (200 µm), applied AC voltage (0.25 V), electrode array gap (290 µm), and etc], the optimum frequency was 250 Hz and the optimum geometry consisted of a preceding electrode width of 60 μm with an inter electrode gap of 30 μm. No relevant net flows were generated with the asymmetric electrode arrays with a constant magnitude of AC voltage applied to both electrodes. However, superimposing a DC signal over the AC signal on the same asymmetric electrode array lead to a noticeable net forward flow of 18.70 μL/min. Experimental flow measurements were performed on several pump configurations manufactured using typical MEMS fabrication techniques. The experimental results are in good agreement with the simulation data. They confirm that using an asymmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal.","publication_date":"2010,,","publication_name":"2010 18th Biennial University/Government/Industry Micro/Nano Symposium","grobid_abstract_attachment_id":"82749663"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [141976215]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":82749663,"attachmentType":"pdf"}"><img alt="First page of “Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/82749663/mini_magick20240803-1-zdb899.png?1722689775" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="141976215" href="https://stcloudstate.academia.edu/NazmulIslam"><img alt="Profile image of Nazmul Islam" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Nazmul Islam</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2010, 2010 18th Biennial University/Government/Industry Micro/Nano Symposium</p></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">This paper discusses the principle of AC electroosmosis and its use to move the bulk of an electrically conducting fluid in a microchannel as an alternative to mechanical pumping methods. Previous EO driven flow research [1-3] has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC bias when generating the electric field needed to impart electroosmosis within a micro-channel [4]. The analysis was done using COMSOL 3.5a in which previously developed equations [1-2] were embedded and used to evaluate the effects of the frequency of excitation, electrode array geometry, and the AC signal with a DC bias on the flow imparted on an electrically conducting fluid. A single type of fluid was simulated to date. For the AC driven flow, the simulation results indicate the existence of an optimized frequency of excitation and an optimum geometry that lead to the maximum net forward flow of the pump. For a specified set of constants [electric conductivity (2.1 mS/m), lagging electrode width (220 µm), micro-channel height (200 µm), applied AC voltage (0.25 V), electrode array gap (290 µm), and etc], the optimum frequency was 250 Hz and the optimum geometry consisted of a preceding electrode width of 60 μm with an inter electrode gap of 30 μm. No relevant net flows were generated with the asymmetric electrode arrays with a constant magnitude of AC voltage applied to both electrodes. However, superimposing a DC signal over the AC signal on the same asymmetric electrode array lead to a noticeable net forward flow of 18.70 μL/min. Experimental flow measurements were performed on several pump configurations manufactured using typical MEMS fabrication techniques. The experimental results are in good agreement with the simulation data. They confirm that using an asymmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":82749663,"attachmentType":"pdf","workUrl":"https://www.academia.edu/74688408/Novel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":82749663,"attachmentType":"pdf","workUrl":"https://www.academia.edu/74688408/Novel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="82749663" data-landing_url="https://www.academia.edu/74688408/Novel_Configuration_for_an_AC_Electroosmotic_Pump_Driven_by_AC_Voltage_with_DC_Voltage_Bias_for_Bi_Directionality_and_Increased_Volumetric_Flow_Rates" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="13376624" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/13376624/Bi_directional_flow_induced_by_an_AC_electroosmotic_micropump_with_DC_voltage_bias">Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32606222" href="https://independent.academia.edu/NazmulIslam45">Nazmul Islam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ELECTROPHORESIS, 2012</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias","attachmentId":45410647,"attachmentType":"pdf","work_url":"https://www.academia.edu/13376624/Bi_directional_flow_induced_by_an_AC_electroosmotic_micropump_with_DC_voltage_bias","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/13376624/Bi_directional_flow_induced_by_an_AC_electroosmotic_micropump_with_DC_voltage_bias"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="15156653" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15156653/ac_electro_osmotic_micropump_by_asymmetric_electrode_polarization">ac electro-osmotic micropump by asymmetric electrode polarization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34287276" href="https://independent.academia.edu/JWu7">J. Wu</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="19603463" href="https://utk.academia.edu/JayneWu">Jayne Wu</a></div><p class="ds-related-work--abstract ds2-5-body-sm">ac electro-osmosis ACEO has emerged recently as a promising strategy for fluid transport at microscale. With an array of planar interdigital electrodes immersed in an electrolyte, different charging mechanisms at electrode/electrolyte interface and electrokinetic surface flows can be induced by nonuniform electrical fields. To implement ACEO micropump, asymmetry in an electrode pair is essential to generate net flow, which has been typically achieved through asymmetric electrode geometries. This work proposes asymmetric electrode polarization processes to break the electrode symmetry. A dc bias is superimposed onto ac potentials, so that the two electrodes in a pair undergo capacitive charging or Faradaic charging separately. Applying such signals, pumping action has been demonstrated with only a few volts of applied voltage and a power consumption in the range of milliwatts. Pumping velocity by asymmetric electrode polarization exhibits an exponential dependency on voltage.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"ac electro-osmotic micropump by asymmetric electrode polarization","attachmentId":38560858,"attachmentType":"pdf","work_url":"https://www.academia.edu/15156653/ac_electro_osmotic_micropump_by_asymmetric_electrode_polarization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/15156653/ac_electro_osmotic_micropump_by_asymmetric_electrode_polarization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="72849620" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72849620/Ac_Electroosmotic_Pumping_Induced_by_Noncontact_External_Electrodes">Ac Electroosmotic Pumping Induced by Noncontact External Electrodes</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15089223" href="https://nd.academia.edu/HsuehChiaChang">Hsueh-Chia Chang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Biomicrofluidics, 2007</p><p class="ds-related-work--abstract ds2-5-body-sm">Electroosmotic ͑EO͒ pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency ͑Ͼ100 kHz͒ circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes, 1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs ͑3 mm in diameter͒ connected by a 1 ϫ 1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm/sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 l / sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Ac Electroosmotic Pumping Induced by Noncontact External Electrodes","attachmentId":81611146,"attachmentType":"pdf","work_url":"https://www.academia.edu/72849620/Ac_Electroosmotic_Pumping_Induced_by_Noncontact_External_Electrodes","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/72849620/Ac_Electroosmotic_Pumping_Induced_by_Noncontact_External_Electrodes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="22010319" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/22010319/AC_electrokinetic_pumping_on_symmetric_electrode_arrays">AC electrokinetic pumping on symmetric electrode arrays</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43274061" href="https://independent.academia.edu/AntonioRamos66">Antonio Ramos</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Microfluidics and Nanofluidics, 2009</p><p class="ds-related-work--abstract ds2-5-body-sm">AC electro-osmotic (ACEO) pumping is experimentally demonstrated on a symmetric gold electrode array. Using asymmetric connection of electrodes to the applied AC voltage, spatial asymmetry along the array is created, which produces unidirectional flow of electrolyte. An aqueous solution of 100 lM KCl is selected as the pumping fluid. The liquid velocity obtained as a function of voltage and frequency is compared to that generated using travelling-wave electroosmosis (TWEO) with the same electrode array. The expected velocities from the linear electrokinetic models of ACEO and TWEO are computed numerically. The comparison shows that TWEO generates greater velocity amplitudes and the streamlines are smoother than those generated by ACEO.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"AC electrokinetic pumping on symmetric electrode arrays","attachmentId":42708885,"attachmentType":"pdf","work_url":"https://www.academia.edu/22010319/AC_electrokinetic_pumping_on_symmetric_electrode_arrays","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/22010319/AC_electrokinetic_pumping_on_symmetric_electrode_arrays"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="4058841" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/4058841/Pumping_of_liquids_with_ac_voltages_applied_to_asymmetric_pairs_of_microelectrodes">Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4888017" href="https://independent.academia.edu/AntonioRamos3">Antonio Ramos</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Physical Review E, 2003</p><p class="ds-related-work--abstract ds2-5-body-sm">The net flow of electrolyte induced by an ac electric potential applied to an array of asymmetric pairs of microelectrodes has recently been reported. The interaction between the oscillating electric field and the oscillating induced charge at the diffuse double layer on the electrodes results in a steady electro-osmotic velocity distribution on top of the electrodes. This slip velocity distribution is anisotropic and produces a net flow of fluid. This paper presents a theoretical analysis of the pumping phenomena based upon an electroosmotic model in ac fields. The electrical equations are solved numerically using the charge simulation method. The bulk flow generated by the electro-osmotic slip velocity is calculated. The dependence of the fluid flow on voltage and frequency is described and compared to experiments.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes","attachmentId":50051955,"attachmentType":"pdf","work_url":"https://www.academia.edu/4058841/Pumping_of_liquids_with_ac_voltages_applied_to_asymmetric_pairs_of_microelectrodes","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/4058841/Pumping_of_liquids_with_ac_voltages_applied_to_asymmetric_pairs_of_microelectrodes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="6479398" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/6479398/Toward_High_Net_Velocities_in_AC_Electroosmotic_Micropumps_Based_on_Asymmetric_Coplanar_Electrodes">Toward High Net Velocities in AC Electroosmotic Micropumps Based on Asymmetric Coplanar Electrodes</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="10292743" href="https://independent.academia.edu/JiriHrdlicka">Jiri Hrdlicka</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Industry Applications, 2010</p><p class="ds-related-work--abstract ds2-5-body-sm">The most frequently studied ac electroosmotic micropumps exploit the coplanar asymmetric arrangements of the forcing electrodes. We analyze these systems by means of the following two mathematical models: 1) the classical slip model, which is based on a capacitor-resistor representation of the spatial domain, and 2) the nonslip model, which is based on the Poisson-Navier-Stokes-Nernst-Planck approach to the entire domain, including the electric double layers. Both the models predict similar results in many low-amplitude regimes. However, the nonslip model gives us a much better insight on the high-amplitude (nonlinear) behavior of the micropumps. Our most important findings obtained by the nonslip model can be summarized as follows: 1) There are optimal values of the electrode and gap size ratios that are generally different from those obtained by the slip model; 2) the micropump performance is relatively insensitive with respect to the electrode size ratio; 3) there is an optimal vertical confinement that enables us to attain high net velocities; 4) flow reversals on frequency, amplitude, and certain geometry characteristics are observed; 5) the energy efficiency of these pumps is very low; and 6) the Joule heating effect is negligible. The nonslip model characteristics are also discussed to explain the observed differences between predictions of the models. Convergence analysis dealing with the precision of numerical results obtained by the nonslip model is presented.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Toward High Net Velocities in AC Electroosmotic Micropumps Based on Asymmetric Coplanar Electrodes","attachmentId":48850188,"attachmentType":"pdf","work_url":"https://www.academia.edu/6479398/Toward_High_Net_Velocities_in_AC_Electroosmotic_Micropumps_Based_on_Asymmetric_Coplanar_Electrodes","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/6479398/Toward_High_Net_Velocities_in_AC_Electroosmotic_Micropumps_Based_on_Asymmetric_Coplanar_Electrodes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="89183536" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89183536/AC_Electroosmotic_pumping_in_3D_C_MEMS_structures">AC Electroosmotic pumping in 3D C-MEMS structures</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="186771562" href="https://independent.academia.edu/RouabahHamza">Hamza Rouabah</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2008</p><p class="ds-related-work--abstract ds2-5-body-sm">A 3D AC-electroosmosis micropumps constructed from high-aspect-ratio electrodes fabricated using C-MEMs technology are presented. Measurements of fluid flow velocity versus applied voltages and frequencies are reported.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"AC Electroosmotic pumping in 3D C-MEMS structures","attachmentId":93028974,"attachmentType":"pdf","work_url":"https://www.academia.edu/89183536/AC_Electroosmotic_pumping_in_3D_C_MEMS_structures","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/89183536/AC_Electroosmotic_pumping_in_3D_C_MEMS_structures"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="121817495" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes">Fast ac electro-osmotic micropumps with nonplanar electrodes</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="212365431" href="https://independent.academia.edu/MartinBazant">Martin Bazant</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Physics Letters, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">This letter demonstrates dramatic improvements in flow rate and frequency range over conventional planar AC electro-osmotic (ACEO) pumps by exploiting three-dimensional (3D) stepped electrodes. A 3D ACEO pump was fabricated by electroplating steps on a symmetric electrode array and tested against a state-of-the-art asymmetric planar ACEO pump in a microfluidic loop. For all frequencies (0.1-100 kHz), the 3D pump had a faster flow rate, in some cases by an order of magnitude. Our experimental results suggest that, after some optimization, mm/sec velocities will be attainable with alternating battery voltages, which presents an exciting opportunity for microfluidics. Manuscript Microfluidics is a growing area of science and technology with important applications in biomedical devices and portable electronics. Traditional pressure-driven flows do not scale well with miniaturization, due to large viscous stresses, so other pumping techniques have been explored 1. An attractive alternative is electro-osmosis, the effective slip of a liquid electrolyte past a solid surface in</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fast ac electro-osmotic micropumps with nonplanar electrodes","attachmentId":116610100,"attachmentType":"pdf","work_url":"https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/121817495/Fast_ac_electro_osmotic_micropumps_with_nonplanar_electrodes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="18043080" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/18043080/Two_phase_AC_electrothermal_fluidic_pumping_in_a_coplanar_asymmetric_electrode_array">Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37980353" href="https://ucalgary.academia.edu/ColinDalton">Colin Dalton</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Microfluidics and Nanofluidics, 2011</p><p class="ds-related-work--abstract ds2-5-body-sm">The ability to achieve fast fluid flow yet maintain a relatively low temperature rise is important for AC electrothermal (ACET) micropumping, especially in applications such as bioMEMS and lab-on-a-chip systems. In this paper, we propose a two-phase ACET fluidic micropump using a coplanar asymmetric electrode array. The proposed structure applies a two-phase AC voltage, i.e., voltage of phase 0°/180°, to the narrow electrodes while the wide electrodes are at ground potential. Numerical simulation demonstrates that this simple coplanar electrode configuration can achieve at least 25% faster fluid flow rates than using a single AC signal. By selecting certain design parameters, a two-phase ACET structure can achieve up to 50% faster fluid flow rates than a corresponding single-phase structure. The simple two-phase AC signal sources are easily produced by using inverter buffers, which is a considerable improvement compared to the multi-phase AC signals required by other electrokinetic micropumping methods, such as traveling wave structures.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array","attachmentId":39844895,"attachmentType":"pdf","work_url":"https://www.academia.edu/18043080/Two_phase_AC_electrothermal_fluidic_pumping_in_a_coplanar_asymmetric_electrode_array","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/18043080/Two_phase_AC_electrothermal_fluidic_pumping_in_a_coplanar_asymmetric_electrode_array"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="102109101" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/102109101/Experiments_on_AC_electrokinetic_pumping_of_liquids_using_arrays_of_microelectrodes">Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250040207" href="https://independent.academia.edu/AntonioRamos445">Antonio Ramos</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Dielectrics and Electrical Insulation, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">Net fluid flow induced by ac potentials applied to arrays of co-planar interdigitated microelectrodes is reported. Two types of microelectrode structures have been employed: arrays of unequal width electrodes subjected to a single ac signal, and arrays of identical electrodes subjected to a traveling-wave potential. A square glass chamber was constructed around the electrode arrays and filled with a concentration of KCl in water of conductivity around 1mS/m. A map of the fluid velocity as a function of voltage (0-8 Vpp) and frequency (0.1-100 kHz) is presented for the traveling-wave array. In both microstructures, two fluid flow regimes have been observed: at small voltage amplitudes the fluid moves in a certain direction, and at higher voltage amplitudes the fluid flow is reversed. The fluid flow seems to be driven at the level of the electrodes in the two flow regimes. The observations at low voltages are in qualitative accordance with an ac electroosmotic model based upon the Debye-Hückel theory for the double layer.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes","attachmentId":102460575,"attachmentType":"pdf","work_url":"https://www.academia.edu/102109101/Experiments_on_AC_electrokinetic_pumping_of_liquids_using_arrays_of_microelectrodes","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/102109101/Experiments_on_AC_electrokinetic_pumping_of_liquids_using_arrays_of_microelectrodes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":82749663,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":82749663,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_82749663" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="72849689" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72849689/Electrokinetic_micropump_and_micromixer_design_based_on_ac_faradaic_polarization">Electrokinetic micropump and micromixer design based on ac faradaic polarization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15089223" href="https://nd.academia.edu/HsuehChiaChang">Hsueh-Chia Chang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Applied Physics, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Electrokinetic micropump and micromixer design based on ac faradaic polarization","attachmentId":81611265,"attachmentType":"pdf","work_url":"https://www.academia.edu/72849689/Electrokinetic_micropump_and_micromixer_design_based_on_ac_faradaic_polarization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/72849689/Electrokinetic_micropump_and_micromixer_design_based_on_ac_faradaic_polarization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="75309808" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/75309808/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps">The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="212365431" href="https://independent.academia.edu/MartinBazant">Martin Bazant</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Colloid and Interface Science, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps","attachmentId":83633196,"attachmentType":"pdf","work_url":"https://www.academia.edu/75309808/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/75309808/The_effect_of_step_height_on_the_performance_of_three_dimensional_ac_electro_osmotic_microfluidic_pumps"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="94970869" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/94970869/Configurable_AC_electroosmotic_pumping_and_mixing">Configurable AC electroosmotic pumping and mixing</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="253283019" href="https://independent.academia.edu/NLoucaides">N. Loucaides</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Microelectronic Engineering, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Configurable AC electroosmotic pumping and mixing","attachmentId":97282807,"attachmentType":"pdf","work_url":"https://www.academia.edu/94970869/Configurable_AC_electroosmotic_pumping_and_mixing","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/94970869/Configurable_AC_electroosmotic_pumping_and_mixing"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="14472768" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/14472768/Solid_state_AC_electroosmosis_micro_pump_on_a_Chip">Solid state AC electroosmosis micro pump on a Chip</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33413463" href="https://canterbury-nz.academia.edu/MaanAlkaisi">Maan Alkaisi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Solid state AC electroosmosis micro pump on a Chip","attachmentId":44126152,"attachmentType":"pdf","work_url":"https://www.academia.edu/14472768/Solid_state_AC_electroosmosis_micro_pump_on_a_Chip","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/14472768/Solid_state_AC_electroosmosis_micro_pump_on_a_Chip"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="67523360" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/67523360/Study_of_Ac_Electroosmotic_Flow_Developed_by_Coplanar_Microelectrode_Array_in_a_Slit_Microchannel">Study of Ac Electroosmotic Flow Developed by Coplanar Microelectrode Array in a Slit Microchannel</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67540070" href="https://independent.academia.edu/NaheedFerdous">Naheed Ferdous</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Study of Ac Electroosmotic Flow Developed by Coplanar Microelectrode Array in a Slit Microchannel","attachmentId":78306728,"attachmentType":"pdf","work_url":"https://www.academia.edu/67523360/Study_of_Ac_Electroosmotic_Flow_Developed_by_Coplanar_Microelectrode_Array_in_a_Slit_Microchannel","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/67523360/Study_of_Ac_Electroosmotic_Flow_Developed_by_Coplanar_Microelectrode_Array_in_a_Slit_Microchannel"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="117239376" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays">A Novel Electroosmotic Micromixer with Asymmetric Lateral Structures and DC Electrode Arrays</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="42451119" href="https://pledco.academia.edu/TengZhou">Teng Zhou</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Micromachines, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Novel Electroosmotic Micromixer with Asymmetric Lateral Structures and DC Electrode Arrays","attachmentId":113148622,"attachmentType":"pdf","work_url":"https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="26184120" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/26184120/Assessment_of_three_AC_electroosmotic_flow_protocols_for_mixing_in_microfluidic_channel">Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13405734" href="https://independent.academia.edu/RueyYang">Ruey-Jen Yang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lab on a Chip, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel","attachmentId":46508443,"attachmentType":"pdf","work_url":"https://www.academia.edu/26184120/Assessment_of_three_AC_electroosmotic_flow_protocols_for_mixing_in_microfluidic_channel","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/26184120/Assessment_of_three_AC_electroosmotic_flow_protocols_for_mixing_in_microfluidic_channel"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="3736104" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/3736104/AC_Electrokinetic_Pumps_for_Micro_NanoFluidics">AC Electrokinetic Pumps for Micro/NanoFluidics</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4580037" href="https://ucsb.academia.edu/GauravSoni">Gaurav Soni</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"AC Electrokinetic Pumps for Micro/NanoFluidics","attachmentId":31455576,"attachmentType":"pdf","work_url":"https://www.academia.edu/3736104/AC_Electrokinetic_Pumps_for_Micro_NanoFluidics","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/3736104/AC_Electrokinetic_Pumps_for_Micro_NanoFluidics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="10906967" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/10906967/Microfluidic_transport_by_AC_electroosmosis">Microfluidic transport by AC electroosmosis</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="26466719" href="https://univdhaka.academia.edu/IslamNazmul">Nazmul Islam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Physics: Conference Series, 2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Microfluidic transport by AC electroosmosis","attachmentId":47036650,"attachmentType":"pdf","work_url":"https://www.academia.edu/10906967/Microfluidic_transport_by_AC_electroosmosis","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/10906967/Microfluidic_transport_by_AC_electroosmosis"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="18508830" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/18508830/Indirect_Electro_Osmotic_Pumping">Indirect Electro-Osmotic Pumping</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="38537092" href="https://ethz.academia.edu/JanLichtenberg">Jan Lichtenberg</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34612084" href="https://independent.academia.edu/RosanneGuijt">Rosanne Guijt</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of the Association for Laboratory Automation, 2002</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Indirect Electro-Osmotic Pumping","attachmentId":42164370,"attachmentType":"pdf","work_url":"https://www.academia.edu/18508830/Indirect_Electro_Osmotic_Pumping","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/18508830/Indirect_Electro_Osmotic_Pumping"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="96334827" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/96334827/Micropump_based_on_electroosmosis_of_the_second_kind">Micropump based on electroosmosis of the second kind</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="256191554" href="https://independent.academia.edu/NataliyaMishchuk">Nataliya Mishchuk</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ELECTROPHORESIS, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Micropump based on electroosmosis of the second kind","attachmentId":98261528,"attachmentType":"pdf","work_url":"https://www.academia.edu/96334827/Micropump_based_on_electroosmosis_of_the_second_kind","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/96334827/Micropump_based_on_electroosmosis_of_the_second_kind"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="63504446" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/63504446/Electroosmotic_pump_performance_is_affected_by_concentration_polarizations_of_both_electrodes_and_pump">Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33619649" href="https://stanford.academia.edu/JuanSantiago">Juan Santiago</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Sensors and Actuators A: Physical, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump","attachmentId":75915035,"attachmentType":"pdf","work_url":"https://www.academia.edu/63504446/Electroosmotic_pump_performance_is_affected_by_concentration_polarizations_of_both_electrodes_and_pump","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/63504446/Electroosmotic_pump_performance_is_affected_by_concentration_polarizations_of_both_electrodes_and_pump"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="14484251" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/14484251/NUMERICAL_ANALYSIS_OF_ALTERNATIVE_CURRENT_ELECTROOSMOSIS_MICROPUMP_ACEO_WITH_PLANAR_INCLINED_MICROELECTROD_ES">NUMERICAL ANALYSIS OF ALTERNATIVE CURRENT ELECTROOSMOSIS MICROPUMP (ACEO) WITH PLANAR - INCLINED MICROELECTROD ES </a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31981849" href="https://independent.academia.edu/JOURNALIJESRT">IJESRT JOURNAL</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"NUMERICAL ANALYSIS OF ALTERNATIVE CURRENT ELECTROOSMOSIS MICROPUMP (ACEO) WITH PLANAR - INCLINED MICROELECTROD ES ","attachmentId":38324083,"attachmentType":"pdf","work_url":"https://www.academia.edu/14484251/NUMERICAL_ANALYSIS_OF_ALTERNATIVE_CURRENT_ELECTROOSMOSIS_MICROPUMP_ACEO_WITH_PLANAR_INCLINED_MICROELECTROD_ES","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/14484251/NUMERICAL_ANALYSIS_OF_ALTERNATIVE_CURRENT_ELECTROOSMOSIS_MICROPUMP_ACEO_WITH_PLANAR_INCLINED_MICROELECTROD_ES"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="69530278" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/69530278/Ultrafast_high_pressure_AC_electro_osmotic_pumps_for_portable_biomedical_microfluidics">Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="212365431" href="https://independent.academia.edu/MartinBazant">Martin Bazant</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lab on A Chip, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics","attachmentId":79590825,"attachmentType":"pdf","work_url":"https://www.academia.edu/69530278/Ultrafast_high_pressure_AC_electro_osmotic_pumps_for_portable_biomedical_microfluidics","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/69530278/Ultrafast_high_pressure_AC_electro_osmotic_pumps_for_portable_biomedical_microfluidics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="24243710" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24243710/Increasing_the_Fluid_Flow_Velocity_in_a_Microchannel_Using_3D_Non_Metallic_Electrodes">Increasing the Fluid Flow Velocity in a Microchannel Using 3D Non-Metallic Electrodes</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="40849208" href="https://soton.academia.edu/hamzarouabah">Hamza rouabah</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Increasing the Fluid Flow Velocity in a Microchannel Using 3D Non-Metallic Electrodes","attachmentId":44579325,"attachmentType":"pdf","work_url":"https://www.academia.edu/24243710/Increasing_the_Fluid_Flow_Velocity_in_a_Microchannel_Using_3D_Non_Metallic_Electrodes","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/24243710/Increasing_the_Fluid_Flow_Velocity_in_a_Microchannel_Using_3D_Non_Metallic_Electrodes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="168477" href="https://www.academia.edu/Documents/in/Flow_measurement">Flow measurement</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="371425" href="https://www.academia.edu/Documents/in/Electrophoresis">Electrophoresis</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="609176" href="https://www.academia.edu/Documents/in/Osmosis">Osmosis</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="898062" href="https://www.academia.edu/Documents/in/Flow_Rate">Flow Rate</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1036980" href="https://www.academia.edu/Documents/in/Traveling_Wave">Traveling Wave</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1130559" href="https://www.academia.edu/Documents/in/Electric_Field">Electric Field</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1202042" href="https://www.academia.edu/Documents/in/Electric_Conductivity">Electric Conductivity</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>