CINXE.COM
Search results for: neuromuscular response
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neuromuscular response</title> <meta name="description" content="Search results for: neuromuscular response"> <meta name="keywords" content="neuromuscular response"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neuromuscular response" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neuromuscular response"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5322</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neuromuscular response</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5322</span> Neuromuscular Control and Performance during Sudden Acceleration in Subjects with and without Unilateral Acute Ankle Sprains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Qorbani">M. Qorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuromuscular control of posture as understood through studies of responses to mechanical sudden acceleration automatically has been previously demonstrated in individuals with chronic ankle instability (CAI), but the presence of acute condition has not been previously explored specially in a sudden acceleration. The aim of this study was to determine neuromuscular control pattern in those with and without unilateral acute ankle sprains. Design: Case - control. Setting: University research laboratory. The sinker–card protocol with surface translation was be used as a sudden acceleration protocol with study of EMG upon 4 posture stabilizer muscles in two sides of the body in response to sudden acceleration in forward and backward directions. 20 young adult women in two groups (10 LAS; 23.9 ± 2.03 yrs and 10 normal; 26.4 ± 3.2 yrs). The data of EMG were assessed by using multivariate test and one-way repeated measures 2×2×4 ANOVA (P< 0.05). The results showed a significant muscle by direction interaction. Higher TA activity of left and right side in LAS group than normal group in forward direction significantly be showed. Higher MGR activity in normal group than LAS group in backward direction significantly showed. These findings suggest that compared two sides of the body in two directions for 4 muscles EMG activities between and within group for neuromuscular control of posture in avoiding fall. EMG activations of two sides of the body in lateral ankle sprain (LAS) patients were symmetric significantly. Acute ankle instability following once ankle sprains caused to coordinated temporal spatial patterns and strategy selection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response" title="neuromuscular response">neuromuscular response</a>, <a href="https://publications.waset.org/abstracts/search?q=sEMG" title=" sEMG"> sEMG</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20ankle%20sprain" title=" lateral ankle sprain"> lateral ankle sprain</a>, <a href="https://publications.waset.org/abstracts/search?q=posture." title=" posture."> posture.</a> </p> <a href="https://publications.waset.org/abstracts/12454/neuromuscular-control-and-performance-during-sudden-acceleration-in-subjects-with-and-without-unilateral-acute-ankle-sprains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5321</span> Proprioceptive Neuromuscular Facilitation Exercises of Upper Extremities Assessment Using Microsoft Kinect Sensor and Color Marker in a Virtual Reality Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Owlia">M. Owlia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Azarsa"> M. H. Azarsa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khabbazan"> M. Khabbazan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirbagheri"> A. Mirbagheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proprioceptive neuromuscular facilitation exercises are a series of stretching techniques that are commonly used in rehabilitation and exercise therapy. Assessment of these exercises for true maneuvering requires extensive experience in this field and could not be down with patients themselves. In this paper, we developed software that uses Microsoft Kinect sensor, a spherical color marker, and real-time image processing methods to evaluate patient’s performance in generating true patterns of movements. The software also provides the patient with a visual feedback by showing his/her avatar in a Virtual Reality environment along with the correct path of moving hand, wrist and marker. Primary results during PNF exercise therapy of a patient in a room environment shows the ability of the system to identify any deviation of maneuvering path and direction of the hand from the one that has been performed by an expert physician. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title="image processing">image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=Microsoft%20Kinect" title=" Microsoft Kinect"> Microsoft Kinect</a>, <a href="https://publications.waset.org/abstracts/search?q=proprioceptive%20neuromuscular%20facilitation" title=" proprioceptive neuromuscular facilitation"> proprioceptive neuromuscular facilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20extremities%20assessment" title=" upper extremities assessment"> upper extremities assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a> </p> <a href="https://publications.waset.org/abstracts/53955/proprioceptive-neuromuscular-facilitation-exercises-of-upper-extremities-assessment-using-microsoft-kinect-sensor-and-color-marker-in-a-virtual-reality-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5320</span> Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Pradip%20Roy">Divya Pradip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahirul%20Alam%20%20Chowdhury"> Md. Zahirul Alam Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pass%20filter" title=" high pass filter"> high pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumentation%20amplifier" title=" instrumentation amplifier"> instrumentation amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=inverting%20amplifier" title=" inverting amplifier"> inverting amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20pass%20filter" title=" low pass filter"> low pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular" title=" neuromuscular"> neuromuscular</a> </p> <a href="https://publications.waset.org/abstracts/123161/development-of-electromyography-emg-signal-acquisition-system-by-simple-electronic-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5319</span> EMG Based Orthosis for Upper Limb Rehabilitation in Hemiparesis Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20N.%20Sharmila">Nancy N. Sharmila</a>, <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Mishra"> Aparna Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hemiparesis affects almost 80% of stroke patients each year. It is marked by paralysis or weakness on one half of the body. Our model provides both assistance and physical therapy for hemiparesis patients for swift recovery. In order to accomplish our goal a force is provided that pulls the forearm up (as in flexing the arm), and pushes the forearm down (as in extending the arm), which will also assist the user during ADL (Activities of Daily Living). The model consists of a mechanical component which is placed around the patient’s bicep and an EMG control circuit to assist patients in daily activities, which makes it affordable and easy to use. In order to enhance the neuromuscular system’s effectiveness in synchronize the movement, proprioceptive neuromuscular facilitation (PNF) concept is used. The EMG signals are acquired from the unaffected arm as an input to drive the orthosis. This way the patient is invigorated to use the orthosis for regular exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=hemiparesis" title=" hemiparesis"> hemiparesis</a>, <a href="https://publications.waset.org/abstracts/search?q=orthosis" title=" orthosis"> orthosis</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/31105/emg-based-orthosis-for-upper-limb-rehabilitation-in-hemiparesis-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5318</span> Anesthesia for Spinal Stabilization Using Neuromuscular Blocking Agents in Dog: Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agata%20Migdalska">Agata Migdalska</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Berczynska"> Joanna Berczynska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Bieniek"> Ewa Bieniek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Sterna"> Jacek Sterna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Muscle relaxation is considered important during general anesthesia for spine stabilization. In a presented case peripherally acting muscle relaxant was applied during general anesthesia for spine stabilization surgery. The patient was a dog, 11-years old, 26 kg, male, mix breed. Spine fracture was situated between Th13-L1-L2, probably due to the car accident. Preanesthetic physical examination revealed no sign underlying health issues. The dog was premedicated with midazolam 0.2 mg IM and butorphanol 2.4 mg IM. General anesthesia was induced with propofol IV. After the induction, the dog was intubated with an endotracheal tube and connected to an open-ended rebreathing system and maintained with the use of inhalation anesthesia with isoflurane in oxygen. 0,5 mg/ kg of rocuronium was given IV. Use of muscle relaxant was accompanied by an assessment of the degree of neuromuscular blockade by peripheral nerve stimulator. Electrodes were attached to the skin overlying at the peroneal nerve at the lateral cranial tibia. Four electrical pulses were applied to the nerve over a 2 second period. When satisfying nerve block was detected dog was prepared for the surgery. No further monitoring of the effectiveness of blockade was performed during surgery. Mechanical ventilation was kept during anesthesia. During surgery dog maintain stable, and no anesthesiological complication occur. Intraoperatively surgeon claimed that neuromuscular blockade results in a better approach to the spine and easier muscle manipulation which was helpful in order to see the fracture and replace bone fragments. Finally, euthanasia was performed intraoperatively as a result of vast myelomalacia process of the spinal cord. This prevented examination of the recovering process. Neuromuscular blocking agents act at the neuromuscular junction to provide profound muscle relaxation throughout the body. Muscle blocking agents are neither anesthetic nor analgesic; therefore inappropriately used may cause paralysis in fully conscious and feeling pain patient. They cause paralysis of all skeletal muscles, also diaphragm and intercostal muscles when given in higher doses. Intraoperative management includes maintaining stable physiological conditions, which involves adjusting hemodynamic parameters, ensuring proper ventilation, avoiding variations in temperature, maintain normal blood flow to promote proper oxygen exchange. Neuromuscular blocking agent can cause many side effects like residual paralysis, anaphylactic or anaphylactoid reactions, delayed recovery from anesthesia, histamine release, recurarization. Therefore reverse drug like neostigmine (with glikopyrolat) or edrofonium (with atropine) should be used in case of a life-threatening situation. Another useful drug is sugammadex, although the cost of this drug strongly limits its use. Muscle relaxant improves surgical conditions during spinal surgery, especially in heavily muscled individuals. They are also used to facilitate the replacement of dislocated joints as they improve conditions during fracture reduction. It is important to emphasize that in a patient with muscle weakness neuromuscular blocking agents may result in intraoperative and early postoperative cardiovascular and respiratory complications, as well as prolonged recovery from anesthesia. This should not appear in patients with recent spine fracture or luxation. Therefore it is believed that neuromuscular blockers could be useful during spine stabilization procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anesthesia" title="anesthesia">anesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=dog" title=" dog"> dog</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block" title=" neuromuscular block"> neuromuscular block</a>, <a href="https://publications.waset.org/abstracts/search?q=spine%20surgery" title=" spine surgery"> spine surgery</a> </p> <a href="https://publications.waset.org/abstracts/106785/anesthesia-for-spinal-stabilization-using-neuromuscular-blocking-agents-in-dog-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5317</span> Functional Electrical Stimulator and Neuromuscular Electro Stimulator System Analysis for Foot Drop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%20Fatma%20T%C3%BCrker">Gül Fatma Türker</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Akman"> Hatice Akman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Portable muscle stimulators for real-time applications has first introduced by Liberson in 1961. Now these systems has been advanced. In this study, FES (Functional Electrical Stimulator) and NMES (Neuromuscular Electrostimulator) systems are analyzed through their hardware and their quality of life improvements for foot drop patients. FES and NMES systems are used for people whose leg muscles and leg neural connections are healty but not able to walk properly because of their injured central nervous system like spinal cord injuries. These systems are used to stimulate neurons or muscles by getting information from other movements and programming these stimulations to get natural walk and it is accepted as a rehabilitation method for the correction of drop foot. This systems support person to approach natural form of walking. Foot drop is characterized by steppage gait. It is a gait abnormality. This systems helps to person for plantar and dorse reflection movements which are hard to done for foot drop patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FES" title="FES">FES</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20drop" title=" foot drop"> foot drop</a>, <a href="https://publications.waset.org/abstracts/search?q=NMES" title=" NMES"> NMES</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulator" title=" stimulator"> stimulator</a> </p> <a href="https://publications.waset.org/abstracts/48613/functional-electrical-stimulator-and-neuromuscular-electro-stimulator-system-analysis-for-foot-drop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5316</span> Causes of Death in Neuromuscular Disease Patients: 15-Year Experience in a Tertiary Care Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Ching%20Chou">Po-Ching Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Chen%20Liang"> Wen-Chen Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Chen%20Chen"> I. Chen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Hau%20Hsu"> Jong-Hau Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuh-Jyh%20Jong"> Yuh-Jyh Jong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background:Cardiopulmonary complications seem to cause high morbidity and mortality in patients with neuromuscular diseases (NMD) but so far there is no domestic data reported in Taiwan. We, therefore attempted to analyze the factors to cause the death in NMD patients from our cohort. Methods:From 1998 to 2013, we retrospectively collected the information of the NMD patients treated and followed up in Kaohsiung Medical University Hospital. Forty-two patients with NMD who expired during these fifteen years were enrolled. The medical records of these patients were reviewed and the causes of death and the associated affecting factors were analyzed. Results:Eighteen patients with NMD (mean age=13.3, SD=12.4) with complete medical record and detailed information were finally included in this study, including spinal muscular atrophy (SMA) (n=9, 7/9: type 1), Duchenne muscular dystrophy (n=6), congenital muscular dystrophy (n=1), carnitine acyl-carnitine translocase (CACT) deficiency (n=1) and spinal muscular atrophy with respiratory distress (SMARD)(n=1). The place of death was in ICU (n=11, 61%), emergency room (n=3, 16.6%) or home (n=4, 22.2%). For SMA type 1 patients, most of them (71.4%, 5/7) died in emergency room or home and the other two expired during an ICU admission. The causes of death included acute respiratory failure due to pneumonia (n=13, 72.2 %), ventilator failure or dislocation (n=2, 11.1%), suffocation/choking (n=2, 11.1%), and heart failure with hypertrophic cardiomyopathy (n=1, 5.55%). Among the 15 patients died of respiratory failure or choking, 73.3% of the patients (n=11) received no ventilator care at home. 80% of the patients (n=12) received no cough assist at home. The patient died of cardiomyopathy received no medications for heart failure until the last admission. Conclusion: Respiratory failure and choking are the leading causes of death in NMD patients. Appropriate respiratory support and airway clearance play the critical role to reduce the mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20disease" title="neuromuscular disease">neuromuscular disease</a>, <a href="https://publications.waset.org/abstracts/search?q=cause%20of%20death" title=" cause of death"> cause of death</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20care%20hospital" title=" tertiary care hospital"> tertiary care hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20sciences" title=" medical sciences"> medical sciences</a> </p> <a href="https://publications.waset.org/abstracts/14948/causes-of-death-in-neuromuscular-disease-patients-15-year-experience-in-a-tertiary-care-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5315</span> Muscle Neurotrophins Family Response to Resistance Exercise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasoul%20Eslami">Rasoul Eslami</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Gharakhanlou"> Reza Gharakhanlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NT-4/5 and TrkB have been proposed to be involved in the coordinated adaptations of the neuromuscular system to elevated level of activity. Despite the persistence of this neurotrophin and its receptor expression in adult skeletal muscle, little attention has been paid to the functional significance of this complex in the mature neuromuscular system. Therefore, the purpose of this research was to study the effect of one session of resistance exercise on mRNA expression of NT4/5 and TrkB proteins in slow and fast muscles of Wistar Rats. Male Wistar rats (10 mo of age, preparation of Pasteur Institute) were housed under similar living conditions in cages (in groups of four) at room temperature under a controlled light/dark (12-h) cycle with ad libitum access to food and water. A number of sixteen rats were randomly divided to two groups (resistance exercise (T) and control (C); n=8 for each group). The resistance training protocol consisted of climbing a 1-meter–long ladder, with a weight attached to a tail sleeve. Twenty-four hours following the main training session, rats of T and C groups were anaesthetized and the right soleus and flexor hallucis longus (FHL) muscles were removed under sterile conditions via an incision on the dorsolateral aspect of the hind limb. For NT-4/5 and TrkB expression, quantitative real time RT-PCR was used. SPSS software and independent-samples t-test were used for data analysis. The level of significance was set at P < 0.05. Data indicate that resistance training significantly (P<0.05) decreased mRNA expression of NT4/5 in soleus muscle. However, no significant alteration was detected in FHL muscle (P>0.05). Our results also indicate that no significant alterations were detected for TrkB mRNA expression in soleus and FHL muscles (P>0.05). Decrease in mRNA expression of NT4/5 in soleus muscle may be as result of post-translation regulation following resistance training. Also, non-alteration in TrkB mRNA expression was indicated in probable roll of P75 receptor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurotrophin-4%2F5%20%28NT-4%2F5%29" title="neurotrophin-4/5 (NT-4/5)">neurotrophin-4/5 (NT-4/5)</a>, <a href="https://publications.waset.org/abstracts/search?q=TrkB%20receptor" title=" TrkB receptor"> TrkB receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20training" title=" resistance training"> resistance training</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20and%20fast%20muscles" title=" slow and fast muscles"> slow and fast muscles</a> </p> <a href="https://publications.waset.org/abstracts/10884/muscle-neurotrophins-family-response-to-resistance-exercise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5314</span> Characterization and Correlation of Neurodegeneration and Biological Markers of Model Mice with Traumatic Brain Injury and Alzheimer's Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20DeBoard">J. DeBoard</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Dietrich"> R. Dietrich</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hughes"> J. Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yurko"> K. Yurko</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Harms"> G. Harms</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is a predominant type of dementia and is likely a major cause of neural network impairment. The pathogenesis of this neurodegenerative disorder has yet to be fully elucidated. There are currently no known cures for the disease, and the best hope is to be able to detect it early enough to impede its progress. Beyond age and genetics, another prevalent risk factor for AD might be traumatic brain injury (TBI), which has similar neurodegenerative hallmarks. Our research focuses on obtaining information and methods to be able to predict when neurodegenerative effects might occur at a clinical level by observation of events at a cellular and molecular level in model mice. First, we wish to introduce our evidence that brain damage can be observed via brain imaging prior to the noticeable loss of neuromuscular control in model mice of AD. We then show our evidence that some blood biomarkers might be able to be early predictors of AD in the same model mice. Thus, we were interested to see if we might be able to predict which mice might show long-term neurodegenerative effects due to differing degrees of TBI and what level of TBI causes further damage and earlier death to the AD model mice. Upon application of TBIs via an apparatus to effectively induce extremely mild to mild TBIs, wild-type (WT) mice and AD mouse models were tested for cognition, neuromuscular control, olfactory ability, blood biomarkers, and brain imaging. Experiments are currently still in process, and more results are therefore forthcoming. Preliminary data suggest that neuromotor control diminishes as well as olfactory function for both AD and WT mice after the administration of five consecutive mild TBIs. Also, seizure activity increases significantly for both AD and WT after the administration of the five TBI treatment. If future data supports these findings, important implications about the effect of TBI on those at risk for AD might be possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer's disease">Alzheimer's disease</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20biomarker" title=" blood biomarker"> blood biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20control" title=" neuromuscular control"> neuromuscular control</a>, <a href="https://publications.waset.org/abstracts/search?q=olfaction" title=" olfaction"> olfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a> </p> <a href="https://publications.waset.org/abstracts/131616/characterization-and-correlation-of-neurodegeneration-and-biological-markers-of-model-mice-with-traumatic-brain-injury-and-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5313</span> Comparison between the Roller-Foam and Neuromuscular Facilitation Stretching on Flexibility of Hamstrings Muscles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Ragazzi">Paolo Ragazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Peillon"> Olivier Peillon</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Fauris"> Paul Fauris</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Simon"> Mathias Simon</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20%20Navarro"> Raul Navarro</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Martin"> Juan Carlos Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Oriol%20Casasayas"> Oriol Casasayas</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Pacheco"> Laura Pacheco</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Perez-Bellmunt"> Albert Perez-Bellmunt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The use of stretching techniques in the sports world is frequent and widely used for its many effects. One of the main benefits is the gain in flexibility, range of motion and facilitation of the sporting performance. Recently the use of Roller-Foam (RF) has spread in sports practice both at elite and recreational level for its benefits being similar to those observed in stretching. The objective of the following study is to compare the results of the Roller-Foam with the proprioceptive neuromuscular facilitation stretching (PNF) (one of the stretchings with more evidence) on the hamstring muscles. Study design: The design of the study is a single-blind, randomized controlled trial and the participants are 40 healthy volunteers. Intervention: The subjects are distributed randomly in one of the following groups; stretching (PNF) intervention group: 4 repetitions of PNF stretching (5seconds of contraction, 5 second of relaxation, 20 second stretch), Roller-Foam intervention group: 2 minutes of Roller-Foam was realized on the hamstring muscles. Main outcome measures: hamstring muscles flexibility was assessed at the beginning, during (30’’ of intervention) and the end of the session by using the Modified Sit and Reach test (MSR). Results: The baseline results data given in both groups are comparable to each other. The PNF group obtained an increase in flexibility of 3,1 cm at 30 seconds (first series) and of 5,1 cm at 2 minutes (the last of all series). The RF group obtained a 0,6 cm difference at 30 seconds and 2,4 cm after 2 minutes of application of roller foam. The results were statistically significant when comparing intragroups but not intergroups. Conclusions: Despite the fact that the use of roller foam is spreading in the sports and rehabilitation field, the results of the present study suggest that the gain of flexibility on the hamstrings is greater if PNF type stretches are used instead of RF. These results may be due to the fact that the use of roller foam intervened more in the fascial tissue, while the stretches intervene more in the myotendinous unit. Future studies are needed, increasing the sample number and diversifying the types of stretching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hamstring%20muscle" title="hamstring muscle">hamstring muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=stretching" title=" stretching"> stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20facilitation%20stretching" title=" neuromuscular facilitation stretching"> neuromuscular facilitation stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20foam" title=" roller foam"> roller foam</a> </p> <a href="https://publications.waset.org/abstracts/98427/comparison-between-the-roller-foam-and-neuromuscular-facilitation-stretching-on-flexibility-of-hamstrings-muscles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5312</span> The Effects of the GAA15 (Gaelic Athletic Association 15) on Lower Extremity Injury Incidence and Neuromuscular Functional Outcomes in Collegiate Gaelic Games: A 2 Year Prospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brenagh%20E.%20Schlingermann">Brenagh E. Schlingermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Clare%20Lodge"> Clare Lodge</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Rankin"> Paula Rankin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Gaelic football, hurling and camogie are highly popular field games in Ireland. Research into the epidemiology of injury in Gaelic games revealed that approximately three quarters of the injuries in the games occur in the lower extremity. These injuries can have player, team and institutional impacts due to multiple factors including financial burden and time loss from competition. Research has shown it is possible to record injury data consistently with the GAA through a closed online recording system known as the GAA injury surveillance database. It has been established that determining the incidence of injury is the first step of injury prevention. The goals of this study were to create a dynamic GAA15 injury prevention programme which addressed five key components/goals; avoid positions associated with a high risk of injury, enhance flexibility, enhance strength, optimize plyometrics and address sports specific agilities. These key components are internationally recognized through the Prevent Injury, Enhance performance (PEP) programme which has proven reductions in ACL injuries by 74%. In national Gaelic games the programme is known as the GAA15 which has been devised from the principles of the PEP. No such injury prevention strategies have been published on this cohort in Gaelic games to date. This study will investigate the effects of the GAA15 on injury incidence and neuromuscular function in Gaelic games. Methods: A total of 154 players (mean age 20.32 ± 2.84) were recruited from the GAA teams within the Institute of Technology Carlow (ITC). Preseason and post season testing involved two objective screening tests; Y balance test and Three Hop Test. Practical workshops, with ongoing liaison, were provided to the coaches on the implementation of the GAA15. The programme was performed before every training session and game and the existing GAA injury surveillance database was accessed to monitor player’s injuries by the college sports rehabilitation athletic therapist. Retrospective analysis of the ITC clinic records were performed in conjunction with the database analysis as a means of tracking injuries that may have been missed. The effects of the programme were analysed by comparing the intervention groups Y balance and three hop test scores to an age/gender matched control group. Results: Year 1 results revealed significant increases in neuromuscular function as a result of the GAA15. Y Balance test scores for the intervention group increased in both the posterolateral (p=.005 and p=.001) and posteromedial reach directions (p= .001 and p=.001). A decrease in performance was determined for the three hop test (p=.039). Overall twenty-five injuries were reported during the season resulting in an injury rate of 3.00 injuries/1000hrs of participation; 1.25 injuries/1000hrs training and 4.25 injuries/1000hrs match play. Non-contact injuries accounted for 40% of the injuries sustained. Year 2 results are pending and expected April 2016. Conclusion: It is envisaged that implementation of the GAA15 will continue to reduce the risk of injury and improve neuromuscular function in collegiate Gaelic games athletes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GAA15" title="GAA15">GAA15</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaelic%20games" title=" Gaelic games"> Gaelic games</a>, <a href="https://publications.waset.org/abstracts/search?q=injury%20prevention" title=" injury prevention"> injury prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20training" title=" neuromuscular training"> neuromuscular training</a> </p> <a href="https://publications.waset.org/abstracts/47449/the-effects-of-the-gaa15-gaelic-athletic-association-15-on-lower-extremity-injury-incidence-and-neuromuscular-functional-outcomes-in-collegiate-gaelic-games-a-2-year-prospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5311</span> Factors Associated with Commencement of Non-Invasive Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Reddy%20Pulim">Manoj Kumar Reddy Pulim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Muthukrishnan"> Lakshmi Muthukrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetha%20Jayapathy"> Geetha Jayapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhika%20Raman"> Radhika Raman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In the past two decades, noninvasive positive pressure ventilation (NIPPV) emerged as one of the most important advances in the management of both acute and chronic respiratory failure in children. In the acute setting, it is an alternative to intubation with a goal to preserve normal physiologic functions, decrease airway injury, and prevent respiratory tract infections. There is a need to determine the clinical profile and parameters which point towards the need for NIV in the pediatric emergency setting. Objectives: i) To study the clinical profile of children who required non invasive ventilation and invasive ventilation, ii) To study the clinical parameters common to children who required non invasive ventilation. Methods: All children between one month to 18 years, who were intubated in the pediatric emergency department and those for whom decision to commence Non Invasive Ventilation was made in Emergency Room were included in the study. Children were transferred to the Paediatric Intensive Care Unit and started on Non Invasive Ventilation as per our hospital policy and followed up in the Paediatric Intensive Care Unit. Clinical profile of all children which included age, gender, diagnosis and indication for intubation were documented. Clinical parameters such as respiratory rate, heart rate, saturation, grunting were documented. Parameters obtained were subject to statistical analysis. Observations: Airway disease (Bronchiolitis 25%, Viral induced wheeze 22%) was a common diagnosis in 32 children who required Non Invasive Ventilation. Neuromuscular disorder was the common diagnosis in 27 children (78%) who were Intubated. 17 children commenced on Non Invasive Ventilation who later needed invasive ventilation had Neuromuscular disease. High frequency nasal cannula was used in 32, and mask ventilation in 17 children. Clinical parameters common to the Non Invasive Ventilation group were age < 1 year (17), tachycardia n = 7 (22%), tachypnea n = 23 (72%) and severe respiratory distress n = 9 (28%), grunt n = 7 (22%), SPO2 (80% to 90%) n = 16. Children in the Non Invasive Ventilation + INTUBATION group were > 3 years (9), had tachycardia 7 (41%), tachypnea 9(53%) with a male predominance n = 9. In statistical comparison among 3 groups,'p' value was significant for pH, saturation, and use of Ionotrope. Conclusion: Invasive ventilation can be avoided in the paediatric Emergency Department in children with airway disease, by commencing Non Invasive Ventilation early. Intubation in the pediatric emergency department has a higher association with neuromuscular disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20parameters" title="clinical parameters">clinical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=indications" title=" indications"> indications</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20invasive%20ventilation" title=" non invasive ventilation"> non invasive ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=paediatric%20emergency%20room" title=" paediatric emergency room"> paediatric emergency room</a> </p> <a href="https://publications.waset.org/abstracts/77078/factors-associated-with-commencement-of-non-invasive-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5310</span> Importance of Flexibility Training for Older Adults: A Narrative Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrej%20Kocjan">Andrej Kocjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Mobility has been shown to play an important role of health and quality of life among older adults. Falls, which are often related to decreased mobility, as well as to neuromuscular deficits, represent the most common injury among older adults. Fall risk has been shown to increase with reduced lower extremity flexibility. The aim of the paper is to assess the importance of flexibility training on joint range of motion and functional performance among elderly population. Methods: We performed literature research on PubMed and evaluated articles published until 2000. The articles found in the search strategy were also added. The population of interest included older adults (≥ 65 years of age). Results: Flexibility training programs still represent an important part of several rehabilitation programs. Static stretching and proprioceptive neuromuscular facilitation are the most frequently used techniques to improve the length of the muscle-tendon complex. Although the effectiveness of type of stretching seems to be related to age and gender, static stretching is a more appropriate technique to enhance shoulder, hip, and ankle range of motion in older adults. Stretching should be performed in multiple sets with holds of more than 60 seconds for a single muscle group. Conclusion: The literature suggests that flexibility training is an effective method to increase joint range of motion in older adults. In the light of increased functional outcome, activities such as strengthening, balance, and aerobic exercises should be incorporated into a training program for older people. Due to relatively little published literature, it is still not possible to prescribe detailed recommendations regarding flexibility training for older adults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elderly" title="elderly">elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=falls" title=" falls"> falls</a> </p> <a href="https://publications.waset.org/abstracts/147094/importance-of-flexibility-training-for-older-adults-a-narrative-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5309</span> Sympathetic Skin Response and Reaction Times in Chronic Autoimmune Thyroiditis; An Overlooked Electrodiagnostic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oya%20Umit%20Yemisci">Oya Umit Yemisci</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Saracgil%20Cosar"> Nur Saracgil Cosar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tubanur%20Ozturk%20Sisman"> Tubanur Ozturk Sisman</a>, <a href="https://publications.waset.org/abstracts/search?q=Selin%20Ozen"> Selin Ozen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic autoimmune thyroiditis (AIT) may result in a wide spectrum of reversible abnormalities in the neuromuscular function. Usually, proximal muscle-related symptoms and neuropathic findings such as mild axonal peripheral neuropathy have been reported. Sympathetic skin responses are useful in evaluating sudomotor activity of the unmyelinated sympathetic fibers of the autonomic nervous system. Neurocognitive impairment may also be a prominent feature of hypothyroidism, particularly in elderly patients. Electromyographic reaction times as a highly sensitive parameter provides. Objective data concerning cognitive and motor functions. The aim of this study was to evaluate peripheral nerve functions, sympathetic skin response and electroneuromyographic (ENMG) reaction times in euthyroid and subclinically hypothyroid patients with a diagnosis of AIT and compare to those of a control group. Thirty-five euthyroid, 19 patients with subclinical hypothyroidism and 35 age and sex-matched healthy subjects were included in the study. Motor and sensory nerve conduction studies, sympathetic skin responses recorded from hand and foot by stimulating contralateral median nerve and simple reaction times by stimulating tibial nerve and recording from extensor indicis proprius muscle were performed to all patients and control group. Only median nerve sensory conduction velocities of the forearm were slower in patients with AIT compared to the control group (p=0.019). Otherwise, nerve conduction studies and sympathetic skin responses showed no significant difference between the patients and the control group. However, reaction times were shorter in the healthy subjects compared to AIT patients. Prolongation in the reaction times may be considered as a parameter reflecting the alterations in the cognitive functions related to the primary disease process in AIT. Combining sympathetic skin responses with more quantitative tests such as cardiovascular tests and sudomotor axon reflex testing may allow us to determine higher rates of involvement of the autonomic nervous system in AIT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sympathetic%20skin%20response" title="sympathetic skin response">sympathetic skin response</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20reaction%20time" title=" simple reaction time"> simple reaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20autoimmune%20thyroiditis" title=" chronic autoimmune thyroiditis"> chronic autoimmune thyroiditis</a> </p> <a href="https://publications.waset.org/abstracts/120327/sympathetic-skin-response-and-reaction-times-in-chronic-autoimmune-thyroiditis-an-overlooked-electrodiagnostic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5308</span> Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Yunus">Sulaiman Yunus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20moment" title="delay moment">delay moment</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20disaster" title=" fire disaster"> fire disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=reflex%20sequence" title=" reflex sequence"> reflex sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20delay%20moment" title=" response delay moment"> response delay moment</a> </p> <a href="https://publications.waset.org/abstracts/111201/response-delay-model-bridging-the-gap-in-urban-fire-disaster-response-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5307</span> Comparison of Remifentanil EC50 for Facilitating I-Gel and Laryngeal Mask Airway Insertion with Propofol Anesthesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Yeop%20Kim">Jong Yeop Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Bum%20Choi"> Jong Bum Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Jeong%20Kwak"> Hyun Jeong Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sook%20Young%20Lee"> Sook Young Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Each supraglottic airway requires different anesthetic depth because it has a specific structure and different compressive force in the oropharyngeal cavity. We designed the study to investigate remifentanil effect-site concentration (Ce) in 50% of patients (EC50) for successful insertion of i- gel, and to compare it with that for laryngeal mask airway (LMA) insertion during propofol target-controlled infusion (TCI). Methods: Forty-one female patients were randomized to the i-gel group (n=20) or the LMA group (n=21). Anesthesia induction was performed using propofol Ce of 5 μg/ml and the predetermined remifentanil Ce, and i-gel or LMA insertion was attempted 5 min later. The remifentanil Ce was estimated by modified Dixon's up-and-down method (initial concentration: 3.0 ng/ml, step size: 0.5 ng/ml). The patient’s response to device insertion was classified as either ‘success (no movement)’ or ‘failure (movement)’. Results: Using the Dixon’s up and down method, EC50 of remifentanil Ce for i-gel (1.58 ± 0.41 ng/ml) was significantly lower than that for LMA (2.25 ± 0.55 ng/ml) (p=0.038). Using isotonic regression, EC50 (83% CI) of remifentanil in the i-gel group [1.50 (1.37-1.80) ng/ml] was statistically lower than that in the LMA group [2.00 (1.82-2.34) ng/ml]. EC95 (95% CI) of remifentanil in the i-gel group [2.38 (1.48-2.50) ng/ml] was statistically lower than that in the LMA group [3.35 (2.58-3.48) ng/ml]. Conclusion: We found that EC50 of remifentanil Ce for i-gel insertion (1.58 ng/ml) was significantly lower than that for LMA insertion (2.25 ng/ml), in female patients during propofol TCI without neuromuscular blockade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=i-gel" title="i-gel">i-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=laryngeal%20mask%20airway" title=" laryngeal mask airway"> laryngeal mask airway</a>, <a href="https://publications.waset.org/abstracts/search?q=propofol" title=" propofol"> propofol</a>, <a href="https://publications.waset.org/abstracts/search?q=remifentanil" title=" remifentanil"> remifentanil</a> </p> <a href="https://publications.waset.org/abstracts/42987/comparison-of-remifentanil-ec50-for-facilitating-i-gel-and-laryngeal-mask-airway-insertion-with-propofol-anesthesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5306</span> Response Reduction Factor for Earthquake Resistant Design of Special Moment Resisting Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohan%20V.%20Ambekar">Rohan V. Ambekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrirang%20N.%20Tande"> Shrirang N. Tande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study estimates the seismic response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall using static nonlinear (pushover) analysis. Calculation of response reduction factor (R) is done as per the new formulation of response reduction factor (R) given by Applied Technology Council (ATC)-19 which is the product of strength factor (Rs), ductility factor (Rµ) and redundancy factor (RR). The analysis revealed that these three factors affect the actual value of response reduction factor (R) and therefore they must be taken into consideration while determining the appropriate response reduction factor to be used during the seismic design process. The actual values required for determination of response reduction factor (R) is worked out on the basis of pushover curve which is a plot of base shear verses roof displacement. Finally, the calculated values of response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall are compared with the codal values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20reduction%20factor" title="response reduction factor">response reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility%20ratio" title=" ductility ratio"> ductility ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20shear" title=" base shear"> base shear</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20moment%20resisting%20frames" title=" special moment resisting frames"> special moment resisting frames</a> </p> <a href="https://publications.waset.org/abstracts/1362/response-reduction-factor-for-earthquake-resistant-design-of-special-moment-resisting-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5305</span> Morphological and Molecular Abnormalities of the Skeletal Muscle Tissue from Pediatric Patient Affected by a Rare Genetic Chaperonopathy Associated with Motor Neuropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Noori">Leila Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosario%20Barone"> Rosario Barone</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Rappa"> Francesca Rappa</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonella%20Marino%20Gammazza"> Antonella Marino Gammazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandra%20Maria%20Vitale"> Alessandra Maria Vitale</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Donato%20Mangano"> Giuseppe Donato Mangano</a>, <a href="https://publications.waset.org/abstracts/search?q=Giusy%20Sentiero"> Giusy Sentiero</a>, <a href="https://publications.waset.org/abstracts/search?q=Filippo%20Macaluso"> Filippo Macaluso</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathryn%20H.%20Myburgh"> Kathryn H. Myburgh</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Cappello"> Francesco Cappello</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Scalia"> Federica Scalia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The neuromuscular system controls, directs, and allows movement of the body through the action of neural circuits, which include motor neurons, sensory neurons, and skeletal muscle fibers. Protein homeostasis of the involved cytotypes appears crucial to maintain the correct and prolonged functions of the neuromuscular system, and both neuronal cells and skeletal muscle fibers express significant quantities of protein chaperones, the molecular machinery responsible to maintain the protein turnover. Genetic mutations or defective post-translational modifications of molecular chaperones (i.e., genetic or acquired chaperonopathies) may lead to neuromuscular disorders called as neurochaperonopathies. The limited knowledge of the effects of the defective chaperones on skeletal muscle fibers and neurons impedes the progression of therapeutic approaches. A distinct genetic variation of CCT5 gene encoding for the subunit 5 of the chaperonin CCT (Chaperonin Containing TCP1; also known as TRiC, TCP1 Ring Complex) was recently described associated with severe distal motor neuropathy by our team. In this study, we investigated the histopathological abnormalities of the skeletal muscle biopsy of the pediatric patient affected by the mutation Leu224Val in the CCT5 subunit. We provide molecular and structural features of the diseased skeletal muscle tissue that we believe may be useful to identify undiagnosed cases of this rare genetic disorder. We investigated the histological abnormalities of the affected tissue via hematoxylin and eosin staining. Then we used immunofluorescence and qPCR techniques to explore the expression and distribution of CCT5 in diseased and healthy skeletal muscle tissue. Immunofluorescence and immunohistochemistry assays were performed to study the sarcomeric and structural proteins of skeletal muscle, including actin, myosin, tubulin, troponin-T, telethonin, and titin. We performed Western blot to examine the protein expression of CCT5 and some heat shock proteins, Hsp90, Hsp60, Hsp27, and α-B crystallin, along with the main client proteins of the CCT5, actin, and tubulin. Our findings revealed muscular atrophy, abnormal morphology, and different sizes of muscle fibers in affected tissue. The swollen nuclei and wide interfiber spaces were seen. Expression of CCT5 had been decreased and showed a different distribution pattern in the affected tissue. Altered expression, distribution, and bandage pattern were detected by confocal microscopy for the interested muscular proteins in tissue from the patient compared to the healthy control. Protein levels of the studied Hsps normally located at the Z-disk were reduced. Western blot results showed increased levels of the actin and tubulin proteins in the diseased skeletal muscle biopsy compared to healthy tissue. Chaperones must be expressed at high levels in skeletal muscle to counteract various stressors such as mechanical, oxidative, and thermal crises; therefore, it seems relevant that defects of molecular chaperones may result in damaged skeletal muscle fibers. So far, several chaperones or cochaperones involved in neuromuscular disorders have been defined. Our study shows that alteration of the CCT5 subunit is associated with the damaged structure of skeletal muscle fibers and alterations of chaperone system components and paves the way to explore possible alternative substrates of chaperonin CCT. However, further studies are underway to investigate the CCT mechanisms of action to design applicable therapeutic strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20chaperones" title="molecular chaperones">molecular chaperones</a>, <a href="https://publications.waset.org/abstracts/search?q=neurochaperonopathy" title=" neurochaperonopathy"> neurochaperonopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20system" title=" neuromuscular system"> neuromuscular system</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20homeostasis" title=" protein homeostasis"> protein homeostasis</a> </p> <a href="https://publications.waset.org/abstracts/161075/morphological-and-molecular-abnormalities-of-the-skeletal-muscle-tissue-from-pediatric-patient-affected-by-a-rare-genetic-chaperonopathy-associated-with-motor-neuropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5304</span> Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huai-Feng%20Wang">Huai-Feng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Lin%20Lou"> Meng-Lin Lou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ru-Lin%20Zhang"> Ru-Lin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20damping" title="Rayleigh damping">Rayleigh damping</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20damping" title=" modal damping"> modal damping</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20coefficients" title=" damping coefficients"> damping coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis" title=" seismic response analysis"> seismic response analysis</a> </p> <a href="https://publications.waset.org/abstracts/57421/selection-of-rayleigh-damping-coefficients-for-seismic-response-analysis-of-soil-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5303</span> A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Kumar">Vijaya Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidayasagar%20Pagilla"> Vidayasagar Pagilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Joshua"> Abraham Joshua</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakshith%20Kedambadi"> Rakshith Kedambadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Mithra"> Prasanna Mithra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20recovery" title=" motor recovery"> motor recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=mirror%20therapy" title=" mirror therapy"> mirror therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20electrical%20stimulation" title=" neuromuscular electrical stimulation"> neuromuscular electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a> </p> <a href="https://publications.waset.org/abstracts/64024/a-top-down-vs-a-bottom-up-approach-on-lower-extremity-motor-recovery-and-balance-following-acute-stroke-a-randomized-clinical-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5302</span> Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Li">Peng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Er-xiang%20Song"> Er-xiang Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20input" title="asynchronous input">asynchronous input</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20seismic%20response" title=" longitudinal seismic response"> longitudinal seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel%20structure" title=" tunnel structure"> tunnel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20wave%20effect" title=" traveling wave effect"> traveling wave effect</a> </p> <a href="https://publications.waset.org/abstracts/9730/three-dimensional-numerical-analysis-for-longitudinal-seismic-response-of-tunnels-under-asynchronous-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5301</span> Effect of Mica Content in Sand on Site Response Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Isbuga">Volkan Isbuga</a>, <a href="https://publications.waset.org/abstracts/search?q=Joman%20M.%20Mahmood"> Joman M. Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Firat%20Cabalar"> Ali Firat Cabalar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the site response analysis of mica-sand mixtures available in certain parts of the world including Izmir, a highly populated city and located in a seismically active region in western part of Turkey. We performed site response analyses by employing SHAKE, an equivalent linear approach, for the micaceous soil deposits consisting of layers with different amount of mica contents and thicknesses. Dynamic behavior of micaceous sands such as shear modulus reduction and damping ratio curves are input for the ground response analyses. Micaceous sands exhibit a unique dynamic response under a scenario earthquake with a magnitude of Mw=6. Results showed that higher amount of mica caused higher spectral accelerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micaceous%20sands" title="micaceous sands">micaceous sands</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response" title=" site response"> site response</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20linear%20approach" title=" equivalent linear approach"> equivalent linear approach</a>, <a href="https://publications.waset.org/abstracts/search?q=SHAKE" title=" SHAKE"> SHAKE</a> </p> <a href="https://publications.waset.org/abstracts/54831/effect-of-mica-content-in-sand-on-site-response-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5300</span> Dynamic Synthesis of a Flexible Multibody System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Ben%20Abdallah">Mohamed Amine Ben Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Imed%20Khemili"> Imed Khemili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Aifaoui"> Nizar Aifaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20genetic%20algorithm" title=" evolutionary genetic algorithm"> evolutionary genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20bodies" title=" flexible bodies"> flexible bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/51863/dynamic-synthesis-of-a-flexible-multibody-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5299</span> Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title="successive sampling">successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/78773/estimation-of-population-mean-under-random-non-response-in-two-phase-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5298</span> Estimation of Functional Response Model by Supervised Functional Principal Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyon%20I.%20Paek">Hyon I. Paek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Rim%20Kim"> Sang Rim Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyon%20A.%20Ryu"> Hyon A. Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supervised" title="supervised">supervised</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20principal%20component%20analysis" title=" functional principal component analysis"> functional principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20response" title=" functional response"> functional response</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20linear%20regression" title=" functional linear regression"> functional linear regression</a> </p> <a href="https://publications.waset.org/abstracts/177071/estimation-of-functional-response-model-by-supervised-functional-principal-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5297</span> Quality Standards for Emergency Response: A Methodological Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20E.%20Lynette">Jennifer E. Lynette</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the development process of a methodological framework for quality standards used to measure the efficiency and quality of response efforts of trained personnel at emergency events. This paper describes the techniques used to develop the initial framework and its potential application to professions under the broader field of emergency management. The example described in detail in this paper applies the framework specifically to fire response activities by firefighters. Within the quality standards framework, the fire response process is chronologically mapped. Individual variables within the sequence of events are identified. Through in-person data collection, questionnaires, interviews, and the expansion of the incident reporting system, this study identifies and categorizes previously unrecorded variables involved in the response phase of a fire. Following a data analysis of each variable using a quantitative or qualitative assessment, the variables are ranked pertaining to the magnitude of their impact to the event outcome. Among others, key indicators of quality performance in the analysis involve decision communication, resource utilization, response techniques, and response time. Through the application of this framework and subsequent utilization of quality standards indicators, there is potential to increase efficiency in the response phase of an emergency event; thereby saving additional lives, property, and resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20management" title="emergency management">emergency management</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20standards" title=" quality standards"> quality standards</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a> </p> <a href="https://publications.waset.org/abstracts/47475/quality-standards-for-emergency-response-a-methodological-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5296</span> Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Chanana">Saurabh Chanana</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Arora"> Monika Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title="demand response">demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20energy%20management" title=" home energy management"> home energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20communicating%20thermostat" title=" programmable communicating thermostat"> programmable communicating thermostat</a>, <a href="https://publications.waset.org/abstracts/search?q=thermostatically%20controlled%20appliances" title=" thermostatically controlled appliances"> thermostatically controlled appliances</a> </p> <a href="https://publications.waset.org/abstracts/1662/demand-response-from-residential-air-conditioning-load-using-a-programmable-communication-thermostat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5295</span> Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Gandhi">Pratik Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20Chandra"> Kavitha Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Thompson"> Charles Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20room%20impulse%20response" title="acoustic room impulse response">acoustic room impulse response</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20dependent%20reflection%20coefficients" title=" frequency dependent reflection coefficients"> frequency dependent reflection coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%27s%20function" title=" Green's function"> Green's function</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20model" title=" image model"> image model</a> </p> <a href="https://publications.waset.org/abstracts/152987/acoustic-room-impulse-response-computation-with-image-sources-and-frequency-dependent-boundary-reflection-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5294</span> Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxin%20Hui">Yingxin Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20feature" title=" seismic response feature"> seismic response feature</a>, <a href="https://publications.waset.org/abstracts/search?q=across%20faults" title=" across faults"> across faults</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a> </p> <a href="https://publications.waset.org/abstracts/19709/study-on-seismic-response-feature-of-multi-span-bridges-crossing-fault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5293</span> Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20exponential%20estimator" title="modified exponential estimator">modified exponential estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/85408/estimation-of-population-mean-under-random-non-response-in-two-occasion-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=177">177</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=178">178</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>