CINXE.COM

Search results for: vehicular traffic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vehicular traffic</title> <meta name="description" content="Search results for: vehicular traffic"> <meta name="keywords" content="vehicular traffic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vehicular traffic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vehicular traffic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1254</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vehicular traffic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1254</span> A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamaa%20Sellami">Lamaa Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=Bechir%20Alaya"> Bechir Alaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video-on-demand" title="video-on-demand">video-on-demand</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20ad-hoc%20network" title=" vehicular ad-hoc network"> vehicular ad-hoc network</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic%20load" title=" vehicular traffic load"> vehicular traffic load</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20cell" title=" small cell"> small cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20backhaul" title=" wireless backhaul"> wireless backhaul</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE-advanced" title=" LTE-advanced"> LTE-advanced</a>, <a href="https://publications.waset.org/abstracts/search?q=latency" title=" latency"> latency</a>, <a href="https://publications.waset.org/abstracts/search?q=packet%20loss" title=" packet loss"> packet loss</a> </p> <a href="https://publications.waset.org/abstracts/143145/a-5g-architecture-based-to-dynamic-vehicular-clustering-enhancing-vod-services-over-vehicular-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1253</span> Effect of On-Road Vehicular Traffic on Noise Pollution in Bhubaneswar City, Eastern India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dudam%20Bharath%20Kumar">Dudam Bharath Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsh%20Kumar"> Harsh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmed"> Naveed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicular traffic on the road-side plays a significant role in affecting the noise pollution in most of the cities over the world. To assess the correlation of the road-traffic on noise pollution in the city environment, continuous measurements were carried out in an entire daytime starting from 8:00 AM IST to 6:00 PM IST at a single point for each 5 minutes (8:00-8:05, 9:00-9:05, 10:00-10:05 AM, ...) near the KIIT University campus road. Noise levels were observed using a mobile operated app of android cell phone and a handheld noise meter. Calibration analysis shows high correlation about 0.89 for the study location for the day time period. Results show diurnal variability of atmospheric noise pollution levels go hand-in and with the vehicular number which pass through a point of observation. The range of noise pollution levels in the daytime period is observed as 55 to 75 dB(A). As a day starts, sudden upsurge of noise levels is observed from 65 to 71 dB(A) in the early morning, 64 dB(A) in late morning, regains the same quantity 68-71 dB(A) in the afternoon, and rises 70 dB(A) in the early evening. Vehicular number of the corresponding noise levels exhibits 115-120, 150-160, and 140-160, respectively. However, this preliminary study suggests the importance of vehicular traffic on noise pollution levels in the urban environment and further to study population exposed to noise levels. Innovative approaches help curb the noise pollution through modelling the traffic noise pollution spatially and temporally over the city environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20pollution" title="noise pollution">noise pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic" title=" vehicular traffic"> vehicular traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environment" title=" urban environment"> urban environment</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20meter" title=" noise meter"> noise meter</a> </p> <a href="https://publications.waset.org/abstracts/85094/effect-of-on-road-vehicular-traffic-on-noise-pollution-in-bhubaneswar-city-eastern-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1252</span> Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zhao">Lu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadir%20Farhi"> Nadir Farhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoi%20Christoforou"> Zoi Christoforou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Haddadou"> Nadia Haddadou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicular%20collisions" title="vehicular collisions">vehicular collisions</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20driving%20behavior" title=" human driving behavior"> human driving behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20modeling" title=" traffic modeling"> traffic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=car-following%20models" title=" car-following models"> car-following models</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20traffic%20simulation" title=" microscopic traffic simulation"> microscopic traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/139723/driver-behavior-analysis-and-inter-vehicular-collision-simulation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1251</span> Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhadip%20Biswas">Subhadip Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivendra%20Maurya"> Shivendra Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Indrajit%20Ghosh"> Indrajit Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speed" title="speed">speed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kriging" title=" Kriging"> Kriging</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial" title=" arterial"> arterial</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20volume" title=" traffic volume"> traffic volume</a> </p> <a href="https://publications.waset.org/abstracts/62347/effect-of-traffic-volume-and-its-composition-on-vehicular-speed-under-mixed-traffic-conditions-a-kriging-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1250</span> A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bikis%20Muhammed">Bikis Muhammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehra%20Sedigh%20Sarvestani"> Sehra Sedigh Sarvestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R.%20Hurson"> Ali R. Hurson</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasanthi%20Gamage"> Lasanthi Gamage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20prediction" title=" real time prediction"> real time prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=GAT" title=" GAT"> GAT</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-LSTM" title=" Bi-LSTM"> Bi-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=attention" title=" attention"> attention</a> </p> <a href="https://publications.waset.org/abstracts/170750/a-deep-learning-approach-to-real-time-and-robust-vehicular-traffic-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1249</span> Proposed Alternative System for Existing Traffic Signal System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alluri%20Swaroopa">Alluri Swaroopa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20N.%20Prasad"> L. V. N. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridges" title="bridges">bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=junctions" title=" junctions"> junctions</a>, <a href="https://publications.waset.org/abstracts/search?q=ramps" title=" ramps"> ramps</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20control" title=" urban traffic control"> urban traffic control</a> </p> <a href="https://publications.waset.org/abstracts/27580/proposed-alternative-system-for-existing-traffic-signal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1248</span> Artificial Neural Network Based Approach for Estimation of Individual Vehicle Speed under Mixed Traffic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhadip%20Biswas">Subhadip Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivendra%20Maurya"> Shivendra Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Indrajit%20Ghosh"> Indrajit Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing speed model is a challenging task particularly under mixed traffic condition where the traffic composition plays a significant role in determining vehicular speed. The present research has been conducted to model individual vehicular speed in the context of mixed traffic on an urban arterial. Traffic speed and volume data have been collected from three midblock arterial road sections in New Delhi. Using the field data, a volume based speed prediction model has been developed adopting the methodology of Artificial Neural Network (ANN). The model developed in this work is capable of estimating speed for individual vehicle category. Validation results show a great deal of agreement between the observed speeds and the predicted values by the model developed. Also, it has been observed that the ANN based model performs better compared to other existing models in terms of accuracy. Finally, the sensitivity analysis has been performed utilizing the model in order to examine the effects of traffic volume and its composition on individual speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speed%20model" title="speed model">speed model</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial" title=" arterial"> arterial</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20traffic" title=" mixed traffic"> mixed traffic</a> </p> <a href="https://publications.waset.org/abstracts/62366/artificial-neural-network-based-approach-for-estimation-of-individual-vehicle-speed-under-mixed-traffic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1247</span> VCloud: A Security Framework for VANET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiseborn%20Manfe%20Danquah">Wiseborn Manfe Danquah</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Turgay%20Altilar"> D. Turgay Altilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicular Ad-hoc Network (VANET) is an integral component of Intelligent Transport Systems (ITS) that has enjoyed a lot of attention from the research community and the automotive industry. This is mainly due to the opportunities and challenges it presents. Vehicular Ad-hoc Network being a class of Mobile Ad-hoc Networks (MANET) has all the security concerns existing in traditional MANET as well as new security and privacy concerns introduced by the unique vehicular communication environment. This paper provides a survey of the possible attacks in vehicular environment, as well as security and privacy concerns in VANET. It also provides an insight into the development of a comprehensive cloud framework to provide a more robust and secured communication among vehicular nodes and road side units. Our proposal, a Metropolitan Based Public Interconnected Vehicular Cloud (MIVC) infrastructure seeks to provide a more reliable and secured vehicular communication network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20Ad-hoc%20networks" title="mobile Ad-hoc networks">mobile Ad-hoc networks</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20ad%20hoc%20network" title=" vehicular ad hoc network"> vehicular ad hoc network</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=ITS" title=" ITS"> ITS</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20side%20units%20%28RSU%29" title=" road side units (RSU)"> road side units (RSU)</a>, <a href="https://publications.waset.org/abstracts/search?q=metropolitan%20interconnected%20vehicular%20cloud%20%28MIVC%29" title=" metropolitan interconnected vehicular cloud (MIVC)"> metropolitan interconnected vehicular cloud (MIVC)</a> </p> <a href="https://publications.waset.org/abstracts/15273/vcloud-a-security-framework-for-vanet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1246</span> Neural Network Approach to Classifying Truck Traffic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%20Moses">Ren Moses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20classification" title=" vehicle classification"> vehicle classification</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20analysis" title=" traffic analysis"> traffic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20highway%20opera-tions" title=" and highway opera-tions"> and highway opera-tions</a> </p> <a href="https://publications.waset.org/abstracts/15762/neural-network-approach-to-classifying-truck-traffic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1245</span> Sourcing and Compiling a Maltese Traffic Dataset MalTra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Borg">Gabriele Borg</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20De%20Bono"> Alexei De Bono</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlie%20Abela"> Charlie Abela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Big%20Data" title="Big Data">Big Data</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic" title=" vehicular traffic"> vehicular traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20data%20patterns" title=" mobile data patterns"> mobile data patterns</a> </p> <a href="https://publications.waset.org/abstracts/153117/sourcing-and-compiling-a-maltese-traffic-dataset-maltra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1244</span> Empirical Study and Modelling of Three-Dimensional Pedestrian Flow in Railway Foot-Over-Bridge Stair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujjal%20Chattaraj">Ujjal Chattaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Raviteja"> M. Raviteja</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Aemala"> Chaitanya Aemala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the years vehicular traffic has been given priority over pedestrian traffic. With the increase of population in cities, pedestrian traffic is increasing day by day. Pedestrian safety has become a matter of concern for the Traffic Engineers. Pedestrian comfort is primary important for the Engineers who design different pedestrian facilities. Pedestrian comfort and safety can be measured in terms of different level of service (LOS) of the facilities. In this study video data on pedestrian movement have been collected from different railway foot over bridges (FOB) in India. The level of service of those facilities has been analyzed. A cellular automata based model has been formulated to mimic the route choice behaviour of the pedestrians on the foot over bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata%20model" title="cellular automata model">cellular automata model</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20over%20bridge" title=" foot over bridge"> foot over bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20of%20service" title=" level of service"> level of service</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian" title=" pedestrian"> pedestrian</a> </p> <a href="https://publications.waset.org/abstracts/54466/empirical-study-and-modelling-of-three-dimensional-pedestrian-flow-in-railway-foot-over-bridge-stair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1243</span> Mobility Management for Pedestrian Accident Predictability and Mitigation Strategies Using Multiple</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Norman%20Nekesa">Oscar Norman Nekesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshitaka%20Kajita"> Yoshitaka Kajita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tom Mboya Street is a vital urban corridor within the spectrum of Nairobi city, it experiences high volumes of pedestrian and vehicular traffic. Despite past intervention measures to lessen this catastrophe, rates have remained high. This highlights significant safety concerns that need urgent attention. This study investigates the correlation and pedestrian accident predictability with significant independent variables using multiple linear regression to model to develop effective mobility management strategies for accident mitigation. The methodology involves collecting and analyzing data on pedestrian accidents and various related independent variables. Data sources include the National Transport and Safety Authority (NTSA), Kenya National Bureau of Statistics, and Nairobi City County records, covering five years. This study aims to investigate that traffic volumes (pedestrian and vehicle), Vehicular speed, human factors, illegal parking, policy issues, urban-land use, built environment, traffic signals conditions, inadequate lighting, and insufficient traffic control measures significantly have predictability with the rate of pedestrian accidents. Explanatory variables related to road design and geometry are significant in predictor models for the Tom Mboya Road link but less influential in junction along the 5 km stretch road models. The most impactful variable across all models was vehicular traffic flow. The study recommends infrastructural improvements, enhanced enforcement, and public awareness campaigns to reduce accidents and improve urban mobility. These insights can inform policy-making and urban planning to enhance pedestrian safety along the dense packed Tom Mboya Street and similar urban settings. The findings will inform evidence-based interventions to enhance pedestrian safety and improve urban mobility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression" title="multiple linear regression">multiple linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20mobility" title=" urban mobility"> urban mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=Nairobi" title=" Nairobi"> Nairobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Mboya%20street" title=" Tom Mboya street"> Tom Mboya street</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20conditions." title=" infrastructure conditions."> infrastructure conditions.</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20safety" title=" pedestrian safety"> pedestrian safety</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20and%20prediction" title=" correlation and prediction"> correlation and prediction</a> </p> <a href="https://publications.waset.org/abstracts/187468/mobility-management-for-pedestrian-accident-predictability-and-mitigation-strategies-using-multiple" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1242</span> Broadcast Routing in Vehicular Ad hoc Networks (VANETs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muazzam%20A.%20Khan">Muazzam A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Wasim"> Muhammad Wasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicular%20ad-hoc%20network" title="vehicular ad-hoc network ">vehicular ad-hoc network </a>, <a href="https://publications.waset.org/abstracts/search?q=broadcasting" title=" broadcasting"> broadcasting</a>, <a href="https://publications.waset.org/abstracts/search?q=networking%20protocols" title=" networking protocols"> networking protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20pattern" title=" traffic pattern"> traffic pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20intensity%20conflict" title=" low intensity conflict"> low intensity conflict</a> </p> <a href="https://publications.waset.org/abstracts/28117/broadcast-routing-in-vehicular-ad-hoc-networks-vanets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1241</span> Transport Related Air Pollution Modeling Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Sharma">K. D. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Parida"> M. Parida</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Jain"> S. S. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Anju%20Saini"> Anju Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Katiyar"> V. K. Katiyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20management" title="air quality management">air quality management</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20variables" title=" meteorological variables"> meteorological variables</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modeling" title=" statistical modeling"> statistical modeling</a> </p> <a href="https://publications.waset.org/abstracts/6439/transport-related-air-pollution-modeling-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1240</span> Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adinarayana%20Badveeti">Adinarayana Badveeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shafi%20Mir"> Mohammad Shafi Mir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion" title="traffic congestion">traffic congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20time%20index" title=" travel time index"> travel time index</a> </p> <a href="https://publications.waset.org/abstracts/82508/traffic-congestion-analysis-and-modeling-for-urban-roads-of-srinagar-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1239</span> Vehicular Speed Detection Camera System Using Video Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Anser%20Pasha">C. A. Anser Pasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar" title="radar">radar</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/45316/vehicular-speed-detection-camera-system-using-video-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1238</span> An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Magrini">M. Magrini</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Moroni"> D. Moroni</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Palazzese"> G. Palazzese</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Pieri"> G. Pieri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Azzarelli"> D. Azzarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Spada"> A. Spada</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Fanucci"> L. Fanucci</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Salvetti"> O. Salvetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intelligent%20Transportation%20Systems%20%28ITS%29" title="Intelligent Transportation Systems (ITS)">Intelligent Transportation Systems (ITS)</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a>, <a href="https://publications.waset.org/abstracts/search?q=railroad%20crossing" title=" railroad crossing"> railroad crossing</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20camera%20networks" title=" smart camera networks"> smart camera networks</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20obstacle%20detection" title=" radar obstacle detection"> radar obstacle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20traffic%20optimization" title=" real-time traffic optimization"> real-time traffic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=ETSI%20M2M" title=" ETSI M2M"> ETSI M2M</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20safety" title=" transport safety "> transport safety </a> </p> <a href="https://publications.waset.org/abstracts/25567/an-intelligent-transportation-system-for-safety-and-integrated-management-of-railway-crossings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Minimizing Vehicular Traffic via Integrated Land Use Development: A Heuristic Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babu%20Veeregowda">Babu Veeregowda</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongfang%20Liu"> Rongfang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current traffic impact assessment methodology and environmental quality review process for approval of land development project are conventional, stagnant, and one-dimensional. The environmental review policy and procedure lacks in providing the direction to regulate or seek alternative land uses and sizes that exploits the existing or surrounding elements of built environment (‘4 D’s’ of development – Density, Diversity, Design, and Distance to Transit) or smart growth principles which influence the travel behavior and have a significant effect in reducing vehicular traffic. Additionally, environmental review policy does not give directions on how to incorporate urban planning into the development in ways such as incorporating non-motorized roadway elements such as sidewalks, bus shelters, and access to community facilities. This research developed a methodology to optimize the mix of land uses and sizes using the heuristic optimization process to minimize the auto dependency development and to meet the interests of key stakeholders. A case study of Willets Point Mixed Use Development in Queens, New York, was used to assess the benefits of the methodology. The approved Willets Point Mixed Use project was based on maximum envelop of size and land use type allowed by current conventional urban renewal plans. This paper will also evaluate the parking accumulation for various land uses to explore the potential for shared parking to further optimize the mix of land uses and sizes. This research is very timely and useful to many stakeholders interested in understanding the benefits of integrated land uses and its development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20impact" title="traffic impact">traffic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20use" title=" mixed use"> mixed use</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=trip%20generation" title=" trip generation"> trip generation</a> </p> <a href="https://publications.waset.org/abstracts/73169/minimizing-vehicular-traffic-via-integrated-land-use-development-a-heuristic-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> Experimental Measurement for Vehicular Communication Evaluation Using Obu Arada System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Sassi">Aymen Sassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The equipment of vehicles with wireless communication capabilities is expected to be the key to the evolution to next generation intelligent transportation systems (ITS). The IEEE community has been continuously working on the development of an efficient vehicular communication protocol for the enhancement of Wireless Access in Vehicular Environment (WAVE). Vehicular communication systems, called V2X, support vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. The efficiency of such communication systems depends on several factors, among which the surrounding environment and mobility are prominent. Accordingly, this study focuses on the evaluation of the real performance of vehicular communication with special focus on the effects of the real environment and mobility on V2X communication. It starts by identifying the real maximum range that such communication can support and then evaluates V2I and V2V performances. The Arada LocoMate OBU transmission system was used to test and evaluate the impact of the transmission range in V2X communication. The evaluation of V2I and V2V communication takes the real effects of low and high mobility on transmission into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IEEE%20802.11p" title="IEEE 802.11p">IEEE 802.11p</a>, <a href="https://publications.waset.org/abstracts/search?q=V2I" title=" V2I"> V2I</a>, <a href="https://publications.waset.org/abstracts/search?q=V2X" title=" V2X"> V2X</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=PLR" title=" PLR"> PLR</a>, <a href="https://publications.waset.org/abstracts/search?q=Arada%20LocoMate%20OBU" title=" Arada LocoMate OBU"> Arada LocoMate OBU</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20range" title=" maximum range"> maximum range</a> </p> <a href="https://publications.waset.org/abstracts/27556/experimental-measurement-for-vehicular-communication-evaluation-using-obu-arada-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1235</span> Intelligent Parking Systems for Quasi-Close Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20Adekunle%20Faiyetole">Ayodele Adekunle Faiyetole</a>, <a href="https://publications.waset.org/abstracts/search?q=Olumide%20Olawale%20Jegede"> Olumide Olawale Jegede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental design and needs justifications for a localized intelligent parking system (L-IPS), ideal for quasi-close communities with increasing vehicular volume that depends on limited or constant parking facilities. For a constant supply in parking facilities, the demand for an increasing vehicular volume could lead to poor time conservation or extended travel time, traffic congestion or impeded mobility, and safety issues. Increased negative environmental and economic externalities are other associated and consequent downsides of disparities in demand and supply. This L-IPS is designed using a microcontroller, ultrasonic sensors, LED indicators, such that the current status, in terms of parking spots availability, can be known from the main entrance to the community or a parking zone on a LCD screen. As an advanced traffic management system (ATMS), the L-IPS is designed to resolve aspects of infrastructure-to-driver (I2D) communication and parking detection issues. Thus, this L-IPS can act as a timesaver for users by helping them know the availability of parking spots. Providing on-time, informed routing, to a next preference or seamless moving to berth on the available spot on a proximate facility as the case may be. Its use could also increase safety and increase mobility, and fuel savings and costs, therefore, reducing negative environmental and economic externalities due to transportation systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20parking%20systems" title="intelligent parking systems">intelligent parking systems</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20intelligent%20parking%20system" title=" localized intelligent parking system"> localized intelligent parking system</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20systems" title=" intelligent transport systems"> intelligent transport systems</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20traffic%20management%20systems" title=" advanced traffic management systems"> advanced traffic management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure-to-drivers%20communication" title=" infrastructure-to-drivers communication"> infrastructure-to-drivers communication</a> </p> <a href="https://publications.waset.org/abstracts/106820/intelligent-parking-systems-for-quasi-close-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1234</span> Vehicular Emission Estimation of Islamabad by Using Copert-5 Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jahanzaib">Muhammad Jahanzaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Z.%20A.%20Khan"> Muhammad Z. A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Khayyam"> Junaid Khayyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COPERT%20Model" title="COPERT Model">COPERT Model</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20estimation" title=" emission estimation"> emission estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=PM10" title=" PM10"> PM10</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20emission" title=" vehicular emission"> vehicular emission</a> </p> <a href="https://publications.waset.org/abstracts/77778/vehicular-emission-estimation-of-islamabad-by-using-copert-5-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1233</span> PIN-Diode Based Slotted Reconfigurable Multiband Antenna Array for Vehicular Communication </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Upadhyay">Gaurav Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nand%20Kishore"> Nand Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Ranjan"> Prashant Ranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivesh%20Tripathi"> Shivesh Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Tripathi"> V. S. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a patch antenna array design is proposed for vehicular communication. The antenna consists of 2-element patch array. The antenna array is operating at multiple frequency bands. The multiband operation is achieved by use of slots at proper locations at the patch. The array is made reconfigurable by use of two PIN-diodes. The antenna is simulated and measured in four states of diodes i.e. ON-ON, ON-OFF, OFF-ON, and OFF-OFF. In ON-ON state of diodes, the resonant frequencies are 4.62-4.96, 6.50-6.75, 6.90-7.01, 7.34-8.22, 8.89-9.09 GHz. In ON-OFF state of diodes, the measured resonant frequencies are 4.63-4.93, 6.50-6.70 and 7.81-7.91 GHz. In OFF-ON states of diodes the resonant frequencies are 1.24-1.46, 3.40-3.75, 5.07-5.25 and 6.90-7.20 GHz and in the OFF-OFF state of diodes 4.49-4.75 and 5.61-5.98 GHz. The maximum bandwidth of the proposed antenna is 16.29%. The peak gain of the antenna is 3.4 dB at 5.9 GHz, which makes it suitable for vehicular communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=array" title=" array"> array</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable" title=" reconfigurable"> reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular" title=" vehicular"> vehicular</a> </p> <a href="https://publications.waset.org/abstracts/85090/pin-diode-based-slotted-reconfigurable-multiband-antenna-array-for-vehicular-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1232</span> ECO ROADS: A Solution to the Vehicular Pollution on Roads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshit%20Garg">Harshit Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakshi%20Gupta"> Shakshi Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major problems in today’s world is the growing pollution. The cause for all environmental problems is the increasing pollution rate. Looking upon the statistics, one can find out that most of the pollution is caused by the vehicular pollution which is more than 70 % of the total pollution, effecting the environment as well as human health proportionally. One is aware of the fact that vehicles run on roads so why not having the roads which could adsorb that pollution, not only once but a number of times. Every problem has a solution which can be solved by the state of art of technology, that is one can use the innovative ideas and thoughts to make technology as a solution to the problem of vehicular pollution on roads. Solving the problem up to a certain limit/ percentage can be formulated into a new term called ECO ROADS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=roads" title=" roads"> roads</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainibility" title=" sustainibility"> sustainibility</a> </p> <a href="https://publications.waset.org/abstracts/35026/eco-roads-a-solution-to-the-vehicular-pollution-on-roads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1231</span> Assessment and Evaluation of Traffic Noise in Selected Government Healthcare Facilities at Birnin Kebbi, Kebbi State-Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naziru%20Yahaya">Muhammad Naziru Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Buhari%20Samaila"> Buhari Samaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasiru%20Abubakar"> Nasiru Abubakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise pollution caused by vehicular movement in urban cities has reached alarming proportions due to continuous increases in vehicles and industrialization. Traffic noise causes deafness, annoyance, and other health challenges. According to World Health Organization recommends 60Db daytime sound levels and 40db night time sound levels in hospitals, schools, and other residential areas. Measurements of traffic noise were taken at six different locations of selected healthcare facilities at Birnin Kebbi (Sir Yahaya Memorial Hospital and Federal Medical Centre Birnin Kebbi). The data was collected in the vicinity of hospitals using the slow setting of the device and pointed at noise sources. An integrated multifunctional sound level GM1352, KK2821163 model, was used for measuring the emitted noise and temperatures. The data was measured and recorded at three different periods of the day 8 am – 12 pm, 3 pm – 6 pm, and 6 pm – 8:30 pm, respectively. The results show that a fair traffic flow producing an average sound level in the order of 38db – 64db was recorded at GOPDF, amenityF, and ante-natalF. Similarly, high traffic noise was observed at GOPDS, amenityS, and Fati-LamiS in the order of 52db – 78db unsatisfactory threshold for human hearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amenities" title="amenities">amenities</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a> </p> <a href="https://publications.waset.org/abstracts/158499/assessment-and-evaluation-of-traffic-noise-in-selected-government-healthcare-facilities-at-birnin-kebbi-kebbi-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1230</span> Platooning Method Using Dynamic Correlation of Destination Vectors in Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuya%20Tanigami">Yuya Tanigami</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoaki%20Yamanaka"> Naoaki Yamanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoru%20Okamoto"> Satoru Okamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Economic losses due to delays in traffic congestion regarding urban transportation networks have become a more serious social problem as traffic volume increases. Platooning has recently been attracting attention from many researchers to alleviate traffic jams, especially on the highway. On highways, platooning can have positive effects, such as reducing inter-vehicular distance and reducing air resistance. However, the impacts of platooning on urban roads have not been addressed in detail since traffic lights may break the platoons. In this study, we propose a platooning method using L2 norm and cosine similarity to form a platoon with highly similar routes. Also, we investigate the sorting method within a platoon according to each vehicle’s straightness. Our proposed sorting platoon method, which uses two lanes, eliminates Head of Line Blocking at the intersection and improves throughput at intersections. This paper proposes a cyber-physical system (CPS) approach to collaborative urban platoon control. We conduct simulations using the traffic simulator SUMO and the road network, which imitates Manhattan Island. Results from the SUMO confirmed that our method shortens the average travel time by 10-20%. This paper shows the validity of forming a platoon based on destination vectors and sorting vehicles within a platoon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CPS" title="CPS">CPS</a>, <a href="https://publications.waset.org/abstracts/search?q=platooning" title=" platooning"> platooning</a>, <a href="https://publications.waset.org/abstracts/search?q=connected%20car" title=" connected car"> connected car</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20correlation" title=" vector correlation"> vector correlation</a> </p> <a href="https://publications.waset.org/abstracts/160046/platooning-method-using-dynamic-correlation-of-destination-vectors-in-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1229</span> Traffic Safety and Risk Assessment Model by Analysis of Questionnaire Survey: A Case Study of S. G. Highway, Ahmedabad, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhijitsinh%20Gohil">Abhijitsinh Gohil</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushal%20Wadhvaniya"> Kaushal Wadhvaniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuldipsinh%20Jadeja"> Kuldipsinh Jadeja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road Safety is a multi-sectoral and multi-dimensional issue. An effective model can assess the risk associated with highway safety. A questionnaire survey is very essential to identify the events or activities which are causing unsafe condition for traffic on an urban highway. A questionnaire of standard questions including vehicular, human and infrastructure characteristics can be made. Responses from the age wise group of road users can be taken on field. Each question or an event holds a specific risk weightage, which contributes in creating an inappropriate and unsafe flow of traffic. The probability of occurrence of an event can be calculated from the data collected from the road users. Finally, the risk score can be calculated by considering the risk factor and the probability of occurrence of individual event and addition of all risk score for the individual event will give the total risk score of a particular road. Standards for risk score can be made and total risk score can be compared with the standards. Thus road can be categorized based on risk associated and traffic safety on it. With this model, one can assess the need for traffic safety improvement on a given road, and qualitative data can be analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20occurrence" title="probability of occurrence">probability of occurrence</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor" title=" risk factor"> risk factor</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20score" title=" risk score"> risk score</a> </p> <a href="https://publications.waset.org/abstracts/72400/traffic-safety-and-risk-assessment-model-by-analysis-of-questionnaire-survey-a-case-study-of-s-g-highway-ahmedabad-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1228</span> Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Bensiradj">Taha Bensiradj</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Moussaoui"> Samira Moussaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HSVN" title="HSVN">HSVN</a>, <a href="https://publications.waset.org/abstracts/search?q=ITS" title=" ITS"> ITS</a>, <a href="https://publications.waset.org/abstracts/search?q=VANET" title=" VANET"> VANET</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a> </p> <a href="https://publications.waset.org/abstracts/54397/proposal-of-commutation-protocol-in-hybrid-sensors-and-vehicular-networks-for-intelligent-transport-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1227</span> Assessment and Prediction of Vehicular Emissions in Commonwealth Avenue, Quezon City at Various Policy and Technology Scenarios Using Simple Interactive Model (SIM-Air)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ria%20M.%20Caramoan">Ria M. Caramoan</a>, <a href="https://publications.waset.org/abstracts/search?q=Analiza%20P.%20Rollon"> Analiza P. Rollon</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20N.%20Vergel"> Karl N. Vergel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Simple Interactive Models for Better Air Quality (SIM-air) is an integrated approach model that allows the available information to support the integrated urban air quality management. This study utilized the vehicular air pollution information system module of SIM-air for the assessment of vehicular emissions in Commonwealth Avenue, Quezon City, Philippines. The main objective of the study is to assess and predict the contribution of different types of vehicles to the vehicular emissions in terms of PM₁₀, SOₓ, and NOₓ at different policy and technology scenarios. For the base year 2017, the results show vehicular emissions of 735.46 tons of PM₁₀, 108.90 tons of SOₓ, and 2,101.11 tons of NOₓ. Motorcycle is the major source of particulates contributing about 52% of the PM₁₀ emissions. Meanwhile, Public Utility Jeepneys contribute 27% of SOₓ emissions and private cars using gasoline contribute 39% of NOₓ emissions. Ambient air quality monitoring was also conducted in the study area for the standard parameters of PM₁₀, S0₂, and NO₂. Results show an average of 88.11 µg/Ncm, 47.41 µg/Ncm and 22.54 µg/Ncm for PM₁₀, N0₂, and SO₂, respectively, all were within the DENR National Ambient Air Quality Guideline Values. Future emissions of PM₁₀, NOₓ, and SOₓ are estimated at different scenarios. Results show that in the year 2030, PM₁₀ emissions will be increased by 186.2%. NOₓ emissions and SOₓ emissions will also be increased by 38.9% and 5.5%, without the implementation of the scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20air%20quality" title="ambient air quality">ambient air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions%20inventory" title=" emissions inventory"> emissions inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20air%20pollution" title=" mobile air pollution"> mobile air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20emissions" title=" vehicular emissions"> vehicular emissions</a> </p> <a href="https://publications.waset.org/abstracts/111215/assessment-and-prediction-of-vehicular-emissions-in-commonwealth-avenue-quezon-city-at-various-policy-and-technology-scenarios-using-simple-interactive-model-sim-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1226</span> Personal Exposure to Respirable Particles and Other Selected Gases among Cyclists near and Away from Busy Roads of Perth Metropolitan Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anu%20Shrestha">Anu Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Krassi%20Rumchev"> Krassi Rumchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Mullins"> Ben Mullins</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Zhao"> Yun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Selvey"> Linda Selvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cycling is often promoted as a means of reducing vehicular congestion, noise and greenhouse gas and air pollutant emissions in urban areas. It is also indorsed as a healthy means of transportation in terms of reducing the risk of developing a range of physical and psychological conditions. However, people who cycle regularly may not be aware that they can become exposed to high levels of Vehicular Air Pollutants (VAP) emitted by nearby traffics and therefore experience adverse health effects as a result. The study will highlight the present scenario of ambient air pollution level in different cycling routes in Perth and also highlight significant contribution to the understanding of health risks that cyclist may face from exposure to particulate air pollution. Methodology: This research was conducted in Perth, Western Austral and consisted of two groups of cyclists cycling near high (2 routes) and low (two routes) vehicular traffic roads, at high and low levels of exertion, during the cold and warm seasons. A sample size of 123 regular cyclists who cycled at least 80 km/week, aged 20-55, and non-smoker were selected for this study. There were altogether 100 male and 23 female who were asked to choose one or more routes among four different routes, and each participant cycled the route for warm or cold or both seasons. Cyclist who reported cardiovascular and other chronic health conditions (excluding asthma) were not invited into the study. Exposures to selected air pollutants were assessed by undertaking background and personal measurements alone with the measurement of heart and breathe rate of each participant. Finding: According to the preliminary study findings, the cyclists who used cycling route close to high traffic route were exposed to higher levels of measured air pollutants Nitrogen Oxide (NO₂) =0.12 ppm, sulfur dioxide (SO₂)=0.06 ppm and carbon monoxide (CO)=0.25 PPM compared to those who cycled away from busy roads. However, we measured high concentrations of particulate air pollution near one of the low traffic route which we associate with the close proximity to ferry station. Concluding Statement: As a conclusion, we recommend that cycling routes should be selected away from high traffic routes. If possible, we should also consider that if the cycling route is surrounded by the dense populated infrastructures, it can trap the pollutants and always facilitate in increasing inhalation of particle count among the cyclists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title=" carbon monoxide"> carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclists%27%20health" title=" cyclists&#039; health"> cyclists&#039; health</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20dioxide" title=" nitrogen dioxide"> nitrogen dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20oxide" title=" nitrogen oxide"> nitrogen oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=respirable%20particulate%20matters" title=" respirable particulate matters"> respirable particulate matters</a> </p> <a href="https://publications.waset.org/abstracts/52412/personal-exposure-to-respirable-particles-and-other-selected-gases-among-cyclists-near-and-away-from-busy-roads-of-perth-metropolitan-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1225</span> Perception of Risk toward Traffic Violence among Road Users in Makassar, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulasmi%20Sudirman">Sulasmi Sudirman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmadanty%20Mujah%20Hartika"> Rachmadanty Mujah Hartika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic violence is currently a big issue in Indonesia. However, the road users perceived risk that is caused by traffic violence is low. The lack of safety driving awareness is one of the factors that road users committed to traffic violence. There are several lists of common traffic violence in Indonesia such as lack of physical fitness, not wearing helmet, unfasten seatbelt, breaking through the traffic light, not holding a driving license, and some more violence. This research sought to explore the perception of road users toward traffic violence. The participants were road users in Makassar, Indonesia who were using cars and motorbikes. The method of the research was a qualitative approach by using a personal interview to collect data. The research showed that there three main ideas of perceiving traffic violence which are motives, environment that supported traffic violence, and reinforcement. The road users committed traffic violence had particular motive, for example, rushing. The road users committed to traffic violence when other road users and significant other did the same. The road users committed traffic violence when the police were not there to give a ticket. It can be concluded that the perception of road users toward traffic violence determined by internal aspect, the social aspect, and regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perception" title="perception">perception</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20users" title=" road users"> road users</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=violence" title=" violence"> violence</a> </p> <a href="https://publications.waset.org/abstracts/105587/perception-of-risk-toward-traffic-violence-among-road-users-in-makassar-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10