CINXE.COM
Search results for: biomedical device
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biomedical device</title> <meta name="description" content="Search results for: biomedical device"> <meta name="keywords" content="biomedical device"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biomedical device" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biomedical device"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2389</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biomedical device</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2389</span> The Use of Gelatin in Biomedical Engineering: Halal Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syazwani%20Ramli">Syazwani Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhidayu%20Muhamad%20Zain"> Norhidayu Muhamad Zain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the use of gelatin as biomaterials in tissue engineering are evolving especially in skin graft and wound dressing applications. Towards year 2018, Malaysia is in the way of planning to get the halal certification for biomedical device in order to cater the needs of Muslims and non-Muslims in Malaysia. However, the use of gelatins in tissue engineering are mostly derived from non-halal sources. Currently, gelatin production mostly comes from mammalian gelatin sources. Moreover, within these past years, just a few studies of the uses of gelatin in tissue engineering from halal perspective has been studied. Thus, this paper aims to give overview of the use of gelatin from different sources from halal perspectives. This review also discussing the current status of halal for the emerging biomedical devices. In addition, the different sources of gelatin used in tissue engineering are being identified and provides better alternatives for halal gelatin. Cold- water fish skin gelatin could be an effective alternative to substitute the mammalian sources. Therefore, this review is important because the information about the halal biomedical devices will delighted Muslim consumers and give better insight of halal gelatin in tissue engineering application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20device" title="biomedical device">biomedical device</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=halal" title=" halal"> halal</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20graft" title=" skin graft"> skin graft</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/85056/the-use-of-gelatin-in-biomedical-engineering-halal-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2388</span> Remote Wireless Patient Monitoring System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagar%20R.%20Patil">Sagar R. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20R.%20Gawade"> Dinesh R. Gawade</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20N.%20Divekar"> Sudhir N. Divekar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the medical devices we found when we visit a hospital care unit such device is ‘patient monitoring system’. This device (patient monitoring system) informs doctors and nurses about the patient’s physiological signals. However, this device (patient monitoring system) does not have a remote monitoring capability, which is necessitates constant onsite attendance by support personnel (doctors and nurses). Thus, we have developed a Remote Wireless Patient Monitoring System using some biomedical sensors and Android OS, which is a portable patient monitoring. This device(Remote Wireless Patient Monitoring System) monitors the biomedical signals of patients in real time and sends them to remote stations (doctors and nurse’s android Smartphone and web) for display and with alerts when necessary. Wireless Patient Monitoring System different from conventional device (Patient Monitoring system) in two aspects: First its wireless communication capability allows physiological signals to be monitored remotely and second, it is portable so patients can move while there biomedical signals are being monitor. Wireless Patient Monitoring is also notable because of its implementation. We are integrated four sensors such as pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate and electrocardiogram (ECG) in this device (Wireless Patient Monitoring System) and Monitoring and communication applications are implemented on the Android OS using threads, which facilitate the stable and timely manipulation of signals and the appropriate sharing of resources. The biomedical data will be display on android smart phone as well as on web Using web server and database system we can share these physiological signals with remote place medical personnel’s or with any where in the world medical personnel’s. We verified that the multitasking implementation used in the system was suitable for patient monitoring and for other Healthcare applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patient%20monitoring" title="patient monitoring">patient monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20patient%20monitoring" title=" wireless patient monitoring"> wireless patient monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-medical%20signals" title=" bio-medical signals"> bio-medical signals</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20signals" title=" physiological signals"> physiological signals</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=Android%20OS" title=" Android OS"> Android OS</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20oximeter%20%28SPO2%29" title=" pulse oximeter (SPO2)"> pulse oximeter (SPO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermometer" title=" thermometer"> thermometer</a>, <a href="https://publications.waset.org/abstracts/search?q=respiration" title=" respiration"> respiration</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure%20%28BP%29" title=" blood pressure (BP)"> blood pressure (BP)</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram%20%28ECG%29" title=" electrocardiogram (ECG)"> electrocardiogram (ECG)</a> </p> <a href="https://publications.waset.org/abstracts/26470/remote-wireless-patient-monitoring-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2387</span> Valuation on MEMS Pressure Sensors and Device Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Amziah%20Md%20Yunus">Nurul Amziah Md Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Izhal%20Abdul%20Halin"> Izhal Abdul Halin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Sulaiman"> Nasri Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Faezah%20Ismail"> Noor Faezah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Kai%20Sheng"> Ong Kai Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title="pressure sensor">pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm" title=" diaphragm"> diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20application" title=" automotive application"> automotive application</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title=" biomedical application"> biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a> </p> <a href="https://publications.waset.org/abstracts/28395/valuation-on-mems-pressure-sensors-and-device-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2386</span> Highly-Efficient Photoreaction Using Microfluidic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigenori%20Togashi">Shigenori Togashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukako%20Asano"> Yukako Asano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20device" title="microfluidic device">microfluidic device</a>, <a href="https://publications.waset.org/abstracts/search?q=photoreaction" title=" photoreaction"> photoreaction</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20aluminum%20oxide" title=" black aluminum oxide"> black aluminum oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=benzophenone" title=" benzophenone"> benzophenone</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20improvement" title=" yield improvement"> yield improvement</a> </p> <a href="https://publications.waset.org/abstracts/7922/highly-efficient-photoreaction-using-microfluidic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2385</span> Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liang%20Chang">Wen Liang Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=second-hand%20device" title="second-hand device">second-hand device</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20time" title=" replacement time"> replacement time</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20failure" title=" device failure"> device failure</a> </p> <a href="https://publications.waset.org/abstracts/9223/replacement-time-and-number-of-preventive-maintenance-actions-for-second-hand-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2384</span> A SiGe Low Power RF Front-End Receiver for 5.8GHz Wireless Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunwon%20Moon">Hyunwon Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to realize new biomedical wireless communication systems which send the signals collected from various bio sensors located at human body in order to monitor our health. Also, it should seamlessly connect to the existing wireless communication systems. A 5.8 GHz ISM band low power RF front-end receiver for a biomedical wireless communication system is implemented using a 0.5 µm SiGe BiCMOS process. To achieve low power RF front-end, the current optimization technique for selecting device size is utilized. The implemented low noise amplifier (LNA) shows a power gain of 9.8 dB, a noise figure (NF) of below 1.75 dB, and an IIP3 of higher than 7.5 dBm while current consumption is only 6 mA at supply voltage of 2.5 V. Also, the performance of a down-conversion mixer is measured as a conversion gain of 11 dB and SSB NF of 10 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical" title="biomedical">biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=mixer" title=" mixer"> mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver" title=" receiver"> receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20front-end" title=" RF front-end"> RF front-end</a>, <a href="https://publications.waset.org/abstracts/search?q=SiGe" title=" SiGe"> SiGe</a> </p> <a href="https://publications.waset.org/abstracts/53327/a-sige-low-power-rf-front-end-receiver-for-58ghz-wireless-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2383</span> A Portable Device for Pulse Wave Velocity Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Lin%20Wang">Chien-Lin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cha-Ling%20Ko"> Cha-Ling Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Tainsong%20Chen"> Tainsong Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulse wave velocity (PWV) of blood flow provides important information of vessel property and blood pressure which can be used to assess cardiovascular disease. However, the above measurements need expensive equipment, such as Doppler ultrasound, MRI, angiography etc. The photoplethysmograph (PPG) signals are commonly utilized to detect blood volume changes. In this study, two infrared (IR) probes are designed and placed at a fixed distance from finger base and fingertip. An analog circuit with automatic gain adjustment is implemented to get the stable original PPG signals from above two IR probes. In order to obtain the time delay precisely between two PPG signals, we obtain the pulse transit time from the second derivative of the original PPG signals. To get a portable, wireless and low power consumption PWV measurement device, the low energy Bluetooth 4.0 (BLE) and the microprocessor (Cortex™-M3) are used in this study. The PWV is highly correlated with blood pressure. This portable device has potential to be used for continuous blood pressure monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20wave%20velocity" title="pulse wave velocity">pulse wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=portable%20device" title=" portable device"> portable device</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title=" biomedical engineering"> biomedical engineering</a> </p> <a href="https://publications.waset.org/abstracts/24782/a-portable-device-for-pulse-wave-velocity-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2382</span> A Review on the Re-Usage of Single-Use Medical Devices </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucas%20B.%20Naves">Lucas B. Naves</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jos%C3%A9%20Abreu"> Maria José Abreu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reusing" title="reusing">reusing</a>, <a href="https://publications.waset.org/abstracts/search?q=reprocessing" title=" reprocessing"> reprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=single-use%20medical%20device" title=" single-use medical device"> single-use medical device</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20B%20and%20C" title=" hepatitis B and C"> hepatitis B and C</a> </p> <a href="https://publications.waset.org/abstracts/47910/a-review-on-the-re-usage-of-single-use-medical-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2381</span> Forensic Challenges in Source Device Identification for Digital Videos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Aminu%20Bagiwa">Mustapha Aminu Bagiwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainuddin%20Wahid%20Abdul%20Wahab"> Ainuddin Wahid Abdul Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yamani%20Idna%20Idris"> Mohd Yamani Idna Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleman%20Khan"> Suleman Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20forgery" title="video forgery">video forgery</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20camcorder" title=" source camcorder"> source camcorder</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20identification" title=" device identification"> device identification</a>, <a href="https://publications.waset.org/abstracts/search?q=forgery%20detection" title=" forgery detection "> forgery detection </a> </p> <a href="https://publications.waset.org/abstracts/21641/forensic-challenges-in-source-device-identification-for-digital-videos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">631</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2380</span> Analysis of Gas Disturbance Characteristics in Lunar Sample Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng">Lv Shizeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao"> Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yi"> Zhang Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding%20Wenjing"> Ding Wenjing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lunar%20samples" title="lunar samples">lunar samples</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20disturbance" title=" gas disturbance"> gas disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20device" title=" storage device"> storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20analysis" title=" characteristic analysis"> characteristic analysis</a> </p> <a href="https://publications.waset.org/abstracts/69595/analysis-of-gas-disturbance-characteristics-in-lunar-sample-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2379</span> Product Design and Development of Wearable Assistant Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao-Jun%20Hong">Hao-Jun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Tang%20Huang"> Jung-Tang Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world is gradually becoming an aging society, and with the lack of laboring forces, this phenomenon is affecting the nation’s economy growth. Although nursing centers are booming in recent years, the lack of medical resources are yet to be resolved, thus creating an innovative wearable medical device could be a vital solution. This research is focused on the design and development of a wearable device which obtains a more precise heart failure measurement than products on the market. The method used by the device is based on the sensor fusion and big data algorithm. From the test result, the modified structure of wearable device can significantly decrease the MA (Motion Artifact) and provide users a more cozy and accurate physical monitor experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20artifact" title=" motion artifact"> motion artifact</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20fusion" title=" sensor fusion"> sensor fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20medical%20device" title=" wearable medical device"> wearable medical device</a> </p> <a href="https://publications.waset.org/abstracts/59226/product-design-and-development-of-wearable-assistant-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2378</span> Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Zamani%20Kouhpanji">Mohammad Reza Zamani Kouhpanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensors%20and%20actuators" title="sensors and actuators">sensors and actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS%20devices" title=" MEMS/NEMS devices"> MEMS/NEMS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20and%20fracture%20nanomechanical%20testing%20device" title=" fatigue and fracture nanomechanical testing device"> fatigue and fracture nanomechanical testing device</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20cyclic%20nanomechanical%20testing%20device" title=" static and cyclic nanomechanical testing device"> static and cyclic nanomechanical testing device</a> </p> <a href="https://publications.waset.org/abstracts/78711/designing-and-analyzing-sensor-and-actuator-of-a-nanomicro-system-for-fatigue-and-fracture-characterization-of-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2377</span> Advanced Palliative Aquatics Care Multi-Device AuBento for Symptom and Pain Management by Sensorial Integration and Electromagnetic Fields: A Preliminary Design Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Pollo%20Gaspary">J. F. Pollo Gaspary</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Peron%20Gaspary"> F. Peron Gaspary</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Sim%C3%A3o"> E. M. Simão</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Concatto%20Beltrame"> R. Concatto Beltrame</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Orengo%20de%20Oliveira"> G. Orengo de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ristow%20Ferreira"> M. S. Ristow Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=J.C.%20Mairesse%20Siluk"> J.C. Mairesse Siluk</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20F.%20Minello"> I. F. Minello</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20dos%20Santos%20de%20Oliveira"> F. dos Santos de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Although palliative care policies and services have been developed, research in this area continues to lag. An integrated model of palliative care is suggested, which includes complementary and alternative services aimed at improving the well-being of patients and their families. The palliative aquatics care multi-device (AuBento) uses several electromagnetic techniques to decrease pain and promote well-being through relaxation and interaction among patients, specialists, and family members. Aim: The scope of this paper is to present a preliminary design study of a device capable of exploring the various existing theories on the biomedical application of magnetic fields. This will be achieved by standardizing clinical data collection with sensory integration, and adding new therapeutic options to develop an advanced palliative aquatics care, innovating in symptom and pain management. Methods: The research methodology was based on the Work Package Methodology for the development of projects, separating the activities into seven different Work Packages. The theoretical basis was carried out through an integrative literature review according to the specific objectives of each Work Package and provided a broad analysis, which, together with the multiplicity of proposals and the interdisciplinarity of the research team involved, generated consistent and understandable complex concepts in the biomedical application of magnetic fields for palliative care. Results: Aubento ambience was idealized with restricted electromagnetic exposure (avoiding data collection bias) and sensory integration (allowing relaxation associated with hydrotherapy, music therapy, and chromotherapy or like floating tank). This device has a multipurpose configuration enabling classic or exploratory options on the use of the biomedical application of magnetic fields at the researcher's discretion. Conclusions: Several patients in diverse therapeutic contexts may benefit from the use of magnetic fields or fluids, thus validating the stimuli to clinical research in this area. A device in controlled and multipurpose environments may contribute to standardizing research and exploring new theories. Future research may demonstrate the possible benefits of the aquatics care multi-device AuBento to improve the well-being and symptom control in palliative care patients and their families. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20palliative%20aquatics%20care" title="advanced palliative aquatics care">advanced palliative aquatics care</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20therapy" title=" magnetic field therapy"> magnetic field therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20device" title=" medical device"> medical device</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20design" title=" research design"> research design</a> </p> <a href="https://publications.waset.org/abstracts/129241/advanced-palliative-aquatics-care-multi-device-aubento-for-symptom-and-pain-management-by-sensorial-integration-and-electromagnetic-fields-a-preliminary-design-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2376</span> Developement of a New Wearable Device for Automatic Guidance Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title="wearable device">wearable device</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20sysem" title=" guide sysem"> guide sysem</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title=" MEMS sensor"> MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a> </p> <a href="https://publications.waset.org/abstracts/21436/developement-of-a-new-wearable-device-for-automatic-guidance-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2375</span> Facts of Near Field Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Hamrahi">Amin Hamrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near Field Communication (NFC) is one of the latest wireless communication technologies. NFC enables electronic devices to communicate in short range using the radio waves. NFC offers safe yet simple communication between electronic devices. This technology provides the fastest way to communicate two device with in a fraction of second. With NFC technology, communication occurs when an NFC-compatible device is brought within a few centimeters of another NFC device. NFC is an open-platform technology that is being standardized in the NFC Forum. NFC is based on and extends on RFID. It operates on 13.56 MHz frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near%20field%20communication" title="near field communication">near field communication</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC%20technology" title=" NFC technology"> NFC technology</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication%20technologies" title=" wireless communication technologies"> wireless communication technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC-compatible%20device" title=" NFC-compatible device"> NFC-compatible device</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a> </p> <a href="https://publications.waset.org/abstracts/30917/facts-of-near-field-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2374</span> Enhancement of Light Out Efficiency of PLED Device Employing Designed Substrate Combined with Nano-Line Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting-Ting%20Wen">Ting-Ting Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Lin"> H. C. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports a study for the light outcoupling efficiency of the PLED device. In use of a designed substrate combined with nano-line patterns in PLED device, the light outcoupling efficiency can be significantly enhanced. The designed substrate was made by UV imprinting technology, such as triangular microlens arrays on the front and periodic corrugated patterns on the back surface. The nano-line patterns in PLED device was fabricated by advanced microstamping and ink-jet printing techniques. For high angles of observation with respect to the substrate surface normal, the light out intensity of the developed PLED device is increased from 0.05 (a.u.) up to 0.69 (a.u.) at the view angle 85 degree. The designed integration leads to 64% increase of the light out intensity compared with the conventional PLED device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triangular%20microlens" title="triangular microlens">triangular microlens</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugation%20patterns" title=" corrugation patterns"> corrugation patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-line%20patterns" title=" nano-line patterns"> nano-line patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=PLED%20device" title=" PLED device"> PLED device</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20imprinting%20technology" title=" UV imprinting technology"> UV imprinting technology</a>, <a href="https://publications.waset.org/abstracts/search?q=microstamping" title=" microstamping"> microstamping</a> </p> <a href="https://publications.waset.org/abstracts/17239/enhancement-of-light-out-efficiency-of-pled-device-employing-designed-substrate-combined-with-nano-line-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2373</span> Automatic Battery Charging for Rotor Wings Type Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeyeon%20Kim">Jeyeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the development of the automatic battery charging device for the rotor wings type unmanned aerial vehicle (UAV) and the positioning method that can be accurately landed on the charging device when landing. The developed automatic battery charging device is considered by simple maintenance, durability, cost and error of the positioning when landing. In order to for the UAV accurately land on the charging device, two kinds of markers (a color marker and a light marker) installed on the charging device is detected by the camera mounted on the UAV. And then, the UAV is controlled so that the detected marker becomes the center of the image and is landed on the device. We conduct the performance evaluation of the proposal positioning method by the outdoor experiments at day and night, and show the effectiveness of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title="unmanned aerial vehicle">unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20battery%20charging" title=" automatic battery charging"> automatic battery charging</a>, <a href="https://publications.waset.org/abstracts/search?q=positioning" title=" positioning"> positioning</a> </p> <a href="https://publications.waset.org/abstracts/71183/automatic-battery-charging-for-rotor-wings-type-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2372</span> Secure Transmission Scheme in Device-to-Device Multicast Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangwon%20Seo">Bangwon Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider multicast device-to-device (D2D) direct communication systems in cellular networks. In multicast D2D communications, nearby mobile devices exchanges, their data directly without going through a base station and a D2D transmitter send its data to multiple D2D receivers that compose of D2D multicast group. We consider wiretap channel where there is an eavesdropper that attempts to overhear the transmitted data of the D2D transmitter. In this paper, we propose a secure transmission scheme in D2D multicast communications in cellular networks. In order to prevent the eavesdropper from overhearing the transmitted data of the D2D transmitter, a precoding vector is employed at the D2D transmitter in the proposed scheme. We perform computer simulations to evaluate the performance of the proposed scheme. Through the simulation, we show that the secrecy rate performance can be improved by selecting an appropriate precoding vector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=device-to-device%20communications" title="device-to-device communications">device-to-device communications</a>, <a href="https://publications.waset.org/abstracts/search?q=wiretap%20channel" title=" wiretap channel"> wiretap channel</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20transmission" title=" secure transmission"> secure transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=precoding" title=" precoding"> precoding</a> </p> <a href="https://publications.waset.org/abstracts/64163/secure-transmission-scheme-in-device-to-device-multicast-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2371</span> The Development of the Prototype of Bamboo Shading Device </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuanwan%20Tuaycharoen">Nuanwan Tuaycharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanarat%20Konisranukul"> Wanarat Konisranukul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this research was to investigate the prototype of bamboo shading device. There were two objectives of this study. The first objective was to investigate the effect of non-chemical treatments on damage of bamboo shading device by powder-post beetle and fungi. The second aim of this study was to develop a prototype of bamboo shading device. The study of the effect of non-chemical treatments on damage of bamboo shading device by powder-post beetle in laboratory showed that, among seven treatments tested, wood vinegar treatment can protect powder-post beetle better than the original method up to 92.91%. It was also found that wood vinegar treatment can show the best performance in fungi protection and work better than the original method up to 40%. The second experiment was carried out by constructing four bamboo shading devices and installing them on a building for 28 days. All aspects of shading device were investigated in terms of their beauty, durability, and ease of construction and assembly. The final prototype was developed from the lessons drawn from these tested options. In conclusion this study showed the effectiveness of some natural preservatives against insect and fungi damage. It also illustrated the characteristics of the prototype of bamboo shading device that can constructed by rural workers within one week. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=shading%20device" title=" shading device"> shading device</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title=" energy conservation"> energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20material" title=" alternative material"> alternative material</a> </p> <a href="https://publications.waset.org/abstracts/26400/the-development-of-the-prototype-of-bamboo-shading-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2370</span> Bluetooth Piconet System for Child Care Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Sung%20Wang">Ching-Sung Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng-Wei%20Wang"> Teng-Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen-Ting%20Zheng"> Zhen-Ting Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study mainly concerns a safety device designed for child care. When children are out of sight or the caregivers cannot always pay attention to the situation, through the functions of this device, caregivers can immediately be informed to make sure that the children do not get lost or hurt, and thus, ensure their safety. Starting from this concept, a device is produced based on the relatively low-cost Bluetooth piconet system and a three-axis gyroscope sensor. This device can transmit data to a mobile phone app through Bluetooth, in order that the user can learn the situation at any time. By simply clipping the device in a pocket or on the waist, after switching on/starting the device, it will send data to the phone to detect the child’s fall and distance. Once the child is beyond the angle or distance set by the app, it will issue a warning to inform the phone owner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=children%20care" title="children care">children care</a>, <a href="https://publications.waset.org/abstracts/search?q=piconet%20system" title=" piconet system"> piconet system</a>, <a href="https://publications.waset.org/abstracts/search?q=three-axis%20gyroscope" title=" three-axis gyroscope"> three-axis gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20detection" title=" distance detection"> distance detection</a>, <a href="https://publications.waset.org/abstracts/search?q=falls%20detection" title=" falls detection"> falls detection</a> </p> <a href="https://publications.waset.org/abstracts/78252/bluetooth-piconet-system-for-child-care-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2369</span> Transient Performance Analysis of Gate Inside Junctionless Transistor (GI-JLT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Singh">Sangeeta Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kumar"> Pankaj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Kondekar"> P. N. Kondekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the transient device performance analysis of n-type Gate Inside Junctionless Transistor (GIJLT)has been evaluated. 3-D Bohm Quantum Potential (BQP)transport device simulation has been used to evaluate the delay and power dissipation performance. GI-JLT has a number of desirable device parameters such as reduced propagation delay, dynamic power dissipation, power and delay product, intrinsic gate delay and energy delay product as compared to Gate-all-around transistors GAA-JLT. In addition to this, various other device performance parameters namely, on/off current ratio, short channel effects (SCE), transconductance Generation Factor(TGF) and unity gain cut-off frequency (fT) and subthreshold slope (SS) of the GI-JLT and Gate-all-around junctionless transistor(GAA-JLT) have been analyzed and compared. GI-JLT shows better device performance characteristics than GAA-JLT for low power and high frequency applications, because of its larger gate electrostatic control on the device operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gate-inside%20junctionless%20transistor%20GI-JLT" title="gate-inside junctionless transistor GI-JLT">gate-inside junctionless transistor GI-JLT</a>, <a href="https://publications.waset.org/abstracts/search?q=gate-all-around%20junctionless%20transistor%20GAA-JLT" title=" gate-all-around junctionless transistor GAA-JLT"> gate-all-around junctionless transistor GAA-JLT</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20delay" title=" propagation delay"> propagation delay</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20delay%20product" title=" power delay product"> power delay product</a> </p> <a href="https://publications.waset.org/abstracts/9662/transient-performance-analysis-of-gate-inside-junctionless-transistor-gi-jlt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2368</span> Improving Research Collaborations in Medical Device Development in Korea from an SMEs’ Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Chung%20Kim">Yoon Chung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this coming aging society, medical device industry is expected to become one of the major industries. Since developing medical devices usually requires technology convergence, research collaboration is important, especially for some small and medium enterprises (SMEs) that do not have enough R&D resources in each related field. Collaboration in medical device development has some unique properties. Since it requires convergence technology, collaboration with different fields, and different types of people are often required. Since it requires clinical test, the development process usually takes longer and collaboration with hospitals is also required. However, despite these importance and uniqueness, collaboration in medical device development has not yet been widely studied. Thus, our research focuses on investigating collaborations in medical device development. For our research, we conducted surveys and interviews, especially with SMEs’ perspective in Korea. The result and discussion will be presented with a major impact factors for collaboration result, as well as future strategies that will improve and strengthen collaboration process in medical devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20device" title="medical device">medical device</a>, <a href="https://publications.waset.org/abstracts/search?q=SME" title=" SME"> SME</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20collaboration" title=" research collaboration"> research collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical" title=" clinical"> clinical</a> </p> <a href="https://publications.waset.org/abstracts/49482/improving-research-collaborations-in-medical-device-development-in-korea-from-an-smes-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2367</span> Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Botman">S. Botman</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Borchevkin"> D. Borchevkin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Petrov"> V. Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bogdanov"> E. Bogdanov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Patrushev"> M. Patrushev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Shusharina"> N. Shusharina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20diseases" title="cardiovascular diseases">cardiovascular diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring%20systems" title=" health monitoring systems"> health monitoring systems</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20wave" title=" pulse wave"> pulse wave</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20diagnostics" title=" remote diagnostics"> remote diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/29151/photoplethysmography-based-device-designing-for-cardiovascular-system-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2366</span> A Highly Sensitive Dip Strip for Detection of Phosphate in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hojat%20Heidari-Bafroui">Hojat Heidari-Bafroui</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Charbaji"> Amer Charbaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantine%20Anagnostopoulos"> Constantine Anagnostopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Faghri"> Mohammad Faghri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20detection" title="phosphate detection">phosphate detection</a>, <a href="https://publications.waset.org/abstracts/search?q=paper-based%20device" title=" paper-based device"> paper-based device</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum%20blue%20method" title=" molybdenum blue method"> molybdenum blue method</a>, <a href="https://publications.waset.org/abstracts/search?q=colorimetric%20assay" title=" colorimetric assay"> colorimetric assay</a> </p> <a href="https://publications.waset.org/abstracts/134960/a-highly-sensitive-dip-strip-for-detection-of-phosphate-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2365</span> Novel Ultrasensitive Point of Care Device for Diagnosis of Human Schistosomiasis Mansoni</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Aly">Ibrahim Aly</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Elawamy"> Waleed Elawamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Taher"> Hanan Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Matar"> Amira Matar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schistosomiasis is infection with blood flukes of the genus Schistosoma, which are acquired trans-cutaneously by swimming or wading in contaminated freshwater. The present study was proposed to produce ultra-sensitive, field-friendly high-throughput rapid immunochromatography diagnostic device for accurate detection of asymptomatic parasite carriers in schistosomiasis pre-elimination settings.For assessing diagnostic potential of rapid device, 50 blood samples from patients with schistosomiasis mansoni, 29 other proven parasitic diseases and 25 blood samples as negative control were from healthy individuals were used. The sensitivity of Quantitative antigen-capture nano-ELISAwas 82 %, and specificity was 87.1 %, where the sensitivity of Nano Dot- ELISA was 86 % and specificity was 90.7 %. The sensitivity of diagnostic device was 78 % and specificity was 85.2 %, with PPV and NPV of 86.2 % and 83.1 %, respectively.The Point of care device resulted in a good performance for the diagnosis of low-intensity infections, it was able to identify 19 out of 25 (76 %) individuals with ⩽7 eggs, 10 out of 14 individuals (71.4 %) with 11–99 eggs and 100 % of individuals with 100–399 eggs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=schistosomiasis" title="schistosomiasis">schistosomiasis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunochromatography" title=" immunochromatography"> immunochromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=naon-dot-ELISa" title=" naon-dot-ELISa"> naon-dot-ELISa</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostis%20device" title=" diagnostis device"> diagnostis device</a> </p> <a href="https://publications.waset.org/abstracts/178300/novel-ultrasensitive-point-of-care-device-for-diagnosis-of-human-schistosomiasis-mansoni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2364</span> Design and Manufacture Detection System for Patient's Unwanted Movements during Radiology and CT Scan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Yaghobi">Anita Yaghobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Homayoun%20Ebrahimian"> Homayoun Ebrahimian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important tools that can help orthopedic doctors for diagnose diseases is imaging scan. Imaging techniques can help physicians in see different parts of the body, including the bones, muscles, tendons, nerves, and cartilage. During CT scan, a patient must be in the same position from the start to the end of radiation treatment. Patient movements are usually monitored by the technologists through the closed circuit television (CCTV) during scan. If the patient makes a small movement, it is difficult to be noticed by them. In the present work, a simple patient movement monitoring device is fabricated to monitor the patient movement. It uses an electronic sensing device. It continuously monitors the patient’s position while the CT scan is in process. The device has been retrospectively tested on 51 patients whose movement and distance were measured. The results show that 25 patients moved 1 cm to 2.5 cm from their initial position during the CT scan. Hence, the device can potentially be used to control and monitor patient movement during CT scan and Radiography. In addition, an audible alarm situated at the control panel of the control room is provided with this device to alert the technologists. It is an inexpensive, compact device which can be used in any CT scan machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title="CT scan">CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology" title=" radiology"> radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=X%20Ray" title=" X Ray"> X Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=unwanted%20movement" title=" unwanted movement"> unwanted movement</a> </p> <a href="https://publications.waset.org/abstracts/32893/design-and-manufacture-detection-system-for-patients-unwanted-movements-during-radiology-and-ct-scan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2363</span> Optical Repeater Assisted Visible Light Device-to-Device Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samrat%20Vikramaditya%20Tiwari">Samrat Vikramaditya Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Sewaiwar"> Atul Sewaiwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeon-Ho%20Chung"> Yeon-Ho Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Device-to-device (D2D) communication is considered a promising technique to provide wireless peer-to-peer communication services. Due to increasing demand on mobile services, available spectrum for radio frequency (RF) based communications becomes scarce. Recently, visible light communications (VLC) has evolved as a high speed wireless data transmission technology for indoor environments with abundant available bandwidth. In this paper, a novel VLC based D2D communication that provides wireless peer-to-peer communication is proposed. Potential low operating power devices for an efficient D2D communication over increasing distance of separation between devices is analyzed. Optical repeaters (OR) are also proposed to enhance the performance in an environment where direct D2D communications yield degraded performance. Simulation results show that VLC plays an important role in providing efficient D2D communication up to a distance of 1 m between devices. It is also found that the OR significantly improves the coverage distance up to 3.5 m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication" title="visible light communication">visible light communication</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitting%20diode" title=" light emitting diode"> light emitting diode</a>, <a href="https://publications.waset.org/abstracts/search?q=device-to-device" title=" device-to-device"> device-to-device</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20repeater" title=" optical repeater"> optical repeater</a> </p> <a href="https://publications.waset.org/abstracts/36727/optical-repeater-assisted-visible-light-device-to-device-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2362</span> Effect of Halo Protection Device on the Aerodynamic Performance of Formula Racecar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Lin">Mark Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Periklis%20Papadopoulos"> Periklis Papadopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the aerodynamics of the formula racecar when a ‘halo’ driver-protection device is added to the chassis. The halo protection device was introduced at the start of the 2018 racing season as a safety measure against foreign object impacts that a driver may encounter when driving an open-wheel racecar. In the one-year since its introduction, the device has received wide acclaim for protecting the driver on two separate occasions. The benefit of such a safety device certainly cannot be disputed. However, by adding the halo device to a car, it changes the airflow around the vehicle, and most notably, to the engine air-intake and the rear wing. These negative effects in the air supply to the engine, and equally to the downforce created by the rear wing are studied in this paper using numerical technique, and the resulting CFD outputs are presented and discussed. Comparing racecar design prior to and after the introduction of the halo device, it is shown that the design of the air intake and the rear wing has not followed suit since the addition of the halo device. The reduction of engine intake mass flow due to the halo device is computed and presented for various speeds the car may be going. Because of the location of the halo device in relation to the air intake, airflow is directed away from the engine, making the engine perform less than optimal. The reduction is quantified in this paper to show the correspondence to reduce the engine output when compared to a similar car without the halo device. This paper shows that through aerodynamic arguments, the engine in a halo car will not receive unobstructed, clean airflow that a non-halo car does. Another negative effect is on the downforce created by the rear wing. Because the amount of downforce created by the rear wing is influenced by every component that comes before it, when a halo device is added upstream to the rear wing, airflow is obstructed, and less is available for making downforce. This reduction in downforce is especially dramatic as the speed is increased. This paper presents a graph of downforce over a range of speeds for a car with and without the halo device. Acknowledging that although driver safety is paramount, the negative effect of this safety device on the performance of the car should still be well understood so that any possible redesign to mitigate these negative effects can be taken into account in next year’s rules regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20aerodynamics" title="automotive aerodynamics">automotive aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=halo%20device" title=" halo device"> halo device</a>, <a href="https://publications.waset.org/abstracts/search?q=downforce.%20engine%20intake" title=" downforce. engine intake"> downforce. engine intake</a> </p> <a href="https://publications.waset.org/abstracts/116953/effect-of-halo-protection-device-on-the-aerodynamic-performance-of-formula-racecar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2361</span> Seismic Response Control of 20-Storey Benchmark Building Using True Negative Stiffness Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Qureshi">Asim Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Jangid"> R. S. Jangid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic response control of structures is generally achieved by using control devices which either dissipate the input energy or modify the dynamic properties of structure.In this paper, the response of a 20-storey benchmark building supplemented by viscous dampers and Negative Stiffness Device (NSD) is assessed by numerical simulations using the Newmark-beta method. True negative stiffness is an adaptive passive device which assists the motion unlike positive stiffness. The structure used in this study is subjected to four standard ground motions varying from moderate to severe, near fault to far-field earthquakes. The objective of the present study is to show the effectiveness of the adaptive negative stiffness device (NSD and passive dampers together) relative to passive dampers alone. This is done by comparing the responses of the above uncontrolled structure (i.e., without any device) with the structure having passive dampers only and also with the structure supplemented with adaptive negative stiffness device. Various performance indices, top floor displacement, top floor acceleration and inter-storey drifts are used as comparison parameters. It is found that NSD together with passive dampers is quite effective in reducing the response of aforementioned structure relative to structure without any device or passive dampers only. Base shear and acceleration is reduced significantly by incorporating NSD at the cost of increased inter-storey drifts which can be compensated using the passive dampers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20negative%20stiffness%20device" title="adaptive negative stiffness device">adaptive negative stiffness device</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20yielding" title=" apparent yielding"> apparent yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=NSD" title=" NSD"> NSD</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20dampers" title=" passive dampers"> passive dampers</a> </p> <a href="https://publications.waset.org/abstracts/27228/seismic-response-control-of-20-storey-benchmark-building-using-true-negative-stiffness-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2360</span> Research on Aerodynamic Brake Device for High-Speed Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yun">S. Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kwak"> M. Kwak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20brake" title="aerodynamic brake">aerodynamic brake</a>, <a href="https://publications.waset.org/abstracts/search?q=braking%20distance" title=" braking distance"> braking distance</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title=" high-speed train"> high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-tunnel%20test" title=" wind-tunnel test"> wind-tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/65559/research-on-aerodynamic-brake-device-for-high-speed-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=79">79</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=80">80</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20device&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>