CINXE.COM

Search results for: wall thinning

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wall thinning</title> <meta name="description" content="Search results for: wall thinning"> <meta name="keywords" content="wall thinning"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wall thinning" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wall thinning"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1332</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wall thinning</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1332</span> Failure Analysis of a Hydrocarbon Carrying/Piping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esteban%20Morales%20Murillo">Esteban Morales Murillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ephraim%20Mokgothu"> Ephraim Mokgothu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the findings of a study conducted to investigate the wall thinning in a piping system carrying a mix of hydrocarbons in a petrochemical plant. A detailed investigation including optical inspection and several characterisation techniques such as optical microscopy, SEM/EDX, and XRF/C-S analyses was conducted. The examinations revealed that the wall thinning in the piping system was a result of high-temperature H2/H2S corrosion caused by a susceptible material for this mechanism and operating parameters and effluent concentrations beyond the prescribed limits. The sulfide layers found to testify to the large amounts of H2S that led to material degradation. Deposit analysis revealed that it consisted primarily of carbon, oxygen, iron, chromium and sulfur. Metallographic examinations revealed that the attack initiated from the internal surface and that spheroidization of carbides did occur. The article discusses in detail the contribution failure factors on the Couper-Gorman H2/H2S curves to draw conclusions. Recommendations based on the above findings are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=Couper-Gorman" title=" Couper-Gorman"> Couper-Gorman</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20corrosion" title=" high-temperature corrosion"> high-temperature corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfidation" title=" sulfidation"> sulfidation</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thinning" title=" wall thinning"> wall thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=piping%20system" title=" piping system"> piping system</a> </p> <a href="https://publications.waset.org/abstracts/24431/failure-analysis-of-a-hydrocarbon-carryingpiping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1331</span> Investigation of Neutral Axis Shifting and Wall Thickness Distribution of Bent Tubes Produced by Rotary Draw Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Engel">Bernd Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Raheem%20Hassan"> Hassan Raheem Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotary draw bending is a method used for tube forming. During the tube bending process, the neutral axis moves towards the inner arc and the wall thickness changes in the cross section of the tube. Wall thinning of the tube takes place at the extrados, whereas wall thickening of the tube occurs at the intrados. This paper investigates the tube bending with rotary draw bending process using thick-walled tubes and different material properties (16Mo3 and 10CrMo9-10). The experimental tests and finite element simulations are used to calculate the variable characteristics (wall thickness distribution, neutral axis shifting and longitudinal strain distribution). These results are compared with results of a plasto-mechanical model. Moreover, the cross section distortion is investigated in this study. This study helped to get bends with smaller wall factor for different material properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotary%20draw%20bending" title="rotary draw bending">rotary draw bending</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20wall%20tube" title=" thick wall tube"> thick wall tube</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20properties" title=" material properties"> material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20influence" title=" material influence "> material influence </a> </p> <a href="https://publications.waset.org/abstracts/35913/investigation-of-neutral-axis-shifting-and-wall-thickness-distribution-of-bent-tubes-produced-by-rotary-draw-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1330</span> Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markus%20R%C3%BCtten">Markus Rütten</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaf%20W%C3%BCnsch"> Olaf Wünsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K&acute;arm&acute;an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-viscous%20fluids" title=" thermo-viscous fluids"> thermo-viscous fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning" title=" shear thinning"> shear thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a> </p> <a href="https://publications.waset.org/abstracts/66430/heat-transfer-dependent-vortex-shedding-of-thermo-viscous-shear-thinning-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1329</span> Particle Migration in Shear Thinning Viscoelastic Fluid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shamik%20Hazra">Shamik Hazra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushanta%20Mitra"> Sushanta Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashis%20Sen"> Ashis Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite growing interest of microparticle manipulation in non-Newtonian fluids, combined effect of viscoelasticity and shear thinning on particle lateral position is not well understood. We performed experiments with rigid microparticles of 15 µm diamater in popular Shear thinning viscoelastic (STVE) liquid poyethylene oxide (PEO) of different molecular weights (MW) and concentrations (c), for Reynolds number (Re) < 1. Microparticles in an STVE liquid revealed four different migration regimes: original streamline (OS), bimodal (BM), centre migration (CM) and defocusing (DF), depending upon the Re and c and interplay of different forces is also elucidated. Our investigation will be helpful to select proper polymer concentration to achieve desired particle focusing inside microchannel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20migration" title="lateral migration">lateral migration</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticle" title=" microparticle"> microparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20oxide" title=" polyethylene oxide"> polyethylene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning" title=" shear thinning"> shear thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/128138/particle-migration-in-shear-thinning-viscoelastic-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1328</span> Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punit%20Kumar">Punit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Kumar"> Niraj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EHL" title="EHL">EHL</a>, <a href="https://publications.waset.org/abstracts/search?q=Carreau" title=" Carreau"> Carreau</a>, <a href="https://publications.waset.org/abstracts/search?q=shear-thinning" title=" shear-thinning"> shear-thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=amplitude" title=" amplitude"> amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelength" title=" wavelength"> wavelength</a> </p> <a href="https://publications.waset.org/abstracts/6356/surface-roughness-effects-in-pure-sliding-ehl-line-contacts-with-carreau-type-shear-thinning-lubricants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">731</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1327</span> Various Modification of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20St%C4%99pniowski">W. J. Stępniowski</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Florkiewicz"> W. Florkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Norek"> M. Norek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Michalska-Doma%C5%84ska"> M. Michalska-Domańska</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ko%C5%9Bciuczyk"> E. Kościuczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Czujko"> T. Czujko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodic%20aluminum%20oxide" title="anodic aluminum oxide">anodic aluminum oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=anodization" title=" anodization"> anodization</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier%20layer%20thinning" title=" barrier layer thinning"> barrier layer thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopores" title=" nanopores"> nanopores</a> </p> <a href="https://publications.waset.org/abstracts/17451/various-modification-of-electrochemical-barrier-layer-thinning-of-anodic-aluminum-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1326</span> Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Engel">B. Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hassan"> H. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotary%20draw%20bending" title="rotary draw bending">rotary draw bending</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20properties" title=" material properties"> material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20axis%20shifting" title=" neutral axis shifting"> neutral axis shifting</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thickness%20distribution" title=" wall thickness distribution"> wall thickness distribution</a> </p> <a href="https://publications.waset.org/abstracts/18270/advanced-model-for-calculation-of-the-neutral-axis-shifting-and-the-wall-thickness-distribution-in-rotary-draw-bending-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1325</span> Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zouhaier%20Nasr">Zouhaier Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Nouri"> Mohamed Nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest" title="forest">forest</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/146020/effect-of-thinning-practice-on-carbon-storage-in-soil-forest-northern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1324</span> Wall Shear Stress Under an Impinging Planar Jet Using the Razor Blade Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ritcey">A. Ritcey</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Mcdermid"> J. R. Mcdermid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ziada"> S. Ziada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wall shear stress was experimentally measured under a planar impinging air jet as a function of jet Reynolds number (Rejet = 5000, 8000, 11000) and different normalized impingement distances (H/D = 4, 6, 8, 10, 12) using the razor blade technique to complete a parametric study. The wall pressure, wall pressure gradient, and wall shear stress information were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20fluid%20mechanics" title="experimental fluid mechanics">experimental fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=impinging%20planar%20jets" title=" impinging planar jets"> impinging planar jets</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20friction%20factor" title=" skin friction factor"> skin friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a> </p> <a href="https://publications.waset.org/abstracts/25336/wall-shear-stress-under-an-impinging-planar-jet-using-the-razor-blade-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1323</span> The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Arabzadeh">A. Arabzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Kazemi%20Nia%20Korrani"> H. R. Kazemi Nia Korrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20shear%20wall" title="composite shear wall">composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=opening" title=" opening"> opening</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/8715/the-effect-of-opening-on-mode-shapes-and-frequencies-of-composite-shear-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1322</span> Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Snehal%20R.%20Pathak">Snehal R. Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20S.%20Munnoli"> Sachin S. Munnoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20pressure" title="earth pressure">earth pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=2-DOF%20model" title=" 2-DOF model"> 2-DOF model</a>, <a href="https://publications.waset.org/abstracts/search?q=Plaxis" title=" Plaxis"> Plaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20walls" title=" retaining walls"> retaining walls</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20movement" title=" wall movement "> wall movement </a> </p> <a href="https://publications.waset.org/abstracts/32549/dynamic-active-earth-pressure-on-flexible-cantilever-retaining-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1321</span> Parametrical Simulation of Sheet Metal Forming Process to Control the Localized Thinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Mrad">Hatem Mrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Alban%20Notin"> Alban Notin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bouazara"> Mohamed Bouazara </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sheet metal forming process has a multiple successive steps starting from sheets fixation to sheets evacuation. Often after forming operation, the sheet has defects requiring additional corrections steps. For example, in the drawing process, the formed sheet may have several defects such as springback, localized thinning and bends. All these defects are directly dependent on process, geometric and material parameters. The prediction and elimination of these defects requires the control of most sensitive parameters. The present study is concerned with a reliable parametric study of deep forming process in order to control the localized thinning. The proposed approach will be based on stochastic finite element method. Especially, the polynomial Chaos development will be used to establish a reliable relationship between input (process, geometric and material parameters) and output variables (sheet thickness). The commercial software Abaqus is used to conduct numerical finite elements simulations. The automatized parametrical modification is provided by coupling a FORTRAN routine, a PYTHON script and input Abaqus files. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal%20forming" title="sheet metal forming">sheet metal forming</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20thinning" title=" localized thinning"> localized thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20simulation" title=" parametric simulation"> parametric simulation</a> </p> <a href="https://publications.waset.org/abstracts/8162/parametrical-simulation-of-sheet-metal-forming-process-to-control-the-localized-thinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1320</span> Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ahmadabadi">Mojtaba Ahmadabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Masoudi"> Akbar Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Rezai"> Morteza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title="retaining wall">retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=fem" title=" fem"> fem</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20wall%20interaction" title=" soil and wall interaction"> soil and wall interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction%20of%20the%20soil" title=" angle of internal friction of the soil"> angle of internal friction of the soil</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20displacement" title=" wall displacement"> wall displacement</a> </p> <a href="https://publications.waset.org/abstracts/44288/studying-the-impact-of-soil-characteristics-in-displacement-of-retaining-walls-using-finite-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1319</span> Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivam%20Patel">Shivam Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Y.%20Usmani"> Abdullah Y. Usmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20FVM" title="3D FVM">3D FVM</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerebral%20aneurysm" title=" Cerebral aneurysm"> Cerebral aneurysm</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=coil%20embolization" title=" coil embolization"> coil embolization</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title=" non-Newtonian fluid"> non-Newtonian fluid</a> </p> <a href="https://publications.waset.org/abstracts/73792/hemodynamics-of-a-cerebral-aneurysm-under-rest-and-exercise-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1318</span> An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20Wang">X. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Craft"> T. J. Craft</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Iacovides"> H. Iacovides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SWTBLIs" title="SWTBLIs">SWTBLIs</a>, <a href="https://publications.waset.org/abstracts/search?q=skin-friction" title=" skin-friction"> skin-friction</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modeling" title=" turbulence modeling"> turbulence modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20function" title=" wall function"> wall function</a> </p> <a href="https://publications.waset.org/abstracts/60622/an-analytical-wall-function-for-2-d-shock-waveturbulent-boundary-layer-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1317</span> Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naseem%20Baig">Muhammad Naseem Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qudoos%20Khan"> Abdul Qudoos Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Ali"> Jamal Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of 64ft deep excavation in mixed stiff soil conditions supported by a cantilever pile wall. A series of finite element analyses have been carried out in Plaxis 2D by varying pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of wall. The finite element analysis results are compared with field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excavations" title="excavations">excavations</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20systems" title=" support systems"> support systems</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20stiffness" title=" wall stiffness"> wall stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever%20walls" title=" cantilever walls"> cantilever walls</a> </p> <a href="https://publications.waset.org/abstracts/139648/influence-of-wall-stiffness-and-embedment-depth-on-excavations-supported-by-cantilever-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1316</span> Societal Acceptance of Trombe Wall in Buildings in Mediterranean Region: A Case Cyprus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soad%20Abokhamis%20Mousavi">Soad Abokhamis Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Trombe wall is an ancient technique that continues to serve as an effective feature of a passive solar system. However, in practice, architects and their clients are not opting for the Trombe wall because of the view of the Trombe wall on the facades of the buildings. Therefore, this study has two main goals, and one of the goals is to find out why the Trombe wall is not considered in the buildings in the Mediterranean region. And the second goal is to find a solution to facilitate the societal acceptance of the Trombe walls in buildings. To cover the goals, the present work attempts to develop and design a different Trombe Wall with different Materials and views in the facades of the buildings. A qualitative data method was used in this article. The qualitative method was developed based on observation and questionnaires with different clients and expert architects in the selected region. Results indicate that the view of the Trombe wall in the facade of buildings can be used with different designs in order to not affect the beauty of the buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trombe%20wall" title="trombe wall">trombe wall</a>, <a href="https://publications.waset.org/abstracts/search?q=societal%20acceptance" title=" societal acceptance"> societal acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficacy" title=" energy efficacy"> energy efficacy</a> </p> <a href="https://publications.waset.org/abstracts/160411/societal-acceptance-of-trombe-wall-in-buildings-in-mediterranean-region-a-case-cyprus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1315</span> Comparative Study of Various Wall Finishes in Buildings in Ondo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20Oluwole%20Alejo">Ayodele Oluwole Alejo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wall finishes are the term to describe an application over a wall surface to provide a suitable surface. Wall finishes are smelt, touched and seen by building occupiers even colour and design affects the user psychology and the atmosphere of our building. Building users/owners seem not to recognize the function of various wall finishes in building and factors to be considered in selecting them suitable for the type and purpose of proposed buildings. Therefore, defects such as deterioration, dampness, and stain may occur when comparisons of wall finishes are not made before the selection of appropriate materials at the design stage with knowledge of the various factors that may hinder the performance or maintenance culture of proposed building of a particular location. This research work investigates and compares various wall finishes in building. Buildings in Ondo state, Nigeria were used as the target area to conduct the research works. The factors bearing on various wall finishes were analyzed to find out their individual and collective impact using suitable analytical tools. The findings revealed that paint with high percentage score was the most preferred wall finishes, whereas wall paper was ranked the least by the respondent findings, Factors considered most in the selection of wall finishes was durability with the highest ranking percentage and least was the cost. The study recommends that skilled worker should carry out operations, quality product should be used and all of wall finishes and materials should be considered before selection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=finishes" title=" finishes"> finishes</a>, <a href="https://publications.waset.org/abstracts/search?q=wall" title=" wall "> wall </a> </p> <a href="https://publications.waset.org/abstracts/121823/comparative-study-of-various-wall-finishes-in-buildings-in-ondo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1314</span> Macular Ganglion Cell Inner Plexiform Layer Thinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye-Young%20Shin">Hye-Young Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Kee%20Park"> Chan Kee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20lesion" title="brain lesion">brain lesion</a>, <a href="https://publications.waset.org/abstracts/search?q=macular%20ganglion%20cell" title=" macular ganglion cell"> macular ganglion cell</a>, <a href="https://publications.waset.org/abstracts/search?q=inner%20plexiform%20layer" title=" inner plexiform layer"> inner plexiform layer</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral-domain%20optical%20coherence%20tomography" title=" spectral-domain optical coherence tomography"> spectral-domain optical coherence tomography</a> </p> <a href="https://publications.waset.org/abstracts/25859/macular-ganglion-cell-inner-plexiform-layer-thinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1313</span> N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kawan">Anil Kawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon%20Jae%20Yu"> Soon Jae Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Park"> Jong Min Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction%20efficiency" title="extraction efficiency">extraction efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitting%20diodes" title=" light emitting diodes"> light emitting diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=n-GaN%20thinning" title=" n-GaN thinning"> n-GaN thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/61185/n-type-gan-thinning-for-enhancing-light-extraction-efficiency-in-gan-based-thin-film-flip-chip-ultraviolet-uv-light-emitting-diodes-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1312</span> Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Ru">Jiahe Ru</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Pang"> Yan Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomiao%20Liu"> Zhaomiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neck%20interface" title="neck interface">neck interface</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20coupling" title=" interface coupling"> interface coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=janus%20droplets" title=" janus droplets"> janus droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/163142/neck-thinning-dynamics-of-janus-droplets-under-multiphase-interface-coupling-in-cross-junction-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1311</span> Analysis of Wall Deformation of the Arterial Plaque Models: Effects of Viscoelasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Kyung%20Kim">Eun Kyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Viscoelastic wall properties of the arterial plaques change as the disease progresses, and estimation of wall viscoelasticity can provide a valuable assessment tool for plaque rupture prediction. Cross section of the stenotic coronary artery was modeled based on the IVUS image, and the finite element analysis was performed to get wall deformation under pulsatile pressure. The effects of viscoelastic parameters of the plaque on luminal diameter variations were explored. The result showed that decrease of viscous effect reduced the phase angle between the pressure and displacement waveforms, and phase angle was dependent on the viscoelastic properties of the wall. Because viscous effect of tissue components could be identified using the phase angle difference, wall deformation waveform analysis may be applied to predict plaque wall composition change and vascular wall disease progression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerotic%20plaque" title="atherosclerotic plaque">atherosclerotic plaque</a>, <a href="https://publications.waset.org/abstracts/search?q=diameter%20variation" title=" diameter variation"> diameter variation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/74538/analysis-of-wall-deformation-of-the-arterial-plaque-models-effects-of-viscoelasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1310</span> Design of Rigid L-Shaped Retaining Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Rouili">Ahmed Rouili </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cantilever L-shaped walls are known to be relatively economical as retaining solution. The design starts by proportioning the wall dimensions for which the stability is checked for. A ratio between the lengths of the base and the stem, falling between 0,5 to 0,7, ensure the stability requirements in most cases. However, the displacement pattern of the wall in terms of rotations and translations, and the lateral pressure profile, do not have the same figure for all wall’s proportioning, as it is usually assumed. In the present work, the results of a numerical analysis are presented, different wall geometries were considered. The results show that the proportioning governs the equilibrium between the instantaneous rotation and the translation of the wall-toe, also, the lateral pressure estimation based on the average value between the at-rest and the active pressure, recommended by most design standards, is found to be not applicable for all walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever%20wall" title="cantilever wall">cantilever wall</a>, <a href="https://publications.waset.org/abstracts/search?q=proportioning" title=" proportioning"> proportioning</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20pressure%20estimation" title=" lateral pressure estimation "> lateral pressure estimation </a> </p> <a href="https://publications.waset.org/abstracts/1833/design-of-rigid-l-shaped-retaining-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1309</span> Strength of the Basement Wall Combined with a Temporary Retaining Wall for Excavation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo-yeon%20Seo">Soo-yeon Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-jin%20Jung"> Su-jin Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the need for remodeling of many apartments built 30 years ago is increasing. Therefore, researches on the structural reinforcement technology of existing apartments have been conducted. On the other hand, there is a growing need for research on the existing underground space expansion technology to expand the parking space required for remodeling. When expanding an existing underground space, for earthworks, an earth retaining wall must be installed between the existing apartment building and it. In order to maximize the possible underground space, it is necessary to minimize the thickness of the portion of earth retaining wall and underground basement wall. In this manner, the calculation procedure is studied for the evaluation of shear strength of the composite basement wall corresponding to shear span-to-depth ratio in this study. As a result, it was shown that the proposed calculation procedure can be used to evaluate the shear strength of the composite basement wall as safe. On the other hand, when shear span-to-depth ratio is small, shear strength is very underestimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground%20space%20expansion" title="underground space expansion">underground space expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20structure" title=" combined structure"> combined structure</a>, <a href="https://publications.waset.org/abstracts/search?q=temporary%20retaining%20wall" title=" temporary retaining wall"> temporary retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=basement%20wall" title=" basement wall"> basement wall</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connectors" title=" shear connectors"> shear connectors</a> </p> <a href="https://publications.waset.org/abstracts/86079/strength-of-the-basement-wall-combined-with-a-temporary-retaining-wall-for-excavation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1308</span> Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubusuyi%20Ayowole">Olubusuyi Ayowole</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Khoda"> Bashir Khoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20bioprinting" title="green bioprinting">green bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20bioprinting" title=" 3d bioprinting"> 3d bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae%20cell" title=" microalgae cell"> microalgae cell</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20hydrogel%20scaffolds" title=" hybrid hydrogel scaffolds"> hybrid hydrogel scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20analysis" title=" spectrophotometric analysis"> spectrophotometric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bioink%20development" title=" bioink development"> bioink development</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning%20properties" title=" shear thinning properties"> shear thinning properties</a> </p> <a href="https://publications.waset.org/abstracts/188298/spectrophotometric-evaluation-of-custom-microalgae-based-bioink-formulations-for-optimized-green-bioprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1307</span> Inverted Diameter-Limit Thinning: A Promising Alternative for Mixed Populus tremuloides Stands Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ablo%20Paul%20Igor%20Hounzandji">Ablo Paul Igor Hounzandji</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Lafleur"> Benoit Lafleur</a>, <a href="https://publications.waset.org/abstracts/search?q=Annie%20DesRochers"> Annie DesRochers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Populus tremuloides [Michx] regenerates rapidly and abundantly by root suckering after harvest, creating stands with interconnected stems. Pre-commercial thinning can be used to concentrate growth on fewer stems to reach merchantability faster than un-thinned stands. However, conventional thinning methods are typically designed to reach even spacing between residual stems (1,100 stem ha⁻¹, evenly distributed), which can lead to treated stands consisting of weaker/smaller stems compared to the original stands. Considering the nature of P. tremuloides's regeneration, with large underground biomass of interconnected roots, aiming to keep the most vigorous and largest stems, regardless of their spatial distribution, inverted diameter-limit thinning could be more beneficial to post-thinning stand productivity because it would reduce the imbalance between roots and leaf area caused by thinning. Aims: This study aimed to compare stand and stem productivity of P. tremuloides stands thinned with a conventional thinning treatment (CT; 1,100 stem ha⁻¹, evenly distributed), two levels of inverted diameter-limit thinning (DL1 and DL2, keeping the largest 1100 or 2200 stems ha⁻¹, respectively, regardless of their spatial distribution) and a control unthinned treatment. Because DL treatments can create substantial or frequent gaps in the thinned stands, we also aimed to evaluate the potential of this treatment to recreate mixed conifer-broadleaf stands by fill-planting Picea glauca seedlings. Methods: Three replicate 21 year-old sucker-regenerated aspen stands were thinned in 2010 according to four treatments: CT, DL1, DL2, and un-thinned control. Picea glauca seedlings were underplanted in gaps created by the DL1 and DL2 treatments. Stand productivity per hectare, stem quality (diameter and height, volume stem⁻¹) and survival and height growth of fill-planted P. glauca seedlings were measured 8 year post-treatments. Results: Productivity, volume, diameter, and height were better in the treated stands (CT, DL1, and DL2) than in the un-thinned control. Productivity of CT and DL1 stands was similar 4.8 m³ ha⁻¹ year⁻¹. At the tree level, diameter and height of the trees in the DL1 treatment were 5% greater than those in the CT treatment. The average volume of trees in the DL1 treatment was 11% higher than the CT treatment. Survival after 8 years of fill planted P. glauca seedlings was 2% greater in the DL1 than in the DL2 treatment. DL1 treatment also produced taller seedlings (+20 cm). Discussion: Results showed that DL treatments were effective in producing post-thinned stands with larger stems without affecting stand productivity. In addition, we showed that these treatments were suitable to introduce slower growing conifer seedlings such as Picea glauca in order to re-create or maintain mixed stands despite the aggressive nature of P. tremuloides sucker regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspen" title="Aspen">Aspen</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20diameter-limit" title=" inverted diameter-limit"> inverted diameter-limit</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20forest" title=" mixed forest"> mixed forest</a>, <a href="https://publications.waset.org/abstracts/search?q=populus%20tremuloides" title=" populus tremuloides"> populus tremuloides</a>, <a href="https://publications.waset.org/abstracts/search?q=silviculture" title=" silviculture"> silviculture</a>, <a href="https://publications.waset.org/abstracts/search?q=thinning" title=" thinning"> thinning</a> </p> <a href="https://publications.waset.org/abstracts/120220/inverted-diameter-limit-thinning-a-promising-alternative-for-mixed-populus-tremuloides-stands-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1306</span> A Wall Law for Two-Phase Turbulent Boundary Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhahri%20Maher">Dhahri Maher</a>, <a href="https://publications.waset.org/abstracts/search?q=Aouinet%20Hana"> Aouinet Hana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbly%20flows" title="bubbly flows">bubbly flows</a>, <a href="https://publications.waset.org/abstracts/search?q=log%20law" title=" log law"> log law</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/64652/a-wall-law-for-two-phase-turbulent-boundary-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1305</span> Application of Flexi-Wall in Noise Barriers Renewal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Daee">B. Daee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20El%20Naggar"> H. M. El Naggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20barrier" title="noise barrier">noise barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20foam" title=" polyurethane foam"> polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20construction" title=" accelerated construction"> accelerated construction</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20experiment" title=" full-scale experiment"> full-scale experiment</a> </p> <a href="https://publications.waset.org/abstracts/26586/application-of-flexi-wall-in-noise-barriers-renewal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1304</span> Enhanced Thai Character Recognition with Histogram Projection Feature Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjawan%20Rangsikamol">Benjawan Rangsikamol</a>, <a href="https://publications.waset.org/abstracts/search?q=Chutimet%20Srinilta"> Chutimet Srinilta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper deals with extraction of Thai character features using the proposed histogram projection so as to improve the recognition performance. The process starts with transformation of image files into binary files before thinning. After character thinning, the skeletons are entered into the proposed extraction using histogram projection (horizontal and vertical) to extract unique features which are inputs of the subsequent recognition step. The recognition rate with the proposed extraction technique is as high as 97 percent since the technique works very well with the idiosyncrasies of Thai characters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=character%20recognition" title="character recognition">character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram%20projection" title=" histogram projection"> histogram projection</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20character%20features%20extraction" title=" Thai character features extraction "> Thai character features extraction </a> </p> <a href="https://publications.waset.org/abstracts/11674/enhanced-thai-character-recognition-with-histogram-projection-feature-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1303</span> Performance Investigation of Thermal Insulation Materials for Walls: A Case Study in Nicosia (Turkish Republic of North Cyprus) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Vafaei">L. Vafaei</a>, <a href="https://publications.waset.org/abstracts/search?q=McDominic%20Eze"> McDominic Eze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of thermal energy in homes and buildings is a significant factor in terms of energy efficiency of a building. In a large sense, the performance of thermal energy is dependent on many factors of which the amount of thermal insulation is at one end a considerable factor, as likewise the essence of mass and the wall thickness and also the thermal resistance of wall material. This study is aimed at illustrating the different wall system in Turkish Republic of North Cyprus (TRNC), acknowledge the problem and suggest a solution through comparing the effect of thermal radiation two model rooms- L1 (Ytong wall) and L2 (heat insulated wall using stone wool) set up for experimentation. The model room has four face walls. The study consists of two stage, the first test is to access the effect of solar radiation for south facing wall and the second stage is to test the thermal performance of Ytong and heat insulated wall, the effects of climatic condition during winter. The heat insulated wall contains material hollow brick, stone wool, and gypsum while the Ytong wall contains cement concrete, for the outer surface and the inner surface and Ytong stone. The total heat of the wall was determined, 7T-Type thermocouple was used with a data logger system to record the data, temperature change recorded at an interval of 10 minutes. The result obtained was that Ytong wall save more energy than the heat insulated wall at night while heat insulated wall saves energy during the day when intensity is at maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation" title="heat insulation">heat insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20bricks" title=" hollow bricks"> hollow bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=south%20facing" title=" south facing"> south facing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ytong%20bricks%20wall" title=" Ytong bricks wall"> Ytong bricks wall</a> </p> <a href="https://publications.waset.org/abstracts/54331/performance-investigation-of-thermal-insulation-materials-for-walls-a-case-study-in-nicosia-turkish-republic-of-north-cyprus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20thinning&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10