CINXE.COM
Search results for: alkenes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: alkenes</title> <meta name="description" content="Search results for: alkenes"> <meta name="keywords" content="alkenes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="alkenes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="alkenes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: alkenes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ishag%20Mohamed">A. Ishag Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Rabah"> A. A. Rabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=N-Alkanes" title="N-Alkanes">N-Alkanes</a>, <a href="https://publications.waset.org/abstracts/search?q=N-Alkenes" title=" N-Alkenes"> N-Alkenes</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric" title=" nonparametric"> nonparametric</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/27797/development-of-generalized-correlation-for-liquid-thermal-conductivity-of-n-alkane-and-olefin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">654</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Biochemical Characterization and Structure Elucidation of a New Cytochrome P450 Decarboxylase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leticia%20Leandro%20Rade">Leticia Leandro Rade</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Silva%20de%20Sousa"> Amanda Silva de Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20Das"> Suman Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesley%20Generoso"> Wesley Generoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayara%20Chagas%20%C3%81vila"> Mayara Chagas Ávila</a>, <a href="https://publications.waset.org/abstracts/search?q=Plinio%20Salmazo%20Vieira"> Plinio Salmazo Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Bonomi"> Antonio Bonomi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Persinoti"> Gabriela Persinoti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Tyago%20Murakami"> Mario Tyago Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Michael%20Makris"> Thomas Michael Makris</a>, <a href="https://publications.waset.org/abstracts/search?q=Leticia%20Maria%20Zanphorlin"> Leticia Maria Zanphorlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkenes have an economic appeal, especially in the biofuels field, since they are precursors for drop-in biofuels production, which have similar chemical and physical properties to the conventional fossil fuels, with no oxygen in their composition. After the discovery of the first P450 CYP152 OleTJE in 2011, reported with its unique property of decarboxylating fatty acids (FA), by using hydrogen peroxide as a cofactor and producing 1-alkenes as the main product, the scientific and technological interest in this family of enzymes vastly increased. In this context, the present work presents a new decarboxylase (OleTRN) with low similarity with OleTJE (32%), its biochemical characterization, and structure elucidation. As main results, OleTRN presented a high yield of expression and purity, optimum reaction conditions at 35 °C and pH from 6.5 to 8.0, and higher specificity for oleic acid. Besides that, structure-guided mutations were performed and according to the functional characterizations, it was observed that some mutations presented different specificity and chemoselectivity by varying the chain-length of FA substrates from 12 to 20 carbons. These results are extremely interesting from a biotechnological perspective as those characteristics could diversify the applications and contribute to designing better cytochrome P450 decarboxylases. Considering that peroxygenases have the potential activity of decarboxylating and hydroxylating fatty acids and that the elucidation of the intriguing mechanistic involved in the decarboxylation preferential from OleTJE is still a challenge, the elucidation of OleTRN structure and the functional characterizations of OleTRN and its mutants contribute to new information about CYP152. Besides that, the work also contributed to the discovery of a new decarboxylase with a different selectivity profile from OleTJE, which allows a wide range of applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=P450" title="P450">P450</a>, <a href="https://publications.waset.org/abstracts/search?q=decarboxylases" title=" decarboxylases"> decarboxylases</a>, <a href="https://publications.waset.org/abstracts/search?q=alkenes" title=" alkenes"> alkenes</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuels" title=" biofuels"> biofuels</a> </p> <a href="https://publications.waset.org/abstracts/140579/biochemical-characterization-and-structure-elucidation-of-a-new-cytochrome-p450-decarboxylase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Synthesis of Antifungal by the Use of Green Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmeliani%20M%E2%80%99Hammed">Elmeliani M’Hammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work is carried out for the synthesis of antifungal effective against the fungus Fusarium oxysporum, Albedinis (Foa), the causative agent of bayoud, dates palm disease, through the use of raw clay as a green catalyst. The Aza-Michael reaction of amine addition to α, β-unsaturated alkene was carried out using the crude clay as a green catalyst to synthesize the antifungal agent bayoud. The reaction was carried out under favorable conditions, ambient temperature, without solvent, and a green catalyst "loves the environment" that the product that was synthesized gave us a high yield and excellent chemo selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20clay" title="raw clay">raw clay</a>, <a href="https://publications.waset.org/abstracts/search?q=amines" title=" amines"> amines</a>, <a href="https://publications.waset.org/abstracts/search?q=alkenes" title=" alkenes"> alkenes</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=bayoud" title=" bayoud"> bayoud</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palms" title=" date palms"> date palms</a> </p> <a href="https://publications.waset.org/abstracts/171504/synthesis-of-antifungal-by-the-use-of-green-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Efficient Hydrosilylation of Functionalized Alkenes via Heterogeneous Zinc Oxide Nanoparticle Catalysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlam%20Chennani">Ahlam Chennani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Anter"> Nadia Anter</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouahed%20M%C3%A9daghri%20Alaoui"> Abdelouahed Médaghri Alaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Hannioui"> Abdellah Hannioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-precious metals such as zinc, copper, iron, and nickel are promising hydrosilylation catalysts due to their abundance, affordability, and low toxicity. This study focuses on the preparation of zinc nanoparticles using a simple, scalable method. Advanced techniques such as X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize these catalysts, revealing their crystal structure and morphology. ZnO nanoparticles demonstrate high efficiency and selectivity in hydrosilylation reactions, producing silylated products. These results highlight the potential of ZnO nanocatalysts for advanced chemical transformations and practical applications in various industrial fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrosilylation" title=" hydrosilylation"> hydrosilylation</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=non-precious%20metal" title=" non-precious metal"> non-precious metal</a> </p> <a href="https://publications.waset.org/abstracts/188400/efficient-hydrosilylation-of-functionalized-alkenes-via-heterogeneous-zinc-oxide-nanoparticle-catalysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Boryl Radical-Promoted Dehydroxylative Alkylation of 3-Hydroxyoxindole Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Tebeka%20Simur">Tesfaye Tebeka Simur</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian-Yu%20Peng"> Tian-Yu Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Wang"> Yi-Feng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiu-Wei%20Wu"> Xiu-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Lian%20Zhang"> Feng-Lian Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A boryl radical-promoted dehydroxylative alkylation of 3-hydroxy-oxindole derivatives is achieved. The reaction starts from addition of 4-dimethylaminopyridine (DMAP)-boryl radical to the amide carbonyl oxygen atom, which induces a spin-center shift process to promote the C−O bond cleavage. The elimination of a hydroxide anion from a free hydroxy group is also accomplished. Capture of the generated carbon radical with alkenes furnishes a variety of C-3 alkylated oxindoles. This method features a simple operation and broad substrate scope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boryl%20radical" title="boryl radical">boryl radical</a>, <a href="https://publications.waset.org/abstracts/search?q=C-O" title=" C-O"> C-O</a>, <a href="https://publications.waset.org/abstracts/search?q=C-F" title=" C-F"> C-F</a>, <a href="https://publications.waset.org/abstracts/search?q=C%3DC" title=" C=C"> C=C</a>, <a href="https://publications.waset.org/abstracts/search?q=C%3DN%20bond%20activation" title=" C=N bond activation"> C=N bond activation</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20center%20shift" title=" spin center shift"> spin center shift</a> </p> <a href="https://publications.waset.org/abstracts/166794/boryl-radical-promoted-dehydroxylative-alkylation-of-3-hydroxyoxindole-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Alhazmi">N. Alhazmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic" title="thermodynamic">thermodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20regression" title=" Gaussian process regression"> Gaussian process regression</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20learning" title=" supervised learning"> supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy" title=" enthalpy"> enthalpy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20capacity" title=" heat capacity"> heat capacity</a> </p> <a href="https://publications.waset.org/abstracts/145010/prediction-of-the-thermodynamic-properties-of-hydrocarbons-using-gaussian-process-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mousavian">S. Mousavian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abedianpour"> A. Abedianpour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khanmohammadi"> A. Khanmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hematian"> S. Hematian</a>, <a href="https://publications.waset.org/abstracts/search?q=Gh.%20Eidi%20Veisi"> Gh. Eidi Veisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=VLE" title=" VLE"> VLE</a>, <a href="https://publications.waset.org/abstracts/search?q=dilute%20solution" title=" dilute solution"> dilute solution</a> </p> <a href="https://publications.waset.org/abstracts/42919/prediction-of-vapor-liquid-equilibrium-for-dilute-solutions-of-components-in-ionic-liquid-by-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> “Double Layer” Theory of Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Heral">Vaclav Heral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to, based on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism, because, for example: (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. We believe that the Horiuti-Polanyi mechanism is flawed and we naturally think that our two-layer theory better describes the experimental findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidity%20of%20hydrogenation%20catalyst" title="acidity of hydrogenation catalyst">acidity of hydrogenation catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Horiuti-Polanyi" title=" Horiuti-Polanyi"> Horiuti-Polanyi</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=two-layer%20hydrogenation" title=" two-layer hydrogenation"> two-layer hydrogenation</a> </p> <a href="https://publications.waset.org/abstracts/173813/double-layer-theory-of-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Kabane">B. Kabane</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Redhi"> G. G. Redhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ammonium based ionic liquid (methyltrioctylammonium chloride) [N<sub>8 8 8 1</sub>] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=separation" title="separation">separation</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20coefficients" title=" activity coefficients"> activity coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=methyltrioctylammonium%20chloride" title=" methyltrioctylammonium chloride"> methyltrioctylammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity "> capacity </a> </p> <a href="https://publications.waset.org/abstracts/112731/methyltrioctylammonium-chloride-as-a-separation-solvent-for-binary-mixtures-evaluation-based-on-experimental-activity-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Identified Transcription Factors and Gene Regulation in Scient Biosynthesis in Ophrys Orchids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chengwei%20Wang">Chengwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuqing%20Xu"> Shuqing Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20M.%20Schl%C3%BCter"> Philipp M. Schlüter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genus Ophrys is remarkable for its mimicry, flower-lip closely resembling pollinator females in a species-specific manner. Therefore, floral traits associated with pollinator attraction, especially scent, are suitable models for investigating the molecular basis of adaption, speciation, and evolution. Within the two Ophrys species groups: O. sphegodes (S) and O. fusca (F), pollinator shifts among the same insect species have taken place. Preliminary data suggest that they involve a comparable hydrocarbon profile in their scent, which is mainly composed of alkanes and alkenes. Genes encoding stearoyl-acyl carrier protein desaturases (SAD) involved in alkene biosynthesis have been identified in the S group. This study aims to investigate the control and parallel evolution of ecologically significant alkene production in Ophrys. Owing to the central role those SAD genes play in determining positioning of the alkene double-bonds, a detailed understanding of their functional mechanism and of regulatory aspects is of utmost importance. We have identified 5 transcription factors potentially related to SAD expression in O. sphegodes which belong to the MYB, GTE, WRKY, and MADS families. Ultimately, our results will contribute to understanding genes important in the regulatory control of floral scent synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floral%20traits" title="floral traits">floral traits</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factors" title=" transcription factors"> transcription factors</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title=" biosynthesis"> biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20evolution" title=" parallel evolution"> parallel evolution</a> </p> <a href="https://publications.waset.org/abstracts/165903/identified-transcription-factors-and-gene-regulation-in-scient-biosynthesis-in-ophrys-orchids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Relationship between Response of the Resistive Sensors on the Chosen Volatile Organic Compounds (VOCs) and Their Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marek%20Gancarz">Marek Gancarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Nawrocka"> Agnieszka Nawrocka</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rusinek"> Robert Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Tadla"> Marcin Tadla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compounds (VOCs) are the fungi metabolites in the gaseous form produced during improper storage of agricultural commodities (e.g. grain, food). The spoilt commodities produce a wide range of VOCs including alcohols, esters, aldehydes, ketones, alkanes, alkenes, furans, phenols etc. The characteristic VOCs and odours can be determined by using electronic nose (e-Nose) which contains a matrix of different kinds of sensors e.g. resistive sensors. The aim of the present studies was to determine relationship between response of the resistive sensors on the chosen volatiles and their concentration. According to the literature, it was chosen volatiles characteristic for the cereals: ethanol, 3-methyl-1-butanol and hexanal. Analysis of the sensor signals shows that a signal shape is different for the different substances. Moreover, each VOC signal gives information about a maximum of the normalized sensor response (R/Rmax), an impregnation time (tIM) and a cleaning time at half maximum of R/Rmax (tCL). These three parameters can be regarded as a ‘VOC fingerprint’. Seven resistive sensors (TGS2600-B00, TGS2602-B00, TGS2610-C00, TGS2611-C00, TGS2611-E00, TGS2612-D00, TGS2620-C00) produced by Figaro USA Inc., and one (AS-MLV-P2) produced by AMS AG, Austria were used. Two out of seven sensors (TGS2611-E00, TGS2612-D00) did not react to the chosen VOCs. The most responsive sensor was AS-MLV-P2. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20commodities" title="agricultural commodities">agricultural commodities</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20sensors" title=" resistive sensors"> resistive sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile" title=" volatile"> volatile</a> </p> <a href="https://publications.waset.org/abstracts/43240/relationship-between-response-of-the-resistive-sensors-on-the-chosen-volatile-organic-compounds-vocs-and-their-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Molecular Electron Density Theory Study on the Mechanism and Selectivity of the 1,3 Dipolar Cycloaddition Reaction of N-Methyl-C-(2-Furyl) Nitrone with Activated Alkenes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulay%20Driss%20Mellaoui">Moulay Driss Mellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Imjjad"> Abdallah Imjjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Boutiddar"> Rachid Boutiddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Haydar%20Mohammad-Salim"> Haydar Mohammad-Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nivedita%20Acharjee"> Nivedita Acharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Bourzi"> Hassan Bourzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Souad%20El%20Issami"> Souad El Issami</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Abbiche"> Khalid Abbiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanane%20Zejli"> Hanane Zejli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the underlying molecular processes involved in the [3+2] cycloaddition (32CA) reactions between N-methyl-C-(2-furyl) nitrone and three acetylene derivatives: 4b, 5b, and 6b. For this investigation, we utilized molecular electron density theory (MEDT) and density functional theory (DFT) methods at the B3LYP-D3/6 31G (d) computational level. These 32CA reactions, which exhibit a zwitterionic (zw-type) nature, proceed through a one-step mechanism with activation enthalpies ranging from 8.80 to 14.37 kcal mol−1 in acetonitrile and ethanol solvents. When the nitrone reacts with phenyl methyl propiolate (4b), two regioisomeric pathways lead to the formation of two products: P1,5-4b and P1,4-4b. On the other hand, when the nitrone reacts with dimethyl acetylene dicarboxylate (5b) and acetylene dicarboxylic acid (but-2-ynedioic acid) (6b), it results in the formation of a single product. Through topological analysis, we can categorize the nitrone as a zwitterionic three-atom component (TAC). Furthermore, the analysis of conceptual density functional theory (CDFT) indices classifies the 32CA reactions of the nitrone with 4b, 5b, and 6b as forward electron density flux (FEDF) reactions. The study of bond evolution theory (BET) reveals that the formation of new C-C and C-O covalent bonds does not initiate in the transition states, as the intermediate stages of these reactions display pseudoradical centers of the atoms already involved in bonding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-isoxazoline" title="4-isoxazoline">4-isoxazoline</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%2FB3LYP-D3" title=" DFT/B3LYP-D3"> DFT/B3LYP-D3</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselectivity" title=" regioselectivity"> regioselectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloaddition%20reaction" title=" cycloaddition reaction"> cycloaddition reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=MEDT" title=" MEDT"> MEDT</a>, <a href="https://publications.waset.org/abstracts/search?q=ELF" title=" ELF"> ELF</a> </p> <a href="https://publications.waset.org/abstracts/167271/molecular-electron-density-theory-study-on-the-mechanism-and-selectivity-of-the-13-dipolar-cycloaddition-reaction-of-n-methyl-c-2-furyl-nitrone-with-activated-alkenes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effect of Active Compounds Extracted From Tagetes Erecta Against Plant-Parasitic Nematodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepika">Deepika</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashika%20Kapoor"> Kashika Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nistha%20Khanna"> Nistha Khanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshmi"> Lakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Archna%20Kumar"> Archna Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant-parasitic nematodes cause major loss in global food production and destroying at least 21.3% of food annually. About 4100 species of plant-parasitic nematodes are reported, out of this, Meloidogyne species is prominent and worldwide in distribution. Observing the harmful effects of chemical based nematicides, there is a great need for an eco-friendly, highly efficient, sustainable control measure for Meloidogyne. Therefore, In vitro study was carried out to observe the impact of volatile cues obtained from the Tagetes erecta leaves on plant parasitic nematodes. Volatile cues were collected from marigold leaves. For chemical characterization, GCMS (Gas Chromatography Mass Spectrometry) profiling was conducted. VOCs (Volatile Organic Compounds) profile of marigold indicated the presence of several types of alkanes, alkenes varying in number and quantity. Status of nematodes population by counting the live and dead individuals after applying a definite volume (100µl) of extract was recorded at different concentrations (100%, 50%, 25%) with contrast of control (hexane) during different time durations i.e.,24hr, 48hr and 72hr. Result indicated that mortality increases with increasing time (72hr) and concentration (100%) i.e., 50%. Thus, application of prominent compound present in Marigold in pure form may be tested individually or in combination to find out the most efficient active compound/s, which may be highly useful in eco-friendly management of targeted plant parasitic nematode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant-parasitic%20nematode" title="plant-parasitic nematode">plant-parasitic nematode</a>, <a href="https://publications.waset.org/abstracts/search?q=meloidogyne" title=" meloidogyne"> meloidogyne</a>, <a href="https://publications.waset.org/abstracts/search?q=tagetes%20erecta" title=" tagetes erecta"> tagetes erecta</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/149074/effect-of-active-compounds-extracted-from-tagetes-erecta-against-plant-parasitic-nematodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Selective Reduction of a Morita-baylis-hillman Adduct-derived Ketones Using Various Ketoreductase Enzyme Preparations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nompumelelo%20P.%20Mathebula">Nompumelelo P. Mathebula</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20A.%20Sheldon"> Roger A. Sheldon</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20P.%20Pienaar"> Daniel P. Pienaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Moira%20L.%20Bode"> Moira L. Bode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preparation of enantiopure Morita-Baylis-Hillman (MBH) adducts remains a challenge in organic chemistry. MBH adducts are highly functionalised compounds which act as key intermediates in the preparation of compounds of medicinal importance. MBH adducts are prepared in racemic form by reacting various aldehydes and activated alkenes in the presence of DABCO. Enantiopure MBH adducts can be obtained by employing Enzymatic kinetic resolution (EKR). This technique has been successfully demonstrated in our group, amongst others, using lipases in either hydrolysis or transesterification reactions. As these methods only allow 50% of each enantiomer to be obtained, our interest grew in exploring other enzymatic methods for the synthesis of enantiopure MBH adducts where, theoretically, 100% of the desired enantiomer could be obtained.Dehydrogenase enzymes can be employed on prochiral substrates to obtain optically pure compounds by reducing carbon-carbon double bonds or carbonyl groups of ketones. Ketoreductases have been used historically to obtain enantiopure secondary alcohols on an industrial scale. Ketoreductases are NAD(P)H-dependent enzymes and thus require nicotinamide as a cofactor. This project focuses on employing ketoreductase enzymes to selectively reduce ketones derived from Morita-Baylis-Hillman (MBH) adducts in order to obtain these adducts in enantiopure form.Results obtained from this study will be reported. Good enantioselectivity was observed using a range of different ketoreductases, however, reactions were complicated by the formation of an unexpected by-product, which was characterised employing single crystal x-ray crystallography techniques. Methods to minimise by-product formation are currently being investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ketoreductase" title="ketoreductase">ketoreductase</a>, <a href="https://publications.waset.org/abstracts/search?q=morita-baylis-hillman" title=" morita-baylis-hillman"> morita-baylis-hillman</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20reduction" title=" selective reduction"> selective reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20crystallography" title=" x-ray crystallography"> x-ray crystallography</a> </p> <a href="https://publications.waset.org/abstracts/179204/the-selective-reduction-of-a-morita-baylis-hillman-adduct-derived-ketones-using-various-ketoreductase-enzyme-preparations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Microalgae as Promising Biostimulants of Plant Tolerance Against Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soufiane%20Fal">Soufiane Fal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderahim%20Aasfar"> Abderahim Aasfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ouhssain"> Ali Ouhssain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnae%20Choukri"> Hasnae Choukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abelaziz%20Smouni"> Abelaziz Smouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hicham%20El%20Arroussi"> Hicham El Arroussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals contamination is a major environmental concern around the world. It has a harmful impact on plant productivity and poses a serious risk to humans and animals health. In the present study, the effect of Microalgae Crude Extract (MCE) on tomato growth and nutrients uptake exposed to 2 mM Pb2+ and Cd2+ was investigated. In results, 2 mM Pb2+ and Cd2+ showed a significant reduction of tomatobiomass and perturbation in nutrients absorption. Moreover, MCE application in tomato plant exposed to Pb2+ and Cd2+ showed a significant enhancement of biomass compared to tomato plants under Pb2+ and Cd2+. On the other hand, MCE application favoured heavy metals accumulation in root and inhibited their translocation to shoot as phytostabilisation mechanism. Tomato plants showed biochemical responses to Pb2+ and Cd2+ stress with elevation of scavenging enzymes and molecules such as POD, CAT, SOD, Proline, and polyphenols, etc. In addition, the treatment by MCE showed a significant reduction level of the majority of these parameters. Furthermore, the metabolomic analysis revealed a significant change in important metabolites. Pb2+ and Cd2+ showed decrease in SFA and increase of UFA, VLFA, alkanes, alkenes, sterols, which known accumulated as tolerance and resistance mechanism to heavy metal (H.M) stress. However, MCE treatment showed the inverse of these response to return tomato plants to normal state and enhanced tolerance and resistance to heavy metal stress. In the present study, we emphasized that MCE can alleviate H.M stress, enhance tomato plant growth nutrients absorption and improve biochemical responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae%20crude%20extract" title="microalgae crude extract">microalgae crude extract</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20stress" title=" heavy metal stress"> heavy metal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20uptake" title=" nutrient uptake"> nutrient uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomic%20analysis" title=" metabolomic analysis"> metabolomic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=solanum%20lycopersicum%20%28Tomato%29" title=" solanum lycopersicum (Tomato)"> solanum lycopersicum (Tomato)</a>, <a href="https://publications.waset.org/abstracts/search?q=phytostabilisation" title=" phytostabilisation"> phytostabilisation</a> </p> <a href="https://publications.waset.org/abstracts/145310/microalgae-as-promising-biostimulants-of-plant-tolerance-against-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Antioxidant, Antibacterial and Functional Group Analysis of Ethanolic Extract of Hylocereus undatus and Garcinia indica by Using Fourier Transform Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Krishnamurthy">Ajay Krishnamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariyappan%20Mahesh%20Kumar"> Mariyappan Mahesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sellamuthu%20Periyar%20Selvam"> Sellamuthu Periyar Selvam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fruits are considered as functional foods due to the presence of various bioactive compounds available such as polyphenols, which are beneficial to health when consumed as part of our diet. The primary objective of this study was to analyze the various functional groups present in ethanolic extracts of Hylocereus undatus and Garcinia indica and also measure their antibacterial and antioxidant potential respectively thereby affirming its nutraceutical potential. To fulfill our objective, a Fourier - transform Infrared Spectroscopy (FTIR) was conducted for functional group analysis, Total Phenolic Content and DPPH free radical scavenging activity for measuring it anti-oxidant potential and agar-well diffusion assay for antibacterial potential. On careful observation and analysis of the spectrum it was found that both the fruit extracts contain similar compounds viz. Phenols, Alkanes, Alkenes, Aldehydes, Ketones, Carboxylic Acid and Amines. Total phenolic content of H.undatus and G.indica was estimated to be (26.85 ± 1.84 mg GAE/100g) and (32.84 ± 1.63 mg GAE/100g) respectively which corresponds to an inhibition of 84% and 81% respectively. H.undatus shows an inhibition of (3.4 ± 2.1mm) in gram-positive and (4.2 ± 2.24mm) in gram-negative organism on the other hand G.indica shows (2.1 ± 0.98mm) in gram-positive and (3.1 ± 1.44mm) in gram negative. The presence of such diverse compounds in the fruits helps us to understand the necessity for the inclusion of fruits in our daily diet and also helps the pharmaceutical industry in realizing the importance of exotic fruits as a potential nutraceutical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPPH" title="DPPH">DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier-transform%20infrared%20spectroscopy%20%28FTIR%29" title=" fourier-transform infrared spectroscopy (FTIR)"> fourier-transform infrared spectroscopy (FTIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Hylocereus%20undatus" title=" Hylocereus undatus"> Hylocereus undatus</a>, <a href="https://publications.waset.org/abstracts/search?q=Garcinia%20indica" title=" Garcinia indica"> Garcinia indica</a> </p> <a href="https://publications.waset.org/abstracts/82695/antioxidant-antibacterial-and-functional-group-analysis-of-ethanolic-extract-of-hylocereus-undatus-and-garcinia-indica-by-using-fourier-transform-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Imran">G. Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandurangan"> A. Pandurangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALD" title="ALD">ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous" title=" mesoporous"> mesoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=MnOx" title=" MnOx"> MnOx</a> </p> <a href="https://publications.waset.org/abstracts/43630/efficiently-dispersed-mnox-on-mesoporous-3d-cubic-support-for-cyclohexene-epoxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Yu">Jian Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioplastics" title="bioplastics">bioplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20fixation" title=" carbon dioxide fixation"> carbon dioxide fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=drop-in%20liquid%20fuels" title=" drop-in liquid fuels"> drop-in liquid fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20process" title=" green process"> green process</a> </p> <a href="https://publications.waset.org/abstracts/76018/a-green-process-for-drop-in-liquid-fuels-from-carbon-dioxide-water-and-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Identification and Characterization of Novel Genes Involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Atika">B. Atika</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lehmann"> S. Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Wimmer"> E. Wimmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The defense strategy is very common in the insect world. Defensive substances play a wide variety of functions for beetles, such as repellents, toxicants, insecticides, and antimicrobics. Beetles react to predators, invaders, and parasitic microbes with the release of toxic and repellent substances. Defensive substances are directed against a large array of potential target organisms or may function for boiling bombardment or as surfactants. Usually, Coleoptera biosynthesize and store their defensive compounds in a complex secretory organ, known as odoriferous defensive stink glands. The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), uses these glands to produce antimicrobial p-benzoquinones and 1-alkenes. In the past, the morphology of stink gland has been studied in detail in tenebrionid beetles; however, very little is known about the genes that are involved in the production of gland secretion. In this study, we studied a subset of genes that are essential for the benzoquinone production in red flour beetle. In the first phase, we selected 74 potential candidate genes from a genome-wide RNA interference (RNAi) knockdown screen named 'iBeetle.' All these 74 candidate genes were functionally characterized by RNAi-mediated gene knockdown. Therefore, they were selected for a subsequent gas chromatography-mass spectrometry (GC-MS) analysis of secretion volatiles in respective RNAi knockdown glands. 33 of them were observed to alter the phenotype of stink gland. In the GC-MS analysis, 7 candidate genes were noted to display a strongly altered gland, in terms of secretion color and chemical composition, upon knockdown, showing their key role in the biosynthesis of gland secretion. Morphologically altered stink glands were found for odorant receptor and protein kinase superfamily. Subsequent GC-MS analysis of secretion volatiles revealed reduced benzoquinone levels in LIM domain, PDZ domain, PBP/GOBP family knockdowns and a complete lack of benzoquinones in the knockdown of sulfatase-modifying factor enzyme 1, sulfate transporter family. Based on stink gland transcriptome data, we analyzed the function of sulfatase-modifying factor enzyme 1 and sulfate transporter family via RNAi-mediated gene knockdowns, GC-MS, in situ hybridization, and enzymatic activity assays. Morphologically altered stink glands were noted in knockdown of both these genes. Furthermore, GC-MS analysis of secretion volatiles showed a complete lack of benzoquinones in the knockdown of these two genes. In situ hybridization showed that these two genes are expressed around the vesicle of certain subgroup of secretory stink gland cells. Enzymatic activity assays on stink gland tissue showed that these genes are involved in p-benzoquinone biosynthesis. These results suggest that sulfatase-modifying factor enzyme 1 and sulfate transporter family play a role specifically in benzoquinone biosynthesis in red flour beetles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Red%20Flour%20Beetle" title="Red Flour Beetle">Red Flour Beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=defensive%20stink%20gland" title=" defensive stink gland"> defensive stink gland</a>, <a href="https://publications.waset.org/abstracts/search?q=benzoquinones" title=" benzoquinones"> benzoquinones</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20transporter" title=" sulfate transporter"> sulfate transporter</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfatase-modifying%20factor%20enzyme%201" title=" sulfatase-modifying factor enzyme 1"> sulfatase-modifying factor enzyme 1</a> </p> <a href="https://publications.waset.org/abstracts/75081/identification-and-characterization-of-novel-genes-involved-in-quinone-synthesis-in-the-odoriferous-defensive-stink-glands-of-the-red-flour-beetle-tribolium-castaneum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Development of One-Pot Sequential Cyclizations and Photocatalyzed Decarboxylative Radical Cyclization: Application Towards Aspidospermatan Alkaloids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20B%C3%A9langer">Guillaume Bélanger</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Philippe%20Fontaine"> Jean-Philippe Fontaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A9mence%20Hauduc"> Clémence Hauduc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an undeniable thirst from organic chemists and from the pharmaceutical industry to access complex alkaloids with short syntheses. While medicinal chemists are interested in the fascinating wide range of biological properties of alkaloids, synthetic chemists are rather interested in finding new routes to access these challenging natural products of often low availability from nature. To synthesize complex polycyclic cores of natural products, reaction cascades or sequences performed one-pot offer a neat advantage over classical methods for their rapid increase in molecular complexity in a single operation. In counterpart, reaction cascades need to be run on substrates bearing all the required functional groups necessary for the key cyclizations. Chemoselectivity is thus a major issue associated with such a strategy, in addition to diastereocontrol and regiocontrol for the overall transformation. In the pursuit of synthetic efficiency, our research group developed an innovative one-pot transformation of linear substrates into bi- and tricyclic adducts applied to the construction of Aspidospermatan-type alkaloids. The latter is a rich class of indole alkaloids bearing a unique bridged azatricyclic core. Despite many efforts toward the synthesis of members of this family, efficient and versatile synthetic routes are still coveted. Indeed, very short, non-racemic approaches are rather scarce: for example, in the cases of aspidospermidine and aspidospermine, syntheses are all fifteen steps and over. We envisaged a unified approach to access several members of the Aspidospermatan alkaloids family. The key sequence features a highly chemoselective formamide activation that triggers a Vilsmeier-Haack cyclization, followed by an azomethine ylide generation and intramolecular cycloaddition. Despite the high density and variety of functional groups on the substrates (electron-rich and electron-poor alkenes, nitrile, amide, ester, enol ether), the sequence generated three new carbon-carbon bonds and three rings in a single operation with good yield and high chemoselectivity. A detailed study of amide, nucleophile, and dipolarophile variations to finally get to the successful combination required for the key transformation will be presented. To complete the indoline fragment of the natural products, we developed an original approach. Indeed, all reported routes to Aspidospermatan alkaloids introduce the indoline or indole early in the synthesis. In our work, the indoline needs to be installed on the azatricyclic core after the key cyclization sequence. As a result, typical Fischer indolization is not suited since this reaction is known to fail on such substrates. We thus envisaged a unique photocatalyzed decarboxylative radical cyclization. The development of this reaction as well as the scope and limitations of the methodology, will also be presented. The original Vilsmeier-Haack and azomethine ylide cyclization sequence as well as the new photocatalyzed decarboxylative radical cyclization will undoubtedly open access to new routes toward polycyclic indole alkaloids and derivatives of pharmaceutical interest in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspidospermatan%20alkaloids" title="Aspidospermatan alkaloids">Aspidospermatan alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=azomethine%20ylide%20cycloaddition" title=" azomethine ylide cycloaddition"> azomethine ylide cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=decarboxylative%20radical%20cyclization" title=" decarboxylative radical cyclization"> decarboxylative radical cyclization</a>, <a href="https://publications.waset.org/abstracts/search?q=indole%20and%20indoline%20synthesis" title=" indole and indoline synthesis"> indole and indoline synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=one-pot%20sequential%20cyclizations" title=" one-pot sequential cyclizations"> one-pot sequential cyclizations</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vilsmeier-Haack%20Cyclization" title=" Vilsmeier-Haack Cyclization"> Vilsmeier-Haack Cyclization</a> </p> <a href="https://publications.waset.org/abstracts/139547/development-of-one-pot-sequential-cyclizations-and-photocatalyzed-decarboxylative-radical-cyclization-application-towards-aspidospermatan-alkaloids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> A Two-Step, Temperature-Staged, Direct Coal Liquefaction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyna%20Singh">Reyna Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Lokhat"> David Lokhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Carsky"> Milan Carsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal is an abundant resource. This work was aimed at producing a high value hydrocarbon liquid product from the Direct Coal Liquefaction (DCL) process at, comparatively, mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated. In a two reactor lab-scale pilot plant facility, the objectives included maximising thermal dissolution of the coal in the presence of a hydrogen donor solvent in the first stage, subsequently promoting hydrogen saturation and hydrodesulphurization (HDS) performance in the second. The feed slurry consisted of high grade, pulverized bituminous coal on a moisture-free basis with a size fraction of < 100μm; and Tetralin mixed in 2:1 and 3:1 solvent/coal ratios. Magnetite (Fe3O4) at 0.25wt% of the dry coal feed was added for the catalysed runs. For both stages, hydrogen gas was used to maintain a system pressure of 100barg. In the first stage, temperatures of 250℃ and 300℃, reaction times of 30 and 60 minutes were investigated in an agitated batch reactor. The first stage liquid product was pumped into the second stage vertical reactor, which was designed to counter-currently contact the hydrogen rich gas stream and incoming liquid flow in the fixed catalyst bed. Two commercial hydrotreating catalysts; Cobalt-Molybdenum (CoMo) and Nickel-Molybdenum (NiMo); were compared in terms of their conversion, selectivity and HDS performance at temperatures 50℃ higher than the respective first stage tests. The catalysts were activated at 300°C with a hydrogen flowrate of approximately 10 ml/min prior to the testing. A gas-liquid separator at the outlet of the reactor ensured that the gas was exhausted to the online VARIOplus gas analyser. The liquid was collected and sampled for analysis using Gas Chromatography-Mass Spectrometry (GC-MS). Internal standard quantification methods for the sulphur content, the BTX (benzene, toluene, and xylene) and alkene quality; alkanes and polycyclic aromatic hydrocarbon (PAH) compounds in the liquid products were guided by ASTM standards of practice for hydrocarbon analysis. In the first stage, using a 2:1 solvent/coal ratio, an increased coal to liquid conversion was favoured by a lower operating temperature of 250℃, 60 minutes and a system catalysed by magnetite. Tetralin functioned effectively as the hydrogen donor solvent. A 3:1 ratio favoured increased concentrations of the long chain alkanes undecane and dodecane, unsaturated alkenes octene and nonene and PAH compounds such as indene. The second stage product distribution showed an increase in the BTX quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, NiMo performed better than CoMo. CoMo is selective to a higher concentration of cyclohexane. For 16 days on stream each, NiMo had a higher activity than CoMo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature-staged" title=" temperature-staged"> temperature-staged</a> </p> <a href="https://publications.waset.org/abstracts/26115/a-two-step-temperature-staged-direct-coal-liquefaction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">648</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>