CINXE.COM
Search results for: swirl gripper
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: swirl gripper</title> <meta name="description" content="Search results for: swirl gripper"> <meta name="keywords" content="swirl gripper"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="swirl gripper" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="swirl gripper"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 68</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: swirl gripper</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaige%20Shi">Kaige Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Jiang"> Chao Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Li"> Xin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20gripper" title="swirl gripper">swirl gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=noncontact%20handling" title=" noncontact handling"> noncontact handling</a>, <a href="https://publications.waset.org/abstracts/search?q=levitation" title=" levitation"> levitation</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20height%20estimation" title=" gap height estimation"> gap height estimation</a> </p> <a href="https://publications.waset.org/abstracts/109800/pressure-detecting-method-for-estimating-levitation-gap-height-of-swirl-gripper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guozhen%20Li">Guozhen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Hall"> Philip Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Miles"> Nick Miles</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Wu"> Tao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20pipe" title="swirl pipe">swirl pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20effectiveness" title=" swirl effectiveness"> swirl effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20intensity" title=" swirl intensity"> swirl intensity</a> </p> <a href="https://publications.waset.org/abstracts/29038/optimization-of-a-four-lobed-swirl-pipe-for-clean-in-place-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> A Numerical Study on the Effects of N2 Dilution on the Flame Structure and Temperature Distribution of Swirl Diffusion Flames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Tohidi">Yasaman Tohidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ebadi%20Tavallaee"> Saeed Ebadi Tavallaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Vakilipoor%20Takaloo"> Shahin Vakilipoor Takaloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Amiri"> Hossein Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical modeling is performed to study the effects of N<sub>2</sub> addition to the fuel stream on the flame structure and temperature distribution of methane-air swirl diffusion flames with different swirl intensities. The Open source Field Operation and Manipulation (OpenFOAM) has been utilized as the computational tool. Flamelet approach along with modified k-ε model is employed to model the flame characteristics. The results indicate that the presence of N<sub>2</sub> in the fuel stream leads to the flame temperature reduction. By increasing of swirl intensity, the flame structure changes significantly. The flame has a conical shape in low swirl intensity; however, it has an hour glass-shape with a shorter length in high swirl intensity. The effects of N<sub>2</sub> dilution decrease the flame length in all swirl intensities; however, the rate of reduction is more noticeable in low swirl intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20diffusion%20flame" title="swirl diffusion flame">swirl diffusion flame</a>, <a href="https://publications.waset.org/abstracts/search?q=N2%20dilution" title=" N2 dilution"> N2 dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20intensity" title=" swirl intensity"> swirl intensity</a> </p> <a href="https://publications.waset.org/abstracts/105300/a-numerical-study-on-the-effects-of-n2-dilution-on-the-flame-structure-and-temperature-distribution-of-swirl-diffusion-flames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Modabberifar">Mehdi Modabberifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanaz%20Jabary"> Sanaz Jabary</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ghodsi"> Mojtaba Ghodsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gripper" title="gripper">gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=haptic" title=" haptic"> haptic</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic" title=" robotic"> robotic</a> </p> <a href="https://publications.waset.org/abstracts/50696/design-and-fabrication-of-a-programmable-stiffness-sensitive-gripper-for-object-handling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golak%20Bihari%20Mahanta">Golak Bihari Mahanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Bibhuti%20Bhusan%20%20Biswal"> Bibhuti Bhusan Biswal</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20V.%20L.%20Deepak"> B. B. V. L. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=Amruta%20Rout"> Amruta Rout</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunji%20Balamurali"> Gunji Balamurali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gripper%20optimization" title="gripper optimization">gripper optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristics" title=" metaheuristics"> metaheuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20learning%20based%20algorithm" title=" teaching learning based algorithm"> teaching learning based algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20gripper%20design" title=" optimal gripper design"> optimal gripper design</a> </p> <a href="https://publications.waset.org/abstracts/86971/parallel-gripper-modelling-and-design-optimization-using-multi-objective-grey-wolf-optimizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Design and Optimization for a Compliant Gripper with Force Regulation Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nhat%20Linh%20Ho">Nhat Linh Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh-Phong%20Dao"> Thanh-Phong Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh-Chour%20Huang"> Shyh-Chour Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hieu%20Giang%20Le"> Hieu Giang Le</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array <em>L<sub>9</sub></em> is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexure%20hinge" title="flexure hinge">flexure hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=compliant%20mechanism" title=" compliant mechanism"> compliant mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=compliant%20gripper" title=" compliant gripper"> compliant gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20regulation%20mechanism" title=" force regulation mechanism"> force regulation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a> </p> <a href="https://publications.waset.org/abstracts/61596/design-and-optimization-for-a-compliant-gripper-with-force-regulation-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Design and Evaluation of a Pneumatic Muscle Actuated Gripper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tudor%20Deaconescu">Tudor Deaconescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Deaconescu"> Andrea Deaconescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deployment of pneumatic muscles in various industrial applications is still in its early days, considering the relative newness of these components. The field of robotics holds particular future potential for pneumatic muscles, especially in view of their specific behaviour known as compliance. The paper presents and discusses an innovative constructive solution for a gripper system mountable on an industrial robot, based on actuation by a linear pneumatic muscle and transmission of motion by gear and rack mechanism. The structural, operational and constructive models of the new gripper are presented, along with some of the experimental results obtained subsequently to the testing of a prototype. Further presented are two control variants of the gripper system, one by means of a 3/2-way fast-switching solenoid valve, the other by means of a proportional pressure regulator. Advantages and disadvantages are discussed for both variants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gripper%20system" title="gripper system">gripper system</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20muscle" title=" pneumatic muscle"> pneumatic muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20modelling" title=" structural modelling"> structural modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a> </p> <a href="https://publications.waset.org/abstracts/11948/design-and-evaluation-of-a-pneumatic-muscle-actuated-gripper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Design and Development of Multi-Functional Intelligent Robot Arm Gripper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20Asheber">W. T. Asheber</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Chyi-Yeu"> L. Chyi-Yeu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gripper" title="gripper">gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20gripper" title=" intelligent gripper"> intelligent gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=transmissivity" title=" transmissivity"> transmissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20sensor" title=" vision sensor "> vision sensor </a> </p> <a href="https://publications.waset.org/abstracts/9358/design-and-development-of-multi-functional-intelligent-robot-arm-gripper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Design and Experimental Studies of a Centrifugal SWIRL Atomizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemabushan%20K.">Hemabushan K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manikandan"> Manikandan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20atomizer" title="swirl atomizer">swirl atomizer</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=spray" title=" spray"> spray</a>, <a href="https://publications.waset.org/abstracts/search?q=SWIRL" title=" SWIRL"> SWIRL</a> </p> <a href="https://publications.waset.org/abstracts/21828/design-and-experimental-studies-of-a-centrifugal-swirl-atomizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Definition of Service Angle of Android’S Robot Hand by Method of Small Movements of Gripper’S Axis Synthesis by Speed Vector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeriy%20Nebritov">Valeriy Nebritov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a generalized method for determining the service solid angle based on the assigned gripper axis orientation with a stationary grip center. Motion synthesis in this work is carried out in the vector of velocities. As an example, a solid angle of the android robot arm is determined, this angle being formed by the longitudinal axis of a gripper. The nature of the method is based on the study of sets of configuration positions, defining the end point positions of the unit radius sphere sweep, which specifies the service solid angle. From this the spherical curve specifying the shape of the desired solid angle was determined. The results of the research can be used in the development of control systems of autonomous android robots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android%20robot" title="android robot">android robot</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20systems" title=" control systems"> control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20synthesis" title=" motion synthesis"> motion synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20angle" title=" service angle"> service angle</a> </p> <a href="https://publications.waset.org/abstracts/105865/definition-of-service-angle-of-androids-robot-hand-by-method-of-small-movements-of-grippers-axis-synthesis-by-speed-vector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Analysis of Bending Abilities of Soft Pneumatic Actuator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeevan%20Balaji">Jeevan Balaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20Chigurupati"> Shreyas Chigurupati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pneumatic gripper use compressed air to operate its actuators (fingers). Unlike the conventional metallic gripper, a soft pneumatic actuator (SPA) can be used for relocating fragile objects. An added advantage for this gripper is that the pressure exerted on the object can be varied by changing the dimensions of the air chambers and also by the number of chambers. SPAs have many benefits over conventional robots in the military, medical fields because of their compliance nature and are easily produced using the 3D printing process. In the paper, SPA is proposed to perform pick and place tasks. A design was developed for the actuators, which is convenient for gripping any fragile objects. Thermoplastic polyurethane (TPU) is used for 3D printing the actuators. The actuator model behaves differently as the parameters such as its chamber height, number of chambers change. A detailed FEM model of the actuator is drafted for different pressure inputs using ABAQUS CAE software, and a safe loading pressure range is found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20robotics" title="soft robotics">soft robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20actuator" title=" pneumatic actuator"> pneumatic actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20and%20modelling" title=" design and modelling"> design and modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20analysis" title=" bending analysis"> bending analysis</a> </p> <a href="https://publications.waset.org/abstracts/137612/analysis-of-bending-abilities-of-soft-pneumatic-actuator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Effect of Exit Annular Area on the Flow Field Characteristics of an Unconfined Premixed Annular Swirl Burner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Raj">Vishnu Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Chockalingam%20Prathap"> Chockalingam Prathap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to explore the impact of variation in the exit annular area on the local flow field features and the flame stability of an annular premixed swirl burner (unconfined) operated with premixed n-butane air mixture at equivalence ratio (ϕ) = 1, 1 bar, and 300K. A swirl burner with an axial swirl generator having a swirl number of 1.5 was used. Three different burner heads were chosen to have the exit area increased from 100%, 160%, and 220% resulting in inner and outer diameters and cross-sectional areas as (1) 10mm&15mm, 98mm2 (2) 17.5mm&22.5mm, 157mm2 and (3) 25mm & 30mm, 216mm2. The bulk velocity and Reynolds number based on the hydraulic diameter and unburned gas properties were kept constant at 12 m/s and 4000. (i) Planar PIV with TiO2 seeding particles and (ii) OH* chemiluminescence were used to measure the velocity fields and reaction zones of the swirl flames at 5Hz, respectively. Velocity fields and the jet spreading rates measured at the isothermal and reactive conditions revealed that the presence of a flame significantly altered the flow field in the radial direction due to the gas expansion. Important observations from the flame measurements were: the height and maximum width of the recirculation bubbles normalized by the hydraulic diameter, and the jet spreading angles for the flames for the three exit area cases were: (a) 4.52, 1.95, 28ᵒ, (b) 6.78, 2.37, 34ᵒ, and (c) 8.73, 2.32, 37ᵒ. The lean blowout was also measured, and the respective equivalence ratios were: 0.80, 0.92, and 0.82. LBO was relatively narrow for the 157mm2 case. For this case, particle image velocimetry (PIV) measurements showed that Turbulent Kinetic Energy and turbulent intensity were relatively high compared to the other two cases, resulting in higher stretch rates and narrower lean blowout (LBO). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemiluminescence" title="chemiluminescence">chemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20spreading%20rate" title=" jet spreading rate"> jet spreading rate</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20blowout" title=" lean blowout"> lean blowout</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a> </p> <a href="https://publications.waset.org/abstracts/156640/effect-of-exit-annular-area-on-the-flow-field-characteristics-of-an-unconfined-premixed-annular-swirl-burner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Chang%20Yen">Shun-Chang Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=You-Lun%20Peng"> You-Lun Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Ching%20San"> Kuo-Ching San</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body%20with%20multiple%20holes" title="bluff body with multiple holes">bluff body with multiple holes</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl-jet%20flow" title=" swirl-jet flow"> swirl-jet flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20efficiency" title=" mixing efficiency"> mixing efficiency</a> </p> <a href="https://publications.waset.org/abstracts/56853/porous-bluff-body-disc-on-improving-the-gas-mixing-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Development of Intake System for Improvement of Performance of Compressed Natural Gas Spark Ignition Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardani%20Ali%20Serah">Mardani Ali Serah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuriadi%20Kusuma"> Yuriadi Kusuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrasa%20Soekardi"> Chandrasa Soekardi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The improvement of flow strategy was implemented in the intake system of the engine to produce better Compressed Natural Gas engine performance. Three components were studied, designed, simulated, developed,tested and validated in this research. The components are: the mixer, swirl device and fuel cooler device. The three components were installed to produce pressurised turbulent flow with higher fuel volume in the intake system, which is ideal condition for Compressed Natural Gas (CNG) fuelled engine. A combination of experimental work with simulation technique were carried out. The work included design and fabrication of the engine test rig; the CNG fuel cooling system; fitting of instrumentation and measurement system for the performance testing of both gasoline and CNG modes. The simulation work was utilised to design appropriate mixer and swirl device. The flow test rig, known as the steady state flow rig (SSFR) was constructed to validate the simulation results. Then the investigation of the effect of these components on the CNG engine performance was carried out. A venturi-inlet holes mixer with three variables: number of inlet hole (8, 12, and 16); the inlet angles (300, 400, 500, and 600) and the outlet angles (200, 300, 400, and 500) were studied. The swirl-device with number of revolution and the plane angle variables were also studied. The CNG fuel cooling system with the ability to control water flow rate and the coolant temperature was installed. In this study it was found that the mixer and swirl-device improved the swirl ratio and pressure condition inside the intake manifold. The installation of the mixer, swirl device and CNG fuel cooling system had successfully increased 5.5%, 5%, and 3% of CNG engine performance respectively compared to that of existing operating condition. The overall results proved that there is a high potential of this mixer and swirl device method in increasing the CNG engine performance. The overall improvement on engine performance of power and torque was about 11% and 13% compared to the original mixer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intake%20system" title="intake system">intake system</a>, <a href="https://publications.waset.org/abstracts/search?q=Compressed%20Natural%20Gas" title=" Compressed Natural Gas"> Compressed Natural Gas</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20efficiency" title=" volumetric efficiency"> volumetric efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20performance" title=" engine performance "> engine performance </a> </p> <a href="https://publications.waset.org/abstracts/42728/development-of-intake-system-for-improvement-of-performance-of-compressed-natural-gas-spark-ignition-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Towards the Design of Gripper Independent of Substrate Surface Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annika%20Schmidt">Annika Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Ausama%20Hadi%20Ahmed"> Ausama Hadi Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlo%20Menon"> Carlo Menon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> End effectors for robotic systems are becoming more and more advanced, resulting in a growing variety of gripping tasks. However, most grippers are application specific. This paper presents a gripper that interacts with an object’s surface rather than being dependent on a defined shape or size. For this purpose, ingressive and astrictive features are combined to achieve the desired gripping capabilities. The developed prototype is tested on a variety of surfaces with different hardness and roughness properties. The results show that the gripping mechanism works on all of the tested surfaces. The influence of the material properties on the amount of the supported load is also studied and the efficiency is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=claw" title="claw">claw</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20adhesion" title=" dry adhesion"> dry adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=insects" title=" insects"> insects</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20properties" title=" material properties"> material properties</a> </p> <a href="https://publications.waset.org/abstracts/47379/towards-the-design-of-gripper-independent-of-substrate-surface-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Harold%20Sosa-Arnao">Juan Harold Sosa-Arnao</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Jos%C3%A9%20de%20Oliveira%20Ferreira"> Daniel José de Oliveira Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Caice%20Guarato%20Santos"> Caice Guarato Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Justo%20Em%C3%ADlio%20Alvarez"> Justo Emílio Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Paes%20Rangel"> Leonardo Paes Rangel</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Won%20Park"> Song Won Park </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20CFD%20model" title="comprehensive CFD model">comprehensive CFD model</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar-cane%20bagasse%20combustion" title=" sugar-cane bagasse combustion"> sugar-cane bagasse combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20burner" title=" swirl burner"> swirl burner</a>, <a href="https://publications.waset.org/abstracts/search?q=contributions" title=" contributions"> contributions</a> </p> <a href="https://publications.waset.org/abstracts/22865/the-influence-of-swirl-burner-geometry-on-the-sugar-cane-bagasse-injection-and-burning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20J.%20Skusiewicz">Piotr J. Skusiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnathan%20Saul"> Johnathan Saul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijhar%20Rusli"> Ijhar Rusli</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Aleksandrova"> Svetlana Aleksandrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen.%20F.%20Benjamin"> Stephen. F. Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20Gall"> Miroslaw Gall</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Pierson"> Steve Pierson</a>, <a href="https://publications.waset.org/abstracts/search?q=Carol%20A.%20Roberts"> Carol A. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser" title=" diffuser"> diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-wire%20anemometry" title=" hot-wire anemometry"> hot-wire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title=" swirling flow"> swirling flow</a> </p> <a href="https://publications.waset.org/abstracts/58060/the-effect-of-swirl-on-the-flow-distribution-in-automotive-exhaust-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Hydraulic Optimization of an Adjustable Spiral-Shaped Evaporator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Feiner">Matthias Feiner</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Javier%20Fern%C3%A1ndez%20Garc%C3%ADa"> Francisco Javier Fernández García</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Arneman"> Michael Arneman</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kipfm%C3%BCller"> Martin Kipfmüller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To ensure reliability in miniaturized devices or processes with increased heat fluxes, very efficient cooling methods have to be employed in order to cope with small available cooling surfaces. To address this problem, a certain type of evaporator/heat exchanger was developed: It is called a swirl evaporator due to its flow characteristic. The swirl evaporator consists of a concentrically eroded screw geometry in which a capillary tube is guided, which is inserted into a pocket hole in components with high heat load. The liquid refrigerant R32 is sprayed through the capillary tube to the end face of the blind hole and is sucked off against the injection direction in the screw geometry. Its inner diameter is between one and three millimeters. The refrigerant is sprayed into the pocket hole via a small tube aligned in the center of the bore hole and is sucked off on the front side of the hole against the direction of injection. The refrigerant is sucked off in a helical geometry (twisted flow) so that it is accelerated against the hot wall (centrifugal acceleration). This results in an increase in the critical heat flux of up to 40%. In this way, more heat can be dissipated on the same surface/available installation space. This enables a wide range of technical applications. To optimize the design for the needs in various fields of industry, like the internal tool cooling when machining nickel base alloys like Inconel 718, a correlation-based model of the swirl-evaporator was developed. The model is separated into 3 subgroups with overall 5 regimes. The pressure drop and heat transfer are calculated separately. An approach to determine the locality of phase change in the capillary and the swirl was implemented. A test stand has been developed to verify the simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helically-shaped" title="helically-shaped">helically-shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-free" title=" oil-free"> oil-free</a>, <a href="https://publications.waset.org/abstracts/search?q=R-32" title=" R-32"> R-32</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl-evaporator" title=" swirl-evaporator"> swirl-evaporator</a>, <a href="https://publications.waset.org/abstracts/search?q=twist-flow" title=" twist-flow"> twist-flow</a> </p> <a href="https://publications.waset.org/abstracts/126336/hydraulic-optimization-of-an-adjustable-spiral-shaped-evaporator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Unsteady Characteristics Investigation on the Precessing Vortex Breakdown and Energy Separation in a Vortex Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangji%20Guo">Xiangji Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Zhang"> Bo Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the phenomenon of vortex breakdown in a vortex tube was analyzed within the scope of unsteady character in swirl flows. A 3-D Unsteady Reynolds-averaged Navier–Stokes (URANS) closed by the Reynolds Stress Model (RSM) was adopted to simulate the large-scale vortex structure in vortex tube, and the numerical model was verified by the steady results. The swirl number was calculated for the vortex tube and the flow field was classed as strong swirl flow. According to the results, a time-dependent spiral flow field gyrates around a central recirculation zone which is precessing around the axis of the tube, and manifests the flow structure is the spiral type (S-type) vortex breakdown. The vortex breakdown is crucial for the formation of the central recirculation zone (CRZ), a further discussion was about the affection on CRZ with the different external conditions of vortex tube, the study on the unsteady characters was expected to hope to design of vortex tube and analyze the energy separation effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title="vortex tube">vortex tube</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20breakdown" title=" vortex breakdown"> vortex breakdown</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20recirculation%20zone" title=" central recirculation zone"> central recirculation zone</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady" title=" unsteady"> unsteady</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20separation" title=" energy separation"> energy separation</a> </p> <a href="https://publications.waset.org/abstracts/52531/unsteady-characteristics-investigation-on-the-precessing-vortex-breakdown-and-energy-separation-in-a-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wooseok%20Song">Wooseok Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunjung%20Park"> Sunjung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongkwon%20Lee"> Jongkwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaye%20Koo"> Jaye Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket%20engine" title="liquid rocket engine">liquid rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20structure" title=" flame structure"> flame structure</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20instability" title=" combustion instability"> combustion instability</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pressure" title=" dynamic pressure"> dynamic pressure</a> </p> <a href="https://publications.waset.org/abstracts/90887/effects-of-injection-conditions-on-flame-structures-in-gas-centered-swirl-coaxial-injector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20Khalil">Mohamed K. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Ragab"> Mohamed S. Ragab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20engines" title="gas turbine engines">gas turbine engines</a>, <a href="https://publications.waset.org/abstracts/search?q=atomization%20process" title=" atomization process"> atomization process</a>, <a href="https://publications.waset.org/abstracts/search?q=Sauter%20mean%20diameter" title=" Sauter mean diameter"> Sauter mean diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=JP-5" title=" JP-5"> JP-5</a> </p> <a href="https://publications.waset.org/abstracts/94962/effect-of-fuel-type-on-design-parameters-and-atomization-process-for-pressure-swirl-atomizer-and-dual-orifice-atomizer-for-high-bypass-turbofan-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Investigation of Stabilized Turbulent Diffusion Flames Using Synthesis Fuel with Different Burner Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moataz%20Medhat">Moataz Medhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Khalil"> Essam Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Haridy"> Hatem Haridy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the flame structure of turbulent diffusion flame of synthesis fuel in a 300 KW swirl-stabilized burner. The three-dimensional model adopts a realizable k-ε turbulent scheme interacting with two-dimensional PDF combustion scheme by applying flamelet concept. The study reveals more characteristics on turbulent diffusion flame of synthesis fuel when changing the inlet air swirl number and the burner quarl angle. Moreover, it concerns with studying the effect of flue gas recirculation and staging with taking radiation effect into consideration. The comparison with natural gas was investigated. The study showed two zones of recirculation, the primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. The results revealed an increase in temperature in the external recirculation zone as a result of increasing the swirl number of the inlet air stream. Also, it was found that recirculating part of the combustion products decreases pollutants formation especially nitrogen monoxide. The predicted results showed a great agreement when compared with the experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation" title=" recirculation"> recirculation</a> </p> <a href="https://publications.waset.org/abstracts/59071/investigation-of-stabilized-turbulent-diffusion-flames-using-synthesis-fuel-with-different-burner-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Experimental Study of Unconfined and Confined Isothermal Swirling Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Sharma">Rohit Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Cozzi"> Fabio Cozzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, S<sub>g </sub>= 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20probes" title="acoustic probes">acoustic probes</a>, <a href="https://publications.waset.org/abstracts/search?q=3C-2D%20particle%20image%20velocimetry%20%28PIV%29" title=" 3C-2D particle image velocimetry (PIV)"> 3C-2D particle image velocimetry (PIV)</a>, <a href="https://publications.waset.org/abstracts/search?q=precessing%20vortex%20core%20%28PVC%29" title=" precessing vortex core (PVC)"> precessing vortex core (PVC)</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation%20zone%20%28RZ%29" title=" recirculation zone (RZ)"> recirculation zone (RZ)</a> </p> <a href="https://publications.waset.org/abstracts/65660/experimental-study-of-unconfined-and-confined-isothermal-swirling-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20El-Kafy%20Amer">Ahmed A. El-Kafy Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Gad"> H. M. Gad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Ibrahim"> A. I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Abdel-Mageed"> S. I. Abdel-Mageed</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Farag"> T. M. Farag </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper represents an experimental study of LPG diffusion flame at elevated air preheated temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Three air to fuel mass ratios of 30, 40 and 50 were also studied. The effect of air preheated temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the air preheated temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the air preheated temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the air preheated temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20preheated%20temperature" title="air preheated temperature">air preheated temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20swirler" title=" air swirler"> air swirler</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20length" title=" flame length"> flame length</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20index" title=" emission index"> emission index</a> </p> <a href="https://publications.waset.org/abstracts/30998/experimental-study-of-lpg-diffusion-flame-at-elevated-preheated-air-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> A One-Dimensional Modeling Analysis of the Influence of Swirl and Tumble Coefficient in a Single-Cylinder Research Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateus%20Silva%20Mendon%C3%A7a">Mateus Silva Mendonça</a>, <a href="https://publications.waset.org/abstracts/search?q=Wender%20Pereira%20de%20Oliveira"> Wender Pereira de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Heleno%20de%20Paula%20Ara%C3%BAjo"> Gabriel Heleno de Paula Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiago%20Ten%C3%B3rio%20Teixeira%20Santana%20Rocha"> Hiago Tenório Teixeira Santana Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Augusto%20C%C3%A9sar%20Teixeira%20Malaquias"> Augusto César Teixeira Malaquias</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Guilherme%20Coelho%20Baeta"> José Guilherme Coelho Baeta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stricter legislation and the greater demand of the population regard to gas emissions and their effects on the environment as well as on human health make the automotive industry reinforce research focused on reducing levels of contamination. This reduction can be achieved through the implementation of improvements in internal combustion engines in such a way that they promote the reduction of both specific fuel consumption and air pollutant emissions. These improvements can be obtained through numerical simulation, which is a technique that works together with experimental tests. The aim of this paper is to build, with support of the GT-Suite software, a one-dimensional model of a single-cylinder research engine to analyze the impact of the variation of swirl and tumble coefficients on the performance and on the air pollutant emissions of an engine. Initially, the discharge coefficient is calculated through the software Converge CFD 3D, given that it is an input parameter in GT-Power. Mesh sensitivity tests are made in 3D geometry built for this purpose, using the mass flow rate in the valve as a reference. In the one-dimensional simulation is adopted the non-predictive combustion model called Three Pressure Analysis (TPA) is, and then data such as mass trapped in cylinder, heat release rate, and accumulated released energy are calculated, aiming that the validation can be performed by comparing these data with those obtained experimentally. Finally, the swirl and tumble coefficients are introduced in their corresponding objects so that their influences can be observed when compared to the results obtained previously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1D%20simulation" title="1D simulation">1D simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=single-cylinder%20research%20engine" title=" single-cylinder research engine"> single-cylinder research engine</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20coefficient" title=" swirl coefficient"> swirl coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20pressure%20analysis" title=" three pressure analysis"> three pressure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tumble%20coefficient" title=" tumble coefficient"> tumble coefficient</a> </p> <a href="https://publications.waset.org/abstracts/156565/a-one-dimensional-modeling-analysis-of-the-influence-of-swirl-and-tumble-coefficient-in-a-single-cylinder-research-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Numerical Study of the Dynamic Behavior of an Air Conditioning with a Muti Confined Swirling Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Roudane">Mohamed Roudane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to know the dynamic behavior of a multi swirling jet used for air conditioning inside a room. To conduct this study, we designed a facility to ensure proper conditions of confinement in which we placed five air blowing devices with adjustable vanes, providing multiple swirling turbulent jets. The jets were issued in the same direction and the same spacing defined between them. This study concerned the numerical simulation of the dynamic mixing of confined swirling multi-jets, and examined the influence of important parameters of a swirl diffuser system on the dynamic performance characteristics. The CFD investigations are carried out by a hybrid mesh to discretize the computational domain. In this work, the simulations have been performed using the finite volume method and FLUENT solver, in which the standard k-ε RNG turbulence model was used for turbulence computations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl" title=" swirl"> swirl</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20jet" title=" turbulent jet"> turbulent jet</a> </p> <a href="https://publications.waset.org/abstracts/38034/numerical-study-of-the-dynamic-behavior-of-an-air-conditioning-with-a-muti-confined-swirling-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Characterization of Surface Suction Grippers for Continuous-Discontinuous Fiber Reinforced Semi-Finished Parts of an Automated Handling and Preforming Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J%C3%BCrgen%20Fleischer">Jürgen Fleischer</a>, <a href="https://publications.waset.org/abstracts/search?q=Woramon%20Pangboonyanon"> Woramon Pangboonyanon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Lesage"> Dominic Lesage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-metallic lightweight materials such as fiber reinforced plastics (FRP) become very significant at present. Prepregs e.g. SMC and unidirectional tape (UD-tape) are one of raw materials used to produce FRP. This study concerns with the manufacturing steps of handling and preforming of this UD-SMC and focuses on the investigation of gripper characteristics regarding gripping forces in normal and lateral direction, in order to identify suitable operating pressures for a secure gripping operation. A reliable handling and preforming operation results in a higher adding value of the overall process chain. As a result, the suitable operating pressures depending on travelling direction for each material type could be shown. Moreover, system boundary conditions regarding allowable pulling force in normal and lateral directions during preforming could be measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous-discontinuous%20fiber%20reinforced%20plastics" title="continuous-discontinuous fiber reinforced plastics">continuous-discontinuous fiber reinforced plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=UD-SMC-prepreg" title=" UD-SMC-prepreg"> UD-SMC-prepreg</a>, <a href="https://publications.waset.org/abstracts/search?q=handling" title=" handling"> handling</a>, <a href="https://publications.waset.org/abstracts/search?q=preforming" title=" preforming"> preforming</a>, <a href="https://publications.waset.org/abstracts/search?q=prepregs" title=" prepregs"> prepregs</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20moulding%20compounds" title=" sheet moulding compounds"> sheet moulding compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20suction%20gripper" title=" surface suction gripper"> surface suction gripper</a> </p> <a href="https://publications.waset.org/abstracts/59931/characterization-of-surface-suction-grippers-for-continuous-discontinuous-fiber-reinforced-semi-finished-parts-of-an-automated-handling-and-preforming-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Numerical Study on Enhancement of Heat Transfer by Turbulence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azmain%20Abdullah">Muhammad Azmain Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ar%20Rashedul"> Ar Rashedul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20%20Ali"> Mohammad Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper scrutinizes the influences of turbulence on heat transport rate, Nusselt number. The subject matter of this investigation also deals with the improvement of heat transfer efficiency of the swirl flow obtained by rotating a twisted tape in a circular pipe. The conditions to be fulfilled to observe the impact of Reynolds number and rotational speed of twisted tape are: a uniform temperature on the outer surface of the pipe, the magnitude of velocity of water varying from 0.1 m/s to 0.7 m/s in order to alter Reynolds number and a rotational speed of 200 rpm to 600 rpm. The gyration of twisted tape increase by 17%. It is also observed that heat transfer is exactly proportional to inlet gauge pressure and reciprocally proportional to increase of twist ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title="swirl flow">swirl flow</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20tape" title=" twisted tape"> twisted tape</a>, <a href="https://publications.waset.org/abstracts/search?q=twist%20ratio" title=" twist ratio"> twist ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/77361/numerical-study-on-enhancement-of-heat-transfer-by-turbulence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Combustion and Emission Characteristics in a Can-Type Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvakuma%20Kumaresh">Selvakuma Kumaresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion" title="combustion">combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=can-type%20combustion%20chamber" title=" can-type combustion chamber"> can-type combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20of%20holes" title=" motility of holes"> motility of holes</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a> </p> <a href="https://publications.waset.org/abstracts/11885/combustion-and-emission-characteristics-in-a-can-type-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moataz%20Medhat">Moataz Medhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20E.%20Khalil"> Essam E. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Haridy"> Hatem Haridy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burner%20selection" title="burner selection">burner selection</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation" title=" recirculation"> recirculation</a> </p> <a href="https://publications.waset.org/abstracts/86742/a-three-dimensional-investigation-of-stabilized-turbulent-diffusion-flames-using-different-type-of-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirl%20gripper&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirl%20gripper&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swirl%20gripper&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>