CINXE.COM
Search results for: parking space detection
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: parking space detection</title> <meta name="description" content="Search results for: parking space detection"> <meta name="keywords" content="parking space detection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="parking space detection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="parking space detection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7080</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: parking space detection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7080</span> Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiuh-Jer%20Huang">Shiuh-Jer Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Hsu"> Yu-Sheng Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20auto-parking" title="vehicle auto-parking">vehicle auto-parking</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection" title=" parking space detection"> parking space detection</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20path%20tracking%20control" title=" parking path tracking control"> parking path tracking control</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20fuzzy%20controller" title=" intelligent fuzzy controller"> intelligent fuzzy controller</a> </p> <a href="https://publications.waset.org/abstracts/78571/parking-space-detection-and-trajectory-tracking-control-for-vehicle-auto-parking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7079</span> An Intelligent WSN-Based Parking Guidance System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Shih%20Wang">Sheng-Shih Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Wang"> Wei-Ting Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino" title="Arduino">Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20guidance" title=" parking guidance"> parking guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=ZigBee" title=" ZigBee"> ZigBee</a> </p> <a href="https://publications.waset.org/abstracts/5080/an-intelligent-wsn-based-parking-guidance-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7078</span> A Car Parking Monitoring System Using a Line-Topology Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae%20Il%20Kim">Dae Il Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungho%20Moon"> Jungho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Yun%20Chung"> Tae Yun Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a car parking monitoring system using a wireless sensor network. The presented sensor network has a line-shaped topology and adopts a TDMA-based protocol for allowing multi-hop communications. Sensor nodes are deployed in the ground of an outdoor parking lot in such a way that a sensor node monitors a parking space. Each sensor node detects the availability of the associated parking space and transmits the detection result to a sink node via intermediate sensor nodes existing between the source sensor node and the sink node. We evaluate the feasibility of the presented sensor network and the TDMA-based communication protocol through experiments using 11 sensor nodes deployed in a real parking lot. The result shows that the presented car parking monitoring system is robust to changes in the communication environments and efficient for monitoring parking spaces of outdoor parking lots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-hop%20communication" title="multi-hop communication">multi-hop communication</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20monitoring%20system" title=" parking monitoring system"> parking monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=TDMA" title=" TDMA"> TDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a> </p> <a href="https://publications.waset.org/abstracts/61438/a-car-parking-monitoring-system-using-a-line-topology-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7077</span> Automated Parking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Arunraj">N. Arunraj</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20V.%20Paul"> C. P. V. Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20D.%20Jayawardena"> D. M. D. Jayawardena</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20N.%20D.%20Fernando"> W. N. D. Fernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic congestion with increased numbers of vehicles is already a serious issue for many countries. The absence of sufficient parking spaces adds to the issue. Motorists are forced to wait in long queues to park their vehicles. This adds to the inconvenience faced by a motorist, kept waiting for a slot allocation, manually done along with the parking payment calculation. In Sri Lanka, nowadays, parking systems use barcode technology to identify the vehicles at both the entrance and the exit points. Customer management is handled by the use of man power. A parking space is, generally permanently sub divided according to the vehicle type. Here, again, is an issue. Parking spaces are not utilized to the maximum. The current arrangement leaves room for unutilized parking spaces. Accordingly, there is a need to manage the parking space dynamically. As a vehicle enters the parking area, available space has to be assigned for the vehicle according to the vehicle type. The system, Automated Parking System (APS), provides an automated solution using RFID Technology to identify the vehicles. Simultaneously, an algorithm manages the space allocation dynamically. With this system, there is no permanent parking slot allocation for a vehicle type. A desktop application manages the customer. A Web application is used to manage the external users with their reservations. The system also has an android application to view the nearest parking area from the current location. APS is built using java and php. It uses LED panels to guide the user inside the parking area to find the allocated parking slot accurately. The system ensures efficient performance, saving precious time for a customer. Compared with the current parking systems, APS interacts with users and increases customer satisfaction as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=android" title=" android"> android</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20based%20system" title=" web based system"> web based system</a>, <a href="https://publications.waset.org/abstracts/search?q=barcode" title=" barcode"> barcode</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20panels" title=" LED panels"> LED panels</a> </p> <a href="https://publications.waset.org/abstracts/19319/automated-parking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7076</span> IoT Based Smart Car Parking System Using Node Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armel%20Asongu%20Nkembi">Armel Asongu Nkembi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Fawad"> Ahmad Fawad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we design a smart car parking system using the Node-Red interface, which enables the user to find the nearest parking area from his current location and gives the availability of parking slots in that respective parking area. The closest parking area is determined by sending an HTTP request to an API, and the shortest distance is computed using some mathematical formulations based on the coordinates retrieved. There is also the use of IR sensors to signal the availability or lack of available parking lots within any parking area. The aim is to reduce the time and effort needed to find empty parking lots and also avoid unnecessary traveling through filled parking lots in a parking area. Thus, it reduces fuel consumption, which in turn reduces carbon footprints in the atmosphere and, overall, makes the city much smarter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=node-red" title="node-red">node-red</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20parking%20system" title=" smart parking system"> smart parking system</a>, <a href="https://publications.waset.org/abstracts/search?q=API" title=" API"> API</a>, <a href="https://publications.waset.org/abstracts/search?q=http%20request" title=" http request"> http request</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20sensors" title=" IR sensors"> IR sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things" title=" Internet of Things"> Internet of Things</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20lots." title=" parking lots."> parking lots.</a> </p> <a href="https://publications.waset.org/abstracts/186024/iot-based-smart-car-parking-system-using-node-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7075</span> A Background Subtraction Based Moving Object Detection Around the Host Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyojin%20Lim">Hyojin Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuong%20Nguyen%20Khac"> Cuong Nguyen Khac</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Youl%20Jung"> Ho-Youl Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gaussian%20mixture%20model" title="gaussian mixture model">gaussian mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20subtraction" title=" background subtraction"> background subtraction</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20object%20detection" title=" moving object detection"> moving object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20space" title=" color space"> color space</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20filtering" title=" morphological filtering"> morphological filtering</a> </p> <a href="https://publications.waset.org/abstracts/32650/a-background-subtraction-based-moving-object-detection-around-the-host-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7074</span> Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongbo%20Zhang">Hongbo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinlu%20Tang"> Xinlu Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangwei%20Li"> Jiangwei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Yan"> Chi Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADAS" title="ADAS">ADAS</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20zone%20parking%20pilot" title=" home zone parking pilot"> home zone parking pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20SLAM" title=" visual SLAM"> visual SLAM</a> </p> <a href="https://publications.waset.org/abstracts/162272/low-cost-parking-lot-mapping-and-localization-for-home-zone-parking-pilot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7073</span> The Analysis on the Renewal Strategy of Public Space in Old Communities with an Example of GeDa Community in Xi'An</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiyue%20Wen">Xiyue Wen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid development of the city, old communities in the city are facing a series of problems. On one hand, aging facilities, obsolete spatial patterns, aging populations arouse in the aging of the community. On the other hand, public space is reduced and is taking up by cars parking or facilities setting, which lead to the collapse of traditional life in the old communities. That is to say, modern amenities haven’t helped to reform the old community, but have leading to tedious and inefficient, when it is not accommodated in the traditional space. Exploring a way is imminent to the east the contradiction between modern living facilities and spatial patterns of traditional. We select a typical site-GeDa Community in Xi’an, built in 70-80s,and carry out a concept calling 'Raising Landscape', which enables a convenient and efficient space for parking, as well as a high-quality yard for activities. In addition, the design implements low cost, simple construction, resident participation, so that it can be spread in the same texture of urban space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=old%20communities" title="old communities">old communities</a>, <a href="https://publications.waset.org/abstracts/search?q=renewal%20strategy" title=" renewal strategy"> renewal strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=raising%20landscape" title=" raising landscape"> raising landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20space" title=" public space"> public space</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20space" title=" parking space"> parking space</a> </p> <a href="https://publications.waset.org/abstracts/30409/the-analysis-on-the-renewal-strategy-of-public-space-in-old-communities-with-an-example-of-geda-community-in-xian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7072</span> A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon"> Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20parking%20monitoring" title="car parking monitoring">car parking monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20node" title=" sensor node"> sensor node</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20protocol" title=" network protocol"> network protocol</a> </p> <a href="https://publications.waset.org/abstracts/11153/a-wireless-sensor-network-protocol-for-a-car-parking-space-monitoring-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7071</span> Smart Unmanned Parking System Based on Radio Frequency Identification Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Qin">Yu Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned" title=" unmanned"> unmanned</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20management" title=" parking management"> parking management</a> </p> <a href="https://publications.waset.org/abstracts/81174/smart-unmanned-parking-system-based-on-radio-frequency-identification-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7070</span> Development the Potential of Parking Tax and Parking Retribution Revenues: Case Study in Bekasi City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Yudianto">Ivan Yudianto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research objectives are to analyze the factors that impede the Parking Tax and Parking Retribution collection in Bekasi City Government, analyzing the factors that can increase local own revenue from the tax sector of parking tax and parking retribution, analyze monitoring the parking retribution collection by the Bekasi City Government, analyze strategies Bekasi City Government through the preparation of a roadmap and action plan to increase parking tax and parking retribution revenues. The approach used in this research is a qualitative approach. Qualitative research is used because the problem is not yet clear and the object to be studied will be holistic, complex, and dynamic, and the relationship will be interactive symptoms. Methods of data collection and technical analysis of the data was in-depth interviews, participant observation, documentary materials, literature, and triangulation, as well as new methods such as the methods of visual materials and internet browsing. The results showed that there are several factors that become an obstacle such as the parking taxpayer does not disclose the actual parking revenue, the parking taxpayer are late or do not pay Parking Tax, many parking locations controlled by illegal organizations, shortage of human resources in charge levy and supervise the parking tax and parking retribution collection in the Bekasi City Government, surveillance parking tax and parking retribution are not scheduled on a regular basis. Several strategic priorities in order to develop the potential of the Parking Tax and Parking Retribution in the Bekasi City Government, namely through increased controling and monitoring of the Parking Taxpayer, forming a team of auditors to audit the Parking Taxpayer, seek law enforcement persuasive and educative to reduce Parking Taxpayer wayward, providing strict sanctions against the Parking Taxpayer disobedient, revised regulations mayors about locations of parking in Bekasi City, rationalize revenues target of Parking Retribution, conducting takeover attempts parking location on the roadside of the individual or specific group, and drafting regional regulations on parking subscribe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20own%20revenue" title="local own revenue">local own revenue</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20retribution" title=" parking retribution"> parking retribution</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20tax" title=" parking tax"> parking tax</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20taxpayer" title=" parking taxpayer"> parking taxpayer</a> </p> <a href="https://publications.waset.org/abstracts/48471/development-the-potential-of-parking-tax-and-parking-retribution-revenues-case-study-in-bekasi-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7069</span> A Parking Demand Forecasting Method for Making Parking Policy in the Center of Kabul City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roien%20Qiam">Roien Qiam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoshi%20Mizokami"> Shoshi Mizokami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parking demand in the Central Business District (CBD) has enlarged with the increase of the number of private vehicles due to rapid economic growth, lack of an efficient public transport and traffic management system. This has resulted in low mobility, poor accessibility, serious congestion, high rates of traffic accident fatalities and injuries and air pollution, mainly because people have to drive slowly around to find a vacant spot. With parking pricing and enforcement policy, considerable advancement could be found, and on-street parking spaces could be managed efficiently and effectively. To evaluate parking demand and making parking policy, it is required to understand the current parking condition and driver’s behavior, understand how drivers choose their parking type and location as well as their behavior toward finding a vacant parking spot under parking charges and search times. This study illustrates the result from an observational, revealed and stated preference surveys and experiment. Attained data shows that there is a gap between supply and demand in parking and it has maximized. For the modeling of the parking decision, a choice model was constructed based on discrete choice modeling theory and multinomial logit model estimated by using SP survey data; the model represents the choice of an alternative among different alternatives which are priced on-street, off-street, and illegal parking. Individuals choose a parking type based on their preference concerning parking charges, searching times, access times and waiting times. The parking assignment model was obtained directly from behavioral model and is used in parking simulation. The study concludes with an evaluation of parking policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBD" title="CBD">CBD</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20demand%20forecast" title=" parking demand forecast"> parking demand forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20policy" title=" parking policy"> parking policy</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20choice%20model" title=" parking choice model"> parking choice model</a> </p> <a href="https://publications.waset.org/abstracts/74802/a-parking-demand-forecasting-method-for-making-parking-policy-in-the-center-of-kabul-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7068</span> UPPAAL-based Design and Analysis of Intelligent Parking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abobaker%20Mohammed%20Qasem%20Farhan">Abobaker Mohammed Qasem Farhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Olof%20M.%20A.%20Saif"> Olof M. A. Saif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preliminaries" title="preliminaries">preliminaries</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20requirements" title=" system requirements"> system requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=timed%20Au-%20tomata" title=" timed Au- tomata"> timed Au- tomata</a>, <a href="https://publications.waset.org/abstracts/search?q=Uppaal" title=" Uppaal"> Uppaal</a> </p> <a href="https://publications.waset.org/abstracts/162502/uppaal-based-design-and-analysis-of-intelligent-parking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7067</span> Real-Time Detection of Space Manipulator Self-Collision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Xiaodong">Zhang Xiaodong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20Zixin"> Tang Zixin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Xin"> Liu Xin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20manipulator" title="space manipulator">space manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20detection" title=" collision detection"> collision detection</a>, <a href="https://publications.waset.org/abstracts/search?q=self-collision" title=" self-collision"> self-collision</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20real-time%20collision%20detection" title=" the real-time collision detection"> the real-time collision detection</a> </p> <a href="https://publications.waset.org/abstracts/23258/real-time-detection-of-space-manipulator-self-collision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7066</span> Internet of Things Based Process Model for Smart Parking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amjaad%20Alsalamah">Amjaad Alsalamah</a>, <a href="https://publications.waset.org/abstracts/search?q=Liyakathunsia%20Syed"> Liyakathunsia Syed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation is an essential need for many people to go to their work, school, and home. In particular, the main common method inside many cities is to drive the car. Driving a car can be an easy job to reach the destination and load all stuff in a reasonable time. However, deciding to find a parking lot for a car can take a long time using the traditional system that can issue a paper ticket for each customer. The old system cannot guarantee a parking lot for all customers. Also, payment methods are not always available, and many customers struggled to find their car among a numerous number of cars. As a result, this research focuses on providing an online smart parking system in order to save time and budget. This system provides a flexible management system for both parking owner and customers by receiving all request via the online system and it gets an accurate result for all available parking and its location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20parking%20system" title="smart parking system">smart parking system</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20system" title=" tracking system"> tracking system</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20model" title=" process model"> process model</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/66479/internet-of-things-based-process-model-for-smart-parking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7065</span> Using GIS and AHP Model to Explore the Parking Problem in Khomeinishahr</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davood%20Vatankhah">Davood Vatankhah</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Mokhtari%20Malekabadi"> Reza Mokhtari Malekabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Saghaei"> Mohsen Saghaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Function of urban transportation systems depends on the existence of the required infrastructures, appropriate placement of different components, and the cooperation of these components with each other. Establishing various neighboring parking spaces in city neighborhood in order to prevent long-term and inappropriate parking of cars in the allies is one of the most effective operations in reducing the crowding and density of the neighborhoods. Every place with a certain application attracts a number of daily travels which happen throughout the city. A large percentage of the people visiting these places go to these travels by their own cars; therefore, they need a space to park their cars. The amount of this need depends on the usage function and travel demand of the place. The study aims at investigating the spatial distribution of the public parking spaces, determining the effective factors in locating, and their combination in GIS environment in Khomeinishahr of Isfahan city. Ultimately, the study intends to create an appropriate pattern for locating parking spaces, determining the request for parking spaces of the traffic areas, choosing the proper places for providing the required public parking spaces, and also proposing new spots in order to promote quality and quantity aspects of the city in terms of enjoying public parking spaces. Regarding the method, the study is based on applied purpose and regarding nature, it is analytic-descriptive. The population of the study includes people of the center of Khomeinishahr which is located on Northwest of Isfahan having about 5000 hectares of geographic area and the population of 241318 people are in the center of Komeinishahr. In order to determine the sample size, Cochran formula was used and according to the population of 26483 people of the studied area, 231 questionnaires were used. Data analysis was carried out by usage of SPSS software and after estimating the required space for parking spaces, initially, the effective criteria in locating the public parking spaces are weighted by the usage of Analytic Hierarchical Process in the Arc GIS software. Then, appropriate places for establishing parking spaces were determined by fuzzy method of Order Weighted Average (OWA). The results indicated that locating of parking spaces in Khomeinishahr have not been carried out appropriately and per capita of the parking spaces is not desirable in relation to the population and request; therefore, in addition to the present parking lots, 1434 parking lots are needed in the area of the study for each day; therefore, there is not a logical proportion between parking request and the number of parking lots in Khomeinishahr. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=locating" title=" locating"> locating</a>, <a href="https://publications.waset.org/abstracts/search?q=parking" title=" parking"> parking</a>, <a href="https://publications.waset.org/abstracts/search?q=khomeinishahr" title=" khomeinishahr "> khomeinishahr </a> </p> <a href="https://publications.waset.org/abstracts/25857/using-gis-and-ahp-model-to-explore-the-parking-problem-in-khomeinishahr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7064</span> Intelligent Parking Systems for Quasi-Close Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20Adekunle%20Faiyetole">Ayodele Adekunle Faiyetole</a>, <a href="https://publications.waset.org/abstracts/search?q=Olumide%20Olawale%20Jegede"> Olumide Olawale Jegede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental design and needs justifications for a localized intelligent parking system (L-IPS), ideal for quasi-close communities with increasing vehicular volume that depends on limited or constant parking facilities. For a constant supply in parking facilities, the demand for an increasing vehicular volume could lead to poor time conservation or extended travel time, traffic congestion or impeded mobility, and safety issues. Increased negative environmental and economic externalities are other associated and consequent downsides of disparities in demand and supply. This L-IPS is designed using a microcontroller, ultrasonic sensors, LED indicators, such that the current status, in terms of parking spots availability, can be known from the main entrance to the community or a parking zone on a LCD screen. As an advanced traffic management system (ATMS), the L-IPS is designed to resolve aspects of infrastructure-to-driver (I2D) communication and parking detection issues. Thus, this L-IPS can act as a timesaver for users by helping them know the availability of parking spots. Providing on-time, informed routing, to a next preference or seamless moving to berth on the available spot on a proximate facility as the case may be. Its use could also increase safety and increase mobility, and fuel savings and costs, therefore, reducing negative environmental and economic externalities due to transportation systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20parking%20systems" title="intelligent parking systems">intelligent parking systems</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20intelligent%20parking%20system" title=" localized intelligent parking system"> localized intelligent parking system</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20systems" title=" intelligent transport systems"> intelligent transport systems</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20traffic%20management%20systems" title=" advanced traffic management systems"> advanced traffic management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure-to-drivers%20communication" title=" infrastructure-to-drivers communication"> infrastructure-to-drivers communication</a> </p> <a href="https://publications.waset.org/abstracts/106820/intelligent-parking-systems-for-quasi-close-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7063</span> Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingxin%20Li">Mingxin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liya%20Ni"> Liya Ni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20parking" title="autonomous parking">autonomous parking</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics-based%20prediction" title=" kinematics-based prediction"> kinematics-based prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title=" transfer learning"> transfer learning</a> </p> <a href="https://publications.waset.org/abstracts/131979/small-scale-mobile-robot-auto-parking-using-deep-learning-image-processing-and-kinematics-based-target-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7062</span> Modeling Jordan University of Science and Technology Parking Using Arena Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Qasim">T. Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alqawasmi"> M. Alqawasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hawash"> M. Hawash</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Betar"> M. Betar</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Qasim"> W. Qasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decade, the over population that has happened in urban areas has been reflecting on the services that various local institutions provide to car users in the form of car parks, which is becoming a daily necessity in our lives. This study focuses on car parks at Jordan University of Science and Technology, in Irbid, Jordan, to understand the university parking needs. Data regarding arrival and departure times of cars and the parking utilization were collected, to find various options that the university can implement to solve and develop an efficient car parking system. Arena software was used to simulate a parking model. This model allows measuring the different solutions that solve the parking problem at Jordan University of Science and Technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20park" title="car park">car park</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20time" title=" service time"> service time</a> </p> <a href="https://publications.waset.org/abstracts/104306/modeling-jordan-university-of-science-and-technology-parking-using-arena-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7061</span> Analysis of The Effect about Different Automatic Sprinkler System Extinguishing The Scooter Fire in Underground Parking Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsiu%20%20Li">Yu-Hsiu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Hsun%20%20Chen"> Chun-Hsun Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of automatic sprinkler system protects the scooter in underground parking space, the current of general buildings is mainly equipped with foam fire-extinguishing equipment in Taiwan, the automatic sprinkling system has economic and environmental benefits, even high stability, China and the United States allow the parking space to set the automatic sprinkler system under certain conditions. The literature about scooter full-scale fire indicates that the average fire growth coefficient is 0.19 KW/sec2, it represents the scooter fire is classified as ultra-fast time square fire growth model, automatic sprinkler system can suppress the flame height and prevent extending burning. According to the computer simulation (FDS) literature, no matter computer simulation or full-scale experiments, the active order and trend about sprinkler heads are the same. This study uses the computer simulation program (FDS), the simulation scenario designed includes using a different system (enclosed wet type and open type), and different configurations. The simulation result demonstrates that the open type requires less time to extinguish the fire than the enclosed wet type if the horizontal distance between the sprinkler and the scooter ignition source is short, the sprinkler can act quickly, the heat release rate of fire can be suppressed in advance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20sprinkler%20system" title="automatic sprinkler system">automatic sprinkler system</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20parking%20Spac" title=" underground parking Spac"> underground parking Spac</a>, <a href="https://publications.waset.org/abstracts/search?q=FDS" title=" FDS"> FDS</a>, <a href="https://publications.waset.org/abstracts/search?q=scooter%20fire%20extinguishing" title=" scooter fire extinguishing"> scooter fire extinguishing</a> </p> <a href="https://publications.waset.org/abstracts/120646/analysis-of-the-effect-about-different-automatic-sprinkler-system-extinguishing-the-scooter-fire-in-underground-parking-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7060</span> Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Romera">Javier Romera</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Justo"> Alberto Justo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignacio%20Fidalgo"> Ignacio Fidalgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshue%20Perez"> Joshue Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Araluce"> Javier Araluce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gesture%20detection" title="gesture detection">gesture detection</a>, <a href="https://publications.waset.org/abstracts/search?q=mediapipe" title=" mediapipe"> mediapipe</a>, <a href="https://publications.waset.org/abstracts/search?q=multiperceptron%20layer" title=" multiperceptron layer"> multiperceptron layer</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20operating%20system" title=" robot operating system"> robot operating system</a> </p> <a href="https://publications.waset.org/abstracts/174862/hands-off-parking-deep-learning-gesture-based-system-for-individuals-with-mobility-needs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7059</span> Study of Parking Demand for Offices – Case Study: Kolkata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghamitra%20Roy">Sanghamitra Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times, India has experienced the phenomenal rise in the number of registered vehicles and vehicular trips, particularly intra-city trips in most of its urban areas. The increase in vehicle ownership and use have increased parking demand immensely and accommodating the same is now a matter of big concern. Most cities do not have adequate off-street parking facilities thus forcing people to park on the streets. This has resulted in decreased carrying capacity, decreased traffic speed, increased congestion, and increased environmental problems. While integrated multi-modal transportation system is the answer to such problems, parking issues will continue to exist. In Kolkata, only 6.4% land is devoted for roads. The consequences of this huge crunch in road spaces coupled with increased parking demand are severe particularly in the CBD and major commercial areas, making the role of off-street parking facilities in Kolkata even more critical. To meaningfully address parking issues, it is important to identify the factors that influence parking demand so that it can be assessed and comprehensive parking policies and plans for the city can be formulated. This paper aims at identifying the factors that contribute towards parking demand for offices in Kolkata and their degree of correlation with parking demand. The study is limited to home-to-work trips located within Kolkata Municipal Corporation (KMC) where parking related issues are most pronounced. The data for the study is collected through personal interviews, questionnaires and direct observations from offices across the wards of KMC. SPSS is used for classification of the data and analyses of the same. The findings of this study will help in re-assessment of the parking requirements specified in The Kolkata Municipal Corporation Building Rules as a step towards alleviating parking related issues in the city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20rules" title="building rules">building rules</a>, <a href="https://publications.waset.org/abstracts/search?q=office%20spaces" title=" office spaces"> office spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20demand" title=" parking demand"> parking demand</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization "> urbanization </a> </p> <a href="https://publications.waset.org/abstracts/37209/study-of-parking-demand-for-offices-case-study-kolkata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7058</span> Changing the Way South Africa Think about Parking Provision at Tertiary Institutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Venter">M. C. Venter</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Hitge"> G. Hitge</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Krygsman"> S. C. Krygsman</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Thiart"> J. Thiart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For decades, South Africa has been planning transportation systems from a supply, rather than a demand side, perspective. In terms of parking, this relates to requiring the minimum parking provision that is enforced by city officials. Newer insight is starting to indicate that South Africa needs to re-think this philosophy in light of a new policy environment that desires a different outcome. Urban policies have shifted from reliance on the private car for access, to employing a wide range of alternative modes. Car dominated travel is influenced by various parameters, of which the availability and location of parking plays a significant role. The question is therefore, what is the right strategy to achieve the desired transport outcomes for SA. The focus of this paper is used to assess this issue with regard to parking provision, and specifically at a tertiary institution. A parking audit was conducted at the Stellenbosch campus of Stellenbosch University, monitoring occupancy at all 60 parking areas, every hour during business hours over a five-day period. The data from this survey was compared with the prescribed number of parking bays according to the Stellenbosch Municipality zoning scheme (requiring a minimum of 0.4 bays per student). The analysis shows that by providing 0.09 bays per student, the maximum total daily occupation of all the parking areas did not exceed an 80% occupation rate. It is concluded that the prevailing parking standards are not supportive of the new urban and transport policy environment, but that it is extremely conservative from a practical demand point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parking%20provision" title="parking provision">parking provision</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20requirements" title=" parking requirements"> parking requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20behaviour" title=" travel behaviour"> travel behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20demand%20management" title=" travel demand management"> travel demand management</a> </p> <a href="https://publications.waset.org/abstracts/81668/changing-the-way-south-africa-think-about-parking-provision-at-tertiary-institutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7057</span> Understanding the Safety Impacts of Imbalances in Truck Parking Supply and Demand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahil%20Saeedi">Rahil Saeedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The imbalance in truck parking supply and demand can create important safety issues for truck drivers and the public. Research has shown that breaks at specific intervals can increase drivers’ alertness by reducing the monotony of the task. However, if fatigued truck drivers are unable to find a safe parking spot for rest, they may continue to drive or choose to park at remote and insecure areas or undesignated locations. All of these situations pose serious safety and security risks to truck drivers and other roadway users. This study uses 5-year truck crash data in Ohio to develop and test a framework for identifying crashes that happen as a result of imbalances in truck parking supply and demand. The societal impacts of these crashes are then interpreted as monetary values, calculated using the costs associated with various crash severity levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=truck%20parking" title="truck parking">truck parking</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title=" road safety"> road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=crash%20data" title=" crash data"> crash data</a>, <a href="https://publications.waset.org/abstracts/search?q=geofencing" title=" geofencing"> geofencing</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20fatigue" title=" driver fatigue"> driver fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=undesignated%20parking" title=" undesignated parking"> undesignated parking</a> </p> <a href="https://publications.waset.org/abstracts/143110/understanding-the-safety-impacts-of-imbalances-in-truck-parking-supply-and-demand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7056</span> Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahman%20Ali">Rahman Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sajjad"> Muhammad Sajjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Farkhund%20Iqbal"> Farkhund Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sadiq%20Hassan%20Zada"> Muhammad Sadiq Hassan Zada</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hussain"> Mohammed Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emission of Carbon Dioxide (CO<sub>2</sub>) has adversely affected the environment. One of the major sources of CO<sub>2 </sub>emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO<sub>2</sub> in the environment. To reduce CO<sub>2</sub> emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO<sub>2 </sub>emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO<sub>2 </sub>emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO<sub>2 </sub>emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO<sub>2 </sub>into the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20parking" title="car parking">car parking</a>, <a href="https://publications.waset.org/abstracts/search?q=Co2" title=" Co2"> Co2</a>, <a href="https://publications.waset.org/abstracts/search?q=Co2%20reduction" title=" Co2 reduction"> Co2 reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=merge%20sort" title=" merge sort"> merge sort</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20plate%20recognition" title=" number plate recognition"> number plate recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20car%20parking" title=" smart car parking"> smart car parking</a> </p> <a href="https://publications.waset.org/abstracts/128420/reducing-co2-emission-using-eda-and-weighted-sum-model-in-smart-parking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7055</span> Improved Skin Detection Using Colour Space and Texture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medjram%20Sofiane">Medjram Sofiane</a>, <a href="https://publications.waset.org/abstracts/search?q=Babahenini%20Mohamed%20Chaouki"> Babahenini Mohamed Chaouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benali%20Yamina"> Mohamed Benali Yamina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title="skin detection">skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YCbCr" title=" YCbCr"> YCbCr</a>, <a href="https://publications.waset.org/abstracts/search?q=GLCM" title=" GLCM"> GLCM</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20skin" title=" human skin"> human skin</a> </p> <a href="https://publications.waset.org/abstracts/19039/improved-skin-detection-using-colour-space-and-texture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7054</span> Discussion on the Impact and Improvement Strategy of Bike Sharing on Urban Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingying%20Liu">Bingying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dandong%20Ge"> Dandong Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinlan%20Zhang"> Xinlan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoyang%20Liang"> Haoyang Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past two years, a new generation of No-Pile Bike sharing, represented by the Ofo, Mobike and HelloBike, has sprung up in various cities in China, and spread rapidly in countries such as Britain, Japan, the United States and Singapore. As a new green public transportation mode, bike sharing can bring a series of benefits to urban space. At first, this paper analyzes the specific impact of bike sharing on urban space in China. Based on the market research and data analyzing, it is found that bike sharing can improve the quality of urban space in three aspects: expanding the radius of public transportation service, filling service blind spots, alleviating urban traffic congestion, and enhancing the vitality of urban space. On the other hand, due to the immature market and the imperfect system, bike sharing has gradually revealed some difficulties, such as parking chaos, malicious damage, safety problems, imbalance between supply and demand, and so on. Then the paper investigates the characteristics of shared bikes, business model, operating mechanism on Chinese market currently. Finally, in order to make bike sharing serve urban construction better, this paper puts forward some specific countermeasures from four aspects. In terms of market operations, it is necessary to establish a public-private partnership model and set up a unified bike-sharing integrated management platform. From technical methods level, the paper proposes to develop an intelligent parking system for regulating parking. From policy formulation level, establishing a bike-sharing assessment mechanism would strengthen supervision. As to urban planning, sharing data and redesigning slow roadway is beneficial for transportation and spatial planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bike%20sharing" title="bike sharing">bike sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20analysis" title=" impact analysis"> impact analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement%20strategy" title=" improvement strategy"> improvement strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20space" title=" urban space"> urban space</a> </p> <a href="https://publications.waset.org/abstracts/98254/discussion-on-the-impact-and-improvement-strategy-of-bike-sharing-on-urban-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7053</span> Investigating the Characteristics of Correlated Parking-Charging Behaviors for Electric Vehicles: A Data-Driven Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xizhen%20Zhou">Xizhen Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanjie%20Ji"> Yanjie Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In advancing the management of integrated electric vehicle (EV) parking-charging behaviors, this study uses Changshu City in Suzhou as a case study to establish a data association mechanism for parking-charging platforms and to develop a database for EV parking-charging behaviors. Key indicators, such as charging start time, initial state of charge, final state of charge, and parking-charging time difference, are considered. Utilizing the K-S test method, the paper examines the heterogeneity of parking-charging behavior preferences among pure EV and non-pure EV users. The K-means clustering method is employed to analyze the characteristics of parking-charging behaviors for both user groups, thereby enhancing the overall understanding of these behaviors. The findings of this study reveal that using a classification model, the parking-charging behaviors of pure EVs can be classified into five distinct groups, while those of non-pure EVs can be separated into four groups. Among them, both types of EV users exhibit groups with low range anxiety for complete charging with special journeys, complete charging at destination, and partial charging. Additionally, both types have a group with high range anxiety, characterized by pure EV users displaying a preference for complete charging with specific journeys, while non-pure EV users exhibit a preference for complete charging. Notably, pure EV users also display a significant group engaging in nocturnal complete charging. The findings of this study can provide technical support for the scientific and rational layout and management of integrated parking and charging facilities for EVs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20engineering" title="traffic engineering">traffic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20preferences" title=" potential preferences"> potential preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=EV" title=" EV"> EV</a>, <a href="https://publications.waset.org/abstracts/search?q=parking-charging%20behavior" title=" parking-charging behavior"> parking-charging behavior</a> </p> <a href="https://publications.waset.org/abstracts/174576/investigating-the-characteristics-of-correlated-parking-charging-behaviors-for-electric-vehicles-a-data-driven-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7052</span> Parking Service Effectiveness at Commercial Malls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20AlAbdullah">Ahmad AlAbdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20AlQallaf"> Ali AlQallaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Hussain"> Mahdi Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20AlAttar"> Mohammed AlAttar</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Ashknani"> Salman Ashknani</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20Helal"> Magdy Helal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the effectiveness of the parking service provided at Kuwaiti commercial malls and explore potential problems and feasible improvements. Commercial malls are important to Kuwaitis as the entertainment and shopping centers due to the lack of other alternatives. The difficulty and relatively long times wasted in finding a parking spot at the mall are real annoyances. We applied queuing analysis to one of the major malls that offer paid-parking (1040 parking spots) in addition to free parking. Patrons of the mall usually complained of the traffic jams and delays at entering the paid parking (average delay to park exceeds 15 min for about 62% of the patrons, while average time spent in the mall is about 2.6 hours). However, the analysis showed acceptable service levels at the check-in gates of the parking garage. Detailed review of the vehicle movement at the gateways indicated that arriving and departing cars both had to share parts of the gateway to the garage, which caused the traffic jams and delays. A simple comparison we made indicated that the largest commercial mall in Kuwait does not suffer such parking issues, while other smaller, yet important malls do, including the one we studied. It was suggested that well-designed inlets and outlets of that gigantic mall permitted smooth parking despite being totally free and mall is the first choice for most people for entertainment and shopping. A simulation model is being developed for further analysis and verification. Simulation can overcome the mathematical difficulty in using non-Poisson queuing models. The simulation model is used to explore potential changes to the parking garage entrance layout. And with the inclusion of the drivers’ behavior inside the parking, effectiveness indicators can be derived to address the economic feasibility of extending the parking capacity and increasing service levels. Outcomes of the study are planned to be generalized as appropriate to other commercial malls in Kuwait <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commercial%20malls" title="commercial malls">commercial malls</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20service" title=" parking service"> parking service</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20analysis" title=" queuing analysis"> queuing analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modeling" title=" simulation modeling"> simulation modeling</a> </p> <a href="https://publications.waset.org/abstracts/9478/parking-service-effectiveness-at-commercial-malls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7051</span> A Route Guidance System for Car Finding in Indoor Parking Garages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Chun%20Lee">Pei-Chun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Shih%20Wang"> Sheng-Shih Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guidance" title="guidance">guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=iBeacon" title=" iBeacon"> iBeacon</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20app" title=" mobile app"> mobile app</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a> </p> <a href="https://publications.waset.org/abstracts/54035/a-route-guidance-system-for-car-finding-in-indoor-parking-garages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">646</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=235">235</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=236">236</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parking%20space%20detection&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>