CINXE.COM

Search results for: PET/CT scan

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: PET/CT scan</title> <meta name="description" content="Search results for: PET/CT scan"> <meta name="keywords" content="PET/CT scan"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="PET/CT scan" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="PET/CT scan"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 406</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: PET/CT scan</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Design and Manufacture Detection System for Patient&#039;s Unwanted Movements during Radiology and CT Scan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Yaghobi">Anita Yaghobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Homayoun%20Ebrahimian"> Homayoun Ebrahimian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important tools that can help orthopedic doctors for diagnose diseases is imaging scan. Imaging techniques can help physicians in see different parts of the body, including the bones, muscles, tendons, nerves, and cartilage. During CT scan, a patient must be in the same position from the start to the end of radiation treatment. Patient movements are usually monitored by the technologists through the closed circuit television (CCTV) during scan. If the patient makes a small movement, it is difficult to be noticed by them. In the present work, a simple patient movement monitoring device is fabricated to monitor the patient movement. It uses an electronic sensing device. It continuously monitors the patient’s position while the CT scan is in process. The device has been retrospectively tested on 51 patients whose movement and distance were measured. The results show that 25 patients moved 1 cm to 2.5 cm from their initial position during the CT scan. Hence, the device can potentially be used to control and monitor patient movement during CT scan and Radiography. In addition, an audible alarm situated at the control panel of the control room is provided with this device to alert the technologists. It is an inexpensive, compact device which can be used in any CT scan machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title="CT scan">CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology" title=" radiology"> radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=X%20Ray" title=" X Ray"> X Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=unwanted%20movement" title=" unwanted movement"> unwanted movement</a> </p> <a href="https://publications.waset.org/abstracts/32893/design-and-manufacture-detection-system-for-patients-unwanted-movements-during-radiology-and-ct-scan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Determining the Effectiveness of Radiation Shielding and Safe Time for Radiation Worker by Employing Monitoring of Accumulation Dose in the Operator Room of CT Scan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Risalatul%20Latifah">Risalatul Latifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bunawas%20Bunawas"> Bunawas Bunawas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lailatul%20Muqmiroh"> Lailatul Muqmiroh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anggraini%20D.%20Sensusiati"> Anggraini D. Sensusiati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with the increasing frequency of the use of CT-Scan for radiodiagnostics purposes, it is necessary to study radiation protection. This study examined aspects of radiation protection of workers. This study tried using thermoluminescent dosimeter (TLD) for evaluating radiation shielding and estimating safe time for workers during CT Scan examination. Six TLDs were placed on door, wall, and window inside and outside of the CT Scan room for 1 month. By using TLD monitoring, it could be seen how much radiation was exposed in the operator room. The results showed the effective dose at door, window, and wall was respectively 0.04 mSv, 0.05 mSv, and 0.04 mSv. With these values, it could be evaluated the effectiveness of radiation shielding on doors, glass and walls were respectively 90.6%, 95.5%, and 92.2%. By applying the dose constraint and the estimation of the accumulated dose for one month, radiation workers were still safe to perform the irradiation for 180 patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20scan%20room" title="CT scan room">CT scan room</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD" title=" TLD"> TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20worker" title=" radiation worker"> radiation worker</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20constraint" title=" dose constraint"> dose constraint</a> </p> <a href="https://publications.waset.org/abstracts/63239/determining-the-effectiveness-of-radiation-shielding-and-safe-time-for-radiation-worker-by-employing-monitoring-of-accumulation-dose-in-the-operator-room-of-ct-scan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Sung%20Go">Jun Sung Go</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kang%20Park"> Jong Kang Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scan%20chain" title="scan chain">scan chain</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20event%20transient" title=" single event transient"> single event transient</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20error" title=" soft error"> soft error</a>, <a href="https://publications.waset.org/abstracts/search?q=8051%20processor" title=" 8051 processor"> 8051 processor</a> </p> <a href="https://publications.waset.org/abstracts/60435/single-event-transient-tolerance-analysis-in-8051-microprocessor-using-scan-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Tc-99m MIBI Scintigraphy to Differentiate Malignant from Benign Lesions, Detected on Planar Bone Scan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aniqa%20Jabeen">Aniqa Jabeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to evaluate the effectiveness of Tc-99m MIBI (Technetium 99-methoxy-iso-butyl-isonitrile) scintigraphy to differentiate malignancies from benign lesions, which were detected on planar bone scans. Materials and Methods: 59 patients with bone lesions were enrolled in the study. The scintigraphic findings were compared with the clinical, radiological and the histological findings. Each patient initially underwent a three-phase bone scan with Tc-99m MDP (Methylene Diphosphonate) and if evidence of lesion found, the patient then underwent a dynamic and static MIBI scintigraphy after three to four days. The MDP and MIBI scans were evaluated visually and quantitatively. For quantitative analysis count ratios of lesions and contralateral normal side (L/C) were taken by region of interests drawn on scans. The Student T test was applied to assess the significant difference between benign and malignant lesions p-value < 0.05 was considered significant. Result: The MDP scans showed the increase tracer uptake, but there was no significant difference between benign and malignant uptake of the radiotracer. However significant difference (p-value 0.015), in uptake was seen in malignant (L/C = 3.51 ± 1.02) and benign lesion (L/C = 2.50±0.42) on MIBI scan. Three of thirty benign lesions did not show significant MIBI uptake. Seven malignant appeared as false negatives. Specificity of the scan was 86.66%, and its Negative Predictive Value (NPV) was 81.25% whereas the sensitivity of scan was 79.31%. In excluding the axial metastasis from the lesions, the sensitivity of MIBI scan increased to 91.66% and the NPV also increased to 92.85%. Conclusion: MIBI scintigraphy provides its usefulness by distinguishing malignant from benign lesions. MIBI also correctly identifies metastatic lesions. The negative predictive value of the scan points towards its ability to accurately diagnose the normal (benign) cases. However, biopsy remains the gold standard and a definitive diagnostic modality in musculoskeletal tumors. MIBI scan provides useful information in preoperative assessment and in distinguishing between malignant and benign lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benign" title="benign">benign</a>, <a href="https://publications.waset.org/abstracts/search?q=malignancies" title=" malignancies"> malignancies</a>, <a href="https://publications.waset.org/abstracts/search?q=MDP%20bone%20scan" title=" MDP bone scan"> MDP bone scan</a>, <a href="https://publications.waset.org/abstracts/search?q=MIBI%20scintigraphy" title=" MIBI scintigraphy"> MIBI scintigraphy</a> </p> <a href="https://publications.waset.org/abstracts/22139/tc-99m-mibi-scintigraphy-to-differentiate-malignant-from-benign-lesions-detected-on-planar-bone-scan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Radiation Dose and Associated Exposure Parameters in Selected MDCT Scanners in Multiphase Scan of Abdomen-Pelvic Region: A Clinical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Sathyathas">P. Sathyathas</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20I.%20S.%20W.%20Herath"> H. M. I. S. W. Herath</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Amalraj"> T. Amalraj</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20J.%20M.%20A.%20L.%20Jayasinghe"> U. J. M. A. L. Jayasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over two thirds of medical radiation can now be attributed to Computed Tomography (CT). There is little information on amount of radiation received from multiphase CT scan of abdomen- pelvic region in clinical practice. We sought to estimate the radiation dose and associated exposure parameters in the multiphase abdomen - pelvic scan of Multideteror Computed Tomography (MDCT) studies in clinical practice. This was a retrospective cross sectional studies describing radiation dose associated with main exposure parameters in diagnostic multiphase abdomen - pelvic scans performed on 152 consecutive patients by two different sixteen slice CT scanners. Patient information, exposure parameters of CTDI (volume), DLP, kVp, mAs and pitch were recorded for every phases of abdomen- a pelvic study from dose report of MDCT scanners (MDCTs). Age of patients range from 14 years to 87 years in both MDCT scanners. Overall CTDI (volume) median was 63.8 (±10.4) mGy for a multiphase abdominal-pelvic scan with scanner A while it was 35.4 (±15.6) mGy for scanner B. Patients' effective dose for multiphase abdomen - pelvic CT scan range from 8.2 mSv to 58 mSv. Median effective dose for patients, who underwent multiphase abdomen- pelvis scan with scanner A and B were 38.5 (± 8.2) mSv and 21.3 (± 8.6) mSv respectively. Median value of exposure parameters of mAs, kVp and pitch, were 150 (±29.7), 130 (±15.3) and 1.3 (±0.1) respectively in scanner A. In scanner B; they were 60 (±14.5), 120 and 1. The median effective dose for patients between multiphase abdomen-pelvic scan of both MDCT, a significant different (P<0.05) was observed. Multiphase abdomen – pelvic scan of clinical study shows significant different of effective dose with reference level of phantom studies (8-14mSv) and it depends on the type of vendors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abdomen-pelvic%20region" title="abdomen-pelvic region">abdomen-pelvic region</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20parameters" title=" exposure parameters"> exposure parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/46083/radiation-dose-and-associated-exposure-parameters-in-selected-mdct-scanners-in-multiphase-scan-of-abdomen-pelvic-region-a-clinical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinil%20Patel">Jinil Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarthak%20Patel"> Sarthak Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarthak%20Thakkar"> Sarthak Thakkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Saraswat"> Deepti Saraswat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=federated%20learning" title="federated learning">federated learning</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=CT-scan" title=" CT-scan"> CT-scan</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20encryption" title=" homomorphic encryption"> homomorphic encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet50" title=" ResNet50"> ResNet50</a>, <a href="https://publications.waset.org/abstracts/search?q=VGG-19" title=" VGG-19"> VGG-19</a>, <a href="https://publications.waset.org/abstracts/search?q=MobileNetv2" title=" MobileNetv2"> MobileNetv2</a>, <a href="https://publications.waset.org/abstracts/search?q=DLA" title=" DLA"> DLA</a> </p> <a href="https://publications.waset.org/abstracts/163979/utilizing-federated-learning-for-accurate-prediction-of-covid-19-from-ct-scan-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> A Pilot Study of Influences of Scan Speed on Image Quality for Digital Tomosynthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-Ting%20Huang">Li-Ting Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsiang%20Shen"> Yu-Hsiang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Cing-Ciao%20Ke"> Cing-Ciao Ke</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Pin%20Tseng"> Sheng-Pin Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan-Pin%20Tseng"> Fan-Pin Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Ni"> Yu-Ching Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yu%20Lin"> Chia-Yu Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chest radiography is the most common technique for the diagnosis and follow-up of pulmonary diseases. However, the lesions superimposed with normal structures are difficult to be detected in chest radiography. Chest tomosynthesis is a relatively new technique to obtain 3D section images from a set of low-dose projections acquired over a limited angular range. However, there are some limitations with chest tomosynthesis. Patients undergoing tomosynthesis have to be able to hold their breath firmly for 10 seconds. A digital tomosynthesis system with advanced reconstruction algorithm and high-stability motion mechanism was developed by our research group. The potential for the system to perform a bidirectional chest scan within 10 seconds is expected. The purpose of this study is to realize the influences of the scan speed on the image quality for our digital tomosynthesis system. The major factors that lead image blurring are the motion of the X-ray source and the patient. For the fore one, an experiment of imaging a chest phantom with three different scan speeds, which are 6 cm/s, 8 cm/s, and 15 cm/s, was proceeded to understand the scan speed influences on the image quality. For the rear factor, a normal SD (Sprague-Dawley) rat was imaged with it alive and sacrificed to assess the impact on the image quality due to breath motion. In both experiments, the profile of the ROIs (region of interest) and the CNRs (contrast-to-noise ratio) of the ROIs to the normal tissue of the reconstructed images was examined to realize the degradations of the qualities of the images. The preliminary results show that no obvious degradation of the image quality was observed with increasing scan speed, possibly due to the advanced designs for the hardware and software of the system. It implies that higher speed (15 cm/s) than that of the commercialized tomosynthesis system (12 cm/s) for the proposed system is achieved, and therefore a complete chest scan within 10 seconds is expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chest%20radiography" title="chest radiography">chest radiography</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20tomosynthesis" title=" digital tomosynthesis"> digital tomosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality" title=" image quality"> image quality</a>, <a href="https://publications.waset.org/abstracts/search?q=scan%20speed" title=" scan speed"> scan speed</a> </p> <a href="https://publications.waset.org/abstracts/50916/a-pilot-study-of-influences-of-scan-speed-on-image-quality-for-digital-tomosynthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">399</span> Assessment of Breast, Lung and Liver Effective Doses in Heart Imaging by CT-Scan 128 Dual Sources with Use of TLD-100 in RANDO Phantom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Sepideh%20Amini">Seyedeh Sepideh Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Navideh%20Aghaei%20Amirkhizi"> Navideh Aghaei Amirkhizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Paniz%20Amini"> Seyedeh Paniz Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Soheil%20Sayyahi"> Seyed Soheil Sayyahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Davar%20Panah"> Mohammad Reza Davar Panah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CT-Scan is one of the lateral and sectional imaging methods that produce 3D-images with use of rotational x-ray tube around central axis. This study is about evaluation and calculation of effective doses around heart organs such as breast, lung and liver with CT-Scan 128 dual sources with TLD_100 and RANDO Phantom by spiral, flash and conventional protocols. In results, it is showed that in spiral protocol organs have maximum effective dose and minimum in flash protocol. Thus flash protocol advised for children and risk persons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20tomography" title="X-ray computed tomography">X-ray computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title=" dosimetry"> dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD-100" title=" TLD-100"> TLD-100</a>, <a href="https://publications.waset.org/abstracts/search?q=RANDO" title=" RANDO"> RANDO</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom" title=" phantom"> phantom</a> </p> <a href="https://publications.waset.org/abstracts/36861/assessment-of-breast-lung-and-liver-effective-doses-in-heart-imaging-by-ct-scan-128-dual-sources-with-use-of-tld-100-in-rando-phantom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Diagnostic Value of CT Scan in Acute Appendicitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Medeiros">Maria Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Suren%20Surenthiran"> Suren Surenthiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Abitha%20Muralithar"> Abitha Muralithar</a>, <a href="https://publications.waset.org/abstracts/search?q=Soushma%20Seeburuth"> Soushma Seeburuth</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mohammed"> Mohammed Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Appendicitis is the most common surgical emergency globally and can have devastating consequences. Diagnostic imaging in acute appendicitis has become increasingly common in aiding the diagnosis of acute appendicitis. Computerized tomography (CT) and ultrasound (US) are the most commonly used imaging modalities for diagnosing acute appendicitis. Pre-operative imaging has contributed to a reduction of negative appendicectomy rates from between 10-29% to 5%. Literature report CT scan has a diagnostic sensitivity of 94% in acute appendicitis. This clinical audit was conducted to establish if the CT scan's diagnostic yield for acute appendicitis matches the literature. CT scan has a high sensitivity and specificity for diagnosing acute appendicitis and its use can result in a lower negative appendicectomy rate. The aim of this study is to compare the pre-operative imaging findings from CT scans to the histopathology results post-operatively and establish the accuracy of CT scans in aiding the diagnosis of acute appendicitis. Methods: This was a retrospective study focusing on adult presentations to the general surgery department in a district general hospital in central London with an impression of acute appendicitis. We analyzed all patients from July 2022 to December 2022 who underwent a CT scan preceding appendicectomy. Pre-operative CT findings and post-operative histopathology findings were compared to establish the efficacy of CT scans in diagnosing acute appendicitis. Our results were also cross-referenced with pre-existing literature. Data was collected and anonymized using CERNER and analyzed in Microsoft Excel. Exclusion criteria: Children, age <16. Results: 65 patients had CT scans in which the report stated acute appendicitis. Of those 65 patients, 62 patients underwent diagnostic laparoscopies. 100% of patients who underwent an appendicectomy with a pre-operative CT scan showing acute appendicitis had acute appendicitis in histopathology analysis. 3 of the 65 patients who had a CT scan showing appendicitis received conservative treatment. Conclusion: CT scans positive for acute appendicitis had 100% sensitivity and a positive predictive value, which matches published research studies (sensitivity of 94%). The use of CT scans in the diagnostic work-up for acute appendicitis can be extremely helpful in a) confirming the diagnosis and b) reducing the rates of negative appendicectomies and consequently reducing unnecessary operative-associated risks for patients, reducing costs and reducing pressure on emergency theatre lists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20apendicitis" title="acute apendicitis">acute apendicitis</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title=" CT scan"> CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20surgery" title=" general surgery"> general surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a> </p> <a href="https://publications.waset.org/abstracts/168304/diagnostic-value-of-ct-scan-in-acute-appendicitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> Role of DatScan in the Diagnosis of Parkinson&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shraddha%20Gopal">Shraddha Gopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayam%20Lazarus"> Jayam Lazarus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: To study the referral practice and impact of DAT-scan in the diagnosis or exclusion of Parkinson’s disease. Settings and Designs: A retrospective study Materials and methods: A retrospective study of the results of 60 patients who were referred for a DAT scan over a period of 2 years from the Department of Neurology at Northern Lincolnshire and Goole NHS trust. The reason for DAT scan referral was noted under 5 categories against Parkinson’s disease; drug-induced Parkinson’s, essential tremors, diagnostic dilemma, not responding to Parkinson’s treatment, and others. We assessed the number of patients who were diagnosed with Parkinson’s disease against the number of patients in whom Parkinson’s disease was excluded or an alternative diagnosis was made. Statistical methods: Microsoft Excel was used for data collection and statistical analysis, Results: 30 of the 60 scans were performed to confirm the diagnosis of early Parkinson’s disease, 13 were done to differentiate essential tremors from Parkinsonism, 6 were performed to exclude drug-induced Parkinsonism, 5 were done to look for alternative diagnosis as the patients were not responding to anti-Parkinson medication and 6 indications were outside the recommended guidelines. 55% of cases were confirmed with a diagnosis of Parkinson’s disease. 43.33% had Parkinson’s disease excluded. 33 of the 60 scans showed bilateral abnormalities and confirmed the clinical diagnosis of Parkinson’s disease. Conclusion: DAT scan provides valuable information in confirming Parkinson’s disease in 55% of patients along with excluding the diagnosis in 43.33% of patients aiding an alternative diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DATSCAN" title="DATSCAN">DATSCAN</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title=" Parkinson&#039;s disease"> Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20tremors" title=" essential tremors"> essential tremors</a> </p> <a href="https://publications.waset.org/abstracts/139742/role-of-datscan-in-the-diagnosis-of-parkinsons-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Osteochondroma of Clivus: An Unusual Cause of Headache</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faisal%20Khilji">Muhammad Faisal Khilji</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Shoaib%20Hamid"> Rana Shoaib Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Qureshi"> Asim Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fifty years old female presented in the emergency department of a tertiary care hospital with complaints of migraine type headache for the last few months. Her last episode of headache was severe, increasing in intensity, associated with nausea but no fever, lasting more than 24 hours and not resolving with analgesics. On examination there was no neurological deficit. CT scan of brain showed a large Pedunculated, non-expansible, non-aggressive bony lesion in the clivus with its sharp fragment impinging into the pons. Findings were further confirmed with MRI brain. Trans-sphenoidal excision biopsy was done and histopathology proved the lesion to be osteochondroma of clivus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteochondroma" title="osteochondroma">osteochondroma</a>, <a href="https://publications.waset.org/abstracts/search?q=clivus" title=" clivus"> clivus</a>, <a href="https://publications.waset.org/abstracts/search?q=headache" title=" headache"> headache</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title=" CT scan"> CT scan</a> </p> <a href="https://publications.waset.org/abstracts/18982/osteochondroma-of-clivus-an-unusual-cause-of-headache" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Yuvaram%20Singh%20V%20M">Vijaya Yuvaram Singh V M</a>, <a href="https://publications.waset.org/abstracts/search?q=Kameshwar%20Rao%20J%20V"> Kameshwar Rao J V</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title="reinforcement learning">reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20landmark%20detection" title=" medical landmark detection"> medical landmark detection</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20target%20detection" title=" multi target detection"> multi target detection</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title=" deep neural network"> deep neural network</a> </p> <a href="https://publications.waset.org/abstracts/127710/mutiple-medical-landmark-detection-on-x-ray-scan-using-reinforcement-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Electro-oxidation of Catechol in the Presence of Nicotinamide at Different pH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Motin">M. A. Motin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hafiz%20Mia"> M. Hafiz Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasem"> M. A. Hasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The redox behavior of catechol in the presence of nicotinamide as nucleophiles has been studied in aqueous solution with various pH values and different concentration of nicotinamide using cyclic voltammetry and differential pulse voltammetry. Cyclic voltammetry of catechol in buffer solution (3.00 < pH < 9.00) shows one anodic and corresponding cathodic peak which relates to the transformation of catechol to corresponding o-benzoquinone and vice versa within a quasi reversible two electron transfer process. Cyclic voltammogram of catechol in the presence of nicotinamide in buffer solution of pH 7, show one anodic peak in the first cycle of potential and on the reverse scan the corresponding cathodic peak slowly decreases and new peak is observed at less positive potential. In the second cycle of potential a new anodic peak is observed at less positive potential. This indicates that nicotinamide attached with catechol and formed adduct after first cycle of oxidation. The effect of pH of catechol in presence of nicotinamide was studied by varying pH from 3 to 11. The substitution reaction of catechol with nicotimamide is facilitated at pH 7. In buffer solution of higher pH (>9), the CV shows different pattern. The effect of concentration of nicotinamide was studied by 2mM to 100 mM. The maximum substitution reaction has been found for 50 mM of nicotinamide and of pH 7. The proportionality of the first scan anodic and cathodic peak currents with square root of scan rate suggests that the peak current of the species at each redox reaction is controlled by diffusion process. The current functions (1/v-1/2) of the anodic peak decreased with the increasing of scan rate demonstrated that the behavior of the substitution reaction is of ECE type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20interaction" title="redox interaction">redox interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=catechol" title=" catechol"> catechol</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotinamide" title=" nicotinamide"> nicotinamide</a>, <a href="https://publications.waset.org/abstracts/search?q=substituion%20reaction" title=" substituion reaction"> substituion reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20effect" title=" pH effect "> pH effect </a> </p> <a href="https://publications.waset.org/abstracts/19185/electro-oxidation-of-catechol-in-the-presence-of-nicotinamide-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Forero-Garcia">Edwin Forero-Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Vitola"> Jaime Vitola</a>, <a href="https://publications.waset.org/abstracts/search?q=Brayan%20Cardenas"> Brayan Cardenas</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Casagua"> Johan Casagua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acquisition" title="acquisition">acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=SAFT" title=" SAFT"> SAFT</a>, <a href="https://publications.waset.org/abstracts/search?q=HMI" title=" HMI"> HMI</a> </p> <a href="https://publications.waset.org/abstracts/162674/an-ultrasonic-signal-processing-system-for-tomographic-imaging-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> CT-Scan Transition of Pulmonary Edema Due to Water-Soluble Paint Inhalation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Kanazawa">Masashi Kanazawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Takaaki%20Nakano"> Takaaki Nakano</a>, <a href="https://publications.waset.org/abstracts/search?q=Masaaki%20Takemoto"> Masaaki Takemoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonori%20Imamura"> Tomonori Imamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamiko%20Sugimura"> Mamiko Sugimura</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshitaka%20Ito"> Toshitaka Ito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: We experienced a massive disaster due to inhalation of water-soluble paint. Sixteen patients were brought to our emergency room, and pulmonary edema was revealed on the CT images of 12 cases. Purpose: Transition of chest CT-scan findings in cases with pulmonary edema was examined. Method: CT-scans were performed on the 1st, 2nd, 5th, and 19th days after the inhalation event. Patients whose pulmonary edema showed amelioration or exacerbation were classified into the improvement or the exacerbation group, respectively. Those with lung edema findings appearing at different sites after the second day were classified into the changing group. Results: Eight, one and three patients were in the improvement, exacerbation and changing groups, respectively. In all cases, the pulmonary edema had disappeared from CT images on the 19th day after the inhalation event. Conclusion: Inhalation of water-soluble paints is considered to be relatively safe. However, our observations in these emergency cases suggest that, even if pulmonary edema is not severe immediately after the exposure, new lesions may appear later and existing lesions may worsen. Follow-up imaging is thus necessary for about two weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title="CT scan">CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=intoxication" title=" intoxication"> intoxication</a>, <a href="https://publications.waset.org/abstracts/search?q=pulmonary%20edema" title=" pulmonary edema"> pulmonary edema</a>, <a href="https://publications.waset.org/abstracts/search?q=water-soluble%20paint" title=" water-soluble paint"> water-soluble paint</a> </p> <a href="https://publications.waset.org/abstracts/74622/ct-scan-transition-of-pulmonary-edema-due-to-water-soluble-paint-inhalation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> A Clinical Audit on Screening Women with Subfertility Using Transvaginal Scan and Hysterosalpingo Contrast Sonography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarti%20M.%20Shetty">Aarti M. Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Estela%20Davoodi"> Estela Davoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Gangooly"> Subrata Gangooly</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Rao-Coppisetty"> Anita Rao-Coppisetty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Testing Patency of Fallopian Tubes is among one of the several protocols for investigating Subfertile Couples. Both, Hysterosalpingogram (HSG) and Laparoscopy and dye test have been used as Tubal patency test for several years, with well-known limitation. Hysterosalpingo Contrast Sonography (HyCoSy) can be used as an alternative tool to HSG, to screen patency of Fallopian tubes, with an advantage of being non-ionising, and also, use of transvaginal scan to diagnose pelvic pathology. Aim: To determine the indication and analyse the performance of transvaginal scan and HyCoSy in Broomfield Hospital. Methods: We retrospectively analysed fertility workup of 282 women, who attended HyCoSy clinic at our institution from January 2015 to June 2016. An Audit proforma was designed, to aid data collection. Data was collected from patient notes and electronic records, which included patient demographics; age, parity, type of subfertility (primary or secondary), duration of subfertility, past medical history and base line investigation (hormone profile and semen analysis). Findings of the transvaginal scan, HyCoSy and Laparoscopy were also noted. Results: The most common indication for referral were as a part of primary fertility workup on couples who had failure to conceive despite intercourse for a year, other indication for referral were recurrent miscarriage, history of ectopic pregnancy, post reversal of sterilization(vasectomy and tuboplasty), Post Gynaecology surgery(Loop excision, cone biopsy) and amenorrhea. Basic Fertility workup showed 34% men had abnormal semen analysis. HyCoSy was successfully completed in 270 (95%) women using ExEm foam and Transvaginal Scan. Of the 270 patients, 535 tubes were examined in total. 495/535 (93%) tubes were reported as patent, 40/535 (7.5%) tubes were reported as blocked. A total of 17 (6.3%) patients required laparoscopy and dye test after HyCoSy. In these 17 patients, 32 tubes were examined under laparoscopy, and 21 tubes had findings similar to HyCoSy, with a concordance rate of 65%. In addition to this, 41 patients had some form of pelvic pathology (endometrial polyp, fibroid, cervical polyp, fibroid, bicornuate uterus) detected during transvaginal scan, who referred to corrective surgeries after attending HyCoSy Clinic. Conclusion: Our audit shows that HyCoSy and Transvaginal scan can be a reliable screening test for low risk women. Furthermore, it has competitive diagnostic accuracy to HSG in identifying tubal patency, with an additional advantage of screening for pelvic pathology. With addition of 3D Scan, pulse Doppler and other non-invasive imaging modality, HyCoSy may potentially replace Laparoscopy and chromopertubation in near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hysterosalpingo%20contrast%20sonography%20%28HyCoSy%29" title="hysterosalpingo contrast sonography (HyCoSy)">hysterosalpingo contrast sonography (HyCoSy)</a>, <a href="https://publications.waset.org/abstracts/search?q=transvaginal%20scan" title=" transvaginal scan"> transvaginal scan</a>, <a href="https://publications.waset.org/abstracts/search?q=tubal%20infertility" title=" tubal infertility"> tubal infertility</a>, <a href="https://publications.waset.org/abstracts/search?q=tubal%20patency%20test" title=" tubal patency test"> tubal patency test</a> </p> <a href="https://publications.waset.org/abstracts/69786/a-clinical-audit-on-screening-women-with-subfertility-using-transvaginal-scan-and-hysterosalpingo-contrast-sonography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Shape Management Method of Large Structure Based on Octree Space Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gichun%20Cha">Gichun Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee"> Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)." <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20scan%20data" title="3D scan data">3D scan data</a>, <a href="https://publications.waset.org/abstracts/search?q=octree%20space%20partitioning" title=" octree space partitioning"> octree space partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20management" title=" shape management"> shape management</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanning" title=" terrestrial laser scanning"> terrestrial laser scanning</a> </p> <a href="https://publications.waset.org/abstracts/57257/shape-management-method-of-large-structure-based-on-octree-space-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Eskandari">Saeed Eskandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Rasoul%20Mehdikhani"> Seyed Rasoul Mehdikhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regression" title="regression">regression</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=scan%20radiation" title=" scan radiation"> scan radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a> </p> <a href="https://publications.waset.org/abstracts/156786/optimizing-the-scanning-time-with-radiation-prediction-using-a-machine-learning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> The Change in the Temporomandibular Joint Bone in Osteoarthritis Induced Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boonyalitpun%20P.">Boonyalitpun P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pruckpattranon%20P."> Pruckpattranon P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Thonghom%20A."> Thonghom A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotpenpian%20N.">Rotpenpian N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoarthritis is a musculoskeletal and neuromuscular abnormality, masticatory muscle, and other tissue that causes pain and breaks down the articular surface of the temporomandibular joint (TMJ). The aim of this study is to investigate the change in the mandibular condyle, in terms of thickness and porosity, and osteoclast marker in the mandibular condyle of TMJ induced osteoarthritis mice (TMJ-OA mice). We investigated the bony changes in the TMJ structure of a complete Freund adjuvant (CFA)-injected TMJ in a mice model over 28 days. On day 28, we observed any change in the TMJ by a micro computed tomography scan (micro-CT scan) in the parameters of trabecular microarchitecture. Then we studied the thickness of the condyles by hematoxylin and eosin staining. Moreover, we calculated the area around the TMJ’s condylar head containing the osteoclast expression by TRAP (Tartrate-resistant acid phosphatase) immunohistochemistry staining. The result found that the parameter of a micro-CT scan was no different from microarchitecture in the TMJ compared with the control group; however, mandibular condyles of the TMJ-OA group was significantly thinner than the control groups, and the osteoclast expression significantly increased in the TMJ-OA group. Therefore, our findings suggest that CFA-induced TMJ-OA represents an expression of osteoclast mandibular condyle of the TMJ, which is the proposed mechanism for a TMJ-OA model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condyle" title="condyle">condyle</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoarthritis" title=" osteoarthritis"> osteoarthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoclast" title=" osteoclast"> osteoclast</a>, <a href="https://publications.waset.org/abstracts/search?q=temporomandibular%20joint" title=" temporomandibular joint"> temporomandibular joint</a> </p> <a href="https://publications.waset.org/abstracts/153303/the-change-in-the-temporomandibular-joint-bone-in-osteoarthritis-induced-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omer%20Cahana">Omer Cahana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofer%20Levi"> Ofer Levi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Herman"> Maya Herman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title="magnetic resonance imaging">magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=pyramid%20network" title=" pyramid network"> pyramid network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/150838/end-to-end-pyramid-based-method-for-magnetic-resonance-imaging-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> F-VarNet: Fast Variational Network for MRI Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omer%20Cahana">Omer Cahana</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Herman"> Maya Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofer%20Levi"> Ofer Levi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRI" title="MRI">MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20network" title=" variational network"> variational network</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=compress%20sensing" title=" compress sensing"> compress sensing</a> </p> <a href="https://publications.waset.org/abstracts/145519/f-varnet-fast-variational-network-for-mri-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Development of Configuration Software of Space Environment Simulator Control System Based on Linux </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Haiyang">Zhan Haiyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Juan"> Ning Juan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a configuration software solution in Linux, which is used for the control of space environment simulator. After introducing the structure and basic principle, it is said that the developing of QT software frame and the dynamic data exchanging between PLC and computer. The OPC driver in Linux is also developed. This driver realizes many-to-many communication between hardware devices and SCADA software. Moreover, an algorithm named &ldquo;Scan PRI&rdquo; is put forward. This algorithm is much more optimizable and efficient compared with &quot;Scan in sequence&quot; in Windows. This software has been used in practical project. It has a good control effect and can achieve the expected goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linux%20OS" title="Linux OS">Linux OS</a>, <a href="https://publications.waset.org/abstracts/search?q=configuration%20software" title=" configuration software"> configuration software</a>, <a href="https://publications.waset.org/abstracts/search?q=OPC%20Server%20driver" title=" OPC Server driver"> OPC Server driver</a>, <a href="https://publications.waset.org/abstracts/search?q=MYSQL%20database" title=" MYSQL database"> MYSQL database</a> </p> <a href="https://publications.waset.org/abstracts/54104/development-of-configuration-software-of-space-environment-simulator-control-system-based-on-linux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Impact of Harmonic Resonance and V-THD in Sohar Industrial Port–C Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Al%20Abri">R. S. Al Abri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Albadi"> M. H. Albadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Al%20Abri"> M. H. Al Abri</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20K.%20Al%20Rasbi"> U. K. Al Rasbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Al%20Hasni"> M. H. Al Hasni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Al%20Shidi"> S. M. Al Shidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis study on the impacts of the changes of the capacitor banks, the loss of a transformer, and the installation of distributed generation on the voltage total harmonic distortion and harmonic resonance. The study is applied in a real system in Oman, Sohar Industrial Port–C Substation Network. Frequency scan method and Fourier series analysis method are used with the help of EDSA software. Moreover, the results are compared with limits specified by national Oman distribution code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor%20bank" title=" capacitor bank"> capacitor bank</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20total%20harmonics%20distortion" title=" voltage total harmonics distortion"> voltage total harmonics distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20resonance" title=" harmonic resonance"> harmonic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20scan" title=" frequency scan"> frequency scan</a> </p> <a href="https://publications.waset.org/abstracts/35249/impact-of-harmonic-resonance-and-v-thd-in-sohar-industrial-port-c-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youngseok%20Kim">Youngseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Park"> Chul Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonghwa%20Yi"> Jonghwa Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangsik%20Choi"> Sangsik Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20stabilization" title="image stabilization">image stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20sensor" title=" motion sensor"> motion sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20inspection" title=" safety inspection"> safety inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=sonar%20image" title=" sonar image"> sonar image</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20structure" title=" underwater structure"> underwater structure</a> </p> <a href="https://publications.waset.org/abstracts/84612/image-distortion-correction-method-of-2-mhz-side-scan-sonar-for-underwater-structure-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Comparing ITV Definitions From 4D CT-PET and Breath-Hold Technique with Abdominal Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20D.%20Esposito">R. D. Esposito</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Dorado%20Rodriguez"> P. Dorado Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Planes%20Meseguer"> D. Planes Meseguer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we compare the contour of Internal Target Volume (ITV), for Stereotactic Body Radiation Therapy (SBRT) of a patient affected by a single liver metastasis, obtained from two different patient data acquisition techniques. The first technique consists in a free breathing Computer Tomography (CT) scan acquisition, followed by exhalation breath-hold and inhalation breath-hold CT scans, all of them applying abdominal compression while the second technique consists in a free breathing 4D CT-PET (Positron Emission Tomography) scan. Results obtained with these two methods are consistent, which demonstrate that at least for this specific case, both techniques are adequate for ITV contouring in SBRT treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4D%20CT-PET" title="4D CT-PET">4D CT-PET</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20compression" title=" abdominal compression"> abdominal compression</a>, <a href="https://publications.waset.org/abstracts/search?q=ITV" title=" ITV"> ITV</a>, <a href="https://publications.waset.org/abstracts/search?q=SBRT" title=" SBRT"> SBRT</a> </p> <a href="https://publications.waset.org/abstracts/29648/comparing-itv-definitions-from-4d-ct-pet-and-breath-hold-technique-with-abdominal-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chul%20Park">Chul Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngseok%20Kim"> Youngseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangsik%20Choi"> Sangsik Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20structure" title="underwater structure">underwater structure</a>, <a href="https://publications.waset.org/abstracts/search?q=SONAR" title=" SONAR"> SONAR</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20inspection" title=" safety inspection"> safety inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a> </p> <a href="https://publications.waset.org/abstracts/42801/a-regression-analysis-study-of-the-applicability-of-side-scan-sonar-based-safety-inspection-of-underwater-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Numerical Resolving of Net Faradaic Current in Fast-Scan Cyclic Voltammetry Considering Induced Charging Currents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Wosiak">Gabriel Wosiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dyovani%20Coelho"> Dyovani Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Evaldo%20B.%20Carneiro-Neto"> Evaldo B. Carneiro-Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20C.%20Pereira"> Ernesto C. Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20C.%20Lopes"> Mauro C. Lopes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the theoretical and experimental effects of induced charging currents on fast-scan cyclic voltammetry (FSCV) are investigated. Induced charging currents arise from the effect of ohmic drop in electrochemical systems, which depends on the presence of an uncompensated resistance. They cause the capacitive contribution to the total current to be different from the capacitive current measured in the absence of electroactive species. The paper shows that the induced charging current is relevant when the capacitive current magnitude is close to the total current, even for systems with low time constant. In these situations, the conventional background subtraction method may be inaccurate. A method is developed that separates the faradaic and capacitive currents by using a combination of voltametric experimental data and finite element simulation, by the obtention of a potential-dependent capacitance. The method was tested in a standard electrochemical cell with Platinum ultramicroelectrodes, in different experimental conditions as well in previously reported data in literature. The proposed method allows the real capacitive current to be separated even in situations where the conventional background subtraction method is clearly inappropriate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitive%20current" title="capacitive current">capacitive current</a>, <a href="https://publications.waset.org/abstracts/search?q=fast-scan%20cyclic%20voltammetry" title=" fast-scan cyclic voltammetry"> fast-scan cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20method" title=" finite-element method"> finite-element method</a>, <a href="https://publications.waset.org/abstracts/search?q=electroanalysis" title=" electroanalysis"> electroanalysis</a> </p> <a href="https://publications.waset.org/abstracts/172239/numerical-resolving-of-net-faradaic-current-in-fast-scan-cyclic-voltammetry-considering-induced-charging-currents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Base Deficit Profiling in Patients with Isolated Blunt Traumatic Brain Injury – Correlation with Severity and Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahan%20Waheed">Shahan Waheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Waqas"> Muhammad Waqas</a>, <a href="https://publications.waset.org/abstracts/search?q=Asher%20Feroz"> Asher Feroz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To determine the utility of base deficit in traumatic brain injury in assessing the severity and to correlate with the conventional computed tomography scales in grading the severity of head injury. Methodology: Observational cross-sectional study conducted in a tertiary care facility from 1st January 2010 to 31st December 2012. All patients with isolated traumatic brain injury presenting within 24 hours of the injury to the emergency department were included in the study. Initial Glasgow Coma Scale and base deficit values were taken at presentation, the patients were followed during their hospital stay and CT scan brain findings were recorded and graded as per the Rotterdam scale, the findings were cross-checked by a radiologist, Glasgow Outcome Scale was taken on last follow up. Outcomes were dichotomized into favorable and unfavorable outcomes. Continuous variables with normal and non-normal distributions are reported as mean ± SD. Categorical variables are presented as frequencies and percentages. Relationship of the base deficit with GCS, GOS, CT scan brain and length of stay was calculated using Spearman`s correlation. Results: 154 patients were enrolled in the study. Mean age of the patients were 30 years and 137 were males. The severity of brain injuries as per the GCS was 34 moderate and 109 severe respectively. 34 percent of the total has an unfavorable outcome with a mean of 18±14. The correlation was significant at the 0.01 level with GCS on presentation and the base deficit 0.004. The correlation was not significant between the Rotterdam CT scan brain findings, length of stay and the base deficit. Conclusion: The base deficit was found to be a good predictor of severity of brain injury. There was no association of the severity of injuries on the CT scan brain as per the Rotterdam scale and the base deficit. Further studies with large sample size are needed to further evaluate the associations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20deficit" title="base deficit">base deficit</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotterdam" title=" Rotterdam"> Rotterdam</a>, <a href="https://publications.waset.org/abstracts/search?q=GCS" title=" GCS"> GCS</a> </p> <a href="https://publications.waset.org/abstracts/3002/base-deficit-profiling-in-patients-with-isolated-blunt-traumatic-brain-injury-correlation-with-severity-and-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preetham%20Shankapal">Preetham Shankapal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jill%20King"> Jill King</a>, <a href="https://publications.waset.org/abstracts/search?q=Kori%20Murray"> Kori Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=Corby%20Martin"> Corby Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Giselman"> Paula Giselman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Hicks"> Jason Hicks</a>, <a href="https://publications.waset.org/abstracts/search?q=Owen%20Carmicheal"> Owen Carmicheal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fMRI" title="fMRI">fMRI</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20connectivity" title=" functional connectivity"> functional connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=task-based" title=" task-based"> task-based</a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20series%20correlation" title=" beta series correlation"> beta series correlation</a> </p> <a href="https://publications.waset.org/abstracts/71145/task-based-functional-connectivity-within-reward-network-in-food-image-viewing-paradigm-using-functional-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Emergency Physician Performance for Hydronephrosis Diagnosis and Grading Compared with Radiologist Assessment in Renal Colic: The EPHyDRA Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameer%20A.%20Pathan">Sameer A. Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswadev%20Mitra"> Biswadev Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Mirza"> Salman Mirza</a>, <a href="https://publications.waset.org/abstracts/search?q=Umais%20Momin"> Umais Momin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahoor%20Ahmed"> Zahoor Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Lubna%20G.%20Andraous"> Lubna G. Andraous</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharmesh%20Shukla"> Dharmesh Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Y.%20Shariff"> Mohammed Y. Shariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Magid%20M.%20Makki"> Magid M. Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tinsy%20T.%20George"> Tinsy T. George</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20S.%20Khan"> Saad S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20H.%20Thomas"> Stephen H. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Cameron"> Peter A. Cameron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study objective: Emergency physician’s (EP) ability to identify hydronephrosis on point-of-care ultrasound (POCUS) has been assessed in the past using CT scan as the reference standard. We aimed to assess EP interpretation of POCUS to identify and grade the hydronephrosis in a direct comparison with the consensus-interpretation of POCUS by radiologists, and also to compare the EP and radiologist performance using CT scan as the criterion standard. Methods: Using data from a POCUS databank, a prospective interpretation study was conducted at an urban academic emergency department. All POCUS exams were performed on patients presenting with renal colic to the ED. Institutional approval was obtained for conducting this study. All the analyses were performed using Stata MP 14.0 (Stata Corp, College Station, Texas). Results: A total of 651 patients were included, with paired sets of renal POCUS video clips and the CT scan performed at the same ED visit. Hydronephrosis was reported in 69.6% of POCUS exams by radiologists and 72.7% of CT scans (p=0.22). The κ for consensus interpretation of POCUS between the radiologists to detect hydronephrosis was 0.77 (0.72 to 0.82) and weighted κ for grading the hydronephrosis was 0.82 (0.72 to 0.90), interpreted as good to very good. Using CT scan findings as the criterion standard, Eps had an overall sensitivity of 81.1% (95% CI: 79.6% to 82.5%), specificity of 59.4% (95% CI: 56.4% to 62.5%), PPV of 84.3% (95% CI: 82.9% to 85.7%), and NPV of 53.8% (95% CI: 50.8% to 56.7%); compared to radiologist sensitivity of 85.0% (95% CI: 82.5% to 87.2%), specificity of 79.7% (95% CI: 75.1% to 83.7%), PPV of 91.8% (95% CI: 89.8% to 93.5%), and NPV of 66.5% (95% CI: 61.8% to 71.0%). Testing for a report of moderate or high degree of hydronephrosis, specificity of EP was 94.6% (95% CI: 93.7% to 95.4%) and to 99.2% (95% CI: 98.9% to 99.5%) for identifying severe hydronephrosis alone. Conclusion: EP POCUS interpretations were comparable to the radiologists for identifying moderate to severe hydronephrosis using CT scan results as the criterion standard. Among patients with moderate or high pre-test probability of ureteric calculi, as calculated by the STONE-score, the presence of moderate to severe (+LR 6.3 and –LR 0.69) or severe hydronephrosis (+LR 54.4 and –LR 0.57) was highly diagnostic of the stone disease. Low dose CT is indicated in such patients for evaluation of stone size and location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renal%20colic" title="renal colic">renal colic</a>, <a href="https://publications.waset.org/abstracts/search?q=point-of-care" title=" point-of-care"> point-of-care</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=bedside" title=" bedside"> bedside</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20physician" title=" emergency physician"> emergency physician</a> </p> <a href="https://publications.waset.org/abstracts/78022/emergency-physician-performance-for-hydronephrosis-diagnosis-and-grading-compared-with-radiologist-assessment-in-renal-colic-the-ephydra-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10