CINXE.COM

Locally convex topological vector space - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Locally convex topological vector space - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e697ff1b-1ec2-42e5-a9a9-bd06d129a62c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Locally_convex_topological_vector_space","wgTitle":"Locally convex topological vector space","wgCurRevisionId":1239699483,"wgRevisionId":1239699483,"wgArticleId":518844,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from August 2024","Pages displaying wikidata descriptions as a fallback via Module:Annotated link","Pages displaying short descriptions of redirect targets via Module:Annotated link","CS1 Romanian-language sources (ro)","Convex analysis","Functional analysis", "Topological vector spaces"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Locally_convex_topological_vector_space","wgRelevantArticleId":518844,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1572357", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc", "skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Locally convex topological vector space - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Locally_convex_topological_vector_space"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Locally_convex_topological_vector_space"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Locally_convex_topological_vector_space rootpage-Locally_convex_topological_vector_space skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Locally+convex+topological+vector+space" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Locally+convex+topological+vector+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Locally+convex+topological+vector+space" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Locally+convex+topological+vector+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Definition_via_convex_sets" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definition_via_convex_sets"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Definition via convex sets</span> </div> </a> <ul id="toc-Definition_via_convex_sets-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition_via_seminorms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definition_via_seminorms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Definition via seminorms</span> </div> </a> <ul id="toc-Definition_via_seminorms-sublist" class="vector-toc-list"> <li id="toc-Seminorm_topology" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Seminorm_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Seminorm topology</span> </div> </a> <ul id="toc-Seminorm_topology-sublist" class="vector-toc-list"> <li id="toc-Basis_and_subbases" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Basis_and_subbases"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1.1</span> <span>Basis and subbases</span> </div> </a> <ul id="toc-Basis_and_subbases-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bases_of_seminorms_and_saturated_families" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Bases_of_seminorms_and_saturated_families"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1.2</span> <span>Bases of seminorms and saturated families</span> </div> </a> <ul id="toc-Bases_of_seminorms_and_saturated_families-sublist" class="vector-toc-list"> <li id="toc-Basis_of_norms" class="vector-toc-list-item vector-toc-level-5"> <a class="vector-toc-link" href="#Basis_of_norms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1.2.1</span> <span>Basis of norms</span> </div> </a> <ul id="toc-Basis_of_norms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Nets" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Nets"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1.3</span> <span>Nets</span> </div> </a> <ul id="toc-Nets-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Equivalence_of_definitions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Equivalence_of_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Equivalence of definitions</span> </div> </a> <ul id="toc-Equivalence_of_definitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ways_of_defining_a_locally_convex_topology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ways_of_defining_a_locally_convex_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Ways of defining a locally convex topology</span> </div> </a> <ul id="toc-Ways_of_defining_a_locally_convex_topology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Further_definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Further definitions</span> </div> </a> <ul id="toc-Further_definitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sufficient_conditions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sufficient_conditions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Sufficient conditions</span> </div> </a> <button aria-controls="toc-Sufficient_conditions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Sufficient conditions subsection</span> </button> <ul id="toc-Sufficient_conditions-sublist" class="vector-toc-list"> <li id="toc-Hahn–Banach_extension_property" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hahn–Banach_extension_property"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Hahn–Banach extension property</span> </div> </a> <ul id="toc-Hahn–Banach_extension_property-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Properties_of_convex_subsets" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Properties_of_convex_subsets"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Properties of convex subsets</span> </div> </a> <ul id="toc-Properties_of_convex_subsets-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_of_convex_hulls" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Properties_of_convex_hulls"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Properties of convex hulls</span> </div> </a> <ul id="toc-Properties_of_convex_hulls-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples_and_nonexamples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples_and_nonexamples"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Examples and nonexamples</span> </div> </a> <button aria-controls="toc-Examples_and_nonexamples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples and nonexamples subsection</span> </button> <ul id="toc-Examples_and_nonexamples-sublist" class="vector-toc-list"> <li id="toc-Finest_and_coarsest_locally_convex_topology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Finest_and_coarsest_locally_convex_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Finest and coarsest locally convex topology</span> </div> </a> <ul id="toc-Finest_and_coarsest_locally_convex_topology-sublist" class="vector-toc-list"> <li id="toc-Coarsest_vector_topology" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Coarsest_vector_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>Coarsest vector topology</span> </div> </a> <ul id="toc-Coarsest_vector_topology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Finest_locally_convex_topology" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Finest_locally_convex_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.2</span> <span>Finest locally convex topology</span> </div> </a> <ul id="toc-Finest_locally_convex_topology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples_of_locally_convex_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_of_locally_convex_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Examples of locally convex spaces</span> </div> </a> <ul id="toc-Examples_of_locally_convex_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_of_spaces_lacking_local_convexity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_of_spaces_lacking_local_convexity"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Examples of spaces lacking local convexity</span> </div> </a> <ul id="toc-Examples_of_spaces_lacking_local_convexity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Continuous_mappings" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Continuous_mappings"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Continuous mappings</span> </div> </a> <button aria-controls="toc-Continuous_mappings-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Continuous mappings subsection</span> </button> <ul id="toc-Continuous_mappings-sublist" class="vector-toc-list"> <li id="toc-Linear_functionals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linear_functionals"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Linear functionals</span> </div> </a> <ul id="toc-Linear_functionals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multilinear_maps" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multilinear_maps"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Multilinear maps</span> </div> </a> <ul id="toc-Multilinear_maps-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Locally convex topological vector space</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 12 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-12" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">12 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Lokalkonvexer_Raum" title="Lokalkonvexer Raum – German" lang="de" hreflang="de" data-title="Lokalkonvexer Raum" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacio_localmente_convexo" title="Espacio localmente convexo – Spanish" lang="es" hreflang="es" data-title="Espacio localmente convexo" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace_localement_convexe" title="Espace localement convexe – French" lang="fr" hreflang="fr" data-title="Espace localement convexe" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B5%AD%EC%86%8C_%EB%B3%BC%EB%A1%9D_%EA%B3%B5%EA%B0%84" title="국소 볼록 공간 – Korean" lang="ko" hreflang="ko" data-title="국소 볼록 공간" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spazio_localmente_convesso" title="Spazio localmente convesso – Italian" lang="it" hreflang="it" data-title="Spazio localmente convesso" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91_%D7%A7%D7%9E%D7%95%D7%A8_%D7%9E%D7%A7%D7%95%D7%9E%D7%99%D7%AA" title="מרחב קמור מקומית – Hebrew" lang="he" hreflang="he" data-title="מרחב קמור מקומית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lokaal_convexe_topologische_vectorruimte" title="Lokaal convexe topologische vectorruimte – Dutch" lang="nl" hreflang="nl" data-title="Lokaal convexe topologische vectorruimte" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%B1%80%E6%89%80%E5%87%B8%E4%BD%8D%E7%9B%B8%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E7%A9%BA%E9%96%93" title="局所凸位相ベクトル空間 – Japanese" lang="ja" hreflang="ja" data-title="局所凸位相ベクトル空間" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przestrze%C5%84_liniowo-topologiczna_lokalnie_wypuk%C5%82a" title="Przestrzeń liniowo-topologiczna lokalnie wypukła – Polish" lang="pl" hreflang="pl" data-title="Przestrzeń liniowo-topologiczna lokalnie wypukła" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o_localmente_convexo" title="Espaço localmente convexo – Portuguese" lang="pt" hreflang="pt" data-title="Espaço localmente convexo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%BA%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE_%D0%B2%D1%8B%D0%BF%D1%83%D0%BA%D0%BB%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Локально выпуклое пространство – Russian" lang="ru" hreflang="ru" data-title="Локально выпуклое пространство" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%BA%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE_%D0%BE%D0%BF%D1%83%D0%BA%D0%BB%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80" title="Локально опуклий простір – Ukrainian" lang="uk" hreflang="uk" data-title="Локально опуклий простір" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1572357#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Locally_convex_topological_vector_space" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Locally_convex_topological_vector_space" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Locally_convex_topological_vector_space"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Locally_convex_topological_vector_space"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Locally_convex_topological_vector_space" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Locally_convex_topological_vector_space" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;oldid=1239699483" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Locally_convex_topological_vector_space&amp;id=1239699483&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLocally_convex_topological_vector_space"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLocally_convex_topological_vector_space"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Locally_convex_topological_vector_space&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1572357" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">A vector space with a topology defined by convex open sets</div> <p>In <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> and related areas of <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, <b>locally convex topological vector spaces</b> (<b>LCTVS</b>) or <b>locally convex spaces</b> are examples of <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector spaces</a> (TVS) that generalize <a href="/wiki/Normed_space" class="mw-redirect" title="Normed space">normed spaces</a>. They can be defined as <a href="/wiki/Topological_space" title="Topological space">topological</a> vector spaces whose topology is <a href="/wiki/Base_(topology)" title="Base (topology)">generated</a> by translations of <a href="/wiki/Balanced_set" title="Balanced set">balanced</a>, <a href="/wiki/Absorbent_set" class="mw-redirect" title="Absorbent set">absorbent</a>, <a href="/wiki/Convex_set" title="Convex set">convex sets</a>. Alternatively they can be defined as a <a href="/wiki/Vector_space" title="Vector space">vector space</a> with a <a href="/wiki/Family_of_sets" title="Family of sets">family</a> of <a href="/wiki/Seminorm" title="Seminorm">seminorms</a>, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily <a href="/wiki/Normable" class="mw-redirect" title="Normable">normable</a>, the existence of a convex <a href="/wiki/Local_base" class="mw-redirect" title="Local base">local base</a> for the <a href="/wiki/Null_vector_(vector_space)" class="mw-redirect" title="Null vector (vector space)">zero vector</a> is strong enough for the <a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach theorem</a> to hold, yielding a sufficiently rich theory of continuous <a href="/wiki/Linear_functional" class="mw-redirect" title="Linear functional">linear functionals</a>. </p><p><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet spaces</a> are locally convex topological vector spaces that are <a href="/wiki/Completely_metrizable_space" title="Completely metrizable space">completely metrizable</a> (with a choice of complete metric). They are generalizations of <a href="/wiki/Banach_spaces" class="mw-redirect" title="Banach spaces">Banach spaces</a>, which are complete vector spaces with respect to a metric generated by a <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a>. </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Metrizable topologies on vector spaces have been studied since their introduction in <a href="/wiki/Maurice_Ren%C3%A9_Fr%C3%A9chet" class="mw-redirect" title="Maurice René Fréchet">Maurice Fréchet's</a> 1902 PhD thesis <i>Sur quelques points du calcul fonctionnel</i> (wherein the notion of a <a href="/wiki/Metric_space" title="Metric space">metric</a> was first introduced). After the notion of a general topological space was defined by <a href="/wiki/Felix_Hausdorff" title="Felix Hausdorff">Felix Hausdorff</a> in 1914,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> although locally convex topologies were implicitly used by some mathematicians, up to 1934 only <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> would seem to have explicitly defined the <a href="/wiki/Weak_topology" title="Weak topology">weak topology</a> on Hilbert spaces and <a href="/wiki/Strong_operator_topology" title="Strong operator topology">strong operator topology</a> on operators on Hilbert spaces.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Finally, in 1935 von Neumann introduced the general definition of a locally convex space (called a <i>convex space</i> by him).<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>A notable example of a result which had to wait for the development and dissemination of general locally convex spaces (amongst other notions and results, like <a href="/wiki/Net_(mathematics)" title="Net (mathematics)">nets</a>, the <a href="/wiki/Product_topology" title="Product topology">product topology</a> and <a href="/wiki/Tychonoff%27s_theorem" title="Tychonoff&#39;s theorem">Tychonoff's theorem</a>) to be proven in its full generality, is the <a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu theorem</a> which <a href="/wiki/Stefan_Banach" title="Stefan Banach">Stefan Banach</a> first established in 1932 by an elementary <a href="/w/index.php?title=Diagonal_argument_(proof_technique)&amp;action=edit&amp;redlink=1" class="new" title="Diagonal argument (proof technique) (page does not exist)">diagonal argument</a> for the case of separable normed spaces<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> (in which case the <a href="/wiki/Weak_topology#Other_properties_2" title="Weak topology">unit ball of the dual is metrizable</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=2" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a vector space over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07453cff88535372e3ebb320517acf77be68529d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.455ex; height:2.509ex;" alt="{\displaystyle \mathbb {K} ,}"></span> a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">subfield</a> of the <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a> (normally <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> itself or <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span></a>). A locally convex space is defined either in terms of convex sets, or equivalently in terms of seminorms. </p> <div class="mw-heading mw-heading3"><h3 id="Definition_via_convex_sets">Definition via convex sets</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=3" title="Edit section: Definition via convex sets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector space</a> (TVS) is called <i><em><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="locally_convex"></span><span class="vanchor-text">locally convex</span></span></em></i> if it has a <a href="/wiki/Neighborhood_basis" class="mw-redirect" title="Neighborhood basis">neighborhood basis</a> (that is, a local base) at the origin consisting of balanced, <a href="/wiki/Convex_set" title="Convex set">convex sets</a>.<sup id="cite_ref-FOOTNOTENariciBeckenstein201167–113_7-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> The term <em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="locally_convex_topological_vector_space"></span><span class="vanchor-text">locally convex topological vector space</span></span></em> is sometimes shortened to <em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="locally_convex_space"></span><span class="vanchor-text">locally convex space</span></span></em> or <abbr title="Locally Convex Topological Vector Space"><em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="LCTVS"></span><span class="vanchor-text">LCTVS</span></span></em></abbr>. </p><p>A subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is called </p> <ol><li><a href="/wiki/Convex_set" title="Convex set">Convex</a> if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2448a598b537d21dcc0c137925245baaecba3b35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.773ex; height:2.509ex;" alt="{\displaystyle x,y\in C,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq t\leq 1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>t</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq t\leq 1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2f346e8c1e6f304824cb6692078da5f000dd9b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.008ex; height:2.509ex;" alt="{\displaystyle 0\leq t\leq 1,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle tx+(1-t)y\in C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle tx+(1-t)y\in C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07be8e00b3721cfa790236ddefeb6eb3c21b02ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.071ex; height:2.843ex;" alt="{\displaystyle tx+(1-t)y\in C.}"></span> In other words, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> contains all line segments between points in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/067be67e68f60c53ce83241748d0d6249675c58d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.413ex; height:2.176ex;" alt="{\displaystyle C.}"></span></li> <li><a href="/wiki/Circled_set" class="mw-redirect" title="Circled set">Circled</a> if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7fc788379bff7289bdf694ffd68ee690e999eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.937ex; height:2.176ex;" alt="{\displaystyle x\in C}"></span> and scalars <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5748cdb81bf00075de8e7e6828c343687513830" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.737ex; height:2.009ex;" alt="{\displaystyle s,}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |s|=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |s|=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ee08cf84724a9041c580dded5901def0db5d95e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.645ex; height:2.843ex;" alt="{\displaystyle |s|=1}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sx\in C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sx\in C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea4aa789e3c0ad6ff1a5b64a64ee916e7ca26d93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.674ex; height:2.176ex;" alt="{\displaystyle sx\in C.}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} =\mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} =\mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/141b89fb1485240bf2c7a705cb9ec77d31a7ad43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.232ex; height:2.509ex;" alt="{\displaystyle \mathbb {K} =\mathbb {R} ,}"></span> this means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is equal to its reflection through the origin. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} =\mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} =\mathbb {C} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb90d9ef5a049cc14770ccf12181449b0fb64c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.232ex; height:2.509ex;" alt="{\displaystyle \mathbb {K} =\mathbb {C} ,}"></span> it means for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51ee7aa46cf3ffd58b3519632983c3bb07047ab4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.584ex; height:2.509ex;" alt="{\displaystyle x\in C,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> contains the circle through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> centred on the origin, in the one-dimensional complex subspace generated by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced</a> if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7fc788379bff7289bdf694ffd68ee690e999eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.937ex; height:2.176ex;" alt="{\displaystyle x\in C}"></span> and scalars <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5748cdb81bf00075de8e7e6828c343687513830" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.737ex; height:2.009ex;" alt="{\displaystyle s,}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |s|\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |s|\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b794f0cb3331b5fc7be8521e386157bb10e3e58f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.645ex; height:2.843ex;" alt="{\displaystyle |s|\leq 1}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sx\in C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sx\in C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea4aa789e3c0ad6ff1a5b64a64ee916e7ca26d93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.674ex; height:2.176ex;" alt="{\displaystyle sx\in C.}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} =\mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} =\mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/141b89fb1485240bf2c7a705cb9ec77d31a7ad43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.232ex; height:2.509ex;" alt="{\displaystyle \mathbb {K} =\mathbb {R} ,}"></span> this means that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51ee7aa46cf3ffd58b3519632983c3bb07047ab4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.584ex; height:2.509ex;" alt="{\displaystyle x\in C,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> contains the line segment between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98781bc4ba61e6bfaa7a8bfd7704f2671865444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.785ex; height:2.176ex;" alt="{\displaystyle -x.}"></span> For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} =\mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} =\mathbb {C} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb90d9ef5a049cc14770ccf12181449b0fb64c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.232ex; height:2.509ex;" alt="{\displaystyle \mathbb {K} =\mathbb {C} ,}"></span> it means for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51ee7aa46cf3ffd58b3519632983c3bb07047ab4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.584ex; height:2.509ex;" alt="{\displaystyle x\in C,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> contains the disk with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> on its boundary, centred on the origin, in the one-dimensional complex subspace generated by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span> Equivalently, a balanced set is a "circled cone"<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2024)">citation needed</span></a></i>&#93;</sup>. Note that in the TVS <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f9dcb350bb8fb6a28ddc4aebfb5c4b03ce8784f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\textstyle \mathbb {R} ^{2}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x=(1,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x=(1,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e320e63ad06cb1688e517b1a76711a10bb90657" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.596ex; height:2.843ex;" alt="{\textstyle x=(1,1)}"></span> belongs to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle C=({}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle C=({}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a7dc5d61f2b4481ce49f74348d4405b4b9d6b7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.769ex; height:2.843ex;" alt="{\textstyle C=({}}"></span>ball centered at the origin of radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5094a5b1e2f42490aa4de2c7a4b7235a27f1b73f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\textstyle {\sqrt {2}}}"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4ebff0e45b0d2c07395e1d630f06d0ed9f4c0e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:0.905ex; height:2.843ex;" alt="{\displaystyle {})}"></span>, but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 2x=(2,2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 2x=(2,2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16eede8d96e1f1b1d3744b7f083a9abc3a4d93fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.759ex; height:2.843ex;" alt="{\textstyle 2x=(2,2)}"></span> does not belong; indeed, <i>C</i> is <em>not</em> a <a href="/wiki/Convex_cone" title="Convex cone">cone</a>, but <em>is</em> balanced.</li> <li>A <a href="/wiki/Cone_(linear_algebra)" class="mw-redirect" title="Cone (linear algebra)">cone</a> (when the underlying <a href="/wiki/Ordered_field" title="Ordered field">field is ordered</a>) if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7fc788379bff7289bdf694ffd68ee690e999eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.937ex; height:2.176ex;" alt="{\displaystyle x\in C}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\geq 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\geq 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ffb74a2c5ed21ef111773e9bec5363b5a384600" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.747ex; height:2.509ex;" alt="{\displaystyle t\geq 0,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle tx\in C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle tx\in C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66d7cbc6149af5f0c41b54dcc7f37f03b6a467c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.423ex; height:2.176ex;" alt="{\displaystyle tx\in C.}"></span></li> <li><a href="/wiki/Absorbent_set" class="mw-redirect" title="Absorbent set">Absorbent</a> or absorbing if for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3ebdb0a09f0721ccdd0b779e0a21caf386be82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.797ex; height:2.509ex;" alt="{\displaystyle x\in X,}"></span> there exists <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in tC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>t</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in tC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e033fb032df51937416e6da7e456ed3a65ed66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.776ex; height:2.176ex;" alt="{\displaystyle x\in tC}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in \mathbb {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in \mathbb {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a1c1c87032af02090c0c43b7a7937a1dbc1702d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.488ex; height:2.176ex;" alt="{\displaystyle t\in \mathbb {K} }"></span> satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |t|&gt;r.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&gt;</mo> <mi>r</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |t|&gt;r.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f99be8b3b49892c2705a95fc0b492be5a515718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.927ex; height:2.843ex;" alt="{\displaystyle |t|&gt;r.}"></span> The set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> can be scaled out by any "large" value to absorb every point in the space. <ul><li>In any TVS, every neighborhood of the origin is absorbent.<sup id="cite_ref-FOOTNOTENariciBeckenstein201167–113_7-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Absolutely_convex" class="mw-redirect" title="Absolutely convex">Absolutely convex</a> or a <em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="disk"></span><span class="vanchor-text">disk</span></span></em> if it is both balanced and convex. This is equivalent to it being closed under linear combinations whose coefficients absolutely sum to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6198e3fc967f992f3ee59bf4b37f401e4283c3db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.616ex; height:2.343ex;" alt="{\displaystyle \leq 1}"></span>; such a set is absorbent if it spans all of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span></li></ol> <p>In fact, every locally convex TVS has a neighborhood basis of the origin consisting of <em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="absolutely_convex"></span><span class="vanchor-text">absolutely convex</span></span></em> sets (that is, disks), where this neighborhood basis can further be chosen to also consist entirely of open sets or entirely of closed sets.<sup id="cite_ref-FOOTNOTENariciBeckenstein201183_8-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201183-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Every TVS has a neighborhood basis at the origin consisting of balanced sets, but only a locally convex TVS has a neighborhood basis at the origin consisting of sets that are both balanced <em>and</em> convex. It is possible for a TVS to have <em>some</em> neighborhoods of the origin that are convex and yet not be locally convex because it has no neighborhood basis at the origin consisting entirely of convex sets (that is, every neighborhood basis at the origin contains some non-convex set); for example, every non-locally convex TVS <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has itself (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>) as a convex neighborhood of the origin. </p><p>Because translation is continuous (by definition of <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector space</a>), all translations are <a href="/wiki/Homeomorphisms" class="mw-redirect" title="Homeomorphisms">homeomorphisms</a>, so every base for the neighborhoods of the origin can be translated to a base for the neighborhoods of any given vector. </p> <div class="mw-heading mw-heading3"><h3 id="Definition_via_seminorms">Definition via seminorms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=4" title="Edit section: Definition via seminorms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <b><a href="/wiki/Seminorm" title="Seminorm">seminorm</a></b> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p:X\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p:X\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8540db038c97641c58fdf2dbe344cc730d8b441" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:10.468ex; height:2.509ex;" alt="{\displaystyle p:X\to \mathbb {R} }"></span> such that </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is nonnegative or positive semidefinite: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(x)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(x)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d733d94db74e18da00415b0ef96a820d370d874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.659ex; height:2.843ex;" alt="{\displaystyle p(x)\geq 0}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is positive homogeneous or positive scalable: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(sx)=|s|p(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(sx)=|s|p(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7af60e258e0a53debdfca1e2378e042fc21b17a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:15.279ex; height:2.843ex;" alt="{\displaystyle p(sx)=|s|p(x)}"></span> for every scalar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7be57a083bd9ebe931fad214b191cfb20227ff9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.737ex; height:1.676ex;" alt="{\displaystyle s.}"></span> So, in particular, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(0)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(0)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df600d917235e20e5e10b610cb8587599422a528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.492ex; height:2.843ex;" alt="{\displaystyle p(0)=0}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is subadditive. It satisfies the triangle inequality: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(x+y)\leq p(x)+p(y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(x+y)\leq p(x)+p(y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02e6860addc5a8d36cd0f0bf3dcf8760accf7d2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:23.422ex; height:2.843ex;" alt="{\displaystyle p(x+y)\leq p(x)+p(y).}"></span></li></ol> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> satisfies positive definiteness, which states that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901249fc6c597162a2d3335ca3accbcacf6d3f7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.659ex; height:2.843ex;" alt="{\displaystyle p(x)=0}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54be06efe9f69b9bfb720190b5f29c76944a45b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.237ex; height:2.509ex;" alt="{\displaystyle x=0,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is a <b><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a></b>. While in general seminorms need not be norms, there is an analogue of this criterion for families of seminorms, separatedness, defined below. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a vector space and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is a family of seminorms on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> then a subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Q</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64114d2e2b6847f9e57c33e8f4a5c6d08e40d482" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.899ex; height:2.343ex;" alt="{\displaystyle {\mathcal {Q}}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is called a <b>base of seminorms</b> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7e2c46d3c723d2e8ccc606a4d3333927e6b375e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.803ex; height:2.509ex;" alt="{\displaystyle p\in {\mathcal {P}}}"></span> there exists a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\in {\mathcal {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Q</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\in {\mathcal {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b248d04da8fd33346c4f60a46035af008114da32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.809ex; height:2.509ex;" alt="{\displaystyle q\in {\mathcal {Q}}}"></span> and a real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\leq rq.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>r</mi> <mi>q</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\leq rq.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/760c28032c2ae5279d5b4d3fada09d2b990fdef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.122ex; height:2.343ex;" alt="{\displaystyle p\leq rq.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011122_9-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011122-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Definition</b> (second version): A <b>locally convex space</b> is defined to be a vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> along with a <a href="/wiki/Family_of_sets" title="Family of sets">family</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> of seminorms on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Seminorm_topology">Seminorm topology</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=5" title="Edit section: Seminorm topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a vector space over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07453cff88535372e3ebb320517acf77be68529d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.455ex; height:2.509ex;" alt="{\displaystyle \mathbb {K} ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1848c435e64864e9ad4efa7e46bd6bc900c35c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {K} }"></span> is either the real or complex numbers. A family of seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> on the vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> induces a canonical vector space topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, called the <a href="/wiki/Initial_topology" title="Initial topology">initial topology</a> induced by the seminorms, making it into a <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector space</a> (TVS). By definition, it is the <a href="/wiki/Comparison_of_topologies" title="Comparison of topologies">coarsest</a> topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> for which all maps in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> are continuous. </p><p>It is possible for a locally convex topology on a space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> to be induced by a family of norms but for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> to <em>not</em> be <a href="/wiki/Normable_space" class="mw-redirect" title="Normable space">normable</a> (that is, to have its topology be induced by a single norm). </p> <div class="mw-heading mw-heading5"><h5 id="Basis_and_subbases">Basis and subbases</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=6" title="Edit section: Basis and subbases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An open set in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{\geq 0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{\geq 0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9a4a3e12ef5eafe6c5aac324c8c7c7f62619a89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.011ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} _{\geq 0}}"></span> has the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/408cdb28eb5fd564df864a83a535c00bc1e03bc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.797ex; height:2.843ex;" alt="{\displaystyle [0,r)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> is a positive real number. The family of <a href="/wiki/Preimage" class="mw-redirect" title="Preimage">preimages</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{-1}\left([0,r)\right)=\{x\in X:p(x)&lt;r\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>r</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{-1}\left([0,r)\right)=\{x\in X:p(x)&lt;r\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7fed7d3eff7004c211bba41176d8fc41492fc8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:32.551ex; height:3.176ex;" alt="{\displaystyle p^{-1}\left([0,r)\right)=\{x\in X:p(x)&lt;r\}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> ranges over a family of seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> ranges over the positive real numbers is a <a href="/wiki/Neighbourhood_system" title="Neighbourhood system">subbasis at the origin</a> for the topology induced by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span>. These sets are convex, as follows from properties 2 and 3 of seminorms. Intersections of finitely many such sets are then also convex, and since the collection of all such finite intersections is a <a href="/wiki/Neighbourhood_system" title="Neighbourhood system">basis at the origin</a> it follows that the topology is locally convex in the sense of the <em>first</em> definition given above. </p><p>Recall that the topology of a TVS is translation invariant, meaning that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is any subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> containing the origin then for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3ebdb0a09f0721ccdd0b779e0a21caf386be82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.797ex; height:2.509ex;" alt="{\displaystyle x\in X,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is a neighborhood of the origin if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/796e5d27fc0baac03f543ac8b92ff0299a6f7842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.669ex; height:2.343ex;" alt="{\displaystyle x+S}"></span> is a neighborhood of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>; thus it suffices to define the topology at the origin. A base of neighborhoods of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> for this topology is obtained in the following way: for every finite subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> and every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72ee1bdad381ab757caae14bc628dd1f9005fa5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.956ex; height:2.509ex;" alt="{\displaystyle r&gt;0,}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{F,r}(y):=\{x\in X:p(x-y)&lt;r\ {\text{ for all }}p\in F\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>r</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{F,r}(y):=\{x\in X:p(x-y)&lt;r\ {\text{ for all }}p\in F\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed3622a0832ac91c2df9af73c7e95b2ef828aa0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:47.786ex; height:3.009ex;" alt="{\displaystyle U_{F,r}(y):=\{x\in X:p(x-y)&lt;r\ {\text{ for all }}p\in F\}.}"></span> </p> <div class="mw-heading mw-heading5"><h5 id="Bases_of_seminorms_and_saturated_families">Bases of seminorms and saturated families</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=7" title="Edit section: Bases of seminorms and saturated families"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a locally convex space and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is a collection of continuous seminorms on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is called a <b>base of continuous seminorms</b> if it is a base of seminorms for the collection of <em>all</em> continuous seminorms on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011122_9-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011122-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Explicitly, this means that for all continuous seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, there exists a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\in {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\in {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fbb05d89737331be5cfaaa30d21d2e4e3be6336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.614ex; height:2.509ex;" alt="{\displaystyle q\in {\mathcal {P}}}"></span> and a real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\leq rq.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>r</mi> <mi>q</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\leq rq.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/760c28032c2ae5279d5b4d3fada09d2b990fdef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.122ex; height:2.343ex;" alt="{\displaystyle p\leq rq.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011122_9-2" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011122-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is a base of continuous seminorms for a locally convex TVS <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> then the family of all sets of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\in X:q(x)&lt;r\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>r</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\in X:q(x)&lt;r\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bed8082b69b6eec0ca29e88ee4c88c87ac02dea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.768ex; height:2.843ex;" alt="{\displaystyle \{x\in X:q(x)&lt;r\}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> varies over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> varies over the positive real numbers, is a <em>base</em> of neighborhoods of the origin in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> (not just a subbasis, so there is no need to take finite intersections of such sets).<sup id="cite_ref-FOOTNOTENariciBeckenstein2011122_9-3" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011122-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>proof 1<span class="cite-bracket">&#93;</span></a></sup> </p><p>A family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> of seminorms on a vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is called <b>saturated</b> if for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36d64bf6c6b98fa820ac3aeb93ac6e139642c4a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.35ex; height:2.509ex;" alt="{\displaystyle {\mathcal {P}},}"></span> the seminorm defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto \max\{p(x),q(x)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto \max\{p(x),q(x)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9337e0781a480890a95e6d17ffaa227b6453ae31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.145ex; height:2.843ex;" alt="{\displaystyle x\mapsto \max\{p(x),q(x)\}}"></span> belongs to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b409fca08da7e5e0fc13474d40e6ebffb0b284e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.35ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}.}"></span> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is a saturated family of continuous seminorms that induces the topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> then the collection of all sets of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\in X:p(x)&lt;r\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>r</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\in X:p(x)&lt;r\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efbc108038775be18a7293eda2027945d6a27e97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.868ex; height:2.843ex;" alt="{\displaystyle \{x\in X:p(x)&lt;r\}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> ranges over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> ranges over all positive real numbers, forms a neighborhood basis at the origin consisting of convex open sets;<sup id="cite_ref-FOOTNOTENariciBeckenstein2011122_9-4" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011122-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> This forms a basis at the origin rather than merely a subbasis so that in particular, there is <em>no</em> need to take finite intersections of such sets.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011122_9-5" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011122-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading6"><h6 id="Basis_of_norms">Basis of norms</h6><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=8" title="Edit section: Basis of norms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following theorem implies that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a locally convex space then the topology of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> can be a defined by a family of continuous <em>norms</em> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> (a <b><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a></b> is a <a href="/wiki/Seminorm" title="Seminorm">seminorm</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09d829dfc4f461c6ed744992779d2bdb82e20c7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.49ex; height:2.843ex;" alt="{\displaystyle s(x)=0}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span>) if and only if there exists <em>at least one</em> continuous <em>norm</em> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>.<sup id="cite_ref-FOOTNOTEJarchow1981130_11-0" class="reference"><a href="#cite_note-FOOTNOTEJarchow1981130-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> This is because the sum of a norm and a seminorm is a norm so if a locally convex space is defined by some family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> of seminorms (each of which is necessarily continuous) then the family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}+n:=\{p+n:p\in {\mathcal {P}}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>+</mo> <mi>n</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>p</mi> <mo>+</mo> <mi>n</mi> <mo>:</mo> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}+n:=\{p+n:p\in {\mathcal {P}}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ca61eea660c434b5de88e58270330bcc93f9a5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.064ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}+n:=\{p+n:p\in {\mathcal {P}}\}}"></span> of (also continuous) norms obtained by adding some given continuous norm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> to each element, will necessarily be a family of norms that defines this same locally convex topology. If there exists a continuous norm on a topological vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is necessarily Hausdorff but the converse is not in general true (not even for locally convex spaces or <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet spaces</a>). </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTEJarchow1981129–130_12-0" class="reference"><a href="#cite_note-FOOTNOTEJarchow1981129–130-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> be a Fréchet space over the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a85c73bd0f34d264a8b2a361a14e66ab0231834" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.455ex; height:2.176ex;" alt="{\displaystyle \mathbb {K} .}"></span> Then the following are equivalent: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> does <em>not</em> admit a continuous norm (that is, any continuous seminorm on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> can <em>not</em> be a norm).</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> contains a vector subspace that is TVS-isomorphic to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} ^{\mathbb {N} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} ^{\mathbb {N} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d13b53f4196123594f25757584cf95c050980571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.874ex; height:2.676ex;" alt="{\displaystyle \mathbb {K} ^{\mathbb {N} }.}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> contains a <a href="/wiki/Complemented_subspace" title="Complemented subspace">complemented vector subspace</a> that is TVS-isomorphic to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} ^{\mathbb {N} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} ^{\mathbb {N} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d13b53f4196123594f25757584cf95c050980571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.874ex; height:2.676ex;" alt="{\displaystyle \mathbb {K} ^{\mathbb {N} }.}"></span></li></ol> </div> <div class="mw-heading mw-heading5"><h5 id="Nets">Nets</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=9" title="Edit section: Nets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that the topology of a locally convex space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is induced by a family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> of continuous seminorms on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e580967f68f36743e894aa7944f032dda6ea01d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.15ex; height:2.176ex;" alt="{\displaystyle x\in X}"></span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{\bullet }=\left(x_{i}\right)_{i\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{\bullet }=\left(x_{i}\right)_{i\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f06cbd9ae8f0977830b0571545f637115665c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.146ex; height:3.009ex;" alt="{\displaystyle x_{\bullet }=\left(x_{i}\right)_{i\in I}}"></span> is a <a href="/wiki/Net_(mathematics)" title="Net (mathematics)">net</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{\bullet }\to x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{\bullet }\to x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c34b18f4f9dc7ed408ade2b82491d2bdacc78de7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.26ex; margin-bottom: -0.412ex; width:7.328ex; height:2.176ex;" alt="{\displaystyle x_{\bullet }\to x}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> if and only if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in {\mathcal {P}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in {\mathcal {P}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e51a24856f97e8b5a7672fc84e79fd7a47dde408" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.45ex; height:2.509ex;" alt="{\displaystyle p\in {\mathcal {P}},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\left(x_{\bullet }-x\right)=\left(p\left(x_{i}\right)-x\right)_{i\in I}\to 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\left(x_{\bullet }-x\right)=\left(p\left(x_{i}\right)-x\right)_{i\in I}\to 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ed28a1a6d97557dfe9ae7c3f5faa501d519bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:32.73ex; height:3.009ex;" alt="{\displaystyle p\left(x_{\bullet }-x\right)=\left(p\left(x_{i}\right)-x\right)_{i\in I}\to 0.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011126_13-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011126-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> Moreover, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{\bullet }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{\bullet }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61fc088fd942f558f51cd6ff44fdc6498e024ae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.26ex; margin-bottom: -0.412ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{\bullet }}"></span> is Cauchy in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, then so is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\left(x_{\bullet }\right)=\left(p\left(x_{i}\right)\right)_{i\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2219;<!-- ∙ --></mo> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\left(x_{\bullet }\right)=\left(p\left(x_{i}\right)\right)_{i\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1313debf663d97f9b4c1bebe501ddf7c48423a7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:18.967ex; height:3.009ex;" alt="{\displaystyle p\left(x_{\bullet }\right)=\left(p\left(x_{i}\right)\right)_{i\in I}}"></span> for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in {\mathcal {P}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in {\mathcal {P}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/108f676b63be17956db0b24d8e187c9f75acb8e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.45ex; height:2.509ex;" alt="{\displaystyle p\in {\mathcal {P}}.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011126_13-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011126-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Equivalence_of_definitions">Equivalence of definitions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=10" title="Edit section: Equivalence of definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although the definition in terms of a neighborhood base gives a better geometric picture, the definition in terms of seminorms is easier to work with in practice. The equivalence of the two definitions follows from a construction known as the <a href="/wiki/Minkowski_functional" title="Minkowski functional">Minkowski functional</a> or Minkowski gauge. The key feature of seminorms which ensures the convexity of their <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span>-<a href="/wiki/Ball_(mathematics)" title="Ball (mathematics)">balls</a> is the <a href="/wiki/Triangle_inequality" title="Triangle inequality">triangle inequality</a>. </p><p>For an absorbing set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> such that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51ee7aa46cf3ffd58b3519632983c3bb07047ab4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.584ex; height:2.509ex;" alt="{\displaystyle x\in C,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle tx\in C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle tx\in C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9800773824b2a6fe09edd1a61190a4b02921ed46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.776ex; height:2.176ex;" alt="{\displaystyle tx\in C}"></span> whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq t\leq 1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>t</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq t\leq 1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2f346e8c1e6f304824cb6692078da5f000dd9b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.008ex; height:2.509ex;" alt="{\displaystyle 0\leq t\leq 1,}"></span> define the Minkowski functional of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> to be <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{C}(x)=\inf\{r&gt;0:x\in rC\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">inf</mo> <mo fence="false" stretchy="false">{</mo> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>r</mi> <mi>C</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{C}(x)=\inf\{r&gt;0:x\in rC\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0332832ffd40659191ea0d5a62d6067a253aa33" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.975ex; height:2.843ex;" alt="{\displaystyle \mu _{C}(x)=\inf\{r&gt;0:x\in rC\}.}"></span> </p><p>From this definition it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{C}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{C}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e209b251e74e94609cb3b5029d7223f95367c6cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.883ex; height:2.176ex;" alt="{\displaystyle \mu _{C}}"></span> is a seminorm if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is balanced and convex (it is also absorbent by assumption). Conversely, given a family of seminorms, the sets <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{x:p_{\alpha _{1}}(x)&lt;\varepsilon _{1},\ldots ,p_{\alpha _{n}}(x)&lt;\varepsilon _{n}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mi>x</mi> <mo>:</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{x:p_{\alpha _{1}}(x)&lt;\varepsilon _{1},\ldots ,p_{\alpha _{n}}(x)&lt;\varepsilon _{n}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f0565d196894af99bb15b387a52fa7d62f9ca04" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.388ex; height:3.009ex;" alt="{\displaystyle \left\{x:p_{\alpha _{1}}(x)&lt;\varepsilon _{1},\ldots ,p_{\alpha _{n}}(x)&lt;\varepsilon _{n}\right\}}"></span> form a base of convex absorbent balanced sets. </p> <div class="mw-heading mw-heading3"><h3 id="Ways_of_defining_a_locally_convex_topology">Ways of defining a locally convex topology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=11" title="Edit section: Ways of defining a locally convex topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTENariciBeckenstein201167–113_7-2" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a (real or complex) vector space and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5622de88a69f68340f8dcb43d0b8bd443ba9e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.543ex; height:2.176ex;" alt="{\displaystyle {\mathcal {B}}}"></span> be a <a href="/wiki/Filter_base" class="mw-redirect" title="Filter base">filter base</a> of subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> such that: </p> <ol><li>Every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0df7ead8ec7e88c3e04464929ae1213bbc1cd13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle B\in {\mathcal {B}}}"></span> is <a href="/wiki/Convex_set" title="Convex set">convex</a>, <a href="/wiki/Balanced_set" title="Balanced set">balanced</a>, and <a href="/wiki/Absorbing_set" title="Absorbing set">absorbing</a>;</li> <li>For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0df7ead8ec7e88c3e04464929ae1213bbc1cd13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle B\in {\mathcal {B}}}"></span> there exists some real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;r\leq 1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>r</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;r\leq 1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d1f85c0e9900e1777c31acc4e2135ed33306a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.895ex; height:2.843ex;" alt="{\displaystyle 0&lt;r\leq 1/2}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rB\in {\mathcal {B}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rB\in {\mathcal {B}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/448f316ace987420fb9921727659a1cd1a9dc875" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.844ex; height:2.176ex;" alt="{\displaystyle rB\in {\mathcal {B}}.}"></span></li></ol> <p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5622de88a69f68340f8dcb43d0b8bd443ba9e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.543ex; height:2.176ex;" alt="{\displaystyle {\mathcal {B}}}"></span> is a <a href="/wiki/Neighborhood_base" class="mw-redirect" title="Neighborhood base">neighborhood base</a> at 0 for a locally convex TVS topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span> </p> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTENariciBeckenstein201167–113_7-3" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a (real or complex) vector space and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9027196ecb178d598958555ea01c43157d83597c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.604ex; height:2.176ex;" alt="{\displaystyle {\mathcal {L}}}"></span> be a non-empty collection of convex, <a href="/wiki/Balanced_set" title="Balanced set">balanced</a>, and <a href="/wiki/Absorbing_set" title="Absorbing set">absorbing</a> subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span> Then the set of all positive scalar multiples of finite intersections of sets in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9027196ecb178d598958555ea01c43157d83597c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.604ex; height:2.176ex;" alt="{\displaystyle {\mathcal {L}}}"></span> forms a neighborhood base at the origin for a locally convex TVS topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span> </p> </div> <p><br /> <b>Example: auxiliary normed spaces</b> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> is <a href="/wiki/Convex_set" title="Convex set">convex</a> and <a href="/wiki/Absorbing_set" title="Absorbing set">absorbing</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> then the <a href="/wiki/Symmetric_set" title="Symmetric set">symmetric set</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D:=\bigcap _{|u|=1}uW}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>:=</mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mi>u</mi> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D:=\bigcap _{|u|=1}uW}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/937495d0b9fd149a13cf6a7db0f63a9404f41636" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:13.777ex; height:6.009ex;" alt="{\displaystyle D:=\bigcap _{|u|=1}uW}"></span> will be convex and <a href="/wiki/Balanced_set" title="Balanced set">balanced</a> (also known as an <em><a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">absolutely convex set</a></em> or a <em><a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">disk</a></em>) in addition to being absorbing in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span> This guarantees that the <a href="/wiki/Minkowski_functional" title="Minkowski functional">Minkowski functional</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{D}:X\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{D}:X\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/226b834f301ef0b854ed90c2d27794c29f499558" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:12.061ex; height:2.509ex;" alt="{\displaystyle p_{D}:X\to \mathbb {R} }"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> will be a <a href="/wiki/Seminorm" title="Seminorm">seminorm</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> thereby making <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X,p_{D}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X,p_{D}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9794eab0a765d03540565e4630116f613df34729" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.586ex; height:2.843ex;" alt="{\displaystyle \left(X,p_{D}\right)}"></span> into a <a href="/wiki/Seminormed_space" class="mw-redirect" title="Seminormed space">seminormed space</a> that carries its canonical <a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">pseudometrizable</a> topology. The set of scalar multiples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb5677fa19683476662db877574ddb8d177d0d97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.973ex; height:2.176ex;" alt="{\displaystyle rD}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> ranges over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{{\tfrac {1}{2}},{\tfrac {1}{3}},{\tfrac {1}{4}},\ldots \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{{\tfrac {1}{2}},{\tfrac {1}{3}},{\tfrac {1}{4}},\ldots \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c498ec6fc599b7a9c59158598bf86853de546d72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.9ex; height:4.843ex;" alt="{\displaystyle \left\{{\tfrac {1}{2}},{\tfrac {1}{3}},{\tfrac {1}{4}},\ldots \right\}}"></span> (or over any other set of non-zero scalars having <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> as a limit point) forms a neighborhood basis of absorbing <a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">disks</a> at the origin for this locally convex topology. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector space</a> and if this convex absorbing subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> is also a <a href="/wiki/Bounded_set_(topological_vector_space)" title="Bounded set (topological vector space)">bounded subset</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> then the absorbing disk <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D:=\bigcap _{|u|=1}uW}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>:=</mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mi>u</mi> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D:=\bigcap _{|u|=1}uW}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/937495d0b9fd149a13cf6a7db0f63a9404f41636" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:13.777ex; height:6.009ex;" alt="{\displaystyle D:=\bigcap _{|u|=1}uW}"></span> will also be bounded, in which case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{D}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{D}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3278752c696e438f917cfd45a5b09b01924ecfcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.852ex; height:2.009ex;" alt="{\displaystyle p_{D}}"></span> will be a <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X,p_{D}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X,p_{D}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9794eab0a765d03540565e4630116f613df34729" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.586ex; height:2.843ex;" alt="{\displaystyle \left(X,p_{D}\right)}"></span> will form what is known as an <a href="/wiki/Auxiliary_normed_space" title="Auxiliary normed space">auxiliary normed space</a>. If this normed space is a <a href="/wiki/Banach_space" title="Banach space">Banach space</a> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> is called a <em><a href="/wiki/Banach_disk" class="mw-redirect" title="Banach disk">Banach disk</a></em>. </p> <div class="mw-heading mw-heading2"><h2 id="Further_definitions">Further definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=12" title="Edit section: Further definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>A family of seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(p_{\alpha }\right)_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(p_{\alpha }\right)_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70aa1aecc17e4a742e4b676c0313fcbf4b74ab1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.547ex; height:3.009ex;" alt="{\displaystyle \left(p_{\alpha }\right)_{\alpha }}"></span> is called <b>total</b> or <b>separated</b> or is said to <b>separate points</b> if whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha }(x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha }(x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f77b3c3760a3b79ed62503057f8794f8d7f7bdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:9.943ex; height:2.843ex;" alt="{\displaystyle p_{\alpha }(x)=0}"></span> holds for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is necessarily <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/916e773e0593223c306a3e6852348177d1934962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 0.}"></span> A locally convex space is <a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> it has a separated family of seminorms. Many authors take the Hausdorff criterion in the definition.</li> <li>A <a href="/wiki/Pseudometric_space" title="Pseudometric space">pseudometric</a> is a generalization of a metric which does not satisfy the condition that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3329b396b395dedb4a470dea0aacea4b485070a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.805ex; height:2.843ex;" alt="{\displaystyle d(x,y)=0}"></span> only when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45a717cd4f8417e789930877c1dfcd62b1300ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.23ex; height:2.009ex;" alt="{\displaystyle x=y.}"></span> A locally convex space is pseudometrizable, meaning that its topology arises from a pseudometric, if and only if it has a countable family of seminorms. Indeed, a pseudometric inducing the same topology is then given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=\sum _{n}^{\infty }{\frac {1}{2^{n}}}{\frac {p_{n}(x-y)}{1+p_{n}(x-y)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=\sum _{n}^{\infty }{\frac {1}{2^{n}}}{\frac {p_{n}(x-y)}{1+p_{n}(x-y)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c88ffaf6b67ed511b4d701a84711d88d57c5a83" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.964ex; height:6.843ex;" alt="{\displaystyle d(x,y)=\sum _{n}^{\infty }{\frac {1}{2^{n}}}{\frac {p_{n}(x-y)}{1+p_{n}(x-y)}}}"></span> (where the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcca0eda567be34036ddbb204671dc6aee9975f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.706ex; height:2.843ex;" alt="{\displaystyle 1/2^{n}}"></span> can be replaced by any positive <a href="/wiki/Summable" class="mw-redirect" title="Summable">summable</a> sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790f9209748c2dca7ed7b81932c37c02af1dbc31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.448ex; height:2.009ex;" alt="{\displaystyle a_{n}}"></span>). This pseudometric is translation-invariant, but not homogeneous, meaning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(kx,ky)\neq |k|d(x,y),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mi>x</mi> <mo>,</mo> <mi>k</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(kx,ky)\neq |k|d(x,y),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd0716cce2f56c7c396b5d2fb2b306810c8875fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.761ex; height:2.843ex;" alt="{\displaystyle d(kx,ky)\neq |k|d(x,y),}"></span> and therefore does not define a (pseudo)norm. The pseudometric is an honest metric if and only if the family of seminorms is separated, since this is the case if and only if the space is Hausdorff. If furthermore the space is complete, the space is called a <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a>.</li> <li>As with any topological vector space, a locally convex space is also a <a href="/wiki/Uniform_space" title="Uniform space">uniform space</a>. Thus one may speak of <a href="/wiki/Uniform_continuity" title="Uniform continuity">uniform continuity</a>, <a href="/wiki/Uniform_convergence" title="Uniform convergence">uniform convergence</a>, and <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequences</a>.</li> <li>A <a href="/wiki/Cauchy_net" class="mw-redirect" title="Cauchy net">Cauchy net</a> in a locally convex space is a <a href="/wiki/Net_(mathematics)" title="Net (mathematics)">net</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(x_{a}\right)_{a\in A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(x_{a}\right)_{a\in A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/859d111683ecd219688f5339b5890f074136014c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.672ex; height:3.009ex;" alt="{\displaystyle \left(x_{a}\right)_{a\in A}}"></span> such that for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> and every seminorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30cb8d6ef3b8764d56ee5eba7a7280f1821e0a07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:3.19ex; height:2.009ex;" alt="{\displaystyle p_{\alpha },}"></span> there exists some index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9461fa569a784d80b2fb370600db224679d61b54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle c\in A}"></span> such that for all indices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b\geq c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b\geq c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b78e9b08e30ab5242343f4ade07b0b99c6f9d07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.013ex; height:2.509ex;" alt="{\displaystyle a,b\geq c,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha }\left(x_{a}-x_{b}\right)&lt;r.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&lt;</mo> <mi>r</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha }\left(x_{a}-x_{b}\right)&lt;r.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66a75fe7fb81f4fc87f717ca2a8802821283056c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:17.073ex; height:2.843ex;" alt="{\displaystyle p_{\alpha }\left(x_{a}-x_{b}\right)&lt;r.}"></span> In other words, the net must be Cauchy in all the seminorms simultaneously. The definition of completeness is given here in terms of nets instead of the more familiar <a href="/wiki/Sequence" title="Sequence">sequences</a> because unlike Fréchet spaces which are metrizable, general spaces may be defined by an uncountable family of <a href="/wiki/Pseudometric_space" title="Pseudometric space">pseudometrics</a>. Sequences, which are countable by definition, cannot suffice to characterize convergence in such spaces. A locally convex space is <a href="/wiki/Complete_uniform_space" class="mw-redirect" title="Complete uniform space">complete</a> if and only if every Cauchy net converges.</li> <li>A family of seminorms becomes a <a href="/wiki/Preorder" title="Preorder">preordered</a> set under the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha }\leq p_{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha }\leq p_{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d0e79c49ee97c3df2344b71c9af3a6cd1685a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:7.985ex; height:2.676ex;" alt="{\displaystyle p_{\alpha }\leq p_{\beta }}"></span> if and only if there exists an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7f423ab77b3411ec2803520a07c0dfae6ceb826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.703ex; height:2.176ex;" alt="{\displaystyle M&gt;0}"></span> such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha }(x)\leq Mp_{\beta }(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha }(x)\leq Mp_{\beta }(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a4953c7f52deb53948b098909bf49e0ea223ea9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:17.352ex; height:3.009ex;" alt="{\displaystyle p_{\alpha }(x)\leq Mp_{\beta }(x).}"></span> One says it is a <b>directed family of seminorms</b> if the family is a <a href="/wiki/Directed_set" title="Directed set">directed set</a> with addition as the <a href="/wiki/Join_(mathematics)" class="mw-redirect" title="Join (mathematics)">join</a>, in other words if for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59ab677d974cccb0132cac08bd67fc8ac765627e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.979ex; height:2.509ex;" alt="{\displaystyle \beta ,}"></span> there is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\alpha }+p_{\beta }\leq p_{\gamma }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\alpha }+p_{\beta }\leq p_{\gamma }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0f4c87e44debb333b0ab920c628f14867f44493" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:13.767ex; height:2.676ex;" alt="{\displaystyle p_{\alpha }+p_{\beta }\leq p_{\gamma }.}"></span> Every family of seminorms has an equivalent directed family, meaning one which defines the same topology. Indeed, given a family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(p_{\alpha }(x)\right)_{\alpha \in I},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(p_{\alpha }(x)\right)_{\alpha \in I},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a78d7405459509ffcca4bbe6c5dbbb0fba884e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.258ex; height:3.009ex;" alt="{\displaystyle \left(p_{\alpha }(x)\right)_{\alpha \in I},}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed80a2011a3912b028ba32a52dfa57165455f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Phi }"></span> be the set of finite subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> and then for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\in \Phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\in \Phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90e170975439f8d2dc3d9f3809eaf8e7978da376" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.26ex; height:2.176ex;" alt="{\displaystyle F\in \Phi }"></span> define <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{F}=\sum _{\alpha \in F}p_{\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{F}=\sum _{\alpha \in F}p_{\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/947642891799b0f1550074a8c603adf3b931986d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:12.465ex; height:5.676ex;" alt="{\displaystyle q_{F}=\sum _{\alpha \in F}p_{\alpha }.}"></span> One may check that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(q_{F}\right)_{F\in \Phi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(q_{F}\right)_{F\in \Phi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff173fca494ba3fcbe91801499440391c68c6855" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.056ex; height:3.009ex;" alt="{\displaystyle \left(q_{F}\right)_{F\in \Phi }}"></span> is an equivalent directed family.</li> <li>If the topology of the space is induced from a single seminorm, then the space is <b>seminormable</b>. Any locally convex space with a finite family of seminorms is seminormable. Moreover, if the space is Hausdorff (the family is separated), then the space is normable, with norm given by the sum of the seminorms. In terms of the open sets, a locally convex topological vector space is seminormable if and only if the origin has a <a href="/wiki/Bounded_set_(topological_vector_space)" title="Bounded set (topological vector space)">bounded</a> neighborhood.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Sufficient_conditions">Sufficient conditions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=13" title="Edit section: Sufficient conditions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Hahn–Banach_extension_property"><span id="Hahn.E2.80.93Banach_extension_property"></span>Hahn–Banach extension property</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=14" title="Edit section: Hahn–Banach extension property"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> be a TVS. Say that a vector subspace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has <b>the extension property</b> if any continuous linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> can be extended to a continuous linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011225–273_14-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011225–273-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Say that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has the <b><a href="/wiki/Hahn-Banach_theorem" class="mw-redirect" title="Hahn-Banach theorem">Hahn-Banach</a> extension property</b> (<b>HBEP</b>) if every vector subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has the extension property.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011225–273_14-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011225–273-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Hahn-Banach_theorem" class="mw-redirect" title="Hahn-Banach theorem">Hahn-Banach theorem</a> guarantees that every Hausdorff locally convex space has the HBEP. For complete <a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">metrizable TVSs</a> there is a converse: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTENariciBeckenstein2011225–273_14-2" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011225–273-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></strong>&#160;<span class="theorem-note">(Kalton)</span><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Every complete metrizable TVS with the Hahn-Banach extension property is locally convex. </p> </div> <p>If a vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has uncountable dimension and if we endow it with the <a href="/wiki/Finest_vector_topology" class="mw-redirect" title="Finest vector topology">finest vector topology</a> then this is a TVS with the HBEP that is neither locally convex or metrizable.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011225–273_14-3" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011225–273-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=15" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Topological_vector_space#Properties" title="Topological vector space">Topological vector space §&#160;Properties</a></div> <p><br /> Throughout, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is a family of continuous seminorms that generate the topology of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span> </p><p><b>Topological closure</b> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\subseteq X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\subseteq X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44aba72977e43f863dd873b095d1dc0bd3f17608" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.578ex; height:2.343ex;" alt="{\displaystyle S\subseteq X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3ebdb0a09f0721ccdd0b779e0a21caf386be82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.797ex; height:2.509ex;" alt="{\displaystyle x\in X,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \operatorname {cl} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>cl</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \operatorname {cl} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7763eda6d283534890a0b3eb3d0dcdf48095a0a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.736ex; height:2.176ex;" alt="{\displaystyle x\in \operatorname {cl} S}"></span> if and only if for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> and every finite collection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},\ldots ,p_{n}\in {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},\ldots ,p_{n}\in {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0554786c3dd84cd16098e20e6a01c1449a870e67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:14.423ex; height:2.509ex;" alt="{\displaystyle p_{1},\ldots ,p_{n}\in {\mathcal {P}}}"></span> there exists some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acce52dffd84d073a24f4606a175da60148fd0c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.43ex; height:2.176ex;" alt="{\displaystyle s\in S}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{n}p_{i}(x-s)&lt;r.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>r</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{n}p_{i}(x-s)&lt;r.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9da672946d0f20dd2db6eab3d993ffe873777e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.575ex; height:6.843ex;" alt="{\displaystyle \sum _{i=1}^{n}p_{i}(x-s)&lt;r.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011149_15-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011149-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> The closure of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff0df9ef65c0572eb676580ce1c02b8ec40f694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle \{0\}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigcap _{p\in {\mathcal {P}}}p^{-1}(0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mrow> </munder> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigcap _{p\in {\mathcal {P}}}p^{-1}(0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b464bd77618bafb6f60003c474f7538299b056a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; margin-left: -0.063ex; width:10.699ex; height:5.843ex;" alt="{\displaystyle \bigcap _{p\in {\mathcal {P}}}p^{-1}(0).}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011149–153-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Topology of Hausdorff locally convex spaces</b> </p><p>Every Hausdorff locally convex space is <a href="/wiki/Homeomorphic" class="mw-redirect" title="Homeomorphic">homeomorphic</a> to a vector subspace of a product of <a href="/wiki/Banach_space" title="Banach space">Banach spaces</a>.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011115–154_17-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011115–154-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Anderson%E2%80%93Kadec_theorem" title="Anderson–Kadec theorem">Anderson–Kadec theorem</a> states that every infinite–dimensional <a href="/wiki/Separable_space" title="Separable space">separable</a> <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a> is <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphic</a> to the <a href="/wiki/Product_space" class="mw-redirect" title="Product space">product space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \prod _{i\in \mathbb {N} }\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \prod _{i\in \mathbb {N} }\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51ac919d1d8fcbe321287bbeea4530fae67c1b83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.341ex; height:3.009ex;" alt="{\textstyle \prod _{i\in \mathbb {N} }\mathbb {R} }"></span> of countably many copies of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> (this homeomorphism need not be a <a href="/wiki/Linear_map" title="Linear map">linear map</a>).<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Properties_of_convex_subsets">Properties of convex subsets</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=16" title="Edit section: Properties of convex subsets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Algebraic properties of convex subsets</b> </p><p>A subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is convex if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle tC+(1-t)C\subseteq C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mi>C</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>C</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle tC+(1-t)C\subseteq C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fb599adcd27c817309d8fbb12071d50533a33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.729ex; height:2.843ex;" alt="{\displaystyle tC+(1-t)C\subseteq C}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq t\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>t</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq t\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86496f1001838495964ccca2851a6f29ff0c36a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.361ex; height:2.343ex;" alt="{\displaystyle 0\leq t\leq 1}"></span><sup id="cite_ref-FOOTNOTERudin19916_19-0" class="reference"><a href="#cite_note-FOOTNOTERudin19916-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> or equivalently, if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (s+t)C=sC+tC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>C</mi> <mo>=</mo> <mi>s</mi> <mi>C</mi> <mo>+</mo> <mi>t</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (s+t)C=sC+tC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2f48666bcd73a47410026ac96eb0ecd3bd25e17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.748ex; height:2.843ex;" alt="{\displaystyle (s+t)C=sC+tC}"></span> for all positive real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s&gt;0{\text{ and }}t&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&gt;</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mi>t</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s&gt;0{\text{ and }}t&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ed15769527075bccd09fc687edafb7d41398997" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.008ex; height:2.509ex;" alt="{\displaystyle s&gt;0{\text{ and }}t&gt;0,}"></span><sup id="cite_ref-FOOTNOTERudin199138_20-0" class="reference"><a href="#cite_note-FOOTNOTERudin199138-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> where because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (s+t)C\subseteq sC+tC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>C</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>s</mi> <mi>C</mi> <mo>+</mo> <mi>t</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (s+t)C\subseteq sC+tC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1075049e771af188a4302a5383d29a89d9e90ce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.748ex; height:2.843ex;" alt="{\displaystyle (s+t)C\subseteq sC+tC}"></span> always holds, the <a href="/wiki/Equals_sign" title="Equals sign">equals sign</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/936ee397fe5ec4b211f75366b8f9c2e9ddf415f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:2.582ex; height:1.343ex;" alt="{\displaystyle \,=\,}"></span> can be replaced with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\supseteq .\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2287;<!-- ⊇ --></mo> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\supseteq .\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a78056899f4d0a31a13c94875bb3e344e2866f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.229ex; height:2.176ex;" alt="{\displaystyle \,\supseteq .\,}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is a convex set that contains the origin then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is <a href="/wiki/Star_domain" title="Star domain">star shaped</a> at the origin and for all non-negative real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\geq 0{\text{ and }}t\geq 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mi>t</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\geq 0{\text{ and }}t\geq 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711badd78605a567e00db039075ad583b3647e39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.008ex; height:2.509ex;" alt="{\displaystyle s\geq 0{\text{ and }}t\geq 0,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (sC)\cap (tC)=(\min _{}\{s,t\})C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>s</mi> <mi>C</mi> <mo stretchy="false">)</mo> <mo>&#x2229;<!-- ∩ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </munder> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (sC)\cap (tC)=(\min _{}\{s,t\})C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a182e8f4ca687b0219113966b25a235c0ce7aa8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.149ex; height:3.843ex;" alt="{\displaystyle (sC)\cap (tC)=(\min _{}\{s,t\})C.}"></span> </p><p>The <a href="/wiki/Minkowski_sum" class="mw-redirect" title="Minkowski sum">Minkowski sum</a> of two convex sets is convex; furthermore, the scalar multiple of a convex set is again convex.<sup id="cite_ref-FOOTNOTETrèves2006126_21-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006126-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Topological properties of convex subsets</b> </p> <ul><li>Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> is a TVS (not necessarily locally convex or Hausdorff) over the real or complex numbers. Then the open convex subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are exactly those that are of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z+\{y\in Y:p(y)&lt;1\}=\{y\in Y:p(y-z)&lt;1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>+</mo> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z+\{y\in Y:p(y)&lt;1\}=\{y\in Y:p(y-z)&lt;1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/118fb7d7c91d94b51ca9b2394708babe5ce6b8d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.809ex; height:2.843ex;" alt="{\displaystyle z+\{y\in Y:p(y)&lt;1\}=\{y\in Y:p(y-z)&lt;1\}}"></span> for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\in Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\in Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48ebed0a6017418887ad10411726384215ad83d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.702ex; height:2.176ex;" alt="{\displaystyle z\in Y}"></span> and some positive continuous <a href="/wiki/Sublinear_functional" class="mw-redirect" title="Sublinear functional">sublinear functional</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c668649af47a30006f93c9847d61fee8d9ffb61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.42ex; height:2.176ex;" alt="{\displaystyle Y.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011177–220_22-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011177–220-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup></li> <li>The interior and closure of a convex subset of a TVS is again convex.<sup id="cite_ref-FOOTNOTETrèves2006126_21-1" class="reference"><a href="#cite_note-FOOTNOTETrèves2006126-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is a convex set with non-empty interior, then the closure of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is equal to the closure of the interior of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>; furthermore, the interior of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is equal to the interior of the closure of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/067be67e68f60c53ce83241748d0d6249675c58d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.413ex; height:2.176ex;" alt="{\displaystyle C.}"></span><sup id="cite_ref-FOOTNOTETrèves2006126_21-2" class="reference"><a href="#cite_note-FOOTNOTETrèves2006126-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESchaeferWolff199938_23-0" class="reference"><a href="#cite_note-FOOTNOTESchaeferWolff199938-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> <ul><li>So if the interior of a convex set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is non-empty then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is a closed (respectively, open) set if and only if it is a regular closed (respectively, regular open) set.</li></ul></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is convex and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;t\leq 1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>t</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;t\leq 1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b263279253afcc9bbbed01297144b1a29d789ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.008ex; height:2.509ex;" alt="{\displaystyle 0&lt;t\leq 1,}"></span> then<sup id="cite_ref-FOOTNOTEJarchow1981101–104_24-0" class="reference"><a href="#cite_note-FOOTNOTEJarchow1981101–104-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\operatorname {Int} C+(1-t)\operatorname {cl} C~\subseteq ~\operatorname {Int} C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mi>Int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>cl</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mtext>&#xA0;</mtext> <mo>&#x2286;<!-- ⊆ --></mo> <mtext>&#xA0;</mtext> <mi>Int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\operatorname {Int} C+(1-t)\operatorname {cl} C~\subseteq ~\operatorname {Int} C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34f30b4d47a3f19457b7be9007cbaf03098d493f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.613ex; height:2.843ex;" alt="{\displaystyle t\operatorname {Int} C+(1-t)\operatorname {cl} C~\subseteq ~\operatorname {Int} C.}"></span> Explicitly, this means that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is a convex subset of a TVS <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> (not necessarily Hausdorff or locally convex), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> belongs to the closure of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64528f031cdbe1f52bdaf4ba7a8401108c0d2dc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.413ex; height:2.509ex;" alt="{\displaystyle C,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> belongs to the interior of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64528f031cdbe1f52bdaf4ba7a8401108c0d2dc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.413ex; height:2.509ex;" alt="{\displaystyle C,}"></span> then the open line segment joining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> belongs to the interior of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92402978f89ec5a7e982d699f86a9673769ab7d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.413ex; height:2.509ex;" alt="{\displaystyle C;}"></span> that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{tx+(1-t)y:0&lt;t&lt;1\}\subseteq \operatorname {int} _{X}C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>t</mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>:</mo> <mn>0</mn> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mi>int</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{tx+(1-t)y:0&lt;t&lt;1\}\subseteq \operatorname {int} _{X}C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d939088ba7368a75f80fc043e12186967eadee2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.816ex; height:2.843ex;" alt="{\displaystyle \{tx+(1-t)y:0&lt;t&lt;1\}\subseteq \operatorname {int} _{X}C.}"></span><sup id="cite_ref-FOOTNOTESchaeferWolff199938_23-1" class="reference"><a href="#cite_note-FOOTNOTESchaeferWolff199938-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEConway1990102_25-0" class="reference"><a href="#cite_note-FOOTNOTEConway1990102-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>proof 2<span class="cite-bracket">&#93;</span></a></sup></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is a closed vector subspace of a (not necessarily Hausdorff) locally convex space<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> is a convex neighborhood of the origin in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b466e90209f39c0c2caad1b11445824b82c2f536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.089ex; height:2.509ex;" alt="{\displaystyle M,}"></span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dff47a41328065a0e15e3a7089cfd392ee954e36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.909ex; height:2.176ex;" alt="{\displaystyle z\in X}"></span> is a vector <em>not</em> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ace9595e3ce66fdec7e9d30202626accd676b11e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.434ex; height:2.509ex;" alt="{\displaystyle V,}"></span> then there exists a convex neighborhood <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> of the origin in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=U\cap M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mi>U</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=U\cap M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92a00b8e3ff9f8402107419ef21ccd5097073d51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.693ex; height:2.176ex;" alt="{\displaystyle V=U\cap M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\not \in U.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>&#x2209;</mo> <mi>U</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\not \in U.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9698d3d3ac637995a208699b29b1e7d9df849860" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.358ex; height:2.676ex;" alt="{\displaystyle z\not \in U.}"></span><sup id="cite_ref-FOOTNOTETrèves2006126_21-3" class="reference"><a href="#cite_note-FOOTNOTETrèves2006126-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></li> <li>The closure of a convex subset of a locally convex Hausdorff space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is the same for <em>all</em> locally convex Hausdorff TVS topologies on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> that are compatible with <a href="/wiki/Dual_system" title="Dual system">duality</a> between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and its continuous dual space.<sup id="cite_ref-FOOTNOTETrèves2006370_27-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006370-27"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup></li> <li>In a locally convex space, the convex hull and the <a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">disked hull</a> of a totally bounded set is totally bounded.<sup id="cite_ref-FOOTNOTENariciBeckenstein201167–113_7-4" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li>In a <a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">complete</a> locally convex space, the convex hull and the disked hull of a compact set are both compact.<sup id="cite_ref-FOOTNOTENariciBeckenstein201167–113_7-5" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <ul><li>More generally, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> is a compact subset of a locally convex space, then the convex hull <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {co} K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {co} K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24065c3d997d426f6134a71d52dd08c3b77fd75e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.648ex; height:2.176ex;" alt="{\displaystyle \operatorname {co} K}"></span> (respectively, the disked hull <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cobal} K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cobal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {cobal} K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67b067810f7f8eab4eebffc77ae0dd621c3d91f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.75ex; height:2.176ex;" alt="{\displaystyle \operatorname {cobal} K}"></span>) is compact if and only if it is complete.<sup id="cite_ref-FOOTNOTENariciBeckenstein201167–113_7-6" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>In a locally convex space, convex hulls of bounded sets are bounded. This is not true for TVSs in general.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011155–176_28-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011155–176-28"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></li> <li>In a <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a>, the closed convex hull of a compact set is compact.<sup id="cite_ref-FOOTNOTERudin19917_29-0" class="reference"><a href="#cite_note-FOOTNOTERudin19917-29"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup></li> <li>In a locally convex space, any linear combination of totally bounded sets is totally bounded.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011155–176_28-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011155–176-28"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Properties_of_convex_hulls">Properties of convex hulls</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=17" title="Edit section: Properties of convex hulls"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> of a TVS <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> the <b><a href="/wiki/Convex_hull" title="Convex hull">convex hull</a></b> (respectively, <b>closed convex hull</b>, <b><a href="/wiki/Balanced_set" title="Balanced set">balanced hull</a></b>, <b>convex balanced hull</b>) of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0bcd8516b165aaacb234616d7d2d23478a35be7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.146ex; height:2.509ex;" alt="{\displaystyle S,}"></span> denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {co} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {co} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e28196d9a7ba59064105fa148d156b2d4d837d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.081ex; height:2.176ex;" alt="{\displaystyle \operatorname {co} S}"></span> (respectively, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\operatorname {co} }}S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\operatorname {co} }}S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f87c092b0626890b957cf32547eb5aa9610cf64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.456ex; height:2.676ex;" alt="{\displaystyle {\overline {\operatorname {co} }}S,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {bal} S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>bal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {bal} S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0070ae6d2a3622f7d0304551f9c7db239345916" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.635ex; height:2.509ex;" alt="{\displaystyle \operatorname {bal} S,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cobal} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cobal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {cobal} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d525f7d2c7ea96eb8b16d5bf5c9a616c0eb07e30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.183ex; height:2.176ex;" alt="{\displaystyle \operatorname {cobal} S}"></span>), is the smallest convex (respectively, closed convex, balanced, convex balanced) subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23bbb1f0f6ebdfa78b4fed06049640f7386bb44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.146ex; height:2.176ex;" alt="{\displaystyle S.}"></span> </p> <ul><li>The convex hull of compact subset of a <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> is <em>not</em> necessarily closed and so also <em>not</em> necessarily compact. For example, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> be the separable Hilbert space <a href="/wiki/Lp_space" title="Lp space"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{2}(\mathbb {N} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{2}(\mathbb {N} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30f5da85c0ac82572e622d7068b8cf4d0ac98fa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.511ex; height:3.176ex;" alt="{\displaystyle \ell ^{2}(\mathbb {N} )}"></span></a> of square-summable sequences with the usual norm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a8e44a2eb980f856968a6357e3d0a7c22c905f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.058ex; height:2.843ex;" alt="{\displaystyle \|\cdot \|_{2}}"></span> and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{n}=(0,\ldots ,0,1,0,\ldots )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{n}=(0,\ldots ,0,1,0,\ldots )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a730582b89a766ba9477083a93e2fd0afd8b901" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.863ex; height:2.843ex;" alt="{\displaystyle e_{n}=(0,\ldots ,0,1,0,\ldots )}"></span> be the standard <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> (that is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> at the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{\text{th}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{\text{th}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/836d593843b7806e6a1875098200bce01bdeaec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.181ex; height:2.676ex;" alt="{\displaystyle n^{\text{th}}}"></span>-coordinate). The closed set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\{0\}\cup \left\{{\tfrac {1}{1}}e_{n},{\tfrac {1}{2}}e_{2},{\tfrac {1}{3}}e_{3},\ldots \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>&#x222A;<!-- ∪ --></mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mstyle> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\{0\}\cup \left\{{\tfrac {1}{1}}e_{n},{\tfrac {1}{2}}e_{2},{\tfrac {1}{3}}e_{3},\ldots \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf1f7cd78c1c241d4c86124af03721eb46a81ab0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.145ex; height:4.843ex;" alt="{\displaystyle S=\{0\}\cup \left\{{\tfrac {1}{1}}e_{n},{\tfrac {1}{2}}e_{2},{\tfrac {1}{3}}e_{3},\ldots \right\}}"></span> is compact but its convex hull <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {co} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {co} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e28196d9a7ba59064105fa148d156b2d4d837d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.081ex; height:2.176ex;" alt="{\displaystyle \operatorname {co} S}"></span> is <em>not</em> a closed set because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h:=\sum _{n=1}^{\infty }{\tfrac {1}{2^{n}}}{\tfrac {1}{n}}e_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mstyle> </mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h:=\sum _{n=1}^{\infty }{\tfrac {1}{2^{n}}}{\tfrac {1}{n}}e_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d8ab0cec5bc149b95e87dfeb562200b17c0bcf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.574ex; height:6.843ex;" alt="{\displaystyle h:=\sum _{n=1}^{\infty }{\tfrac {1}{2^{n}}}{\tfrac {1}{n}}e_{n}}"></span> belongs to the closure of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {co} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {co} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e28196d9a7ba59064105fa148d156b2d4d837d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.081ex; height:2.176ex;" alt="{\displaystyle \operatorname {co} S}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\not \in \operatorname {co} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>&#x2209;</mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\not \in \operatorname {co} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bcd5649851effadbc218e0165c4d51ef349843b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.261ex; height:2.676ex;" alt="{\displaystyle h\not \in \operatorname {co} S}"></span> (since every sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\in \operatorname {co} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\in \operatorname {co} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c02e46f764c219e44e552634d1a76eaaf34d0a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.01ex; height:2.176ex;" alt="{\displaystyle z\in \operatorname {co} S}"></span> is a finite <a href="/wiki/Convex_combination" title="Convex combination">convex combination</a> of elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and so is necessarily <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> in all but finitely many coordinates, which is not true of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>).<sup id="cite_ref-FOOTNOTEAliprantisBorder2006185_30-0" class="reference"><a href="#cite_note-FOOTNOTEAliprantisBorder2006185-30"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> However, like in all <a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">complete</a> Hausdorff locally convex spaces, the <em>closed</em> convex hull <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K:={\overline {\operatorname {co} }}S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K:={\overline {\operatorname {co} }}S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d6c063f9d502e3232ca57ed8651768554677025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.62ex; height:2.343ex;" alt="{\displaystyle K:={\overline {\operatorname {co} }}S}"></span> of this compact subset is compact. The vector subspace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X:=\operatorname {span} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>:=</mo> <mi>span</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X:=\operatorname {span} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a22e2c8f8c0247478bfa1cfa26365da43d7984a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.275ex; height:2.509ex;" alt="{\displaystyle X:=\operatorname {span} S}"></span> is a <a href="/wiki/Pre-Hilbert_space" class="mw-redirect" title="Pre-Hilbert space">pre-Hilbert space</a> when endowed with the substructure that the Hilbert space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> induces on it but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is not complete and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\not \in C:=K\cap X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>&#x2209;</mo> <mi>C</mi> <mo>:=</mo> <mi>K</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\not \in C:=K\cap X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b0c6cf325d5cc74fd5a30b010c405a485a7b071" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.32ex; height:2.676ex;" alt="{\displaystyle h\not \in C:=K\cap X}"></span> (since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\not \in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>&#x2209;</mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\not \in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68c7223aee00fafb2ca6a99f7f964f9ea0ee18f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.16ex; height:2.676ex;" alt="{\displaystyle h\not \in X}"></span>). The closed convex hull of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> (here, "closed" means with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> and not to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> as before) is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\cap X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\cap X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3015c7fc564aacc6a3a6d4058fa88e29e0f2a8de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.275ex; height:2.509ex;" alt="{\displaystyle K\cap X,}"></span> which is not compact (because it is not a complete subset). This shows that in a Hausdorff locally convex space that is not complete, the closed convex hull of compact subset might <em>fail</em> to be compact (although it will be <a href="/wiki/Totally_bounded_space" title="Totally bounded space">precompact/totally bounded</a>).</li> <li>In a Hausdorff locally convex space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> the closed convex hull <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\operatorname {co} }}^{X}S=\operatorname {cl} _{X}\operatorname {co} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> <mi>S</mi> <mo>=</mo> <msub> <mi>cl</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\operatorname {co} }}^{X}S=\operatorname {cl} _{X}\operatorname {co} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d9643f031aff2c50cbd7c5c374b460f50718b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.32ex; height:3.176ex;" alt="{\displaystyle {\overline {\operatorname {co} }}^{X}S=\operatorname {cl} _{X}\operatorname {co} S}"></span> of compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is not necessarily compact although it is a <a href="/wiki/Totally_bounded_space#Topological_vector_spaces" title="Totally bounded space">precompact</a> (also called "totally bounded") subset, which means that its closure, <em>when taken in a <a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">completion</a></em> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {X}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {X}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44d776b372d8dd096f9319cdb05376dc51ab257e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.009ex; width:2.563ex; height:2.843ex;" alt="{\displaystyle {\widehat {X}}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> will be compact (here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\subseteq {\widehat {X}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\subseteq {\widehat {X}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ee3fa9ea10b950dcad1c693d96589700dfca9eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.279ex; height:3.176ex;" alt="{\displaystyle X\subseteq {\widehat {X}},}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X={\widehat {X}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X={\widehat {X}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00384235d986ef8e5a9031dfb14a1216f5522691" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.009ex; width:7.641ex; height:2.843ex;" alt="{\displaystyle X={\widehat {X}}}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is complete); that is to say, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cl} _{\widehat {X}}{\overline {\operatorname {co} }}^{X}S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>cl</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {cl} _{\widehat {X}}{\overline {\operatorname {co} }}^{X}S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd91de8ccbd5231b9c14da6b7434fe1b11fc11e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.602ex; height:3.676ex;" alt="{\displaystyle \operatorname {cl} _{\widehat {X}}{\overline {\operatorname {co} }}^{X}S}"></span> will be compact. So for example, the closed convex hull <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C:={\overline {\operatorname {co} }}^{X}S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>:=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C:={\overline {\operatorname {co} }}^{X}S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fcd21bd55c6c8bef54e439dc3c2050700539351" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.953ex; height:2.843ex;" alt="{\displaystyle C:={\overline {\operatorname {co} }}^{X}S}"></span> of a compact subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> of a <a href="/wiki/Pre-Hilbert_space" class="mw-redirect" title="Pre-Hilbert space">pre-Hilbert space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is always a precompact subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> and so the closure of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> in any Hilbert space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> (such as the Hausdorff completion of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> for instance) will be compact (this is the case in the previous example above).</li> <li>In a <a href="/wiki/Quasi-complete_space" title="Quasi-complete space">quasi-complete</a> locally convex TVS, the closure of the convex hull of a compact subset is again compact.</li> <li>In a Hausdorff locally convex TVS, the convex hull of a <a href="/wiki/Totally_bounded_space#Topological_vector_spaces" title="Totally bounded space">precompact</a> set is again precompact.<sup id="cite_ref-FOOTNOTETrèves200667_31-0" class="reference"><a href="#cite_note-FOOTNOTETrèves200667-31"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Consequently, in a <a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">complete</a> Hausdorff locally convex space, the closed convex hull of a compact subset is again compact.<sup id="cite_ref-FOOTNOTETrèves2006145_32-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006145-32"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup></li> <li>In any TVS, the convex hull of a finite union of compact <i>convex</i> sets is compact (and convex).<sup id="cite_ref-FOOTNOTENariciBeckenstein201167–113_7-7" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <ul><li>This implies that in any Hausdorff TVS, the convex hull of a finite union of compact convex sets is <em>closed</em> (in addition to being compact<sup id="cite_ref-FOOTNOTERudin199172–73_33-0" class="reference"><a href="#cite_note-FOOTNOTERudin199172–73-33"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> and convex); in particular, the convex hull of such a union is equal to the <em>closed</em> convex hull of that union.</li> <li>In general, the closed convex hull of a compact set is not necessarily compact. However, every compact subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/895c5fdcd16463448928462048d2fb51f39246ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.817ex; height:1.843ex;" alt="{\displaystyle n&lt;\infty }"></span>) does have a compact convex hull.<sup id="cite_ref-FOOTNOTERudin199172–73_33-1" class="reference"><a href="#cite_note-FOOTNOTERudin199172–73-33"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup></li> <li>In any non-Hausdorff TVS, there exist subsets that are compact (and thus complete) but <em>not</em> closed.</li></ul></li> <li>The <a href="/wiki/Bipolar_theorem" title="Bipolar theorem">bipolar theorem</a> states that the bipolar (that is, the <a href="/wiki/Polar_set" title="Polar set">polar</a> of the polar) of a subset of a locally convex Hausdorff TVS is equal to the closed convex balanced hull of that set.<sup id="cite_ref-FOOTNOTETrèves2006362_34-0" class="reference"><a href="#cite_note-FOOTNOTETrèves2006362-34"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Balanced_set" title="Balanced set">balanced hull</a> of a convex set is <em>not</em> necessarily convex.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> are convex subsets of a <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \operatorname {co} (C\cup D),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>C</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \operatorname {co} (C\cup D),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba00811accca4753f193985eab9e7ed61526b338" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.095ex; height:2.843ex;" alt="{\displaystyle x\in \operatorname {co} (C\cup D),}"></span> then there exist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e13ac2b1dda38dca38dd73c97f0ee57023f3be9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.261ex; height:2.509ex;" alt="{\displaystyle c\in C,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\in D,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\in D,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0db2871c7a3be810d2d516d83ae5594084a1e492" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.628ex; height:2.509ex;" alt="{\displaystyle d\in D,}"></span> and a real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq r\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>r</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq r\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fef84cb793dff501ac864cb13583bb6ebd47d6d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.57ex; height:2.343ex;" alt="{\displaystyle 0\leq r\leq 1}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=rc+(1-r)d.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mi>c</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=rc+(1-r)d.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7d6eb32499968c6627fb152893562386cfdfa6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.048ex; height:2.843ex;" alt="{\displaystyle x=rc+(1-r)d.}"></span><sup id="cite_ref-FOOTNOTETrèves2006126_21-4" class="reference"><a href="#cite_note-FOOTNOTETrèves2006126-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is a vector subspace of a TVS <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> a convex subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b466e90209f39c0c2caad1b11445824b82c2f536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.089ex; height:2.509ex;" alt="{\displaystyle M,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> a convex subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D\cap M\subseteq C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>M</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D\cap M\subseteq C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c193c6ae1017bff5681b07707e63d408a9758622" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.461ex; height:2.509ex;" alt="{\displaystyle D\cap M\subseteq C,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C=M\cap \operatorname {co} (C\cup D).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mi>M</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>C</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C=M\cap \operatorname {co} (C\cup D).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea0d438ca393b3d04a5bf56ef75d31585353db7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.814ex; height:2.843ex;" alt="{\displaystyle C=M\cap \operatorname {co} (C\cup D).}"></span><sup id="cite_ref-FOOTNOTETrèves2006126_21-5" class="reference"><a href="#cite_note-FOOTNOTETrèves2006126-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></li> <li>Recall that the smallest <a href="/wiki/Balanced_set" title="Balanced set">balanced</a> subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> containing a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is called the <b>balanced hull</b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {bal} S.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>bal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {bal} S.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34ba3aef9b454fb5675feaf667da6f68d6e93b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.635ex; height:2.176ex;" alt="{\displaystyle \operatorname {bal} S.}"></span> For any subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> the <b>convex balanced hull</b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0bcd8516b165aaacb234616d7d2d23478a35be7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.146ex; height:2.509ex;" alt="{\displaystyle S,}"></span> denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cobal} S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cobal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {cobal} S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb3763f7142196f8d07f43c338b44e352aa2bd23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.83ex; height:2.509ex;" alt="{\displaystyle \operatorname {cobal} S,}"></span> is the smallest subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> that is convex and balanced.<sup id="cite_ref-FOOTNOTETrèves200668_35-0" class="reference"><a href="#cite_note-FOOTNOTETrèves200668-35"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> The convex balanced hull of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is equal to the convex hull of the balanced hull of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> (i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cobal} S=\operatorname {co} (\operatorname {bal} S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cobal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> <mo>=</mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>bal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {cobal} S=\operatorname {co} (\operatorname {bal} S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4d12260c0cc2fbfcb82ab1dde9e0b191138aec9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.274ex; height:2.843ex;" alt="{\displaystyle \operatorname {cobal} S=\operatorname {co} (\operatorname {bal} S)}"></span>), but the convex balanced hull of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is <em>not</em> necessarily equal to the balanced hull of the convex hull of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cobal} S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cobal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {cobal} S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d525f7d2c7ea96eb8b16d5bf5c9a616c0eb07e30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.183ex; height:2.176ex;" alt="{\displaystyle \operatorname {cobal} S}"></span> is not necessarily equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {bal} (\operatorname {co} S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>bal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {bal} (\operatorname {co} S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0af3487f01520f310a701997c83aa6f51893f6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.992ex; height:2.843ex;" alt="{\displaystyle \operatorname {bal} (\operatorname {co} S)}"></span>).<sup id="cite_ref-FOOTNOTETrèves200668_35-1" class="reference"><a href="#cite_note-FOOTNOTETrèves200668-35"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\subseteq X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\subseteq X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77cbebe3113e44afef7d4a0fd3f424efef2855a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.62ex; height:2.509ex;" alt="{\displaystyle A,B\subseteq X}"></span> are subsets of a TVS <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> is a scalar then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {co} (A+B)=\operatorname {co} (A)+\operatorname {co} (B),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {co} (A+B)=\operatorname {co} (A)+\operatorname {co} (B),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fe4a9a09d893a71b332561969b17f999f928570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.453ex; height:2.843ex;" alt="{\displaystyle \operatorname {co} (A+B)=\operatorname {co} (A)+\operatorname {co} (B),}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {co} (sA)=s\operatorname {co} A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>s</mi> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {co} (sA)=s\operatorname {co} A,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bc697e99f91bf95ab8748615e734eec004a9bda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.386ex; height:2.843ex;" alt="{\displaystyle \operatorname {co} (sA)=s\operatorname {co} A,}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011108_36-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011108-36"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {co} (A\cup B)=\operatorname {co} (A)\cup \operatorname {co} (B),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {co} (A\cup B)=\operatorname {co} (A)\cup \operatorname {co} (B),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ff688392f377b7e5dd3beb5c8c64f683ee3e34b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.937ex; height:2.843ex;" alt="{\displaystyle \operatorname {co} (A\cup B)=\operatorname {co} (A)\cup \operatorname {co} (B),}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\operatorname {co} }}(sA)=s{\overline {\operatorname {co} }}(A).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\operatorname {co} }}(sA)=s{\overline {\operatorname {co} }}(A).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe562f05adc7c0de72407558eb83157c3c579696" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.651ex; height:2.843ex;" alt="{\displaystyle {\overline {\operatorname {co} }}(sA)=s{\overline {\operatorname {co} }}(A).}"></span> Moreover, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\operatorname {co} }}(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\operatorname {co} }}(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/217ffb88b8293e2bf2660b57a32983c76b3c8e22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.862ex; height:2.843ex;" alt="{\displaystyle {\overline {\operatorname {co} }}(A)}"></span> is compact then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\operatorname {co} }}(A+B)={\overline {\operatorname {co} }}(A)+{\overline {\operatorname {co} }}(B).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\operatorname {co} }}(A+B)={\overline {\operatorname {co} }}(A)+{\overline {\operatorname {co} }}(B).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2010f28098c927e004b78f41dfbba5e740bf0e50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.798ex; height:2.843ex;" alt="{\displaystyle {\overline {\operatorname {co} }}(A+B)={\overline {\operatorname {co} }}(A)+{\overline {\operatorname {co} }}(B).}"></span><sup id="cite_ref-FOOTNOTEDunford1988415_37-0" class="reference"><a href="#cite_note-FOOTNOTEDunford1988415-37"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> However, the convex hull of a closed set need not be closed;<sup id="cite_ref-FOOTNOTENariciBeckenstein2011108_36-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011108-36"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> for example, the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{(x,\,\pm \tan x):|x|&lt;{\tfrac {\pi }{2}}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x00B1;<!-- ± --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{(x,\,\pm \tan x):|x|&lt;{\tfrac {\pi }{2}}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9255c552dde1fab9176ac43e12c541208671d87c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:23.979ex; height:3.343ex;" alt="{\displaystyle \left\{(x,\,\pm \tan x):|x|&lt;{\tfrac {\pi }{2}}\right\}}"></span> is closed in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X:=\mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>:=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X:=\mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8546395a58f99107499ee5f1b663b17cbe731ac1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.458ex; height:2.676ex;" alt="{\displaystyle X:=\mathbb {R} ^{2}}"></span> but its convex hull is the open set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)\times \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)\times \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc5bddf85175f3a36c7417f2ef92d67a4da119aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.693ex; height:3.343ex;" alt="{\displaystyle \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)\times \mathbb {R} .}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\subseteq X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\subseteq X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77cbebe3113e44afef7d4a0fd3f424efef2855a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.62ex; height:2.509ex;" alt="{\displaystyle A,B\subseteq X}"></span> are subsets of a TVS <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> whose closed convex hulls are compact, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\operatorname {co} }}(A\cup B)={\overline {\operatorname {co} }}\left({\overline {\operatorname {co} }}(A)\cup {\overline {\operatorname {co} }}(B)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>co</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\operatorname {co} }}(A\cup B)={\overline {\operatorname {co} }}\left({\overline {\operatorname {co} }}(A)\cup {\overline {\operatorname {co} }}(B)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bec0a874cd36fcdad54291e1770c2eceb3f13fe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.175ex; height:2.843ex;" alt="{\displaystyle {\overline {\operatorname {co} }}(A\cup B)={\overline {\operatorname {co} }}\left({\overline {\operatorname {co} }}(A)\cup {\overline {\operatorname {co} }}(B)\right).}"></span><sup id="cite_ref-FOOTNOTEDunford1988415_37-1" class="reference"><a href="#cite_note-FOOTNOTEDunford1988415-37"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is a convex set in a complex vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and there exists some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dff47a41328065a0e15e3a7089cfd392ee954e36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.909ex; height:2.176ex;" alt="{\displaystyle z\in X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z,iz,-z,-iz\in S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>,</mo> <mi>i</mi> <mi>z</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z,iz,-z,-iz\in S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43d23f55d9925113eca3d09d9f6d5072957d6055" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.662ex; height:2.509ex;" alt="{\displaystyle z,iz,-z,-iz\in S,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rz+siz\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>z</mi> <mo>+</mo> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rz+siz\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5fc8c8fd49443f4f4b8a0629559347c8904562b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.298ex; height:2.343ex;" alt="{\displaystyle rz+siz\in S}"></span> for all real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r,s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>,</mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r,s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6ec697de81df8a1cd653c7c98471c431c7d77bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.173ex; height:2.009ex;" alt="{\displaystyle r,s}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |r|+|s|\leq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |r|+|s|\leq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/799e199250d49e11efbbb5a1f221f7c059f28aae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.475ex; height:2.843ex;" alt="{\displaystyle |r|+|s|\leq 1.}"></span> In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle az\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle az\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb3ad6e6674c680719f4430ae985d723b59583b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.658ex; height:2.176ex;" alt="{\displaystyle az\in S}"></span> for all scalars <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a|^{2}\leq {\tfrac {1}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a|^{2}\leq {\tfrac {1}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b2ca06ebf202cd0d51d49cf32fed8bf776da6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.981ex; height:3.676ex;" alt="{\displaystyle |a|^{2}\leq {\tfrac {1}{2}}.}"></span></li> <li><a href="/wiki/Carath%C3%A9odory%27s_theorem_(convex_hull)" title="Carathéodory&#39;s theorem (convex hull)">Carathéodory's theorem</a>: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is <em>any</em> subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/895c5fdcd16463448928462048d2fb51f39246ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.817ex; height:1.843ex;" alt="{\displaystyle n&lt;\infty }"></span>) then for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \operatorname {co} S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \operatorname {co} S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47ec7326c69ca169b518f8a841ec89a3b72b5cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.898ex; height:2.509ex;" alt="{\displaystyle x\in \operatorname {co} S,}"></span> there exist a finite subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\subseteq S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\subseteq S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/123550d1122a1861c0422b05f155867904cf455a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.338ex; height:2.343ex;" alt="{\displaystyle F\subseteq S}"></span> containing at most <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a135e65a42f2d73cccbfc4569523996ca0036f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n+1}"></span> points whose convex hull contains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |F|\leq n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |F|\leq n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f7831352ff7ce757cca6e88b8f01b1ff4489de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.53ex; height:2.843ex;" alt="{\displaystyle |F|\leq n+1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \operatorname {co} F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>co</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \operatorname {co} F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82a1a4c536fe6e5b6f979cef27f8c8baf99a3668" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.493ex; height:2.176ex;" alt="{\displaystyle x\in \operatorname {co} F}"></span>).<sup id="cite_ref-FOOTNOTERudin199173–74_38-0" class="reference"><a href="#cite_note-FOOTNOTERudin199173–74-38"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Examples_and_nonexamples">Examples and nonexamples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=18" title="Edit section: Examples and nonexamples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Finest_and_coarsest_locally_convex_topology">Finest and coarsest locally convex topology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=19" title="Edit section: Finest and coarsest locally convex topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Coarsest_vector_topology">Coarsest vector topology</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=20" title="Edit section: Coarsest vector topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Any vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> endowed with the <a href="/wiki/Trivial_topology" title="Trivial topology">trivial topology</a> (also called the <a href="/wiki/Indiscrete_topology" class="mw-redirect" title="Indiscrete topology">indiscrete topology</a>) is a locally convex TVS (and of course, it is the coarsest such topology). This topology is Hausdorff if and only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\{0\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\{0\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81fc106cf0744dfe1b9e6b2ae431a7982efd0d9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.213ex; height:2.843ex;" alt="{\displaystyle X=\{0\}.}"></span> The indiscrete topology makes any vector space into a <a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">complete</a> <a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">pseudometrizable</a> locally convex TVS. </p><p>In contrast, the <a href="/wiki/Discrete_topology" class="mw-redirect" title="Discrete topology">discrete topology</a> forms a vector topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> if and only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\{0\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\{0\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81fc106cf0744dfe1b9e6b2ae431a7982efd0d9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.213ex; height:2.843ex;" alt="{\displaystyle X=\{0\}.}"></span> This follows from the fact that every <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector space</a> is a <a href="/wiki/Connected_space" title="Connected space">connected space</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Finest_locally_convex_topology">Finest locally convex topology</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=21" title="Edit section: Finest locally convex topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a real or complex vector space and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is the set of all seminorms on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> then the locally convex TVS topology, denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{\operatorname {lc} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{\operatorname {lc} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4da0a0e4738c75cf7b2acf577dad6afd622564c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.083ex; height:2.009ex;" alt="{\displaystyle \tau _{\operatorname {lc} },}"></span> that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> induces on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is called the <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="finest_locally_convex_topology"></span><span class="vanchor-text">finest locally convex topology</span></span></b> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011125–126_39-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011125–126-39"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> This topology may also be described as the TVS-topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> having as a neighborhood base at the origin the set of all <a href="/wiki/Absorbing_set" title="Absorbing set">absorbing</a> <a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">disks</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011125–126_39-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011125–126-39"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Any locally convex TVS-topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is necessarily a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{\operatorname {lc} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{\operatorname {lc} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d124c7e0d7920dc6461be4a2c67cb17224fb67cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.083ex; height:2.009ex;" alt="{\displaystyle \tau _{\operatorname {lc} }.}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c34bbe17181f054316cc23a761859dedf7315a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.259ex; height:2.843ex;" alt="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"></span> is <a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a>.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011149–153-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Every linear map from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c34bbe17181f054316cc23a761859dedf7315a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.259ex; height:2.843ex;" alt="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"></span> into another locally convex TVS is necessarily continuous.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-2" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011149–153-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> In particular, every linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c34bbe17181f054316cc23a761859dedf7315a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.259ex; height:2.843ex;" alt="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"></span> is continuous and every vector subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is closed in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c34bbe17181f054316cc23a761859dedf7315a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.259ex; height:2.843ex;" alt="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"></span>;<sup id="cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-3" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011149–153-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> therefore, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is infinite dimensional then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c34bbe17181f054316cc23a761859dedf7315a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.259ex; height:2.843ex;" alt="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"></span> is not pseudometrizable (and thus not metrizable).<sup id="cite_ref-FOOTNOTENariciBeckenstein2011125–126_39-2" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011125–126-39"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{\operatorname {lc} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{\operatorname {lc} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71fa914a294a53a29ccd0a5a0f6f8c889b661033" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.436ex; height:2.009ex;" alt="{\displaystyle \tau _{\operatorname {lc} }}"></span> is the <em>only</em> Hausdorff locally convex topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> with the property that any linear map from it into any Hausdorff locally convex space is continuous.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011476_40-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011476-40"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> The space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>lc</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c34bbe17181f054316cc23a761859dedf7315a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.259ex; height:2.843ex;" alt="{\displaystyle \left(X,\tau _{\operatorname {lc} }\right)}"></span> is a <a href="/wiki/Bornological_space" title="Bornological space">bornological space</a>.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011446_41-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011446-41"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Examples_of_locally_convex_spaces">Examples of locally convex spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=22" title="Edit section: Examples of locally convex spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Every normed space is a Hausdorff locally convex space, and much of the theory of locally convex spaces generalizes parts of the theory of normed spaces. The family of seminorms can be taken to be the single norm. Every Banach space is a complete Hausdorff locally convex space, in particular, the <a href="/wiki/Lp_space" title="Lp space"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2317aaca1ecee4b8ccf667bc1001059eae5850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.642ex; height:2.343ex;" alt="{\displaystyle L^{p}}"></span> spaces</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf93c1353080a21b276e79058d82c19c40310653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p\geq 1}"></span> are locally convex. </p><p>More generally, every Fréchet space is locally convex. A Fréchet space can be defined as a complete locally convex space with a separated countable family of seminorms. </p><p>The space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{\omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{\omega }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0881ff53d61be4b3ed806e41af0d2ffba29c09b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.933ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{\omega }}"></span> of <a href="/wiki/Real_valued_sequences" class="mw-redirect" title="Real valued sequences">real valued sequences</a> with the family of seminorms given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{i}\left(\left\{x_{n}\right\}_{n}\right)=\left|x_{i}\right|,\qquad i\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>|</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{i}\left(\left\{x_{n}\right\}_{n}\right)=\left|x_{i}\right|,\qquad i\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0f34f8145b2619ac66148b0a42b123892b39685" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:28.255ex; height:3.009ex;" alt="{\displaystyle p_{i}\left(\left\{x_{n}\right\}_{n}\right)=\left|x_{i}\right|,\qquad i\in \mathbb {N} }"></span> is locally convex. The countable family of seminorms is complete and separable, so this is a Fréchet space, which is not normable. This is also the <a href="/wiki/Limit_topology" class="mw-redirect" title="Limit topology">limit topology</a> of the spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7035fcb9fe3ebecc6bc9f372f82d0352202c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n},}"></span> embedded in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{\omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{\omega }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0881ff53d61be4b3ed806e41af0d2ffba29c09b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.933ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{\omega }}"></span> in the natural way, by completing finite sequences with infinitely many <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/916e773e0593223c306a3e6852348177d1934962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 0.}"></span> </p><p>Given any vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and a collection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> of linear functionals on it, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> can be made into a locally convex topological vector space by giving it the weakest topology making all linear functionals in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> continuous. This is known as the <a href="/wiki/Weak_topology" title="Weak topology">weak topology</a> or the <a href="/wiki/Initial_topology" title="Initial topology">initial topology</a> determined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6b34655c2ef19b56c81af0e6d1f2f6df0d3ed33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.388ex; height:2.176ex;" alt="{\displaystyle F.}"></span> The collection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> may be the <a href="/wiki/Dual_space#Algebraic_dual_space" title="Dual space">algebraic dual</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> or any other collection. The family of seminorms in this case is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{f}(x)=|f(x)|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{f}(x)=|f(x)|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04643d998bfcc72f18191d165604328913ab4e71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:14.344ex; height:3.009ex;" alt="{\displaystyle p_{f}(x)=|f(x)|}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6b34655c2ef19b56c81af0e6d1f2f6df0d3ed33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.388ex; height:2.176ex;" alt="{\displaystyle F.}"></span> </p><p>Spaces of differentiable functions give other non-normable examples. Consider the space of <a href="/wiki/Smooth_functions" class="mw-redirect" title="Smooth functions">smooth functions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca97ed9dc4e3aea89927fa7e0e6bea9976539e24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.404ex; height:2.676ex;" alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup _{x}\left|x^{a}D_{b}f\right|&lt;\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mi>f</mi> </mrow> <mo>|</mo> </mrow> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup _{x}\left|x^{a}D_{b}f\right|&lt;\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de04898297fe487eced63096dd12eda10943f45b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.823ex; height:4.343ex;" alt="{\displaystyle \sup _{x}\left|x^{a}D_{b}f\right|&lt;\infty ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> are <a href="/wiki/Multiindices" class="mw-redirect" title="Multiindices">multiindices</a>. The family of seminorms defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{a,b}(f)=\sup _{x}\left|x^{a}D_{b}f(x)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{a,b}(f)=\sup _{x}\left|x^{a}D_{b}f(x)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5a240713d5f5921a1ff335383a3591790f33508" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-left: -0.089ex; width:24.603ex; height:4.343ex;" alt="{\displaystyle p_{a,b}(f)=\sup _{x}\left|x^{a}D_{b}f(x)\right|}"></span> is separated, and countable, and the space is complete, so this metrizable space is a Fréchet space. It is known as the <a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz space</a>, or the space of functions of rapid decrease, and its <a href="/wiki/Dual_space" title="Dual space">dual space</a> is the space of <a href="/wiki/Tempered_distribution" class="mw-redirect" title="Tempered distribution">tempered distributions</a>. </p><p>An important <a href="/wiki/Function_space" title="Function space">function space</a> in functional analysis is the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744ca61a753850e95b7d469f5f9d494dbe3e2bd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.516ex; height:2.843ex;" alt="{\displaystyle D(U)}"></span> of smooth functions with <a href="/wiki/Compact_support" class="mw-redirect" title="Compact support">compact support</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22cba13f6d9aa0eacc839364c9859f4e46d690d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.424ex; height:2.509ex;" alt="{\displaystyle U\subseteq \mathbb {R} ^{n}.}"></span> A more detailed construction is needed for the topology of this space because the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{0}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{0}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b2ea29ae28623cd5c9521d2ce88f05f439e4f05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.265ex; height:3.009ex;" alt="{\displaystyle C_{0}^{\infty }(U)}"></span> is not complete in the uniform norm. The topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744ca61a753850e95b7d469f5f9d494dbe3e2bd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.516ex; height:2.843ex;" alt="{\displaystyle D(U)}"></span> is defined as follows: for any fixed <a href="/wiki/Compact_set" class="mw-redirect" title="Compact set">compact set</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq U,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>U</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq U,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acad9323d553e656a5bed25a8c851bad4851eb47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.594ex; height:2.509ex;" alt="{\displaystyle K\subseteq U,}"></span> the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{0}^{\infty }(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{0}^{\infty }(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee30d20ae0328859e8ebdc758b3c9a238842165b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.548ex; height:3.009ex;" alt="{\displaystyle C_{0}^{\infty }(K)}"></span> of functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C_{0}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C_{0}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/495e83bd171800cb99df35c2c3a2d9538190f8c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.792ex; height:2.843ex;" alt="{\displaystyle f\in C_{0}^{\infty }}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {supp} (f)\subseteq K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>supp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {supp} (f)\subseteq K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/228903dc42b02a5329942a34117753ee993c8938" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.046ex; height:2.843ex;" alt="{\displaystyle \operatorname {supp} (f)\subseteq K}"></span> is a <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a> with countable family of seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{m}=\sup _{k\leq m}\sup _{x}\left|D^{k}f(x)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{m}=\sup _{k\leq m}\sup _{x}\left|D^{k}f(x)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc1942fa72e797490bf96a476cb478a0ea5300d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.955ex; height:5.009ex;" alt="{\displaystyle \|f\|_{m}=\sup _{k\leq m}\sup _{x}\left|D^{k}f(x)\right|}"></span> (these are actually norms, and the completion of the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{0}^{\infty }(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{0}^{\infty }(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee30d20ae0328859e8ebdc758b3c9a238842165b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.548ex; height:3.009ex;" alt="{\displaystyle C_{0}^{\infty }(K)}"></span> with the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d098f43a409efed2b5bbac5491cdcd0972665af9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.679ex; height:2.843ex;" alt="{\displaystyle \|\cdot \|_{m}}"></span> norm is a Banach space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{m}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{m}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67398e6f59fa724a872ec8c44b1c79d967d472df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.475ex; height:2.843ex;" alt="{\displaystyle D^{m}(K)}"></span>). Given any collection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(K_{a}\right)_{a\in A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(K_{a}\right)_{a\in A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d143eb258d51dce5f4998dda996a2d185a9deaff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.315ex; height:3.009ex;" alt="{\displaystyle \left(K_{a}\right)_{a\in A}}"></span> of compact sets, directed by inclusion and such that their union equal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59c21c569e498e0197798e3428b2bc6f25c0a457" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.429ex; height:2.509ex;" alt="{\displaystyle U,}"></span> the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{0}^{\infty }\left(K_{a}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{0}^{\infty }\left(K_{a}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6250488fca2a0c39ee8e425df5f68134b6140eb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.944ex; height:3.009ex;" alt="{\displaystyle C_{0}^{\infty }\left(K_{a}\right)}"></span> form a <a href="/wiki/Direct_system_(mathematics)" class="mw-redirect" title="Direct system (mathematics)">direct system</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744ca61a753850e95b7d469f5f9d494dbe3e2bd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.516ex; height:2.843ex;" alt="{\displaystyle D(U)}"></span> is defined to be the limit of this system. Such a limit of Fréchet spaces is known as an <a href="/wiki/LF_space" class="mw-redirect" title="LF space">LF space</a>. More concretely, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744ca61a753850e95b7d469f5f9d494dbe3e2bd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.516ex; height:2.843ex;" alt="{\displaystyle D(U)}"></span> is the union of all the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{0}^{\infty }\left(K_{a}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{0}^{\infty }\left(K_{a}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6250488fca2a0c39ee8e425df5f68134b6140eb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.944ex; height:3.009ex;" alt="{\displaystyle C_{0}^{\infty }\left(K_{a}\right)}"></span> with the strongest <em>locally convex</em> topology which makes each <a href="/wiki/Inclusion_map" title="Inclusion map">inclusion map</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{0}^{\infty }\left(K_{a}\right)\hookrightarrow D(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo stretchy="false">&#x21AA;<!-- ↪ --></mo> <mi>D</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{0}^{\infty }\left(K_{a}\right)\hookrightarrow D(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e213e3f8ce4fb1ae3df78b430aa29790c5b0c287" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.367ex; height:3.009ex;" alt="{\displaystyle C_{0}^{\infty }\left(K_{a}\right)\hookrightarrow D(U)}"></span> continuous. This space is locally convex and complete. However, it is not metrizable, and so it is not a Fréchet space. The dual space of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D\left(\mathbb {R} ^{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D\left(\mathbb {R} ^{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed049a8f5d0536e2206c3f24b484d49672d1a6b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.017ex; height:2.843ex;" alt="{\displaystyle D\left(\mathbb {R} ^{n}\right)}"></span> is the space of <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}.}"></span> </p><p>More abstractly, given a <a href="/wiki/Topological_space" title="Topological space">topological space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3297669ebb5d9d3e5ce8d118b7ba75262c8bca5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.556ex; height:2.843ex;" alt="{\displaystyle C(X)}"></span> of continuous (not necessarily bounded) functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> can be given the topology of <a href="/wiki/Uniform_convergence" title="Uniform convergence">uniform convergence</a> on compact sets. This topology is defined by semi-norms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{K}(f)=\max\{|f(x)|:x\in K\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>K</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{K}(f)=\max\{|f(x)|:x\in K\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76f364242f56bee62c896d1e3fa91c58eeada26d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.935ex; height:2.843ex;" alt="{\displaystyle \varphi _{K}(f)=\max\{|f(x)|:x\in K\}}"></span> (as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> varies over the <a href="/wiki/Directed_set" title="Directed set">directed set</a> of all compact subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>). When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is locally compact (for example, an open set in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>) the <a href="/wiki/Stone%E2%80%93Weierstrass_theorem" title="Stone–Weierstrass theorem">Stone–Weierstrass theorem</a> applies—in the case of real-valued functions, any subalgebra of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3297669ebb5d9d3e5ce8d118b7ba75262c8bca5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.556ex; height:2.843ex;" alt="{\displaystyle C(X)}"></span> that separates points and contains the constant functions (for example, the subalgebra of polynomials) is <a href="/wiki/Dense_set" title="Dense set">dense</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Examples_of_spaces_lacking_local_convexity">Examples of spaces lacking local convexity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=23" title="Edit section: Examples of spaces lacking local convexity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many topological vector spaces are locally convex. Examples of spaces that lack local convexity include the following: </p> <ul><li>The <a href="/wiki/Lp_space" title="Lp space">spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}([0,1])}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}([0,1])}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d53d55ccc06ce5cc9ec3bede2be3e7933c206ee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.104ex; height:2.843ex;" alt="{\displaystyle L^{p}([0,1])}"></span></a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;p&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;p&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea074f5b36db6eff17f1aa84d73e30e3de12c4d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.691ex; height:2.509ex;" alt="{\displaystyle 0&lt;p&lt;1}"></span> are equipped with the <a href="/wiki/F-space" title="F-space">F-norm</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}^{p}=\int _{0}^{1}|f(x)|^{p}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}^{p}=\int _{0}^{1}|f(x)|^{p}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9da6fbd957e06caec10ede9c939a1c504d7a64e5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.017ex; height:6.176ex;" alt="{\displaystyle \|f\|_{p}^{p}=\int _{0}^{1}|f(x)|^{p}\,dx.}"></span> They are not locally convex, since the only convex neighborhood of zero is the whole space. More generally the spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12496547ebfe44b8cb35e60d89069734ed4154c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.853ex; height:2.843ex;" alt="{\displaystyle L^{p}(\mu )}"></span> with an atomless, finite measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;p&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;p&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea074f5b36db6eff17f1aa84d73e30e3de12c4d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.691ex; height:2.509ex;" alt="{\displaystyle 0&lt;p&lt;1}"></span> are not locally convex.</li> <li>The space of <a href="/wiki/Measurable" class="mw-redirect" title="Measurable">measurable</a> functions on the <a href="/wiki/Unit_interval" title="Unit interval">unit interval</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span> (where we identify two functions that are equal <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a>) has a vector-space topology defined by the translation-invariant metric (which induces the <a href="/wiki/Convergence_in_measure" title="Convergence in measure">convergence in measure</a> of measurable functions; for <a href="/wiki/Random_variables" class="mw-redirect" title="Random variables">random variables</a>, convergence in measure is <a href="/wiki/Convergence_in_probability" class="mw-redirect" title="Convergence in probability">convergence in probability</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(f,g)=\int _{0}^{1}{\frac {|f(x)-g(x)|}{1+|f(x)-g(x)|}}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(f,g)=\int _{0}^{1}{\frac {|f(x)-g(x)|}{1+|f(x)-g(x)|}}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f8c730afb5f69c483473d1de4842fa3b43b487d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.683ex; height:6.509ex;" alt="{\displaystyle d(f,g)=\int _{0}^{1}{\frac {|f(x)-g(x)|}{1+|f(x)-g(x)|}}\,dx.}"></span> This space is often denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/959d2983284310b953701554b500087ad4cce8c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.284ex; height:2.509ex;" alt="{\displaystyle L_{0}.}"></span></li></ul> <p>Both examples have the property that any continuous linear map to the <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/916e773e0593223c306a3e6852348177d1934962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 0.}"></span> In particular, their <a href="/wiki/Dual_space" title="Dual space">dual space</a> is trivial, that is, it contains only the zero functional. </p> <ul><li>The sequence space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}(\mathbb {N} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}(\mathbb {N} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7096262d9402059f37f2bfb2bae32082bee345e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.163ex; height:2.843ex;" alt="{\displaystyle \ell ^{p}(\mathbb {N} ),}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;p&lt;1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;p&lt;1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73d900254969232ec9def8008e890c03d6d6253b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.338ex; height:2.509ex;" alt="{\displaystyle 0&lt;p&lt;1,}"></span> is not locally convex.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Continuous_mappings">Continuous mappings</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=24" title="Edit section: Continuous mappings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Continuous_linear_map" class="mw-redirect" title="Continuous linear map">Continuous linear map</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTENariciBeckenstein2011126–128_42-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011126–128-42"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d961a4704b054500d6ecff6b4caac6852982458c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.941ex; height:2.176ex;" alt="{\displaystyle T:X\to Y}"></span> be a linear operator between TVSs where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> is locally convex (note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> need <em>not</em> be locally convex). Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is continuous if and only if for every continuous seminorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>, there exists a continuous seminorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\circ T\leq p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>T</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\circ T\leq p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddb5ab046773fbd3ddc306a12fd2af617b248cda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.815ex; height:2.509ex;" alt="{\displaystyle q\circ T\leq p.}"></span> </p> </div> <p>Because locally convex spaces are topological spaces as well as vector spaces, the natural functions to consider between two locally convex spaces are <a href="/wiki/Continuous_linear_map" class="mw-redirect" title="Continuous linear map">continuous linear maps</a>. Using the seminorms, a necessary and sufficient criterion for the <a href="/wiki/Continuous_function_(topology)" class="mw-redirect" title="Continuous function (topology)">continuity</a> of a linear map can be given that closely resembles the more familiar <a href="/wiki/Bounded_operator" title="Bounded operator">boundedness condition</a> found for Banach spaces. </p><p>Given locally convex spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> with families of seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(p_{\alpha }\right)_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(p_{\alpha }\right)_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70aa1aecc17e4a742e4b676c0313fcbf4b74ab1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.547ex; height:3.009ex;" alt="{\displaystyle \left(p_{\alpha }\right)_{\alpha }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(q_{\beta }\right)_{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(q_{\beta }\right)_{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75d9a124fb1aeac571c740f1f8726bbbf4cf9ed1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.195ex; height:3.343ex;" alt="{\displaystyle \left(q_{\beta }\right)_{\beta }}"></span> respectively, a linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d961a4704b054500d6ecff6b4caac6852982458c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.941ex; height:2.176ex;" alt="{\displaystyle T:X\to Y}"></span> is continuous if and only if for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59ab677d974cccb0132cac08bd67fc8ac765627e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.979ex; height:2.509ex;" alt="{\displaystyle \beta ,}"></span> there exist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{1},\ldots ,\alpha _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{1},\ldots ,\alpha _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8af2e5efb5f284685b1e2fc2ddc75355caeb4f36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.426ex; height:2.009ex;" alt="{\displaystyle \alpha _{1},\ldots ,\alpha _{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7f423ab77b3411ec2803520a07c0dfae6ceb826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.703ex; height:2.176ex;" alt="{\displaystyle M&gt;0}"></span> such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\in X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\in X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a6ad4c4f214d7e665aa9d963025cb0c1a6b3571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.595ex; height:2.509ex;" alt="{\displaystyle v\in X,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{\beta }(Tv)\leq M\left(p_{\alpha _{1}}(v)+\dotsb +p_{\alpha _{n}}(v)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>T</mi> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{\beta }(Tv)\leq M\left(p_{\alpha _{1}}(v)+\dotsb +p_{\alpha _{n}}(v)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd16fadd909e9dc3390c7e5d993c18b5fca688d3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.537ex; height:3.009ex;" alt="{\displaystyle q_{\beta }(Tv)\leq M\left(p_{\alpha _{1}}(v)+\dotsb +p_{\alpha _{n}}(v)\right).}"></span> </p><p>In other words, each seminorm of the range of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is <a href="/wiki/Bounded_function" title="Bounded function">bounded</a> above by some finite sum of seminorms in the <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>. If the family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(p_{\alpha }\right)_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(p_{\alpha }\right)_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70aa1aecc17e4a742e4b676c0313fcbf4b74ab1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.547ex; height:3.009ex;" alt="{\displaystyle \left(p_{\alpha }\right)_{\alpha }}"></span> is a directed family, and it can always be chosen to be directed as explained above, then the formula becomes even simpler and more familiar: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{\beta }(Tv)\leq Mp_{\alpha }(v).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>T</mi> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{\beta }(Tv)\leq Mp_{\alpha }(v).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c4712962216b2762409ecfa8a9278e5deb2dcfc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.362ex; height:3.009ex;" alt="{\displaystyle q_{\beta }(Tv)\leq Mp_{\alpha }(v).}"></span> </p><p>The <a href="/wiki/Class_(set_theory)" title="Class (set theory)">class</a> of all locally convex topological vector spaces forms a <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a> with continuous linear maps as <a href="/wiki/Morphism" title="Morphism">morphisms</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Linear_functionals">Linear functionals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=25" title="Edit section: Linear functionals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem<sup id="cite_ref-FOOTNOTENariciBeckenstein2011126–128_42-1" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011126–128-42"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup></strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a TVS (not necessarily locally convex) and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is continuous if and only if there exists a continuous seminorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f|\leq p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f|\leq p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2105e8a75fd69f6d72ca95161f24522d1a0388a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.487ex; height:2.843ex;" alt="{\displaystyle |f|\leq p.}"></span> </p> </div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a real or complex vector space, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a linear functional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is a seminorm on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f|\leq p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f|\leq p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4619cc92fd022ae7f6c0e0e9f121bbc9fe51c23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.84ex; height:2.843ex;" alt="{\displaystyle |f|\leq p}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\leq p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\leq p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58005b85054516448df6a8677e2126602d97ed8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.193ex; height:2.509ex;" alt="{\displaystyle f\leq p.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011126-–128_43-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011126-–128-43"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a non-0 linear functional on a real vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is a seminorm on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\leq p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\leq p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee9272a49329da37ca0bfb7823b92172188c0d17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.546ex; height:2.509ex;" alt="{\displaystyle f\leq p}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(1)\cap \{x\in X:p(x)&lt;1\}=\varnothing .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2229;<!-- ∩ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(1)\cap \{x\in X:p(x)&lt;1\}=\varnothing .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72c779abeb15838b7802de7efe54e0c17d322424" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.743ex; height:3.176ex;" alt="{\displaystyle f^{-1}(1)\cap \{x\in X:p(x)&lt;1\}=\varnothing .}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-4" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011149–153-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Multilinear_maps">Multilinear maps</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=26" title="Edit section: Multilinear maps"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ce9ce38d06f6bf5a3fe063118c09c2b6202bfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 1}"></span> be an integer, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\ldots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\ldots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac794f5521dcce89913085a6d566e7cdb615dbb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\ldots ,X_{n}}"></span> be TVSs (not necessarily locally convex), let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> be a locally convex TVS whose topology is determined by a family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Q</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64114d2e2b6847f9e57c33e8f4a5c6d08e40d482" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.899ex; height:2.343ex;" alt="{\displaystyle {\mathcal {Q}}}"></span> of continuous seminorms, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M:\prod _{i=1}^{n}X_{i}\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>:</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M:\prod _{i=1}^{n}X_{i}\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0713c5ca1072c056c8f901cf0e76ec05b22a70d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.847ex; height:6.843ex;" alt="{\displaystyle M:\prod _{i=1}^{n}X_{i}\to Y}"></span> be a <a href="/wiki/Multilinear_operator" class="mw-redirect" title="Multilinear operator">multilinear operator</a> that is linear in each of its <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> coordinates. The following are equivalent: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is continuous.</li> <li>For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\in {\mathcal {Q}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Q</mi> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\in {\mathcal {Q}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e8a535f95000cfcc6c487ea6c0080e0ff7a3ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.456ex; height:2.509ex;" alt="{\displaystyle q\in {\mathcal {Q}},}"></span> there exist continuous seminorms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},\ldots ,p_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},\ldots ,p_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d4021f35aca5bc2f464be2b99b0fae72f2c7870" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:9.879ex; height:2.009ex;" alt="{\displaystyle p_{1},\ldots ,p_{n}}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\ldots ,X_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\ldots ,X_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b0ca82f7c1f167358d7122823318450410ae5d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.946ex; height:2.509ex;" alt="{\displaystyle X_{1},\ldots ,X_{n},}"></span> respectively, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(M(x))\leq p_{1}\left(x_{1}\right)\cdots p_{n}\left(x_{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(M(x))\leq p_{1}\left(x_{1}\right)\cdots p_{n}\left(x_{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d199eef0b33ddd7913118b258919986af037c3be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.992ex; height:2.843ex;" alt="{\displaystyle q(M(x))\leq p_{1}\left(x_{1}\right)\cdots p_{n}\left(x_{n}\right)}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\left(x_{1},\ldots ,x_{n}\right)\in \prod _{i=1}^{n}X_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\left(x_{1},\ldots ,x_{n}\right)\in \prod _{i=1}^{n}X_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0b39ffa5165913c7bcc6a658f31095cfaa393f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.916ex; height:6.843ex;" alt="{\displaystyle x=\left(x_{1},\ldots ,x_{n}\right)\in \prod _{i=1}^{n}X_{i}.}"></span><sup id="cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-5" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011149–153-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></li> <li>For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\in {\mathcal {Q}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Q</mi> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\in {\mathcal {Q}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e8a535f95000cfcc6c487ea6c0080e0ff7a3ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.456ex; height:2.509ex;" alt="{\displaystyle q\in {\mathcal {Q}},}"></span> there exists some neighborhood of the origin in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{i=1}^{n}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{i=1}^{n}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32de979557b26c62a07615bf093d2721fd407c87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:6.08ex; height:6.843ex;" alt="{\displaystyle \prod _{i=1}^{n}X_{i}}"></span> on which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\circ M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\circ M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5512eb6058a1698da3715cdab401f6deb64d51f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.706ex; height:2.509ex;" alt="{\displaystyle q\circ M}"></span> is bounded.<sup id="cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-6" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein2011149–153-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></li></ol> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=27" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Convex_metric_space" title="Convex metric space">Convex metric space</a>&#160;– metric space with the property any segment joining two points in that space has other points in it besides the endpoints<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman theorem</a>&#160;– On when a space equals the closed convex hull of its extreme points</li> <li><a href="/wiki/Linear_form" title="Linear form">Linear form</a>&#160;– Linear map from a vector space to its field of scalars</li> <li><a href="/wiki/Locally_convex_vector_lattice" title="Locally convex vector lattice">Locally convex vector lattice</a></li> <li><a href="/wiki/Minkowski_functional" title="Minkowski functional">Minkowski functional</a>&#160;– Function made from a set</li> <li><a href="/wiki/Seminorm" title="Seminorm">Seminorm</a>&#160;– Mathematical function</li> <li><a href="/wiki/Sublinear_functional" class="mw-redirect" title="Sublinear functional">Sublinear functional</a>&#160;– Type of function in linear algebra<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Topological_group" title="Topological group">Topological group</a>&#160;– Group that is a topological space with continuous group action</li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector space</a>&#160;– Vector space with a notion of nearness</li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a>&#160;– Algebraic structure in linear algebra</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=28" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Hausdorff, F. <i>Grundzüge der Mengenlehre</i> (1914)</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">von Neumann, J. <i>Collected works</i>. Vol II. pp.&#160;94–104</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Dieudonne, J. <i>History of Functional Analysis</i> Chapter VIII. Section 1.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">von Neumann, J. <i>Collected works</i>. Vol II. pp.&#160;508–527</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Dieudonne, J. <i>History of Functional Analysis</i> Chapter VIII. Section 2.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Banach, S. <i>Theory of linear operations</i> p.&#160;75. Ch. VIII. Sec. 3. Theorem 4., translated from <i>Theorie des operations lineaires</i> (1932)</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein201167–113-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein201167–113_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein201167–113_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein201167–113_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein201167–113_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein201167–113_7-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein201167–113_7-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein201167–113_7-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein201167–113_7-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;67–113.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein201183-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENariciBeckenstein201183_8-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, p.&#160;83.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011122-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein2011122_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011122_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011122_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011122_9-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011122_9-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011122_9-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, p.&#160;122.</span> </li> <li id="cite_note-FOOTNOTEJarchow1981130-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJarchow1981130_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJarchow1981">Jarchow 1981</a>, p.&#160;130.</span> </li> <li id="cite_note-FOOTNOTEJarchow1981129–130-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJarchow1981129–130_12-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJarchow1981">Jarchow 1981</a>, pp.&#160;129–130.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011126-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein2011126_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011126_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, p.&#160;126.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011225–273-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein2011225–273_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011225–273_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011225–273_14-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011225–273_14-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;225–273.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011149-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENariciBeckenstein2011149_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, p.&#160;149.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011149–153-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011149–153_16-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;149–153.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011115–154-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENariciBeckenstein2011115–154_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;115–154.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><a href="#CITEREFBessagaPełczyński1975">Bessaga &amp; Pełczyński 1975</a>, p.&#160;189</span> </li> <li id="cite_note-FOOTNOTERudin19916-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin19916_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, p.&#160;6.</span> </li> <li id="cite_note-FOOTNOTERudin199138-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin199138_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, p.&#160;38.</span> </li> <li id="cite_note-FOOTNOTETrèves2006126-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves2006126_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006126_21-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006126_21-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006126_21-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006126_21-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves2006126_21-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;126.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011177–220-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENariciBeckenstein2011177–220_22-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;177–220.</span> </li> <li id="cite_note-FOOTNOTESchaeferWolff199938-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTESchaeferWolff199938_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTESchaeferWolff199938_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFSchaeferWolff1999">Schaefer &amp; Wolff 1999</a>, p.&#160;38.</span> </li> <li id="cite_note-FOOTNOTEJarchow1981101–104-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJarchow1981101–104_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJarchow1981">Jarchow 1981</a>, pp.&#160;101–104.</span> </li> <li id="cite_note-FOOTNOTEConway1990102-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEConway1990102_25-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFConway1990">Conway 1990</a>, p.&#160;102.</span> </li> <li id="cite_note-FOOTNOTETrèves2006370-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006370_27-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;370.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011155–176-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein2011155–176_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011155–176_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;155–176.</span> </li> <li id="cite_note-FOOTNOTERudin19917-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin19917_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, p.&#160;7.</span> </li> <li id="cite_note-FOOTNOTEAliprantisBorder2006185-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAliprantisBorder2006185_30-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAliprantisBorder2006">Aliprantis &amp; Border 2006</a>, p.&#160;185.</span> </li> <li id="cite_note-FOOTNOTETrèves200667-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves200667_31-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;67.</span> </li> <li id="cite_note-FOOTNOTETrèves2006145-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006145_32-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;145.</span> </li> <li id="cite_note-FOOTNOTERudin199172–73-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTERudin199172–73_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTERudin199172–73_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, pp.&#160;72–73.</span> </li> <li id="cite_note-FOOTNOTETrèves2006362-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrèves2006362_34-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;362.</span> </li> <li id="cite_note-FOOTNOTETrèves200668-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETrèves200668_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETrèves200668_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTrèves2006">Trèves 2006</a>, p.&#160;68.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011108-36"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein2011108_36-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011108_36-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, p.&#160;108.</span> </li> <li id="cite_note-FOOTNOTEDunford1988415-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEDunford1988415_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEDunford1988415_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFDunford1988">Dunford 1988</a>, p.&#160;415.</span> </li> <li id="cite_note-FOOTNOTERudin199173–74-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin199173–74_38-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, pp.&#160;73–74.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011125–126-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein2011125–126_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011125–126_39-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011125–126_39-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;125–126.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011476-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENariciBeckenstein2011476_40-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, p.&#160;476.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011446-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENariciBeckenstein2011446_41-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, p.&#160;446.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011126–128-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENariciBeckenstein2011126–128_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENariciBeckenstein2011126–128_42-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;126–128.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein2011126-–128-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENariciBeckenstein2011126-–128_43-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici &amp; Beckenstein 2011</a>, pp.&#160;126-–128.</span> </li> </ol></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{p}=\{x\in X:p(x)&lt;1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{p}=\{x\in X:p(x)&lt;1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f9b8d8e717ab726172ceb1a287d3fccc53bb787" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.495ex; height:3.009ex;" alt="{\displaystyle V_{p}=\{x\in X:p(x)&lt;1\}}"></span> be the open unit ball associated with the seminorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and note that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> is real then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rV_{p}=\{rx\in X:p(x)&lt;1\}=\{z\in X:p(z)&lt;r\}=\left\{x\in X:{\tfrac {1}{r}}p(x)&lt;1\right\}=V_{(1/r)p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>r</mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>r</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mstyle> </mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>r</mi> <mo stretchy="false">)</mo> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rV_{p}=\{rx\in X:p(x)&lt;1\}=\{z\in X:p(z)&lt;r\}=\left\{x\in X:{\tfrac {1}{r}}p(x)&lt;1\right\}=V_{(1/r)p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab2a10ad09866a7499b0b8829681c0e2e6c42849" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:81.377ex; height:3.509ex;" alt="{\displaystyle rV_{p}=\{rx\in X:p(x)&lt;1\}=\{z\in X:p(z)&lt;r\}=\left\{x\in X:{\tfrac {1}{r}}p(x)&lt;1\right\}=V_{(1/r)p}}"></span> and so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{r}}V_{p}=V_{rp}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mstyle> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{r}}V_{p}=V_{rp}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c1a95ecfad30637d9885a0f099fbbdb2d9a15ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.974ex; height:3.343ex;" alt="{\displaystyle {\tfrac {1}{r}}V_{p}=V_{rp}.}"></span> Thus a basic open neighborhood of the origin induced by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is a finite intersection of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f364bb6f6239cd5f5195406a4e574ae1a943e9a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.793ex; height:2.843ex;" alt="{\displaystyle V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},\ldots ,p_{n}\in {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},\ldots ,p_{n}\in {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0554786c3dd84cd16098e20e6a01c1449a870e67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:14.423ex; height:2.509ex;" alt="{\displaystyle p_{1},\ldots ,p_{n}\in {\mathcal {P}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1},\ldots ,r_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1},\ldots ,r_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52dfb1691f61905ec0a447728fc01781fcc71205" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.548ex; height:2.009ex;" alt="{\displaystyle r_{1},\ldots ,r_{n}}"></span> are all positive reals. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p:=\max \left\{r_{1}p_{1},\ldots ,r_{n}p_{n}\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>:=</mo> <mo movablelimits="true" form="prefix">max</mo> <mrow> <mo>{</mo> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p:=\max \left\{r_{1}p_{1},\ldots ,r_{n}p_{n}\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b496ea8f52b6eac61f34506d5bdbf3028b4ec359" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:27.236ex; height:2.843ex;" alt="{\displaystyle p:=\max \left\{r_{1}p_{1},\ldots ,r_{n}p_{n}\right\},}"></span> which is a continuous seminorm and moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{p}=V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{p}=V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ca66d2611b3b08bac3f14ef45f04f34ec1628fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.953ex; height:2.843ex;" alt="{\displaystyle V_{p}=V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}}.}"></span> Pick <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\in {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\in {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fbb05d89737331be5cfaaa30d21d2e4e3be6336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.614ex; height:2.509ex;" alt="{\displaystyle q\in {\mathcal {P}}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\leq rq,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>r</mi> <mi>q</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\leq rq,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a3157bec08abcc4af04f3cfffd016fde00843ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.122ex; height:2.343ex;" alt="{\displaystyle p\leq rq,}"></span> where this inequality holds if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{rq}\subseteq V_{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>q</mi> </mrow> </msub> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{rq}\subseteq V_{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a8975f08960ed73a46a97b4f906fa34001bb55f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.245ex; height:2.843ex;" alt="{\displaystyle V_{rq}\subseteq V_{p}.}"></span> Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{r}}V_{q}=V_{rq}\subseteq V_{p}=V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mstyle> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>q</mi> </mrow> </msub> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{r}}V_{q}=V_{rq}\subseteq V_{p}=V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dab3d046181a348bd47e7e6ae53c00dced5d3ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.237ex; height:3.343ex;" alt="{\displaystyle {\tfrac {1}{r}}V_{q}=V_{rq}\subseteq V_{p}=V_{r_{1}p_{1}}\cap \cdots \cap V_{r_{n}p_{n}},}"></span> as desired.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">Fix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;r&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>r</mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;r&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1adaa51383bee18b9719d1f44289c12c632aa8c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.57ex; height:2.176ex;" alt="{\displaystyle 0&lt;r&lt;1}"></span> so it remains to show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{0}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~rx+(1-r)y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="2"> <mrow class="MJX-TeXAtom-ORD"> <mtext>def</mtext> </mrow> </mstyle> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>r</mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{0}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~rx+(1-r)y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e470509809a69bd3ca0e5b84e3c300ea47ac77b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.923ex; height:3.509ex;" alt="{\displaystyle w_{0}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~rx+(1-r)y}"></span> belongs to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {int} _{X}C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>int</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {int} _{X}C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fe565d3edf50e5b957af2da5d5e27f87d66208c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.277ex; height:2.509ex;" alt="{\displaystyle \operatorname {int} _{X}C.}"></span> By replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C,x,y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C,x,y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f10bebd25a1b760f527a7f486e8b4bc1290233c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.319ex; height:2.509ex;" alt="{\displaystyle C,x,y}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C-w_{0},x-w_{0},y-w_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C-w_{0},x-w_{0},y-w_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6515167eb2a4a3f481475a15aeef1b8b8b40f24f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.996ex; height:2.509ex;" alt="{\displaystyle C-w_{0},x-w_{0},y-w_{0}}"></span> if necessary, we may assume without loss of generality that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rx+(1-r)y=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rx+(1-r)y=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce9891b60a911b8a17df178c63f9a205c7f48116" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.143ex; height:2.843ex;" alt="{\displaystyle rx+(1-r)y=0,}"></span> and so it remains to show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is a neighborhood of the origin. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\tfrac {r}{r-1}}&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="2"> <mrow class="MJX-TeXAtom-ORD"> <mtext>def</mtext> </mrow> </mstyle> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>r</mi> <mrow> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mstyle> </mrow> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\tfrac {r}{r-1}}&lt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7da529cdc47e27baac2ba161bb78dc15cea14c15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:11.999ex; height:4.009ex;" alt="{\displaystyle s~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\tfrac {r}{r-1}}&lt;0}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y={\tfrac {r}{r-1}}x=sx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>r</mi> <mrow> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mstyle> </mrow> <mi>x</mi> <mo>=</mo> <mi>s</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y={\tfrac {r}{r-1}}x=sx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af04cec3366331a4d360eb85eb45578ef24b60bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:15.427ex; height:3.343ex;" alt="{\displaystyle y={\tfrac {r}{r-1}}x=sx.}"></span> Since scalar multiplication by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b696e0b457eecf592be8e2fda417810807613c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.351ex; height:2.676ex;" alt="{\displaystyle s\neq 0}"></span> is a linear homeomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\to X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\to X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f591cb0a06221871e2529a04bedf5a1a58ac3944" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.221ex; height:2.509ex;" alt="{\displaystyle X\to X,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cl} _{X}\left({\tfrac {1}{s}}C\right)={\tfrac {1}{s}}\operatorname {cl} _{X}C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>cl</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mstyle> </mrow> <mi>C</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mstyle> </mrow> <msub> <mi>cl</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {cl} _{X}\left({\tfrac {1}{s}}C\right)={\tfrac {1}{s}}\operatorname {cl} _{X}C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a5360293d1662202a8526d92c26e382e2d4fdcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.121ex; height:3.343ex;" alt="{\displaystyle \operatorname {cl} _{X}\left({\tfrac {1}{s}}C\right)={\tfrac {1}{s}}\operatorname {cl} _{X}C.}"></span> Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \operatorname {int} C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \operatorname {int} C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/514491000b9b39962193c17e436565f5d78455cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.168ex; height:2.176ex;" alt="{\displaystyle x\in \operatorname {int} C}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in \operatorname {cl} C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>cl</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in \operatorname {cl} C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8db911729a5afaf8314183ddfbbd3e3b284f4012" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.476ex; height:2.509ex;" alt="{\displaystyle y\in \operatorname {cl} C,}"></span> it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\tfrac {1}{s}}y\in \operatorname {cl} \left({\tfrac {1}{s}}C\right)\cap \operatorname {int} C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mstyle> </mrow> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>cl</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mstyle> </mrow> <mi>C</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mi>int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\tfrac {1}{s}}y\in \operatorname {cl} \left({\tfrac {1}{s}}C\right)\cap \operatorname {int} C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32ca0aec6d86eeba18d43ffcba93e50a9779efc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.896ex; height:3.343ex;" alt="{\displaystyle x={\tfrac {1}{s}}y\in \operatorname {cl} \left({\tfrac {1}{s}}C\right)\cap \operatorname {int} C}"></span> where because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {int} C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {int} C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ac64f37a2bebc4e52f3fc04b6a06602bde7b7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.997ex; height:2.176ex;" alt="{\displaystyle \operatorname {int} C}"></span> is open, there exists some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{0}\in \left({\tfrac {1}{s}}C\right)\cap \operatorname {int} C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mstyle> </mrow> <mi>C</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mi>int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{0}\in \left({\tfrac {1}{s}}C\right)\cap \operatorname {int} C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/021972688f2a039a99ce4eda79f20ef3955ad503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.683ex; height:3.343ex;" alt="{\displaystyle c_{0}\in \left({\tfrac {1}{s}}C\right)\cap \operatorname {int} C,}"></span> which satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sc_{0}\in C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sc_{0}\in C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8277fc206901cd06b0bdebd5326421013c283aba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.405ex; height:2.509ex;" alt="{\displaystyle sc_{0}\in C.}"></span> Define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h:X\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h:X\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d20c2288b85fe1e5e807f205314858e908a1ec86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.85ex; height:2.176ex;" alt="{\displaystyle h:X\to X}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto rx+(1-r)sc_{0}=rx-rc_{0},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>r</mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi>s</mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>r</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto rx+(1-r)sc_{0}=rx-rc_{0},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f780a76e047c4d8bcf94f7513fb6f9db4aac60c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.249ex; height:2.843ex;" alt="{\displaystyle x\mapsto rx+(1-r)sc_{0}=rx-rc_{0},}"></span> which is a homeomorphism because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;r&lt;1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>r</mi> <mo>&lt;</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;r&lt;1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1a3ba9d3b53839302868f54ad70ff13f720017f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.217ex; height:2.176ex;" alt="{\displaystyle 0&lt;r&lt;1.}"></span> The set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\left(\operatorname {int} C\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mrow> <mo>(</mo> <mrow> <mi>int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\left(\operatorname {int} C\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e79156d230edae7c884da7861f5cb8f7652a720e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.533ex; height:2.843ex;" alt="{\displaystyle h\left(\operatorname {int} C\right)}"></span> is thus an open subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> that moreover contains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle h(c_{0})=rc_{0}-rc_{0}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle h(c_{0})=rc_{0}-rc_{0}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40944e1b94ae4354c5cc731847499e75571c60e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.275ex; height:2.843ex;" alt="{\textstyle h(c_{0})=rc_{0}-rc_{0}=0.}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in \operatorname {int} C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in \operatorname {int} C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dd348f861099346806284ba6f0fe1ba1e4ef880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.845ex; height:2.176ex;" alt="{\displaystyle c\in \operatorname {int} C}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle h(c)=rc+(1-r)sc_{0}\in C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> <mi>c</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi>s</mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle h(c)=rc+(1-r)sc_{0}\in C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fb7547bbca469840ca4476e2f8a5abda2b66f00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.769ex; height:2.843ex;" alt="{\textstyle h(c)=rc+(1-r)sc_{0}\in C}"></span> since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is convex, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;r&lt;1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>r</mi> <mo>&lt;</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;r&lt;1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee29efbc318e8194976c15a7958d9dd12f81471a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.217ex; height:2.509ex;" alt="{\displaystyle 0&lt;r&lt;1,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sc_{0},c\in C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sc_{0},c\in C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/793d4fa259d21c78aeaa88cbea8c1c13d7e7d75b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.446ex; height:2.509ex;" alt="{\displaystyle sc_{0},c\in C,}"></span> which proves that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\left(\operatorname {int} C\right)\subseteq C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mrow> <mo>(</mo> <mrow> <mi>int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2286;<!-- ⊆ --></mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\left(\operatorname {int} C\right)\subseteq C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e048cccb47ef6e9c9194651048c5e454758d2105" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.044ex; height:2.843ex;" alt="{\displaystyle h\left(\operatorname {int} C\right)\subseteq C.}"></span> Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\left(\operatorname {int} C\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mrow> <mo>(</mo> <mrow> <mi>int</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\left(\operatorname {int} C\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e79156d230edae7c884da7861f5cb8f7652a720e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.533ex; height:2.843ex;" alt="{\displaystyle h\left(\operatorname {int} C\right)}"></span> is an open subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> that contains the origin and is contained in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/067be67e68f60c53ce83241748d0d6249675c58d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.413ex; height:2.176ex;" alt="{\displaystyle C.}"></span> Q.E.D.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Locally_convex_topological_vector_space&amp;action=edit&amp;section=29" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAliprantisBorder2006" class="citation book cs1"><a href="/wiki/Charalambos_D._Aliprantis" class="mw-redirect" title="Charalambos D. Aliprantis">Aliprantis, Charalambos D.</a>; <a href="/wiki/Kim_C._Border" class="mw-redirect" title="Kim C. Border">Border, Kim C.</a> (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4hIq6ExH7NoC"><i>Infinite Dimensional Analysis: A Hitchhiker's Guide</i></a> (Third&#160;ed.). Berlin: Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-29587-7" title="Special:BookSources/978-3-540-29587-7"><bdi>978-3-540-29587-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/262692874">262692874</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Infinite+Dimensional+Analysis%3A+A+Hitchhiker%27s+Guide&amp;rft.place=Berlin&amp;rft.edition=Third&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft_id=info%3Aoclcnum%2F262692874&amp;rft.isbn=978-3-540-29587-7&amp;rft.aulast=Aliprantis&amp;rft.aufirst=Charalambos+D.&amp;rft.au=Border%2C+Kim+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4hIq6ExH7NoC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerberian1974" class="citation book cs1">Berberian, Sterling K. (1974). <i>Lectures in Functional Analysis and Operator Theory</i>. Graduate Texts in Mathematics. Vol.&#160;15. New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90081-0" title="Special:BookSources/978-0-387-90081-0"><bdi>978-0-387-90081-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/878109401">878109401</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lectures+in+Functional+Analysis+and+Operator+Theory&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=1974&amp;rft_id=info%3Aoclcnum%2F878109401&amp;rft.isbn=978-0-387-90081-0&amp;rft.aulast=Berberian&amp;rft.aufirst=Sterling+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBessagaPełczyński1975" class="citation cs2">Bessaga, C.; Pełczyński, A. (1975), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7n9sAAAAMAAJ"><i>Selected Topics in Infinite-Dimensional Topology</i></a>, Monografie Matematyczne, Warszawa: Panstwowe wyd. naukowe</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Selected+Topics+in+Infinite-Dimensional+Topology&amp;rft.place=Warszawa&amp;rft.series=Monografie+Matematyczne&amp;rft.pub=Panstwowe+wyd.+naukowe&amp;rft.date=1975&amp;rft.aulast=Bessaga&amp;rft.aufirst=C.&amp;rft.au=Pe%C5%82czy%C5%84ski%2C+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7n9sAAAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1987" class="citation book cs1"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1987) [1981]. <i>Topological Vector Spaces: Chapters 1–5</i>. <a href="/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique" title="Éléments de mathématique">Éléments de mathématique</a>. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-13627-4" title="Special:BookSources/3-540-13627-4"><bdi>3-540-13627-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/17499190">17499190</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces%3A+Chapters+1%E2%80%935&amp;rft.place=Berlin+New+York&amp;rft.series=%C3%89l%C3%A9ments+de+math%C3%A9matique&amp;rft.pub=Springer-Verlag&amp;rft.date=1987&amp;rft_id=info%3Aoclcnum%2F17499190&amp;rft.isbn=3-540-13627-4&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConway1990" class="citation book cs1"><a href="/wiki/John_B._Conway" title="John B. Conway">Conway, John</a> (1990). <i>A course in functional analysis</i>. <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>. Vol.&#160;96 (2nd&#160;ed.). New York: <a href="/wiki/Springer_Publishing" title="Springer Publishing">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-97245-9" title="Special:BookSources/978-0-387-97245-9"><bdi>978-0-387-97245-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/21195908">21195908</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+course+in+functional+analysis&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag&amp;rft.date=1990&amp;rft_id=info%3Aoclcnum%2F21195908&amp;rft.isbn=978-0-387-97245-9&amp;rft.aulast=Conway&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunford1988" class="citation book cs1 cs1-prop-foreign-lang-source">Dunford, Nelson (1988). <i>Linear operators</i> (in Romanian). New York: Interscience Publishers. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-60848-3" title="Special:BookSources/0-471-60848-3"><bdi>0-471-60848-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/18412261">18412261</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+operators&amp;rft.place=New+York&amp;rft.pub=Interscience+Publishers&amp;rft.date=1988&amp;rft_id=info%3Aoclcnum%2F18412261&amp;rft.isbn=0-471-60848-3&amp;rft.aulast=Dunford&amp;rft.aufirst=Nelson&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdwards1995" class="citation book cs1">Edwards, Robert E. (1995). <i>Functional Analysis: Theory and Applications</i>. New York: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-68143-6" title="Special:BookSources/978-0-486-68143-6"><bdi>978-0-486-68143-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/30593138">30593138</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+Analysis%3A+Theory+and+Applications&amp;rft.place=New+York&amp;rft.pub=Dover+Publications&amp;rft.date=1995&amp;rft_id=info%3Aoclcnum%2F30593138&amp;rft.isbn=978-0-486-68143-6&amp;rft.aulast=Edwards&amp;rft.aufirst=Robert+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrothendieck1973" class="citation book cs1"><a href="/wiki/Alexander_Grothendieck" title="Alexander Grothendieck">Grothendieck, Alexander</a> (1973). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/topologicalvecto0000grot"><i>Topological Vector Spaces</i></a></span>. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-677-30020-7" title="Special:BookSources/978-0-677-30020-7"><bdi>978-0-677-30020-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/886098">886098</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=New+York&amp;rft.pub=Gordon+and+Breach+Science+Publishers&amp;rft.date=1973&amp;rft_id=info%3Aoclcnum%2F886098&amp;rft.isbn=978-0-677-30020-7&amp;rft.aulast=Grothendieck&amp;rft.aufirst=Alexander&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftopologicalvecto0000grot&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJarchow1981" class="citation book cs1">Jarchow, Hans (1981). <i>Locally convex spaces</i>. Stuttgart: B.G. Teubner. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-519-02224-4" title="Special:BookSources/978-3-519-02224-4"><bdi>978-3-519-02224-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/8210342">8210342</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Locally+convex+spaces&amp;rft.place=Stuttgart&amp;rft.pub=B.G.+Teubner&amp;rft.date=1981&amp;rft_id=info%3Aoclcnum%2F8210342&amp;rft.isbn=978-3-519-02224-4&amp;rft.aulast=Jarchow&amp;rft.aufirst=Hans&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKöthe1983" class="citation book cs1"><a href="/wiki/Gottfried_K%C3%B6the" title="Gottfried Köthe">Köthe, Gottfried</a> (1983) [1969]. <i>Topological Vector Spaces I</i>. Grundlehren der mathematischen Wissenschaften. Vol.&#160;159. Translated by Garling, D.J.H. New York: Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-64988-2" title="Special:BookSources/978-3-642-64988-2"><bdi>978-3-642-64988-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0248498">0248498</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/840293704">840293704</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces+I&amp;rft.place=New+York&amp;rft.series=Grundlehren+der+mathematischen+Wissenschaften&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=1983&amp;rft_id=info%3Aoclcnum%2F840293704&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0248498%23id-name%3DMR&amp;rft.isbn=978-3-642-64988-2&amp;rft.aulast=K%C3%B6the&amp;rft.aufirst=Gottfried&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNariciBeckenstein2011" class="citation book cs1">Narici, Lawrence; Beckenstein, Edward (2011). <i>Topological Vector Spaces</i>. Pure and applied mathematics (Second&#160;ed.). Boca Raton, FL: CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1584888666" title="Special:BookSources/978-1584888666"><bdi>978-1584888666</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/144216834">144216834</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=Boca+Raton%2C+FL&amp;rft.series=Pure+and+applied+mathematics&amp;rft.edition=Second&amp;rft.pub=CRC+Press&amp;rft.date=2011&amp;rft_id=info%3Aoclcnum%2F144216834&amp;rft.isbn=978-1584888666&amp;rft.aulast=Narici&amp;rft.aufirst=Lawrence&amp;rft.au=Beckenstein%2C+Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobertsonRobertson1980" class="citation book cs1">Robertson, Alex P.; Robertson, Wendy J. (1980). <i>Topological Vector Spaces</i>. <a href="/w/index.php?title=Cambridge_Tracts_in_Mathematics&amp;action=edit&amp;redlink=1" class="new" title="Cambridge Tracts in Mathematics (page does not exist)">Cambridge Tracts in Mathematics</a>. Vol.&#160;53. Cambridge England: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-29882-7" title="Special:BookSources/978-0-521-29882-7"><bdi>978-0-521-29882-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/589250">589250</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=Cambridge+England&amp;rft.series=Cambridge+Tracts+in+Mathematics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1980&amp;rft_id=info%3Aoclcnum%2F589250&amp;rft.isbn=978-0-521-29882-7&amp;rft.aulast=Robertson&amp;rft.aufirst=Alex+P.&amp;rft.au=Robertson%2C+Wendy+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1991" class="citation book cs1"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1991). <a rel="nofollow" class="external text" href="https://archive.org/details/functionalanalys00rudi"><i>Functional Analysis</i></a>. International Series in Pure and Applied Mathematics. Vol.&#160;8 (Second&#160;ed.). New York, NY: <a href="/wiki/McGraw-Hill_Science/Engineering/Math" class="mw-redirect" title="McGraw-Hill Science/Engineering/Math">McGraw-Hill Science/Engineering/Math</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-054236-5" title="Special:BookSources/978-0-07-054236-5"><bdi>978-0-07-054236-5</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/21163277">21163277</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+Analysis&amp;rft.place=New+York%2C+NY&amp;rft.series=International+Series+in+Pure+and+Applied+Mathematics&amp;rft.edition=Second&amp;rft.pub=McGraw-Hill+Science%2FEngineering%2FMath&amp;rft.date=1991&amp;rft_id=info%3Aoclcnum%2F21163277&amp;rft.isbn=978-0-07-054236-5&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffunctionalanalys00rudi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchaeferWolff1999" class="citation book cs1"><a href="/wiki/Helmut_H._Schaefer" title="Helmut H. Schaefer">Schaefer, Helmut H.</a>; Wolff, Manfred P. (1999). <i>Topological Vector Spaces</i>. <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">GTM</a>. Vol.&#160;8 (Second&#160;ed.). New York, NY: Springer New York Imprint Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-7155-0" title="Special:BookSources/978-1-4612-7155-0"><bdi>978-1-4612-7155-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/840278135">840278135</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=New+York%2C+NY&amp;rft.series=GTM&amp;rft.edition=Second&amp;rft.pub=Springer+New+York+Imprint+Springer&amp;rft.date=1999&amp;rft_id=info%3Aoclcnum%2F840278135&amp;rft.isbn=978-1-4612-7155-0&amp;rft.aulast=Schaefer&amp;rft.aufirst=Helmut+H.&amp;rft.au=Wolff%2C+Manfred+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSwartz1992" class="citation book cs1">Swartz, Charles (1992). <i>An introduction to Functional Analysis</i>. New York: M. Dekker. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8247-8643-4" title="Special:BookSources/978-0-8247-8643-4"><bdi>978-0-8247-8643-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/24909067">24909067</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+Functional+Analysis&amp;rft.place=New+York&amp;rft.pub=M.+Dekker&amp;rft.date=1992&amp;rft_id=info%3Aoclcnum%2F24909067&amp;rft.isbn=978-0-8247-8643-4&amp;rft.aulast=Swartz&amp;rft.aufirst=Charles&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrèves2006" class="citation book cs1"><a href="/wiki/Fran%C3%A7ois_Tr%C3%A8ves" title="François Trèves">Trèves, François</a> (2006) [1967]. <i>Topological Vector Spaces, Distributions and Kernels</i>. Mineola, N.Y.: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-45352-1" title="Special:BookSources/978-0-486-45352-1"><bdi>978-0-486-45352-1</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/853623322">853623322</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces%2C+Distributions+and+Kernels&amp;rft.place=Mineola%2C+N.Y.&amp;rft.pub=Dover+Publications&amp;rft.date=2006&amp;rft_id=info%3Aoclcnum%2F853623322&amp;rft.isbn=978-0-486-45352-1&amp;rft.aulast=Tr%C3%A8ves&amp;rft.aufirst=Fran%C3%A7ois&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilansky2013" class="citation book cs1"><a href="/wiki/Albert_Wilansky" title="Albert Wilansky">Wilansky, Albert</a> (2013). <i>Modern Methods in Topological Vector Spaces</i>. Mineola, New York: Dover Publications, Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-49353-4" title="Special:BookSources/978-0-486-49353-4"><bdi>978-0-486-49353-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/849801114">849801114</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Methods+in+Topological+Vector+Spaces&amp;rft.place=Mineola%2C+New+York&amp;rft.pub=Dover+Publications%2C+Inc&amp;rft.date=2013&amp;rft_id=info%3Aoclcnum%2F849801114&amp;rft.isbn=978-0-486-49353-4&amp;rft.aulast=Wilansky&amp;rft.aufirst=Albert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALocally+convex+topological+vector+space" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Functional_analysis_(topics_–_glossary)364" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functional_analysis" title="Template:Functional analysis"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Functional_analysis" title="Template talk:Functional analysis"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functional_analysis" title="Special:EditPage/Template:Functional analysis"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Functional_analysis_(topics_–_glossary)364" style="font-size:114%;margin:0 4em"><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a>&#160;(<a href="/wiki/List_of_functional_analysis_topics" title="List of functional analysis topics">topics</a> – <a href="/wiki/Glossary_of_functional_analysis" title="Glossary of functional analysis">glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spaces</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li><a href="/wiki/Besov_space" title="Besov space">Besov</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert</a></li> <li><a href="/wiki/H%C3%B6lder_space" class="mw-redirect" title="Hölder space">Hölder</a></li> <li><a href="/wiki/Nuclear_space" title="Nuclear space">Nuclear</a></li> <li><a href="/wiki/Orlicz_space" title="Orlicz space">Orlicz</a></li> <li><a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/Dual_space" title="Dual space">Dual</a> (<a href="/wiki/Dual_space#Algebraic_dual_space" title="Dual space">Algebraic</a> / <a href="/wiki/Dual_space#Continuous_dual_space" title="Dual space">Topological</a>)</li> <li><a class="mw-selflink selflink">Locally convex</a></li> <li><a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Separable_space" title="Separable space">Separable</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a></li> <li><a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph</a></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness principle</a></li> <li><a href="/wiki/Kakutani_fixed-point_theorem#Infinite-dimensional_generalizations" title="Kakutani fixed-point theorem">Kakutani fixed-point</a></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman</a></li> <li><a href="/wiki/Min-max_theorem" title="Min-max theorem">Min–max</a></li> <li><a href="/wiki/Gelfand%E2%80%93Naimark_theorem" title="Gelfand–Naimark theorem">Gelfand–Naimark</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Operators</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_operator" class="mw-redirect" title="Adjoint operator">Adjoint</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a></li> <li><a href="/wiki/Normal_operator" title="Normal operator">Normal</a></li> <li><a href="/wiki/Nuclear_operator" title="Nuclear operator">Nuclear</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li> <li><a href="/wiki/Unbounded_operator" title="Unbounded operator">Unbounded</a></li> <li><a href="/wiki/Unitary_operator" title="Unitary operator">Unitary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebras</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a></li> <li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">Spectrum of a C*-algebra</a></li> <li><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></li> <li><a href="/wiki/Group_algebra_of_a_locally_compact_group" title="Group algebra of a locally compact group">Group algebra of a locally compact group</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Open problems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Invariant_subspace_problem" title="Invariant subspace problem">Invariant subspace problem</a></li> <li><a href="/wiki/Mahler%27s_conjecture" class="mw-redirect" title="Mahler&#39;s conjecture">Mahler's conjecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hardy_space" title="Hardy space">Hardy space</a></li> <li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Spectral theory of ordinary differential equations</a></li> <li><a href="/wiki/Heat_kernel" title="Heat kernel">Heat kernel</a></li> <li><a href="/wiki/Index_theorem" class="mw-redirect" title="Index theorem">Index theorem</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a></li> <li><a href="/wiki/Integral_linear_operator" title="Integral linear operator">Integral linear operator</a></li> <li><a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological quantum field theory</a></li> <li><a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">Noncommutative geometry</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">Distribution</a> (or <a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Advanced topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Approximation_property" title="Approximation property">Approximation property</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced set</a></li> <li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Weak_topology" title="Weak topology">Weak topology</a></li> <li><a href="/wiki/Banach%E2%80%93Mazur_distance" class="mw-redirect" title="Banach–Mazur distance">Banach–Mazur distance</a></li> <li><a href="/wiki/Tomita%E2%80%93Takesaki_theory" title="Tomita–Takesaki theory">Tomita–Takesaki theory</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Topological_vector_spaces_(TVSs)267" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Topological_vector_spaces" title="Template:Topological vector spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Topological_vector_spaces" title="Template talk:Topological vector spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Topological_vector_spaces" title="Special:EditPage/Template:Topological vector spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Topological_vector_spaces_(TVSs)267" style="font-size:114%;margin:0 4em"><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector spaces</a> (TVSs)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach space</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">Completeness</a></li> <li><a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">Continuous linear operator</a></li> <li><a href="/wiki/Linear_form" title="Linear form">Linear functional</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a class="mw-selflink selflink">Locally convex space</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">Metrizability</a></li> <li><a href="/wiki/Operator_topologies" title="Operator topologies">Operator topologies</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector space</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Main results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anderson%E2%80%93Kadec_theorem" title="Anderson–Kadec theorem">Anderson–Kadec</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph theorem</a></li> <li><a href="/wiki/F._Riesz%27s_theorem" title="F. Riesz&#39;s theorem">F. Riesz's</a></li> <li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a>&#160;(<a href="/wiki/Hyperplane_separation_theorem" title="Hyperplane separation theorem">hyperplane separation</a></li> <li><a href="/wiki/Vector-valued_Hahn%E2%80%93Banach_theorems" title="Vector-valued Hahn–Banach theorems">Vector-valued Hahn–Banach</a>)</li> <li><a href="/wiki/Open_mapping_theorem_(functional_analysis)" title="Open mapping theorem (functional analysis)">Open mapping (Banach–Schauder)</a> <ul><li><a href="/wiki/Bounded_inverse_theorem" class="mw-redirect" title="Bounded inverse theorem">Bounded inverse</a></li></ul></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness (Banach–Steinhaus)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bilinear_operator" class="mw-redirect" title="Bilinear operator">Bilinear operator</a> <ul><li><a href="/wiki/Bilinear_form" title="Bilinear form">form</a></li></ul></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a> <ul><li><a href="/wiki/Almost_open_linear_map" class="mw-redirect" title="Almost open linear map">Almost open</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">Continuous</a></li> <li><a href="/wiki/Closed_linear_operator" title="Closed linear operator">Closed</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Densely_defined_operator" title="Densely defined operator">Densely defined</a></li> <li><a href="/wiki/Discontinuous_linear_map" title="Discontinuous linear map">Discontinuous</a></li></ul></li> <li><a href="/wiki/Topological_homomorphism" title="Topological homomorphism">Topological homomorphism</a></li> <li><a href="/wiki/Functional_(mathematics)" title="Functional (mathematics)">Functional</a> <ul><li><a href="/wiki/Linear_form" title="Linear form">Linear</a></li> <li><a href="/wiki/Bilinear_form" title="Bilinear form">Bilinear</a></li> <li><a href="/wiki/Sesquilinear_form" title="Sesquilinear form">Sesquilinear</a></li></ul></li> <li><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">Norm</a></li> <li><a href="/wiki/Seminorm" title="Seminorm">Seminorm</a></li> <li><a href="/wiki/Sublinear_function" title="Sublinear function">Sublinear function</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">Absolutely convex/disk</a></li> <li><a href="/wiki/Absorbing_set" title="Absorbing set">Absorbing/Radial</a></li> <li><a href="/wiki/Affine_space" title="Affine space">Affine</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced/Circled</a></li> <li><a href="/wiki/Auxiliary_normed_space" title="Auxiliary normed space">Banach disks</a></li> <li><a href="/wiki/Bounding_point" title="Bounding point">Bounding points</a></li> <li><a href="/wiki/Bounded_set_(topological_vector_space)" title="Bounded set (topological vector space)">Bounded</a></li> <li><a href="/wiki/Complemented_subspace" title="Complemented subspace">Complemented subspace</a></li> <li><a href="/wiki/Convex_set" title="Convex set">Convex</a></li> <li><a href="/wiki/Convex_cone" title="Convex cone">Convex cone <span style="font-size:85%;">(subset)</span></a></li> <li><a href="/wiki/Cone_(linear_algebra)" class="mw-redirect" title="Cone (linear algebra)">Linear cone <span style="font-size:85%;">(subset)</span></a></li> <li><a href="/wiki/Extreme_point" title="Extreme point">Extreme point</a></li> <li><a href="/wiki/Totally_bounded_space#Topological_vector_spaces" title="Totally bounded space">Pre-compact/Totally bounded</a></li> <li><a href="/wiki/Prevalent_and_shy_sets" title="Prevalent and shy sets">Prevalent/Shy</a></li> <li><a href="/wiki/Radial_set" title="Radial set">Radial</a></li> <li><a href="/wiki/Star_domain" title="Star domain">Radially convex/Star-shaped</a></li> <li><a href="/wiki/Symmetric_set" title="Symmetric set">Symmetric</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Set operations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_hull" title="Affine hull">Affine hull</a></li> <li>(<a href="/wiki/Algebraic_interior#Relative_algebraic_interior" title="Algebraic interior">Relative</a>)&#160;<a href="/wiki/Algebraic_interior" title="Algebraic interior">Algebraic interior (core)</a></li> <li><a href="/wiki/Convex_hull" title="Convex hull">Convex hull</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Minkowski_addition" title="Minkowski addition">Minkowski addition</a></li> <li><a href="/wiki/Polar_set" title="Polar set">Polar</a></li> <li>(<a href="/wiki/Algebraic_interior#Quasi_relative_interior" title="Algebraic interior">Quasi</a>)&#160;<a href="/wiki/Algebraic_interior#Relative_interior" title="Algebraic interior">Relative interior</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of TVSs</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Asplund_space" title="Asplund space">Asplund</a></li> <li><a href="/wiki/Ptak_space" title="Ptak space">B-complete/Ptak</a></li> <li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li>(<a href="/wiki/Countably_barrelled_space" title="Countably barrelled space">Countably</a>)&#160;<a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/BK-space" title="BK-space">BK-space</a></li> <li>(<a href="/wiki/Ultrabornological_space" title="Ultrabornological space">Ultra-</a>)&#160;<a href="/wiki/Bornological_space" title="Bornological space">Bornological</a></li> <li><a href="/wiki/Brauner_space" title="Brauner space">Brauner</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/Convenient_vector_space" title="Convenient vector space">Convenient</a></li> <li><a href="/wiki/DF-space" title="DF-space">(DF)-space</a></li> <li><a href="/wiki/Distinguished_space" title="Distinguished space">Distinguished</a></li> <li><a href="/wiki/F-space" title="F-space">F-space</a></li> <li><a href="/wiki/FK-AK_space" title="FK-AK space">FK-AK space</a></li> <li><a href="/wiki/FK-space" title="FK-space">FK-space</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a> <ul><li><a href="/wiki/Differentiation_in_Fr%C3%A9chet_spaces#Tame_Fréchet_spaces" title="Differentiation in Fréchet spaces">tame Fréchet</a></li></ul></li> <li><a href="/wiki/Grothendieck_space" title="Grothendieck space">Grothendieck</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert</a></li> <li><a href="/wiki/Infrabarreled_space" class="mw-redirect" title="Infrabarreled space">Infrabarreled</a></li> <li><a href="/wiki/Interpolation_space" title="Interpolation space">Interpolation space</a></li> <li><a href="/wiki/K-space_(functional_analysis)" title="K-space (functional analysis)">K-space</a></li> <li><a href="/wiki/LB-space" title="LB-space">LB-space</a></li> <li><a href="/wiki/LF-space" title="LF-space">LF-space</a></li> <li><a class="mw-selflink selflink">Locally convex space</a></li> <li><a href="/wiki/Mackey_space" title="Mackey space">Mackey</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">(Pseudo)Metrizable</a></li> <li><a href="/wiki/Montel_space" title="Montel space">Montel</a></li> <li><a href="/wiki/Quasibarrelled_space" class="mw-redirect" title="Quasibarrelled space">Quasibarrelled</a></li> <li><a href="/wiki/Quasi-complete" class="mw-redirect" title="Quasi-complete">Quasi-complete</a></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinormed</a></li> <li>(<a href="/wiki/Polynomially_reflexive_space" title="Polynomially reflexive space">Polynomially</a></li> <li><a href="/wiki/Semi-reflexive_space" title="Semi-reflexive space">Semi-</a>)&#160;<a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Riesz_space" title="Riesz space">Riesz</a></li> <li><a href="/wiki/Schwartz_TVS" class="mw-redirect" title="Schwartz TVS">Schwartz</a></li> <li><a href="/wiki/Semi-complete" class="mw-redirect" title="Semi-complete">Semi-complete</a></li> <li><a href="/wiki/Smith_space" title="Smith space">Smith</a></li> <li><a href="/wiki/Stereotype_space" class="mw-redirect" title="Stereotype space">Stereotype</a></li> <li>(<a href="/wiki/B-convex_space" title="B-convex space">B</a></li> <li><a href="/wiki/Strictly_convex_space" title="Strictly convex space">Strictly</a></li> <li><a href="/wiki/Uniformly_convex_space" title="Uniformly convex space">Uniformly</a>)&#160;convex</li> <li>(<a href="/wiki/Quasi-ultrabarrelled_space" title="Quasi-ultrabarrelled space">Quasi-</a>)&#160;<a href="/wiki/Ultrabarrelled_space" title="Ultrabarrelled space">Ultrabarrelled</a></li> <li><a href="/wiki/Uniformly_smooth_space" title="Uniformly smooth space">Uniformly smooth</a></li> <li><a href="/wiki/Webbed_space" title="Webbed space">Webbed</a></li> <li><a href="/wiki/Approximation_property" title="Approximation property">With the approximation property</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Topological_vector_spaces" title="Category:Topological vector spaces">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Convex_analysis_and_variational_analysis174" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Convex_analysis_and_variational_analysis" title="Template:Convex analysis and variational analysis"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Convex_analysis_and_variational_analysis" title="Template talk:Convex analysis and variational analysis"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Convex_analysis_and_variational_analysis" title="Special:EditPage/Template:Convex analysis and variational analysis"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Convex_analysis_and_variational_analysis174" style="font-size:114%;margin:0 4em"><a href="/wiki/Convex_analysis" title="Convex analysis">Convex analysis</a> and <a href="/wiki/Variational_analysis" title="Variational analysis">variational analysis</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convex_combination" title="Convex combination">Convex combination</a></li> <li><a href="/wiki/Convex_function" title="Convex function">Convex function</a></li> <li><a href="/wiki/Convex_set" title="Convex set">Convex set</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_convexity_topics" title="List of convexity topics">Topics (list)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Convex_geometry" title="Convex geometry">Convex geometry</a></li> <li><a href="/wiki/Convex_metric_space" title="Convex metric space">Convex metric space</a></li> <li><a href="/wiki/Convex_optimization" title="Convex optimization">Convex optimization</a></li> <li><a href="/wiki/Duality_(optimization)" title="Duality (optimization)">Duality</a></li> <li><a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a></li> <li><a href="/wiki/Legendre_transformation" title="Legendre transformation">Legendre transformation</a></li> <li><a class="mw-selflink selflink">Locally convex topological vector space</a></li> <li><a href="/wiki/Simplex" title="Simplex">Simplex</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convex_conjugate" title="Convex conjugate">Convex conjugate</a></li> <li><a href="/wiki/Concave_function" title="Concave function">Concave</a></li> <li>(<a href="/wiki/Closed_convex_function" title="Closed convex function">Closed</a></li> <li><a href="/wiki/K-convex_function" title="K-convex function">K-</a></li> <li><a href="/wiki/Logarithmically_convex_function" title="Logarithmically convex function">Logarithmically</a></li> <li><a href="/wiki/Proper_convex_function" title="Proper convex function">Proper</a></li> <li><a href="/wiki/Pseudoconvex_function" title="Pseudoconvex function">Pseudo-</a></li> <li><a href="/wiki/Quasiconvex_function" title="Quasiconvex function">Quasi-</a>) <a href="/wiki/Convex_function" title="Convex function">Convex function</a></li> <li><a href="/wiki/Invex_function" title="Invex function">Invex function</a></li> <li><a href="/wiki/Legendre_transformation" title="Legendre transformation">Legendre transformation</a></li> <li><a href="/wiki/Semi-continuity" title="Semi-continuity">Semi-continuity</a></li> <li><a href="/wiki/Subderivative" title="Subderivative">Subderivative</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main <a href="/wiki/Category:Theorems_involving_convexity" title="Category:Theorems involving convexity">results (list)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carath%C3%A9odory%27s_theorem_(convex_hull)" title="Carathéodory&#39;s theorem (convex hull)">Carathéodory's theorem</a></li> <li><a href="/wiki/Ekeland%27s_variational_principle" title="Ekeland&#39;s variational principle">Ekeland's variational principle</a></li> <li><a href="/wiki/Fenchel%E2%80%93Moreau_theorem" title="Fenchel–Moreau theorem">Fenchel–Moreau theorem</a></li> <li><a href="/wiki/Fenchel-Young_inequality" class="mw-redirect" title="Fenchel-Young inequality">Fenchel-Young inequality</a></li> <li><a href="/wiki/Jensen%27s_inequality" title="Jensen&#39;s inequality">Jensen's inequality</a></li> <li><a href="/wiki/Hermite%E2%80%93Hadamard_inequality" title="Hermite–Hadamard inequality">Hermite–Hadamard inequality</a></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman theorem</a></li> <li><a href="/wiki/Mazur%27s_lemma" title="Mazur&#39;s lemma">Mazur's lemma</a></li> <li><a href="/wiki/Shapley%E2%80%93Folkman_lemma" title="Shapley–Folkman lemma">Shapley–Folkman lemma</a></li> <li><a href="/wiki/Ursescu_theorem#Robinson–Ursescu_theorem" title="Ursescu theorem">Robinson–Ursescu</a></li> <li><a href="/wiki/Ursescu_theorem#Simons&#39;_theorem" title="Ursescu theorem">Simons</a></li> <li><a href="/wiki/Ursescu_theorem" title="Ursescu theorem">Ursescu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sets</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convex_hull" title="Convex hull">Convex hull</a></li> <li>(<a href="/wiki/Orthogonally_convex_set" class="mw-redirect" title="Orthogonally convex set">Orthogonally</a>, <a href="/wiki/Pseudoconvexity" title="Pseudoconvexity">Pseudo-</a>) <a href="/wiki/Convex_set" title="Convex set">Convex set</a></li> <li><a href="/wiki/Effective_domain" title="Effective domain">Effective domain</a></li> <li><a href="/wiki/Epigraph_(mathematics)" title="Epigraph (mathematics)">Epigraph</a></li> <li><a href="/wiki/Hypograph_(mathematics)" title="Hypograph (mathematics)">Hypograph</a></li> <li><a href="/wiki/John_ellipsoid" title="John ellipsoid">John ellipsoid</a></li> <li><a href="/wiki/Lens_(geometry)" title="Lens (geometry)">Lens</a></li> <li><a href="/wiki/Radial_set" title="Radial set">Radial set</a>/<a href="/wiki/Algebraic_interior" title="Algebraic interior">Algebraic interior</a></li> <li><a href="/wiki/Zonotope" class="mw-redirect" title="Zonotope">Zonotope</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Series</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convex_series#Types_of_subsets" title="Convex series">Convex series related</a> (<a href="/wiki/Convex_series#Types_of_subsets" title="Convex series">(cs, lcs)-closed</a>, <a href="/wiki/Convex_series#Types_of_subsets" title="Convex series">(cs, bcs)-complete</a>, <a href="/wiki/Convex_series#Types_of_subsets" title="Convex series">(lower) ideally convex</a>, <a href="/wiki/Convex_series#Types_of_subsets" title="Convex series">(H<i>x</i>)</a>, and <a href="/wiki/Convex_series#Types_of_subsets" title="Convex series">(Hw<i>x</i>)</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Duality_(optimization)" title="Duality (optimization)">Duality</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_system" title="Dual system">Dual system</a></li> <li><a href="/wiki/Duality_gap" title="Duality gap">Duality gap</a></li> <li><a href="/wiki/Strong_duality" title="Strong duality">Strong duality</a></li> <li><a href="/wiki/Weak_duality" title="Weak duality">Weak duality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications and related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convexity_in_economics" title="Convexity in economics">Convexity in economics</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐5b65fffc7d‐l4v7w Cached time: 20250214042750 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.628 seconds Real time usage: 1.962 seconds Preprocessor visited node count: 12014/1000000 Post‐expand include size: 153863/2097152 bytes Template argument size: 16476/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 128586/5000000 bytes Lua time usage: 0.746/10.000 seconds Lua memory usage: 25727424/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1168.420 1 -total 20.86% 243.732 10 Template:Annotated_link 18.56% 216.915 70 Template:Sfn 17.00% 198.688 16 Template:Cite_book 13.13% 153.416 1 Template:Short_description 11.63% 135.842 4 Template:Navbox 10.45% 122.062 1 Template:Functional_analysis 10.23% 119.500 2 Template:Pagetype 8.79% 102.691 1 Template:Aliprantis_Border_Infinite_Dimensional_Analysis_A_Hitchhiker's_Guide_Third_Edition 3.12% 36.430 1 Template:Citation_needed --> <!-- Saved in parser cache with key enwiki:pcache:518844:|#|:idhash:canonical and timestamp 20250214042750 and revision id 1239699483. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Locally_convex_topological_vector_space&amp;oldid=1239699483">https://en.wikipedia.org/w/index.php?title=Locally_convex_topological_vector_space&amp;oldid=1239699483</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Convex_analysis" title="Category:Convex analysis">Convex analysis</a></li><li><a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Functional analysis</a></li><li><a href="/wiki/Category:Topological_vector_spaces" title="Category:Topological vector spaces">Topological vector spaces</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2024" title="Category:Articles with unsourced statements from August 2024">Articles with unsourced statements from August 2024</a></li><li><a href="/wiki/Category:Pages_displaying_wikidata_descriptions_as_a_fallback_via_Module:Annotated_link" title="Category:Pages displaying wikidata descriptions as a fallback via Module:Annotated link">Pages displaying wikidata descriptions as a fallback via Module:Annotated link</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li><li><a href="/wiki/Category:CS1_Romanian-language_sources_(ro)" title="Category:CS1 Romanian-language sources (ro)">CS1 Romanian-language sources (ro)</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 10 August 2024, at 23:16<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Locally_convex_topological_vector_space&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Locally convex topological vector space</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>12 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-chzlq","wgBackendResponseTime":194,"wgPageParseReport":{"limitreport":{"cputime":"1.628","walltime":"1.962","ppvisitednodes":{"value":12014,"limit":1000000},"postexpandincludesize":{"value":153863,"limit":2097152},"templateargumentsize":{"value":16476,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":128586,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1168.420 1 -total"," 20.86% 243.732 10 Template:Annotated_link"," 18.56% 216.915 70 Template:Sfn"," 17.00% 198.688 16 Template:Cite_book"," 13.13% 153.416 1 Template:Short_description"," 11.63% 135.842 4 Template:Navbox"," 10.45% 122.062 1 Template:Functional_analysis"," 10.23% 119.500 2 Template:Pagetype"," 8.79% 102.691 1 Template:Aliprantis_Border_Infinite_Dimensional_Analysis_A_Hitchhiker's_Guide_Third_Edition"," 3.12% 36.430 1 Template:Citation_needed"]},"scribunto":{"limitreport-timeusage":{"value":"0.746","limit":"10.000"},"limitreport-memusage":{"value":25727424,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREF\"] = 13,\n [\"CITEREFBessagaPełczyński1975\"] = 1,\n [\"CITEREFDunford1988\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Abbreviation\"] = 1,\n [\"Aliprantis Border Infinite Dimensional Analysis A Hitchhiker's Guide Third Edition\"] = 1,\n [\"Annotated link\"] = 10,\n [\"Berberian Lectures in Functional Analysis and Operator Theory\"] = 1,\n [\"Bourbaki Topological Vector Spaces\"] = 1,\n [\"Citation\"] = 1,\n [\"Citation needed\"] = 1,\n [\"Cite book\"] = 1,\n [\"Convex analysis and variational analysis\"] = 1,\n [\"Conway A Course in Functional Analysis\"] = 1,\n [\"Edwards Functional Analysis Theory and Applications\"] = 1,\n [\"Em\"] = 40,\n [\"Functional analysis\"] = 1,\n [\"Grothendieck Topological Vector Spaces\"] = 1,\n [\"Harvnb\"] = 1,\n [\"Jarchow Locally Convex Spaces\"] = 1,\n [\"Köthe Topological Vector Spaces I\"] = 1,\n [\"Main\"] = 1,\n [\"Math theorem\"] = 6,\n [\"Narici Beckenstein Topological Vector Spaces\"] = 1,\n [\"Reflist\"] = 3,\n [\"Robertson Topological Vector Spaces\"] = 1,\n [\"Rudin Walter Functional Analysis\"] = 1,\n [\"Schaefer Wolff Topological Vector Spaces\"] = 1,\n [\"See also\"] = 1,\n [\"Sfn\"] = 70,\n [\"Short description\"] = 1,\n [\"Swartz An Introduction to Functional Analysis\"] = 1,\n [\"TOCLimit\"] = 1,\n [\"Topological vector spaces\"] = 1,\n [\"Trèves François Topological vector spaces, distributions and kernels\"] = 1,\n [\"Visible anchor\"] = 7,\n [\"Wilansky Modern Methods in Topological Vector Spaces\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-5b65fffc7d-l4v7w","timestamp":"20250214042750","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Locally convex topological vector space","url":"https:\/\/en.wikipedia.org\/wiki\/Locally_convex_topological_vector_space","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1572357","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1572357","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-03-11T03:27:19Z","dateModified":"2024-08-10T23:16:28Z","headline":"topological vector space in which every vector has a convex neighborhood"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10