CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 124 results for author: <span class="mathjax">Zhang, Y -</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhang, Y -"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhang%2C+Y+-&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhang, Y -"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09580">arXiv:2501.09580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09580">pdf</a>, <a href="https://arxiv.org/format/2501.09580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> An Intermediate-mass Black Hole Lurking in A Galactic Halo Caught Alive during Outburst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jin%2C+C+-">C. -C. Jin</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D+-">D. -Y. Li</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+N">N. Jiang</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+L+-">L. -X. Dai</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+H+-">H. -Q. Cheng</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+J+-">J. -Z. Zhu</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+C+-">C. -W. Yang</a>, <a href="/search/?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/?searchtype=author&amp;query=Baldini%2C+P">P. Baldini</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+T+-">T. -G. Wang</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+H+-">H. -Y. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+W">W. Yuan</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Shu%2C+X+-">X. -W. Shu</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+R+-">R. -F. Shen</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y+-">Y. -L. Wang</a>, <a href="/search/?searchtype=author&amp;query=Wen%2C+S+-">S. -X. Wen</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+Q+-">Q. -Y. Wu</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y+-">Y. -B. Wang</a>, <a href="/search/?searchtype=author&amp;query=Thomsen%2C+L+L">L. L. Thomsen</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z+-">Z. -J. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+W+-">W. -J. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Coleiro%2C+A">A. Coleiro</a>, <a href="/search/?searchtype=author&amp;query=Eyles-Ferris%2C+R">R. Eyles-Ferris</a>, <a href="/search/?searchtype=author&amp;query=Fang%2C+X">X. Fang</a> , et al. (116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09580v1-abstract-short" style="display: inline;"> Stellar-mass and supermassive black holes abound in the Universe, whereas intermediate-mass black holes (IMBHs) of ~10^2-10^5 solar masses in between are largely missing observationally, with few cases found only. Here we report the real-time discovery of a long-duration X-ray transient, EP240222a, accompanied by an optical flare with prominent H and He emission lines revealed by prompt follow-up&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09580v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09580v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09580v1-abstract-full" style="display: none;"> Stellar-mass and supermassive black holes abound in the Universe, whereas intermediate-mass black holes (IMBHs) of ~10^2-10^5 solar masses in between are largely missing observationally, with few cases found only. Here we report the real-time discovery of a long-duration X-ray transient, EP240222a, accompanied by an optical flare with prominent H and He emission lines revealed by prompt follow-up observations. Its observed properties evidence an IMBH located unambiguously in the halo of a nearby galaxy and flaring by tidally disrupting a star -- the only confirmed off-nucleus IMBH-tidal disruption event so far. This work demonstrates the potential of sensitive time-domain X-ray surveys, complemented by timely multi-wavelength follow-ups, in probing IMBHs, their environments, demographics, origins and connections to stellar-mass and supermassive black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09580v1-abstract-full').style.display = 'none'; document.getElementById('2501.09580v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">64 pages, 15 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05875">arXiv:2501.05875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05875">pdf</a>, <a href="https://arxiv.org/format/2501.05875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.57760/sciencedb.Fastro.00014">10.57760/sciencedb.Fastro.00014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BASSET: Bandpass-Adaptive Single-pulse SEarch Toolkit -- Optimized Sub-Band Pulse Search Strategies for Faint Narrow-Band FRBs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cao%2C+J+-">J. -H. Cao</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+P">P. Wang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+Q+-">Q. -H. Pan</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+K">K. Mao</a>, <a href="/search/?searchtype=author&amp;query=Niu%2C+C+-">C. -H. Niu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -K. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Qu%2C+Q+-">Q. -Y. Qu</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+W+-">W. -J. Lu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J+-">J. -S. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+Y+-">Y. -H. Zhu</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y+-">Y. -D. Wang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H+-">H. -X. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+X+-">X. -L. Chen</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCgercino%C4%9Flu%2C+E">E. G眉gercino臒lu</a>, <a href="/search/?searchtype=author&amp;query=Fang%2C+J+-">J. -H. Fang</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+Y">Y. Feng</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+Y+-">Y. -F. Huang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/?searchtype=author&amp;query=Miao%2C+C+-">C. -C. Miao</a>, <a href="/search/?searchtype=author&amp;query=Tsai%2C+C+-">C. -W. Tsai</a>, <a href="/search/?searchtype=author&amp;query=Yao%2C+J+-">J. -M. Yao</a>, <a href="/search/?searchtype=author&amp;query=You%2C+S+-">S. -P. You</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+R+-">R. -S. Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05875v1-abstract-short" style="display: inline;"> The existing single-pulse search algorithms for fast radio bursts (FRBs) do not adequately consider the frequency bandpass pattern of the pulse, rendering them incomplete for the relatively narrow-spectrum detection of pulses. We present a new search algorithm for narrow-band pulses to update the existing standard pipeline, Bandpass-Adaptive Single-pulse SEarch Toolkit (BASSET). The BASSET employs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05875v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05875v1-abstract-full" style="display: none;"> The existing single-pulse search algorithms for fast radio bursts (FRBs) do not adequately consider the frequency bandpass pattern of the pulse, rendering them incomplete for the relatively narrow-spectrum detection of pulses. We present a new search algorithm for narrow-band pulses to update the existing standard pipeline, Bandpass-Adaptive Single-pulse SEarch Toolkit (BASSET). The BASSET employs a time-frequency correlation analysis to identify and remove the noise involved by the zero-detection frequency band, thereby enhancing the signal-to-noise ratio (SNR) of the pulses. The BASSET algorithm was implemented on the FAST real dataset of FRB 20190520B, resulting in the discovery of additional 79 pulses through reprocessing. The new detection doubles the number of pulses compared to the previously known 75 pulses, bringing the total number of pulses to 154. In conjunction with the pulse calibration and the Markov Chain Monte Carlo (MCMC) simulated injection experiments, this work updates the quantified parameter space of the detection rate. Moreover, a parallel-accelerated version of the BASSET code was provided and evaluated through simulation. BASSET has the capacity of enhancing the detection sensitivity and the SNR of the narrow-band pulses from the existing pipeline, offering high performance and flexible applicability. BASSET not only enhances the completeness of the low-energy narrow-band pulse detection in a more robust mode, but also has the potential to further elucidate the FRB luminosity function at a wider energy scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05875v1-abstract-full').style.display = 'none'; document.getElementById('2501.05875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures, submitted to ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02315">arXiv:2410.02315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02315">pdf</a>, <a href="https://arxiv.org/format/2410.02315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Extragalactic fast X-ray transient from a weak relativistic jet associated with a Type Ic-BL supernova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sun%2C+H">H. Sun</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+W+-">W. -X. Li</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+L+-">L. -D. Liu</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X+-">X. -F. Wang</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+W">W. Yuan</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Filippenko%2C+A+V">A. V. Filippenko</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+D">D. Xu</a>, <a href="/search/?searchtype=author&amp;query=An%2C+T">T. An</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+S">S. Ai</a>, <a href="/search/?searchtype=author&amp;query=Brink%2C+T+G">T. G. Brink</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y+-">Y. -Q. Liu</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+C+-">C. -Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+Q+-">Q. -Y. Wu</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+X+-">X. -F. Wu</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+Y">Y. Yang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B+-">B. -B. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+W+-">W. -K. Zheng</a>, <a href="/search/?searchtype=author&amp;query=Ahumada%2C+T">T. Ahumada</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+Z+-">Z. -G. Dai</a>, <a href="/search/?searchtype=author&amp;query=Delaunay%2C+J">J. Delaunay</a>, <a href="/search/?searchtype=author&amp;query=Elias-Rosa%2C+N">N. Elias-Rosa</a>, <a href="/search/?searchtype=author&amp;query=Benetti%2C+S">S. Benetti</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02315v1-abstract-short" style="display: inline;"> Massive stars end their life as core-collapse supernovae, amongst which some extremes are Type Ic broad-lined supernovae associated with long-duration gamma-ray bursts (LGRBs) having powerful relativistic jets. Their less-extreme brethren make unsuccessful jets that are choked inside the stars, appearing as X-ray flashes or low-luminosity GRBs. On the other hand, there exists a population of extra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02315v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02315v1-abstract-full" style="display: none;"> Massive stars end their life as core-collapse supernovae, amongst which some extremes are Type Ic broad-lined supernovae associated with long-duration gamma-ray bursts (LGRBs) having powerful relativistic jets. Their less-extreme brethren make unsuccessful jets that are choked inside the stars, appearing as X-ray flashes or low-luminosity GRBs. On the other hand, there exists a population of extragalactic fast X-ray transients (EFXTs) with timescales ranging from seconds to thousands of seconds, whose origins remain obscure. Known sources that contribute to the observed EFXT population include the softer analogs of LGRBs, shock breakouts of supernovae, or unsuccessful jets. Here, we report the discovery of the bright X-ray transient EP240414a detected by the Einstein Probe (EP), which is associated with the Type Ic supernova SN 2024gsa at a redshift of 0.401. The X-ray emission evolution is characterised by a very soft energy spectrum peaking at &lt; 1.3 keV, which makes it distinct from known LGRBs, X-ray flashes, or low-luminosity GRBs. Follow-up observations at optical and radio bands revealed the existence of a weak relativistic jet that interacts with an extended shell surrounding the progenitor star. Located on the outskirts of a massive galaxy, this event reveals a new population of explosions of Wolf-Rayet stars characterised by a less powerful engine that drives a successful but weak jet, possibly owing to a progenitor star with a smaller core angular momentum than in traditional LGRB progenitors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02315v1-abstract-full').style.display = 'none'; document.getElementById('2410.02315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 9 figures, 4 tables, submitted. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15566">arXiv:2405.15566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15566">pdf</a>, <a href="https://arxiv.org/format/2405.15566">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Exploring galactic properties with machine learning Predicting star formation, stellar mass, and metallicity from photometric data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zeraatgari%2C+F+Z">F. Z. Zeraatgari</a>, <a href="/search/?searchtype=author&amp;query=Hafezianzadeh%2C+F">F. Hafezianzadeh</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -X. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Mosallanezhad%2C+A">A. Mosallanezhad</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J+-">J. -Y. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15566v1-abstract-short" style="display: inline;"> Aims. We explore machine learning techniques to forecast star formation rate, stellar mass, and metallicity across galaxies with redshifts ranging from 0.01 to 0.3. Methods. Leveraging CatBoost and deep learning architectures, we utilize multiband optical and infrared photometric data from SDSS and AllWISE, trained on the SDSS MPA-JHU DR8 catalogue. Results. Our study demonstrates the potentia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15566v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15566v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15566v1-abstract-full" style="display: none;"> Aims. We explore machine learning techniques to forecast star formation rate, stellar mass, and metallicity across galaxies with redshifts ranging from 0.01 to 0.3. Methods. Leveraging CatBoost and deep learning architectures, we utilize multiband optical and infrared photometric data from SDSS and AllWISE, trained on the SDSS MPA-JHU DR8 catalogue. Results. Our study demonstrates the potential of machine learning in accurately predicting galaxy properties solely from photometric data. We achieve minimised root mean square errors, specifically employing the CatBoost model. For star formation rate prediction, we attain a value of RMSESFR = 0.336 dex, while for stellar mass prediction, the error is reduced to RMSESM = 0.206 dex. Additionally, our model yields a metallicity prediction of RMSEmetallicity = 0.097 dex. Conclusions. These findings underscore the significance of automated methodologies in efficiently estimating critical galaxy properties, amid the exponential growth of multi-wavelength astronomy data. Future research may focus on refining machine learning models and expanding datasets for even more accurate predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15566v1-abstract-full').style.display = 'none'; document.getElementById('2405.15566v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06834">arXiv:2405.06834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06834">pdf</a>, <a href="https://arxiv.org/format/2405.06834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Memory-induced long-range order in dynamical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sipling%2C+C">C. Sipling</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -H. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Di+Ventra%2C+M">M. Di Ventra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06834v3-abstract-short" style="display: inline;"> Time non-locality, or memory, is a non-equilibrium property shared by all physical systems. Here, we show that memory is sufficient to induce a phase of spatial long-range order (LRO) even if the system&#39;s primary dynamical variables are coupled locally. This occurs when the memory degrees of freedom have slower dynamics than the primary degrees of freedom. In addition, such an LRO phase is non-per&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06834v3-abstract-full').style.display = 'inline'; document.getElementById('2405.06834v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06834v3-abstract-full" style="display: none;"> Time non-locality, or memory, is a non-equilibrium property shared by all physical systems. Here, we show that memory is sufficient to induce a phase of spatial long-range order (LRO) even if the system&#39;s primary dynamical variables are coupled locally. This occurs when the memory degrees of freedom have slower dynamics than the primary degrees of freedom. In addition, such an LRO phase is non-perturbative, and can be understood through the lens of a correlated percolation transition of the fast degrees of freedom mediated by memory. When the two degrees of freedom have comparable time scales, the length of the effective long-range interaction shortens. We exemplify this behavior with a model of locally coupled spins and a single dynamic memory variable, but our analysis is sufficiently general to suggest that memory could induce a phase of LRO in a much wider variety of physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06834v3-abstract-full').style.display = 'none'; document.getElementById('2405.06834v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text: 6 pages, 3 figures; Supplemental Material: 10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16425">arXiv:2404.16425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16425">pdf</a>, <a href="https://arxiv.org/format/2404.16425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Soft X-ray prompt emission from a high-redshift gamma-ray burst EP240315a </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+H">H. Sun</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+D">D. Xu</a>, <a href="/search/?searchtype=author&amp;query=Svinkin%2C+D+S">D. S. Svinkin</a>, <a href="/search/?searchtype=author&amp;query=Delaunay%2C+J">J. Delaunay</a>, <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+X+-">X. -F. Wu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+W">W. Yuan</a>, <a href="/search/?searchtype=author&amp;query=An%2C+J">J. An</a>, <a href="/search/?searchtype=author&amp;query=Bruni%2C+G">G. Bruni</a>, <a href="/search/?searchtype=author&amp;query=Frederiks%2C+D+D">D. D. Frederiks</a>, <a href="/search/?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+J+-">J. -W. Hu</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+A">A. Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+C+-">C. -K. Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J+-">J. -D. Li</a>, <a href="/search/?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/?searchtype=author&amp;query=Piro%2C+L">L. Piro</a>, <a href="/search/?searchtype=author&amp;query=Raman%2C+G">G. Raman</a>, <a href="/search/?searchtype=author&amp;query=Ricci%2C+R">R. Ricci</a>, <a href="/search/?searchtype=author&amp;query=Troja%2C+E">E. Troja</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16425v1-abstract-short" style="display: inline;"> Long gamma-ray bursts (GRBs) are believed to originate from core collapse of massive stars. High-redshift GRBs can probe the star formation and reionization history of the early universe, but their detection remains rare. Here we report the detection of a GRB triggered in the 0.5--4 keV band by the Wide-field X-ray Telescope (WXT) on board the Einstein Probe (EP) mission, designated as EP240315a,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16425v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16425v1-abstract-full" style="display: none;"> Long gamma-ray bursts (GRBs) are believed to originate from core collapse of massive stars. High-redshift GRBs can probe the star formation and reionization history of the early universe, but their detection remains rare. Here we report the detection of a GRB triggered in the 0.5--4 keV band by the Wide-field X-ray Telescope (WXT) on board the Einstein Probe (EP) mission, designated as EP240315a, whose bright peak was also detected by the Swift Burst Alert Telescope and Konus-Wind through off-line analyses. At a redshift of $z=4.859$, EP240315a showed a much longer and more complicated light curve in the soft X-ray band than in gamma-rays. Benefiting from a large field-of-view ($\sim$3600 deg$^2$) and a high sensitivity, EP-WXT captured the earlier engine activation and extended late engine activity through a continuous detection. With a peak X-ray flux at the faint end of previously known high-$z$ GRBs, the detection of EP240315a demonstrates the great potential for EP to study the early universe via GRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16425v1-abstract-full').style.display = 'none'; document.getElementById('2404.16425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 8 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07205">arXiv:2310.07205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07205">pdf</a>, <a href="https://arxiv.org/format/2310.07205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Evidence of mini-jet emission in a large emission zone from a magnetically-dominated gamma-ray burst jet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yi%2C+S+-">S. -X. Yi</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+C+-">C. -W. Wang</a>, <a href="/search/?searchtype=author&amp;query=Shao%2C+X+-">X. -Y. Shao</a>, <a href="/search/?searchtype=author&amp;query=Moradi%2C+R">R. Moradi</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Xiong%2C+S+-">S. -L. Xiong</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+S+-">S. -N. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Tan%2C+W+-">W. -J. Tan</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+J+-">J. -C. Liu</a>, <a href="/search/?searchtype=author&amp;query=Xue%2C+W+-">W. -C. Xue</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -Q. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+C">C. Zheng</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+P">P. Zhang</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Z+-">Z. -H. An</a>, <a href="/search/?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+P+-">P. -Y. Feng</a>, <a href="/search/?searchtype=author&amp;query=Gong%2C+K">K. Gong</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+D+-">D. -Y. Guo</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+B">B. Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+X+-">X. -B. Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+X+-">X. -Q. Li</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+X+-">X. -J. Liu</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07205v3-abstract-short" style="display: inline;"> The second brightest GRB in history, GRB230307A, provides an ideal laboratory to study the mechanism of GRB prompt emission thanks to its extraordinarily high photon statistics and its single episode activity. Here we demonstrate that the rapidly variable components of its prompt emission compose an overall broad single pulse-like profile. Although these individual rapid components are aligned in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07205v3-abstract-full').style.display = 'inline'; document.getElementById('2310.07205v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07205v3-abstract-full" style="display: none;"> The second brightest GRB in history, GRB230307A, provides an ideal laboratory to study the mechanism of GRB prompt emission thanks to its extraordinarily high photon statistics and its single episode activity. Here we demonstrate that the rapidly variable components of its prompt emission compose an overall broad single pulse-like profile. Although these individual rapid components are aligned in time across all energy bands, this overall profile conspires to show a well-defined energy-dependent behavior which is typically seen in single GRB pulses. Such a feature demonstrates that the prompt emission of this burst is from many individual emitting units that are casually linked in a emission site at a large distance from the central engine. Such a scenario is in natural consistency with the internal-collision-induced magnetic reconnection and turbulence framework, which invokes many mini-jets due to local magnetic reconnection that constantly appear and disappear in a global magnetically-dominated jet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07205v3-abstract-full').style.display = 'none'; document.getElementById('2310.07205v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 19 figures, 4 tables. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07669">arXiv:2307.07669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.07669">pdf</a>, <a href="https://arxiv.org/ps/2307.07669">ps</a>, <a href="https://arxiv.org/format/2307.07669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Rings and Algebras">math.RA</span> </div> </div> <p class="title is-5 mathjax"> Ideals of the associative algebra operad </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bao%2C+Y+-">Y. -H. Bao</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+J+-">J. -N. Xu</a>, <a href="/search/?searchtype=author&amp;query=Ye%2C+Y">Y. Ye</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J+J">J. J. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -F. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07669v2-abstract-short" style="display: inline;"> We prove a one-to-one correspondence between the operadic ideals of the operad $\As$ and $T$-ideals. As a consequence, we show that $\As$ is noetherian and that every proper operadic ideal of $\ias$ is generated by a single element. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07669v2-abstract-full" style="display: none;"> We prove a one-to-one correspondence between the operadic ideals of the operad $\As$ and $T$-ideals. As a consequence, we show that $\As$ is noetherian and that every proper operadic ideal of $\ias$ is generated by a single element. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07669v2-abstract-full').style.display = 'none'; document.getElementById('2307.07669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 16R10; 16R99; 18M60 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05689">arXiv:2307.05689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05689">pdf</a>, <a href="https://arxiv.org/format/2307.05689">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Magnetar emergence in a peculiar gamma-ray burst from a compact star merger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sun%2C+H">H. Sun</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+C+-">C. -W. Wang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B+-">B. -B. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Xiong%2C+S+-">S. -L. Xiong</a>, <a href="/search/?searchtype=author&amp;query=Yin%2C+Y+-+I">Y. -H. I. Yin</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/?searchtype=author&amp;query=Xue%2C+W+-">W. -C. Xue</a>, <a href="/search/?searchtype=author&amp;query=Yan%2C+Z">Z. Yan</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Tan%2C+W+-">W. -J. Tan</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+H+-">H. -W. Pan</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+J+-">J. -C. Liu</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+H+-">H. -Q. Cheng</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -Q. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+J+-">J. -W. Hu</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+C">C. Zheng</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Z+-">Z. -H. An</a>, <a href="/search/?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/?searchtype=author&amp;query=Cai%2C+Z+-">Z. -M. Cai</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+L">L. Hu</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+C">C. Jin</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D+-">D. -Y. Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+X+-">X. -Q. Li</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05689v2-abstract-short" style="display: inline;"> The central engine that powers gamma-ray bursts (GRBs), the most powerful explosions in the universe, is still not identified. Besides hyper-accreting black holes, rapidly spinning and highly magnetized neutron stars, known as millisecond magnetars, have been suggested to power both long and short GRBs. The presence of a magnetar engine following compact star mergers is of particular interest as i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05689v2-abstract-full').style.display = 'inline'; document.getElementById('2307.05689v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05689v2-abstract-full" style="display: none;"> The central engine that powers gamma-ray bursts (GRBs), the most powerful explosions in the universe, is still not identified. Besides hyper-accreting black holes, rapidly spinning and highly magnetized neutron stars, known as millisecond magnetars, have been suggested to power both long and short GRBs. The presence of a magnetar engine following compact star mergers is of particular interest as it would provide essential constraints on the poorly understood equation of state for neutron stars. Indirect indications of a magnetar engine in these merger sources have been observed in the form of plateau features present in the X-ray afterglow light curves of some short GRBs. Additionally, some X-ray transients lacking gamma-ray bursts (GRB-less) have been identified as potential magnetar candidates originating from compact star mergers. Nevertheless, smoking gun evidence is still lacking for a magnetar engine in short GRBs, and the associated theoretical challenges have been raised. Here we present a comprehensive analysis of the broad-band prompt emission data of a peculiar, very bright GRB 230307A. Despite its apparently long duration, the prompt emission and host galaxy properties are consistent with a compact star merger origin, as suggested by its association with a kilonova. Intriguingly, an extended X-ray emission component shows up as the $纬$-ray emission dies out, signifying the likely emergence of a magnetar central engine. We also identify an achromatic temporal break in the high-energy band during the prompt emission phase, which was never observed in previous bursts and reveals a narrow jet with half opening angle of approximately $\sim 3.4^\circ (R_{GRB}/10^{15}~{cm})^{-1/2}$, where $R_{GRB}$ is the GRB prompt emission radius. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05689v2-abstract-full').style.display = 'none'; document.getElementById('2307.05689v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 11 figures, 5 tables, accepted for publication in National Science Review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07418">arXiv:2110.07418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.07418">pdf</a>, <a href="https://arxiv.org/format/2110.07418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04755-5">10.1038/s41586-022-04755-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A repeating fast radio burst associated with a persistent radio source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Niu%2C+C+-">C. -H. Niu</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+K">K. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+X">X. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Chatterjee%2C+S">S. Chatterjee</a>, <a href="/search/?searchtype=author&amp;query=Tsai%2C+C+-">C. -W. Tsai</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+W">W. Yu</a>, <a href="/search/?searchtype=author&amp;query=Law%2C+C+J">C. J. Law</a>, <a href="/search/?searchtype=author&amp;query=Burke-Spolaor%2C+S">S. Burke-Spolaor</a>, <a href="/search/?searchtype=author&amp;query=Cordes%2C+J+M">J. M. Cordes</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -K. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Ocker%2C+S">S. Ocker</a>, <a href="/search/?searchtype=author&amp;query=Yao%2C+J+-">J. -M. Yao</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+P">P. Wang</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+Y">Y. Feng</a>, <a href="/search/?searchtype=author&amp;query=Niino%2C+Y">Y. Niino</a>, <a href="/search/?searchtype=author&amp;query=Bochenek%2C+C">C. Bochenek</a>, <a href="/search/?searchtype=author&amp;query=Cruces%2C+M">M. Cruces</a>, <a href="/search/?searchtype=author&amp;query=Connor%2C+L">L. Connor</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+J+-">J. -A. Jiang</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+R">R. Luo</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+G+-">G. -D. Li</a>, <a href="/search/?searchtype=author&amp;query=Miao%2C+C+-">C. -C. Miao</a>, <a href="/search/?searchtype=author&amp;query=Niu%2C+J+-">J. -R. Niu</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07418v3-abstract-short" style="display: inline;"> The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium, which is assumed to dominate the total extragalactic dispersion. While the host galaxy contributions to dispersion measure (DM) appear to be small for most FRBs, in at least one case there is evidence for an extreme magneto-ionic local environment and a compact persistent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07418v3-abstract-full').style.display = 'inline'; document.getElementById('2110.07418v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07418v3-abstract-full" style="display: none;"> The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium, which is assumed to dominate the total extragalactic dispersion. While the host galaxy contributions to dispersion measure (DM) appear to be small for most FRBs, in at least one case there is evidence for an extreme magneto-ionic local environment and a compact persistent radio source. Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific star formation rate at a redshift $z=0.241\pm0.001$. The estimated host galaxy DM $\approx 903^{+72}_{-111}$ pc cm$^{-3}$, nearly an order of magnitude higher than the average of FRB host galaxies, far exceeds the DM contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host galaxy identifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07418v3-abstract-full').style.display = 'none'; document.getElementById('2110.07418v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted, Version 3</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12942">arXiv:2109.12942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.12942">pdf</a>, <a href="https://arxiv.org/format/2109.12942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.013112">10.1103/PhysRevA.105.013112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional simulations of spatiotemporal instabilities in a magneto-optical trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gaudesius%2C+M">M. Gaudesius</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -C. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Pohl%2C+T">T. Pohl</a>, <a href="/search/?searchtype=author&amp;query=Kaiser%2C+R">R. Kaiser</a>, <a href="/search/?searchtype=author&amp;query=Labeyrie%2C+G">G. Labeyrie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12942v2-abstract-short" style="display: inline;"> Large clouds of atoms in a magneto-optical trap (MOT) are known to exhibit spatiotemporal instabilities when the frequency of the trapping lasers comes close to the atomic resonance. Such instabilities possess similarities with stars and confined plasmas, where corresponding nonlinearities may give rise to spontaneous oscillations. In this paper, we describe the kinetic model that has recently bee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12942v2-abstract-full').style.display = 'inline'; document.getElementById('2109.12942v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12942v2-abstract-full" style="display: none;"> Large clouds of atoms in a magneto-optical trap (MOT) are known to exhibit spatiotemporal instabilities when the frequency of the trapping lasers comes close to the atomic resonance. Such instabilities possess similarities with stars and confined plasmas, where corresponding nonlinearities may give rise to spontaneous oscillations. In this paper, we describe the kinetic model that has recently been employed in three-dimensional (3D) simulations of spatiotemporal instabilities in a MOT, yielding qualitative agreements with experimentally observed instability thresholds and regimes. Details surrounding its implementation are included, and the impact of its physical effects on the instabilities is investigated to improve the understanding of the complex mechanism at work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12942v2-abstract-full').style.display = 'none'; document.getElementById('2109.12942v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, 1 video</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105, 013112 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03657">arXiv:2107.03657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03657">pdf</a>, <a href="https://arxiv.org/format/2107.03657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.023201">10.1103/PhysRevLett.127.023201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical Excitation and Trapping of $^{81}$Kr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+J+S">Jie. S. Wang</a>, <a href="/search/?searchtype=author&amp;query=Ritterbusch%2C+F">F. Ritterbusch</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+X+-">X. -Z. Dong</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+C">C. Gao</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+W">W. Jiang</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+S+-">S. -Y. Liu</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+Z+-">Z. -T. Lu</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+W+-">W. -H. Wang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+G+-">G. -M. Yang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -S. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z+-">Z. -Y. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03657v1-abstract-short" style="display: inline;"> We have realized optical excitation, trapping and detection of the radioisotope $^{81}$Kr with an isotopic abundance of 0.9 ppt. The 124 nm light needed for the production of metastable atoms is generated by a resonant discharge lamp. Photon transport through the optically thick krypton gas inside the lamp is simulated and optimized to enhance both brightness and resonance. We achieve a state-of-t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03657v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03657v1-abstract-full" style="display: none;"> We have realized optical excitation, trapping and detection of the radioisotope $^{81}$Kr with an isotopic abundance of 0.9 ppt. The 124 nm light needed for the production of metastable atoms is generated by a resonant discharge lamp. Photon transport through the optically thick krypton gas inside the lamp is simulated and optimized to enhance both brightness and resonance. We achieve a state-of-the-art $^{81}$Kr loading rate of 1800 atoms/h, which can be further scaled up by adding more lamps. The all-optical approach overcomes the limitations on precision and sample size of radiokrypton dating, enabling new applications in the earth sciences, particularly for dating of polar ice cores. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03657v1-abstract-full').style.display = 'none'; document.getElementById('2107.03657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 023201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12721">arXiv:2106.12721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12721">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Hourly Warning for Strong Earthquakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chen%2C+T">T. Chen</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+L">L. Li</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+X+-">X. -X. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+C">C. Wang</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+X+-">X. -B. Jin</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Q+-">Q. -M. Ma</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+J+-">J. -Y. Xu</a>, <a href="/search/?searchtype=author&amp;query=He%2C+Z+-">Z. -H. He</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/?searchtype=author&amp;query=Xiao%2C+S+-">S. -G. Xiao</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X+-">X. -Z. Wang</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+X+-">X. -H. Shen</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+X+-">X. -M. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+H+-">H. -B. Li</a>, <a href="/search/?searchtype=author&amp;query=Zeren%2C+Z+-">Z. -M. Zeren</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+J+-">J. -P. Huang</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+F+-">F. -Q. Huang</a>, <a href="/search/?searchtype=author&amp;query=Che%2C+S">S. Che</a>, <a href="/search/?searchtype=author&amp;query=Zou%2C+Z+-">Z. -M. Zou</a>, <a href="/search/?searchtype=author&amp;query=Xiong%2C+P">P. Xiong</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+J">J. Liu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L+-">L. -Q. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+Q">Q. Guo</a>, <a href="/search/?searchtype=author&amp;query=Roth%2C+I">I. Roth</a>, <a href="/search/?searchtype=author&amp;query=Makhmutov%2C+V+S">V. S. Makhmutov</a> , et al. (32 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12721v1-abstract-short" style="display: inline;"> A promising perspective is presented that humans can provide hourly warning for strong land earthquakes (EQs, Ms6). Two important atmospheric electrostatic signal features are described. A table that lists 9 strong land EQs with shock time, epicenter, magnitude, weather in the region near the epicenter, precursor beginning time, and precursor duration demonstrates that at approximately several hou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12721v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12721v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12721v1-abstract-full" style="display: none;"> A promising perspective is presented that humans can provide hourly warning for strong land earthquakes (EQs, Ms6). Two important atmospheric electrostatic signal features are described. A table that lists 9 strong land EQs with shock time, epicenter, magnitude, weather in the region near the epicenter, precursor beginning time, and precursor duration demonstrates that at approximately several hours to one day before a strong land EQ, the weather conditions are fair near the epicenter, and an abnormal negative atmospheric electrostatic signal is very obvious. Moreover, the mechanism is explained. A method by which someone could determine the epicenter and the magnitude of a forthcoming strong EQ is suggested. Finally, the possibility of realizing hourly warning for strong land EQs in the near future is pointed out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12721v1-abstract-full').style.display = 'none'; document.getElementById('2106.12721v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06881">arXiv:2104.06881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.06881">pdf</a>, <a href="https://arxiv.org/format/2104.06881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.L041101">10.1103/PhysRevA.103.L041101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase diagram of spatiotemporal instabilities in a large magneto-optical trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gaudesius%2C+M">M. Gaudesius</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -C. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Pohl%2C+T">T. Pohl</a>, <a href="/search/?searchtype=author&amp;query=Kaiser%2C+R">R. Kaiser</a>, <a href="/search/?searchtype=author&amp;query=Labeyrie%2C+G">G. Labeyrie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06881v1-abstract-short" style="display: inline;"> Large clouds of cold atoms prepared in a magneto-optical trap are known to present spatiotemporal instabilities when the frequency of the trapping lasers is brought close to the atomic resonance. This system bears similarities with trapped plasmas where the role of the Coulomb interaction is played by the exchange of scattered photons, and astrophysical objects such as stars whose size is dependen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06881v1-abstract-full').style.display = 'inline'; document.getElementById('2104.06881v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06881v1-abstract-full" style="display: none;"> Large clouds of cold atoms prepared in a magneto-optical trap are known to present spatiotemporal instabilities when the frequency of the trapping lasers is brought close to the atomic resonance. This system bears similarities with trapped plasmas where the role of the Coulomb interaction is played by the exchange of scattered photons, and astrophysical objects such as stars whose size is dependent on radiative forces. We present in this paper a study of the phase-space of such instabilities, and reveal different dynamical regimes. Three dimensional simulations of the highly nonlinear atomic dynamics permit a detailed analysis of the experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06881v1-abstract-full').style.display = 'none'; document.getElementById('2104.06881v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, L041101 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01382">arXiv:2003.01382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.01382">pdf</a>, <a href="https://arxiv.org/format/2003.01382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ab791f">10.3847/1538-4365/ab791f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compact Bright Radio-loud AGNs -- III. A Large VLBA Survey at 43 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cheng%2C+X+-">X. -P. Cheng</a>, <a href="/search/?searchtype=author&amp;query=An%2C+T">T. An</a>, <a href="/search/?searchtype=author&amp;query=Frey%2C+S">S. Frey</a>, <a href="/search/?searchtype=author&amp;query=Hong%2C+X+-">X. -Y. Hong</a>, <a href="/search/?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/?searchtype=author&amp;query=Kellermann%2C+K+I">K. I. Kellermann</a>, <a href="/search/?searchtype=author&amp;query=Lister%2C+M+L">M. L. Lister</a>, <a href="/search/?searchtype=author&amp;query=Lao%2C+B+-">B. -Q. Lao</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+X+-">X. -F. Li</a>, <a href="/search/?searchtype=author&amp;query=Mohan%2C+P">P. Mohan</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+X+-">X. -C. Wu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z+-">Z. -L. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -K. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+W">W. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01382v1-abstract-short" style="display: inline;"> We present the observational results from the 43-GHz Very Long Baseline Array (VLBA) observations of 124 compact radio-loud active galactic nuclei (AGNs) that were conducted between 2014 November and 2016 May. The typical dimensions of the restoring beam in each image are about 0.5 mas $\times$ 0.2 mas. The highest resolution of 0.2 mas corresponds to a physical size of 0.02 pc for the lowest reds&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01382v1-abstract-full').style.display = 'inline'; document.getElementById('2003.01382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01382v1-abstract-full" style="display: none;"> We present the observational results from the 43-GHz Very Long Baseline Array (VLBA) observations of 124 compact radio-loud active galactic nuclei (AGNs) that were conducted between 2014 November and 2016 May. The typical dimensions of the restoring beam in each image are about 0.5 mas $\times$ 0.2 mas. The highest resolution of 0.2 mas corresponds to a physical size of 0.02 pc for the lowest redshift source in the sample. The 43-GHz very long baseline interferometry (VLBI) images of 97 AGNs are presented for the first time. We study the source compactness on milli-arcsec (mas) and sub-mas scales, and suggest that 95 sources in our sample are suitable for future space VLBI observations. By analyzing our data supplemented with other VLBA AGN surveys from literature, we find that the core brightness temperature increases with increasing frequency below a break frequency ~ 7 GHz, and decreases between ~7--240~GHz but increases again above~240 GHz in the rest frame of the sources. This indicates that the synchrotron opacity changes from optically thick to thin. We also find a strong statistical correlation between radio and $纬$-ray flux densities. Our correlation is tighter than those in literature derived from lower-frequency VLBI data, suggesting that the $纬$-ray emission is produced more co-spatially with the 43-GHz VLBA core emission. This correlation can also be extrapolated to the un-beamed AGN population, implying that a universal $纬$-ray production mechanism might be at work for all types of AGNs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01382v1-abstract-full').style.display = 'none'; document.getElementById('2003.01382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal Supplement Series, Vol. 247, id. 57 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.01570">arXiv:1811.01570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.01570">pdf</a>, <a href="https://arxiv.org/format/1811.01570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/aaef88">10.3847/1538-4365/aaef88 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Quasar Survey: the 4th and 5th Data Release </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yao%2C+S">Su Yao</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+X">Xue-Bing Wu</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+Y+L">Y. L. Ai</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+J">Jinyi Yang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+Q">Qian Yang</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+X">Xiaoyi Dong</a>, <a href="/search/?searchtype=author&amp;query=Joshi%2C+R">Ravi Joshi</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+F">Feige Wang</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+X">Xiaotong Feng</a>, <a href="/search/?searchtype=author&amp;query=Fu%2C+Y">Yuming Fu</a>, <a href="/search/?searchtype=author&amp;query=Hou%2C+W">Wen Hou</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+A+-">A. -L. Luo</a>, <a href="/search/?searchtype=author&amp;query=Kong%2C+X">Xiao Kong</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yuanqi Liu</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y+-">Y. -H. Zhao</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -X. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+H+-">H. -L. Yuan</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+S">Shiyin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.01570v1-abstract-short" style="display: inline;"> We present the Data Release 4&amp;5 quasar catalog from the quasar survey by Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which includes quasars observed between September 2015 and June 2017. There are a total of 19,253 quasars identified by visual inspections of the spectra. Among them, 11,458 are independently discovered by LAMOST, in which 3296 were reported by SDSS DR12 and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.01570v1-abstract-full').style.display = 'inline'; document.getElementById('1811.01570v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.01570v1-abstract-full" style="display: none;"> We present the Data Release 4&amp;5 quasar catalog from the quasar survey by Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which includes quasars observed between September 2015 and June 2017. There are a total of 19,253 quasars identified by visual inspections of the spectra. Among them, 11,458 are independently discovered by LAMOST, in which 3296 were reported by SDSS DR12 and DR14 quasar catalog after our survey began, while the rest 8162 are new discoveries of LAMOST. We provide the emission line measurements for the Halpha, Hbeta, MgII and/or CIV for 18100 quasars. Since LAMOST does not have absolute flux calibration information, we obtain the monochromatic continuum luminosities by fitting the SDSS photometric data using the quasar spectra, and then estimate the black hole masses. The catalog and spectra for these quasars are available online. This is the third installment in the series of LAMOST quasar survey which has released spectra for totally ~43,000 quasars hitherto. There are 24,772 independently discovered quasars, 17,128 of which are newly discovered. In addition to the great supplement to the new quasar discoveries, LAMOST has also provided a large database (overlapped with SDSS) for investigating the quasar spectral variability and discovering unusual quasars, including changing-look quasars, with ongoing and upcoming large surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.01570v1-abstract-full').style.display = 'none'; document.getElementById('1811.01570v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures, accepted by ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00364">arXiv:1811.00364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00364">pdf</a>, <a href="https://arxiv.org/format/1811.00364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.011102">10.1103/PhysRevLett.123.011102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tests of General Relativity with GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Aloy%2C+M+A">M. A. Aloy</a> , et al. (1123 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00364v3-abstract-short" style="display: inline;"> The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00364v3-abstract-full').style.display = 'inline'; document.getElementById('1811.00364v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00364v3-abstract-full" style="display: none;"> The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00364v3-abstract-full').style.display = 'none'; document.getElementById('1811.00364v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures. Matches journal submission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1800059 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 011102 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.02764">arXiv:1810.02764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.02764">pdf</a>, <a href="https://arxiv.org/ps/1810.02764">ps</a>, <a href="https://arxiv.org/format/1810.02764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aaf726">10.3847/1538-4357/aaf726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Fermi Gamma-ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-Wave Candidates in Advanced LIGO&#39;s First Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Team%2C+T+F+G+B+M">The Fermi Gamma-ray Burst Monitor Team</a>, <a href="/search/?searchtype=author&amp;query=Collaboration%2C+T+L+S">The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Collaboration%2C+t+V">the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Burns%2C+E">E. Burns</a>, <a href="/search/?searchtype=author&amp;query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/?searchtype=author&amp;query=Hui%2C+C+M">C. M. Hui</a>, <a href="/search/?searchtype=author&amp;query=Blackburn%2C+L">L. Blackburn</a>, <a href="/search/?searchtype=author&amp;query=Briggs%2C+M+S">M. S. Briggs</a>, <a href="/search/?searchtype=author&amp;query=Connaughton%2C+V">V. Connaughton</a>, <a href="/search/?searchtype=author&amp;query=Hamburg%2C+R">R. Hamburg</a>, <a href="/search/?searchtype=author&amp;query=Kocevski%2C+D">D. Kocevski</a>, <a href="/search/?searchtype=author&amp;query=Veres%2C+P">P. Veres</a>, <a href="/search/?searchtype=author&amp;query=Wilson-Hodge%2C+C+A">C. A. Wilson-Hodge</a>, <a href="/search/?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/?searchtype=author&amp;query=Cleveland%2C+W+H">W. H. Cleveland</a>, <a href="/search/?searchtype=author&amp;query=Giles%2C+M+M">M. M. Giles</a>, <a href="/search/?searchtype=author&amp;query=Mailyan%2C+B">B. Mailyan</a>, <a href="/search/?searchtype=author&amp;query=Meegan%2C+C+A">C. A. Meegan</a>, <a href="/search/?searchtype=author&amp;query=Paciesas%2C+W+A">W. A. Paciesas</a>, <a href="/search/?searchtype=author&amp;query=Poolakkil%2C+S">S. Poolakkil</a>, <a href="/search/?searchtype=author&amp;query=Preece%2C+R+D">R. D. Preece</a>, <a href="/search/?searchtype=author&amp;query=Racusin%2C+J+L">J. L. Racusin</a>, <a href="/search/?searchtype=author&amp;query=Roberts%2C+O+J">O. J. Roberts</a>, <a href="/search/?searchtype=author&amp;query=von+Kienlin%2C+A">A. von Kienlin</a> , et al. (1139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.02764v2-abstract-short" style="display: inline;"> We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO&#39;s first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02764v2-abstract-full').style.display = 'inline'; document.getElementById('1810.02764v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.02764v2-abstract-full" style="display: none;"> We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO&#39;s first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure significance. Those with false alarm rates of less than 10^-5 Hz (about one per day) are used as the search sample for gamma-ray follow-up. No GW candidates were found to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. In addition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resulting GBM events, the two with lowest false alarm rates were the gamma-ray transient GW150914-GBM presented in Connaughton et al. (2016) and a solar flare in chance coincidence with a GW candidate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02764v2-abstract-full').style.display = 'none'; document.getElementById('1810.02764v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.02581">arXiv:1810.02581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.02581">pdf</a>, <a href="https://arxiv.org/format/1810.02581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab0f3d">10.3847/1538-4357/ab0f3d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Aloy%2C+M+A">M. A. Aloy</a> , et al. (1116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.02581v2-abstract-short" style="display: inline;"> One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here we revisit the neutron star remnant scenario with a focus on longer signal durations up until the end of the Secon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02581v2-abstract-full').style.display = 'inline'; document.getElementById('1810.02581v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.02581v2-abstract-full" style="display: none;"> One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here we revisit the neutron star remnant scenario with a focus on longer signal durations up until the end of the Second Advanced LIGO-Virgo Observing run, 8.5 days after the coalescence of GW170817. The main physical scenario for such emission is the power-law spindown of a massive magnetar-like remnant. We use four independent search algorithms with varying degrees of restrictiveness on the signal waveformand different ways of dealing with noise artefacts. In agreement with theoretical estimates, we find no significant signal candidates. Through simulated signals, we quantify that with the current detector sensitivity, nowhere in the studied parameter space are we sensitive to a signal from more than 1 Mpc away, compared to the actual distance of 40 Mpc. This study however serves as a prototype for post-merger analyses in future observing runs with expected higher sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02581v2-abstract-full').style.display = 'none'; document.getElementById('1810.02581v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main paper: 9 pages and 3 figures; total with appendices: 24 pages and 9 figures. Full UL tables available as MRT ancillary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1800195 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal 875:160 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07902">arXiv:1809.07902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07902">pdf</a>, <a href="https://arxiv.org/format/1809.07902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.077602">10.1103/PhysRevLett.122.077602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Order in the Holstein Model on a Honeycomb Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -X. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Chiu%2C+W+-">W. -T. Chiu</a>, <a href="/search/?searchtype=author&amp;query=Costa%2C+N+C">N. C. Costa</a>, <a href="/search/?searchtype=author&amp;query=Batrouni%2C+G+G">G. G. Batrouni</a>, <a href="/search/?searchtype=author&amp;query=Scalettar%2C+R+T">R. T. Scalettar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07902v2-abstract-short" style="display: inline;"> The effect of electron-electron interactions on Dirac fermions, and the possibility of an intervening spin liquid phase between the semi-metal and antiferromagnetic (AF) regimes, has been a focus of intense quantum simulation effort over the last five years. We use determinant quantum Monte Carlo (DQMC) to study the Holstein model on a Honeycomb lattice and explore the role of electron-phonon inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07902v2-abstract-full').style.display = 'inline'; document.getElementById('1809.07902v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07902v2-abstract-full" style="display: none;"> The effect of electron-electron interactions on Dirac fermions, and the possibility of an intervening spin liquid phase between the semi-metal and antiferromagnetic (AF) regimes, has been a focus of intense quantum simulation effort over the last five years. We use determinant quantum Monte Carlo (DQMC) to study the Holstein model on a Honeycomb lattice and explore the role of electron-phonon interactions on Dirac fermions. We show that they give rise to charge density wave (CDW) order, and present evidence that this occurs only above a finite critical interaction strength. We evaluate the temperature for the transition into the CDW which, unlike the AF transition, can occur at finite values owing to the discrete nature of the broken symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07902v2-abstract-full').style.display = 'none'; document.getElementById('1809.07902v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 077602 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.08676">arXiv:1808.08676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.08676">pdf</a>, <a href="https://arxiv.org/format/1808.08676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.061104">10.1103/PhysRevLett.122.061104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining the p-mode--g-mode tidal instability with GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=The+Virgo+Collaboration"> The Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Aloy%2C+M+A">M. A. Aloy</a> , et al. (1114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.08676v3-abstract-short" style="display: inline;"> We analyze the impact of a proposed tidal instability coupling $p$-modes and $g$-modes within neutron stars on GW170817. This non-resonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08676v3-abstract-full').style.display = 'inline'; document.getElementById('1808.08676v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.08676v3-abstract-full" style="display: none;"> We analyze the impact of a proposed tidal instability coupling $p$-modes and $g$-modes within neutron stars on GW170817. This non-resonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes Factor ($\ln B^{pg}_{!pg}$) comparing our $p$-$g$ model to a standard one. We find that the observed signal is consistent with waveform models that neglect $p$-$g$ effects, with $\ln B^{pg}_{!pg} = 0.03^{+0.70}_{-0.58}$ (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include $p$-$g$ effects and recovering them with the $p$-$g$ model, we show that there is a $\simeq 50\%$ probability of obtaining similar $\ln B^{pg}_{!pg}$ even when $p$-$g$ effects are absent. We find that the $p$-$g$ amplitude for 1.4 $M_\odot$ neutron stars is constrained to $\lesssim \text{few}\times10^{-7}$, with maxima a posteriori near $\sim 10^{-7}$ and $p$-$g$ saturation frequency $\sim 70\, \mathrm{Hz}$. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest a $p$-$g$ amplitude $\lesssim 10^{-6}$ and $\lesssim 10^{3}$ modes saturating by wave breaking. Thus, the measured constraints only rule out extreme values of the $p$-$g$ parameters. They also imply that the instability dissipates $\lesssim 10^{51}\, \mathrm{ergs}$ over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08676v3-abstract-full').style.display = 'none'; document.getElementById('1808.08676v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 061104 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.04771">arXiv:1808.04771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.04771">pdf</a>, <a href="https://arxiv.org/format/1808.04771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.231103">10.1103/PhysRevLett.121.231103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for sub-solar mass ultracompact binaries in Advanced LIGO&#39;s first observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Aloy%2C+M+A">M. A. Aloy</a>, <a href="/search/?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.04771v2-abstract-short" style="display: inline;"> We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_\odot$ - 1.0 $M_\odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_\odot$, 0.2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.04771v2-abstract-full').style.display = 'inline'; document.getElementById('1808.04771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.04771v2-abstract-full" style="display: none;"> We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_\odot$ - 1.0 $M_\odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_\odot$, 0.2 $M_\odot$) ultracompact binaries to be less than $1.0 \times 10^6 \text{Gpc}^{-3} \text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_\odot$, 1.0 $M_\odot$) ultracompact binaries to be less than $1.9 \times 10^4 \text{Gpc}^{-3} \text{yr}^{-1}$ (at 90 percent confidence). Neither black holes nor neutron stars are expected to form below ~ 1 solar mass through conventional stellar evolution, though it has been proposed that similarly low mass black holes could be formed primordially through density fluctuations in the early universe. Under a particular primordial black hole binary formation scenario, we constrain monochromatic primordial black hole populations of 0.2 $M_\odot$ to be less than $33\%$ of the total dark matter density and monochromatic populations of 1.0 $M_\odot$ to be less than $5\%$ of the dark matter density. The latter strengthens the presently placed bounds from micro-lensing surveys of MAssive Compact Halo Objects (MACHOs) provided by the MACHO and EROS collaborations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.04771v2-abstract-full').style.display = 'none'; document.getElementById('1808.04771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-DCC-P1800158-v12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 231103 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.11581">arXiv:1805.11581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.11581">pdf</a>, <a href="https://arxiv.org/format/1805.11581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.161101">10.1103/PhysRevLett.121.161101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GW170817: Measurements of Neutron Star Radii and Equation of State </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Aloy%2C+M+A">M. A. Aloy</a> , et al. (1127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.11581v2-abstract-short" style="display: inline;"> On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11581v2-abstract-full').style.display = 'inline'; document.getElementById('1805.11581v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.11581v2-abstract-full" style="display: none;"> On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function $p(蟻)$ of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as $R_1=10.8^{+2.0}_{-1.7}$ km for the heavier star and $R_2= 10.7^{+2.1}_{-1.5}$ km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than $1.97 \,M_\odot$ as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain $R_1= 11.9^{+1.4}_{-1.4}$ km and $R_2= 11.9^{+1.4}_{-1.4}$ km at the 90% credible level. Finally, we obtain constraints on $p(蟻)$ at supranuclear densities, with pressure at twice nuclear saturation density measured at $3.5^{+2.7}_{-1.7}\times 10^{34} \,\mathrm{dyn}/\mathrm{cm}^{2}$ at the 90% level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11581v2-abstract-full').style.display = 'none'; document.getElementById('1805.11581v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; v2 matches published version; data associated with the figures can be found at https://dcc.ligo.org/LIGO-P1800115/public</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1800115 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 161101 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.11579">arXiv:1805.11579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.11579">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.9.011001">10.1103/PhysRevX.9.011001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Properties of the binary neutron star merger GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Aloy%2C+M+A">M. A. Aloy</a> , et al. (1126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.11579v3-abstract-short" style="display: inline;"> On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary&#39;s properties, including component masses, spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11579v3-abstract-full').style.display = 'inline'; document.getElementById('1805.11579v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.11579v3-abstract-full" style="display: none;"> On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary&#39;s properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of $16~\mathrm{deg}^2$. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 $M_\odot$ when allowing for large component spins, and to lie between 1.16 and 1.60 $M_\odot$ (with a total mass $2.73^{+0.04}_{-0.01} \, M_\odot$) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter $\tilde 螞$ are $(0,630)$ when we allow for large component spins, and $300^{+420}_{-230}$ (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible post-merger signal. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11579v3-abstract-full').style.display = 'none'; document.getElementById('1805.11579v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 15 figures. Version 3 is the final published version; results are unchanged compared to previous versions. Data behind the figures, including posterior samples, are available at dcc.ligo.org/LIGO-P1800061/public. The gravitational wave strain data for this event are available at the LIGO Open Science Center, gw-openscience.org/events/GW170817</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 9, 011001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.06043">arXiv:1804.06043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.06043">pdf</a>, <a href="https://arxiv.org/format/1804.06043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2018.10.063">10.1016/j.physletb.2018.10.063 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of double-polarization asymmetries in the quasi-elastic $^3\vec{\mathrm{He}}(\vec{\mathrm{e}},\mathrm{e}&#39;\mathrm{p})$ process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mihovilovi%C4%8D%2C+M">M. Mihovilovi膷</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+G">G. Jin</a>, <a href="/search/?searchtype=author&amp;query=Long%2C+E">E. Long</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -W. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Allada%2C+K">K. Allada</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B">B. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Annand%2C+J+R+M">J. R. M. Annand</a>, <a href="/search/?searchtype=author&amp;query=Averett%2C+T">T. Averett</a>, <a href="/search/?searchtype=author&amp;query=Bertozzi%2C+W">W. Bertozzi</a>, <a href="/search/?searchtype=author&amp;query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/?searchtype=author&amp;query=Bradshaw%2C+P">P. Bradshaw</a>, <a href="/search/?searchtype=author&amp;query=Camsonne%2C+A">A. Camsonne</a>, <a href="/search/?searchtype=author&amp;query=Canan%2C+M">M. Canan</a>, <a href="/search/?searchtype=author&amp;query=Cates%2C+G+D">G. D. Cates</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+J+P">J. P. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chudakov%2C+E">E. Chudakov</a>, <a href="/search/?searchtype=author&amp;query=De+Leo%2C+R">R. De Leo</a>, <a href="/search/?searchtype=author&amp;query=Deng%2C+X">X. Deng</a>, <a href="/search/?searchtype=author&amp;query=Deltuva%2C+A">A. Deltuva</a>, <a href="/search/?searchtype=author&amp;query=Deur%2C+A">A. Deur</a>, <a href="/search/?searchtype=author&amp;query=Dutta%2C+C">C. Dutta</a>, <a href="/search/?searchtype=author&amp;query=Fassi%2C+L+E">L. El Fassi</a>, <a href="/search/?searchtype=author&amp;query=Flay%2C+D">D. Flay</a>, <a href="/search/?searchtype=author&amp;query=Frullani%2C+S">S. Frullani</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.06043v1-abstract-short" style="display: inline;"> We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of $^3\mathrm{He}$ proceeding to $\mathrm{pd}$ and $\mathrm{ppn}$ final states, performed in quasi-elastic kinematics at $Q^2 = 0.25\,(\mathrm{GeV}/c)^2$ for missing momenta up to $250\,\mathrm{MeV}/c$. These observables represent highly sensitive tools to investigate the electromagnetic and spin stru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.06043v1-abstract-full').style.display = 'inline'; document.getElementById('1804.06043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.06043v1-abstract-full" style="display: none;"> We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of $^3\mathrm{He}$ proceeding to $\mathrm{pd}$ and $\mathrm{ppn}$ final states, performed in quasi-elastic kinematics at $Q^2 = 0.25\,(\mathrm{GeV}/c)^2$ for missing momenta up to $250\,\mathrm{MeV}/c$. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of $^3\mathrm{He}$ and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of $^3\mathrm{He}$ unless their three-body segment is adjusted, indicating that the spin-dependent part of the nuclear interaction governing the three-body breakup process is much smaller than previously thought. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.06043v1-abstract-full').style.display = 'none'; document.getElementById('1804.06043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, submitted to Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-PHY-18-2681 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 788 (2019) 117 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.10194">arXiv:1802.10194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.10194">pdf</a>, <a href="https://arxiv.org/format/1802.10194">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.201102">10.1103/PhysRevLett.120.201102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1075 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.10194v3-abstract-short" style="display: inline;"> The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10194v3-abstract-full').style.display = 'inline'; document.getElementById('1802.10194v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.10194v3-abstract-full" style="display: none;"> The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to $惟^T_0 &lt; 5.6 \times 10^{-8}$, $惟^V_0 &lt; 6.4\times 10^{-8}$, and $惟^S_0 &lt; 1.1\times 10^{-7}$ at a reference frequency $f_0 = 25$ Hz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10194v3-abstract-full').style.display = 'none'; document.getElementById('1802.10194v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor updates to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 201102 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.05241">arXiv:1802.05241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.05241">pdf</a>, <a href="https://arxiv.org/format/1802.05241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.102003">10.1103/PhysRevD.97.102003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Full Band All-sky Search for Periodic Gravitational Waves in the O1 LIGO Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1077 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.05241v1-abstract-short" style="display: inline;"> We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO&#39;s first observational run O1. No gravitational wave&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05241v1-abstract-full').style.display = 'inline'; document.getElementById('1802.05241v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.05241v1-abstract-full" style="display: none;"> We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO&#39;s first observational run O1. No gravitational wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h_0 is 4e-25 near 170 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 1.3e-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ~1.5e-25. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05241v1-abstract-full').style.display = 'none'; document.getElementById('1802.05241v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 102003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.06314">arXiv:1712.06314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.06314">pdf</a>, <a href="https://arxiv.org/ps/1712.06314">ps</a>, <a href="https://arxiv.org/format/1712.06314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/aa9e4b">10.3847/1538-4365/aa9e4b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Most Compact Bright Radio-loud AGN -- II. VLBA Observations of Ten Sources at 43 and 86~GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cheng%2C+X+-">X. -P. Cheng</a>, <a href="/search/?searchtype=author&amp;query=An%2C+T">T. An</a>, <a href="/search/?searchtype=author&amp;query=Hong%2C+X+-">X. -Y. Hong</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/?searchtype=author&amp;query=Mohan%2C+P">P. Mohan</a>, <a href="/search/?searchtype=author&amp;query=Kellermann%2C+K+I">K. I. Kellermann</a>, <a href="/search/?searchtype=author&amp;query=Lister%2C+M+L">M. L. Lister</a>, <a href="/search/?searchtype=author&amp;query=Frey%2C+S">S. Frey</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+W">W. Zhao</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z+-">Z. -L. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+X+-">X. -C. Wu</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+X+-">X. -F. Li</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -K. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.06314v1-abstract-short" style="display: inline;"> Radio-loud active galactic nuclei (AGNs), hosting powerful relativistic jet outflows, provide an excellent laboratory for studying jet physics. Very long baseline interferometry (VLBI) enables high-resolution imaging on milli-arcsecond (mas) and sub-mas scales, making it a powerful tool to explore the inner jet structure, shedding light on the formation, acceleration and collimation of AGN jets. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06314v1-abstract-full').style.display = 'inline'; document.getElementById('1712.06314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.06314v1-abstract-full" style="display: none;"> Radio-loud active galactic nuclei (AGNs), hosting powerful relativistic jet outflows, provide an excellent laboratory for studying jet physics. Very long baseline interferometry (VLBI) enables high-resolution imaging on milli-arcsecond (mas) and sub-mas scales, making it a powerful tool to explore the inner jet structure, shedding light on the formation, acceleration and collimation of AGN jets. In this paper, we present Very Long Baseline Array (VLBA) observations of ten radio-loud AGNs at 43 and 86~GHz, which were selected from the {\it Planck} catalogue of compact sources and are among the brightest in published VLBI images at and below 15 GHz. The image noise levels in our observations are typically 0.3 mJy beam$^{-1}$ and 1.5 mJy beam$^{-1}$ at 43 and 86 GHz, respectively. Compared with the VLBI data observed at lower frequencies from the literature, our observations with higher resolution (the highest resolution up to 0.07 mas at 86 GHz and 0.18 mas at 43 GHz) and at higher frequencies detected new jet components at sub-parsec scales, offering valuable data for studies of the physical properties of innermost jets. These include compactness factor of the radio structure (the ratio of core flux density to total flux density), and core brightness temperature ($T_{\rm b}$). In all these sources, the compact core accounts for a significant fraction ($&gt; 60\%$) of the total flux density. Their correlated flux density at the longest baselines is higher than 0.16 Jy. The compactness of these sources make them good phase calibrators of mm-wavelength ground-based and space VLBI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06314v1-abstract-full').style.display = 'none'; document.getElementById('1712.06314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.01168">arXiv:1712.01168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.01168">pdf</a>, <a href="https://arxiv.org/ps/1712.01168">ps</a>, <a href="https://arxiv.org/format/1712.01168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.102002">10.1103/PhysRevD.97.102002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on cosmic strings using data from the first Advanced LIGO observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1020 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.01168v2-abstract-short" style="display: inline;"> Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01168v2-abstract-full').style.display = 'inline'; document.getElementById('1712.01168v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.01168v2-abstract-full" style="display: none;"> Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension $G渭$ and the intercommutation probability, using not only the burst analysis performed on the O1 data set, but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and Big-Bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01168v2-abstract-full').style.display = 'none'; document.getElementById('1712.01168v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Physical Review D, in-press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 102002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.05578">arXiv:1711.05578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.05578">pdf</a>, <a href="https://arxiv.org/format/1711.05578">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aa9f0c">10.3847/2041-8213/aa9f0c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1079 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.05578v1-abstract-short" style="display: inline;"> On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05578v1-abstract-full').style.display = 'inline'; document.getElementById('1711.05578v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.05578v1-abstract-full" style="display: none;"> On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source&#39;s luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05578v1-abstract-full').style.display = 'none'; document.getElementById('1711.05578v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO Document P170608-v8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09320">arXiv:1710.09320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.09320">pdf</a>, <a href="https://arxiv.org/format/1710.09320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aa9a35">10.3847/2041-8213/aa9a35 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1083 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09320v1-abstract-short" style="display: inline;"> The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09320v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09320v1-abstract-full" style="display: none;"> The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($\lesssim1$ s) and intermediate-duration ($\lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{\rm rss}^{50\%}=2.1\times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{\rm rss}^{50\%}=8.4\times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{\rm rss}^{50\%}=5.9\times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09320v1-abstract-full').style.display = 'none'; document.getElementById('1710.09320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1700318 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, 851:L16 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05839">arXiv:1710.05839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05839">pdf</a>, <a href="https://arxiv.org/format/1710.05839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aa9aed">10.3847/2041-8213/aa9aed <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/?searchtype=author&amp;query=Andre%2C+M">M. Andre</a>, <a href="/search/?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/?searchtype=author&amp;query=Avgitas%2C+T">T. Avgitas</a>, <a href="/search/?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/?searchtype=author&amp;query=Barrios-Marti%2C+J">J. Barrios-Marti</a>, <a href="/search/?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/?searchtype=author&amp;query=Belhorma%2C+B">B. Belhorma</a>, <a href="/search/?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/?searchtype=author&amp;query=Bormuth%2C+R">R. Bormuth</a>, <a href="/search/?searchtype=author&amp;query=Bourret%2C+S">S. Bourret</a>, <a href="/search/?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/?searchtype=author&amp;query=Branzacs%2C+H">H. Branzacs</a>, <a href="/search/?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/?searchtype=author&amp;query=Capone%2C+A">A. Capone</a>, <a href="/search/?searchtype=author&amp;query=Caramete%2C+L">L. Caramete</a>, <a href="/search/?searchtype=author&amp;query=Carr%2C+J">J. Carr</a>, <a href="/search/?searchtype=author&amp;query=Celli%2C+S">S. Celli</a>, <a href="/search/?searchtype=author&amp;query=Moursli%2C+R+C+E">R. Cherkaoui El Moursli</a> , et al. (1916 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05839v2-abstract-short" style="display: inline;"> The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05839v2-abstract-full').style.display = 'inline'; document.getElementById('1710.05839v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05839v2-abstract-full" style="display: none;"> The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV--EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within $\pm500$ s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14-day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05839v2-abstract-full').style.display = 'none'; document.getElementById('1710.05839v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1700344 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05838">arXiv:1710.05838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05838">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aa93fc">10.3847/2041-8213/aa93fc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Progenitor of Binary Neutron Star Merger GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1073 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05838v2-abstract-short" style="display: inline;"> On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just $\sim$40 Mpc, consistent with the gravitational-wave measurement, and the merger was&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05838v2-abstract-full').style.display = 'inline'; document.getElementById('1710.05838v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05838v2-abstract-full" style="display: none;"> On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just $\sim$40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of $\sim$2 kpc away from the galaxy&#39;s center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from the binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy&#39;s star formation history, provided the stellar populations are older than 1 Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05838v2-abstract-full').style.display = 'none'; document.getElementById('1710.05838v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1700264 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, 850, L40, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05837">arXiv:1710.05837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05837">pdf</a>, <a href="https://arxiv.org/format/1710.05837">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.091101">10.1103/PhysRevLett.120.091101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1077 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05837v2-abstract-short" style="display: inline;"> The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the bac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05837v2-abstract-full').style.display = 'inline'; document.getElementById('1710.05837v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05837v2-abstract-full" style="display: none;"> The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $惟_{\rm GW} (f=25 \text{Hz}) = 1.8_{-1.3}^{+2.7} \times 10^{-9}$ with $90\%$ confidence, compared with $惟_{\rm GW} (f=25 \text{Hz}) = 1.1_{-0.7}^{+1.2} \times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05837v2-abstract-full').style.display = 'none'; document.getElementById('1710.05837v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO P1700272 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 091101 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05836">arXiv:1710.05836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05836">pdf</a>, <a href="https://arxiv.org/format/1710.05836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aa9478">10.3847/2041-8213/aa9478 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1078 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05836v2-abstract-short" style="display: inline;"> The source of the gravitational-wave signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two week long electromagnetic counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05836v2-abstract-full').style.display = 'inline'; document.getElementById('1710.05836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05836v2-abstract-full" style="display: none;"> The source of the gravitational-wave signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two week long electromagnetic counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using gravitational-wave measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the gravitational-wave measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between $M_{ej} = 10^{-3} - 10^{-2} M_{\odot}$ for various equations of state, assuming the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if $\gtrsim10\%$ of the matter dynamically ejected from BNS mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05836v2-abstract-full').style.display = 'none'; document.getElementById('1710.05836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, accepted for publication in ApJ Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1700309 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05835">arXiv:1710.05835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05835">pdf</a>, <a href="https://arxiv.org/format/1710.05835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature24471">10.1038/nature24471 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A gravitational-wave standard siren measurement of the Hubble constant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1289 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05835v1-abstract-short" style="display: inline;"> The detection of GW170817 in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced LIGO and Virgo detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than 2 seconds after the merger, a gamma-ray burst (GRB 170817A) was detected within a region of the sky consi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05835v1-abstract-full').style.display = 'inline'; document.getElementById('1710.05835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05835v1-abstract-full" style="display: none;"> The detection of GW170817 in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced LIGO and Virgo detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than 2 seconds after the merger, a gamma-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within $\sim 10$ arcsec of the galaxy NGC 4993. These multi-messenger observations allow us to use GW170817 as a standard siren, the gravitational-wave analog of an astronomical standard candle, to measure the Hubble constant. This quantity, which represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Our measurement combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using electromagnetic data. This approach does not require any form of cosmic &#34;distance ladder;&#34; the gravitational wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be $70.0^{+12.0}_{-8.0} \, \mathrm{km} \, \mathrm{s}^{-1} \, \mathrm{Mpc}^{-1}$ (maximum a posteriori and 68% credible interval). This is consistent with existing measurements, while being completely independent of them. Additional standard-siren measurements from future gravitational-wave sources will provide precision constraints of this important cosmological parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05835v1-abstract-full').style.display = 'none'; document.getElementById('1710.05835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures, Nature in press. For more information see https://dcc.ligo.org/LIGO-P1700296/public</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO P1700296 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.02327">arXiv:1710.02327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.02327">pdf</a>, <a href="https://arxiv.org/format/1710.02327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.122006">10.1103/PhysRevD.96.122006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1074 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.02327v2-abstract-short" style="display: inline;"> Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.02327v2-abstract-full').style.display = 'inline'; document.getElementById('1710.02327v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.02327v2-abstract-full" style="display: none;"> Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {\it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGO&#39;s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.02327v2-abstract-full').style.display = 'none'; document.getElementById('1710.02327v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 Figures, 7 tables, submitted to PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 122006 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.09660">arXiv:1709.09660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.09660">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.141101">10.1103/PhysRevLett.119.141101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1085 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.09660v3-abstract-short" style="display: inline;"> On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.09660v3-abstract-full').style.display = 'inline'; document.getElementById('1709.09660v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.09660v3-abstract-full" style="display: none;"> On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.09660v3-abstract-full').style.display = 'none'; document.getElementById('1709.09660v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 141101 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.09203">arXiv:1709.09203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.09203">pdf</a>, <a href="https://arxiv.org/format/1709.09203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.031104">10.1103/PhysRevLett.120.031104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First search for nontensorial gravitational waves from known pulsars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1028 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.09203v2-abstract-short" style="display: inline;"> We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of grav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.09203v2-abstract-full').style.display = 'inline'; document.getElementById('1709.09203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.09203v2-abstract-full" style="display: none;"> We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously-published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.09203v2-abstract-full').style.display = 'none'; document.getElementById('1709.09203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1700009 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 031104 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02669">arXiv:1707.02669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02669">pdf</a>, <a href="https://arxiv.org/format/1707.02669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.122004">10.1103/PhysRevD.96.122004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1017 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02669v2-abstract-short" style="display: inline;"> We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02669v2-abstract-full').style.display = 'inline'; document.getElementById('1707.02669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02669v2-abstract-full" style="display: none;"> We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$\sqrt{\textrm{Hz}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 \times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 \times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} \textrm{kg m}^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02669v2-abstract-full').style.display = 'none'; document.getElementById('1707.02669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 122004 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02667">arXiv:1707.02667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02667">pdf</a>, <a href="https://arxiv.org/format/1707.02667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.062002">10.1103/PhysRevD.96.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky Search for Periodic Gravitational Waves in the O1 LIGO Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LIGO+Scientific+Collaboration"> LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Virgo+Collaboration"> Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1020 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02667v2-abstract-short" style="display: inline;"> We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO&#39;s first observational run, O1. No periodic gravitational wave si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02667v2-abstract-full').style.display = 'inline'; document.getElementById('1707.02667v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02667v2-abstract-full" style="display: none;"> We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO&#39;s first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are 4e-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are 1.5e-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are 2.5e-25. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02667v2-abstract-full').style.display = 'none'; document.getElementById('1707.02667v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated reference to just arXiv&#39;ed Einstein@Home paper, fix e-mail in arXiv metadata</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 062002 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.03119">arXiv:1706.03119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.03119">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa86f0">10.3847/1538-4357/aa86f0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-Based Cross-Correlation Search in Advanced LIGO Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1024 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.03119v4-abstract-short" style="display: inline;"> We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against compu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03119v4-abstract-full').style.display = 'inline'; document.getElementById('1706.03119v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.03119v4-abstract-full" style="display: none;"> We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range from 25 Hz to 2000 Hz, spanning the current observationally-constrained range of the binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 Hz, with comparable limits set across the most sensitive frequency range from 100 Hz to 200 Hz. At this frequency, the 95 pct upper limit on signal amplitude h0 is 2.3e-25 marginalized over the unknown inclination angle of the neutron star&#39;s spin, and 8.03e-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of about 7 stronger than the best upper limits set using initial LIGO data. In the vicinity of 100 Hz, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on inclination angle, if the most likely inclination angle of 44 degrees is assumed, they are within a factor of 1.7. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03119v4-abstract-full').style.display = 'none'; document.getElementById('1706.03119v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures. Formatted with AASTeX 6.1. Published in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1600297 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 847:47 (14pp), 2017 September 20 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.01812">arXiv:1706.01812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.01812">pdf</a>, <a href="https://arxiv.org/format/1706.01812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.221101">10.1103/PhysRevLett.118.221101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1026 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.01812v2-abstract-short" style="display: inline;"> We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.01812v2-abstract-full').style.display = 'inline'; document.getElementById('1706.01812v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.01812v2-abstract-full" style="display: none;"> We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are $31.2^{+8.4}_{-6.0}\,M_\odot$ and $19.4^{+5.3}_{-5.9}\,M_\odot$ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, $蠂_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.$ This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is $880^{+450}_{-390}~\mathrm{Mpc}$ corresponding to a redshift of $z = 0.18^{+0.08}_{-0.07}$. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to $m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2$. In all cases, we find that GW170104 is consistent with general relativity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.01812v2-abstract-full').style.display = 'none'; document.getElementById('1706.01812v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages including Supplemental Material, 15 Figures, 5 Tables. This version updates Fig. 14 (Fig. 9 in Supp. Mat.)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P170104 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett., 118(22):221101, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.04628">arXiv:1704.04628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.04628">pdf</a>, <a href="https://arxiv.org/format/1704.04628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.022001">10.1103/PhysRevD.96.022001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Almoubayyed%2C+H">H. Almoubayyed</a>, <a href="/search/?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1018 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.04628v4-abstract-short" style="display: inline;"> During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.04628v4-abstract-full').style.display = 'inline'; document.getElementById('1704.04628v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.04628v4-abstract-full" style="display: none;"> During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100\,M_\odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~\mathrm{Gpc^{-3}\,yr}^{-1}$ in comoving units at the $90\%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.04628v4-abstract-full').style.display = 'none'; document.getElementById('1704.04628v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 022001 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.03719">arXiv:1704.03719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.03719">pdf</a>, <a href="https://arxiv.org/format/1704.03719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.122003">10.1103/PhysRevD.95.122003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/?searchtype=author&amp;query=Afrough%2C+M">M. Afrough</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+B">B. Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/?searchtype=author&amp;query=Almoubayyed%2C+H">H. Almoubayyed</a> , et al. (1021 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.03719v3-abstract-short" style="display: inline;"> Results are presented from a semi-coherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run (O1). The search combines a frequency domain matched filter (Bessel-weighted $\mathcal{F}$-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No eviden&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03719v3-abstract-full').style.display = 'inline'; document.getElementById('1704.03719v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.03719v3-abstract-full" style="display: none;"> Results are presented from a semi-coherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run (O1). The search combines a frequency domain matched filter (Bessel-weighted $\mathcal{F}$-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, $h_0^{95\%} = 4.0\times10^{-25}$, $8.3\times10^{-25}$, and $3.0\times10^{-25}$ for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are $\leq 10$ times higher than the theoretical torque-balance limit at 106 Hz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03719v3-abstract-full').style.display = 'none'; document.getElementById('1704.03719v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1700019; erratum LIGO-P2100372 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 122003 (2017); erratum Phys. Rev. D 104, 129901 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.05268">arXiv:1702.05268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.05268">pdf</a>, <a href="https://arxiv.org/ps/1702.05268">ps</a>, <a href="https://arxiv.org/format/1702.05268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201629471">10.1051/0004-6361/201629471 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Abell 315: reconciling cluster mass estimates from kinematics, X-ray, and lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Biviano%2C+A">A. Biviano</a>, <a href="/search/?searchtype=author&amp;query=Popesso%2C+P">P. Popesso</a>, <a href="/search/?searchtype=author&amp;query=Dietrich%2C+J+P">J. P. Dietrich</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -Y. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Erfanianfar%2C+G">G. Erfanianfar</a>, <a href="/search/?searchtype=author&amp;query=Romaniello%2C+M">M. Romaniello</a>, <a href="/search/?searchtype=author&amp;query=Sartoris%2C+B">B. Sartoris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.05268v1-abstract-short" style="display: inline;"> Determination of cluster masses is a fundamental tool for cosmology. Comparing mass estimates obtained by different probes allows to understand possible systematic uncertainties. The cluster Abell 315 is an interesting test case, since it has been claimed to be underluminous in X-ray for its mass (determined via kinematics and weak lensing). We have undertaken new spectroscopic observations with t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05268v1-abstract-full').style.display = 'inline'; document.getElementById('1702.05268v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.05268v1-abstract-full" style="display: none;"> Determination of cluster masses is a fundamental tool for cosmology. Comparing mass estimates obtained by different probes allows to understand possible systematic uncertainties. The cluster Abell 315 is an interesting test case, since it has been claimed to be underluminous in X-ray for its mass (determined via kinematics and weak lensing). We have undertaken new spectroscopic observations with the aim of improving the cluster mass estimate, using the distribution of galaxies in projected phase space. We identified cluster members in our new spectroscopic sample. We estimated the cluster mass from the projected phase-space distribution of cluster members using the MAMPOSSt method. In doing this estimate we took into account the presence of substructures that we were able to identify. We identify several cluster substructures. The main two have an overlapping spatial distribution, suggesting a (past or ongoing) collision along the line-of-sight. After accounting for the presence of substructures, the mass estimate of Abell 315 from kinematics is reduced by a factor 4, down to M200=0.8 (-0.4,+0.6) x 10^14 Msun. We also find evidence that the cluster mass concentration is unusually low, c200=r200/r-2 &lt;~ 1. Using our new estimate of c200 we revise the weak lensing mass estimate down to M200=1.8 (-0.9,+1.7) x 10^14 Msun. Our new mass estimates are in agreement with that derived from the cluster X-ray luminosity via a scaling relation, M200=0.9+-0.2 x 10^14 Msun. Abell 315 no longer belongs to the class of X-ray underluminous clusters. Its mass estimate was inflated by the presence of an undetected subcluster in collision with the main cluster. Whether the presence of undetected line-of-sight structures can be a general explanation for all X-ray underluminous clusters remains to be explored using a statistically significant sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05268v1-abstract-full').style.display = 'none'; document.getElementById('1702.05268v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A. 12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 602, A20 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.03058">arXiv:1612.03058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.03058">pdf</a>, <a href="https://arxiv.org/ps/1612.03058">ps</a>, <a href="https://arxiv.org/format/1612.03058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201628400">10.1051/0004-6361/201628400 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suzaku observations of the merging galaxy cluster Abell2255: The northeast radio relic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akamatsu%2C+H">H. Akamatsu</a>, <a href="/search/?searchtype=author&amp;query=Mizuno%2C+M">M. Mizuno</a>, <a href="/search/?searchtype=author&amp;query=Ota%2C+N">N. Ota</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -Y. Zhang</a>, <a href="/search/?searchtype=author&amp;query=van+Weeren%2C+R+J">R. J. van Weeren</a>, <a href="/search/?searchtype=author&amp;query=Kawahara%2C+H">H. Kawahara</a>, <a href="/search/?searchtype=author&amp;query=Fukazawa%2C+Y">Y. Fukazawa</a>, <a href="/search/?searchtype=author&amp;query=Kaastra%2C+J+S">J. S. Kaastra</a>, <a href="/search/?searchtype=author&amp;query=Kawaharada%2C+M">M. Kawaharada</a>, <a href="/search/?searchtype=author&amp;query=Nakazawa%2C+K">K. Nakazawa</a>, <a href="/search/?searchtype=author&amp;query=Ohashi%2C+T">T. Ohashi</a>, <a href="/search/?searchtype=author&amp;query=R%C3%B6ttgering%2C+H+J+A">H. J. A. R枚ttgering</a>, <a href="/search/?searchtype=author&amp;query=Takizawa%2C+M">M. Takizawa</a>, <a href="/search/?searchtype=author&amp;query=Vink%2C+J">J. Vink</a>, <a href="/search/?searchtype=author&amp;query=Zandanel%2C+F">F. Zandanel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.03058v1-abstract-short" style="display: inline;"> We present the results of deep 140 ks Suzaku X-ray observations of the north-east (NE) radio relic of the merging galaxy cluster Abell2255. The temperature structure of Abell2255 is measured out to 0.9 times the virial radius (1.9 Mpc) in the NE direction for the first time. The Suzaku temperature map of the central region suggests a complex temperature distribution, which agrees with previous wor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.03058v1-abstract-full').style.display = 'inline'; document.getElementById('1612.03058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.03058v1-abstract-full" style="display: none;"> We present the results of deep 140 ks Suzaku X-ray observations of the north-east (NE) radio relic of the merging galaxy cluster Abell2255. The temperature structure of Abell2255 is measured out to 0.9 times the virial radius (1.9 Mpc) in the NE direction for the first time. The Suzaku temperature map of the central region suggests a complex temperature distribution, which agrees with previous work. Additionally, on a larger-scale, we confirm that the temperature drops from 6 keV around the cluster center to 3 keV at the outskirts, with two discontinuities at {\it r}$\sim$5\arcmin~(450 kpc) and $\sim$12\arcmin~(1100 kpc) from the cluster center. Their locations coincide with surface brightness discontinuities marginally detected in the XMM-Newton image, which indicates the presence of shock structures. From the temperature drop, we estimate the Mach numbers to be ${\cal M}_{\rm inner}\sim$1.2 and, ${\cal M}_{\rm outer}\sim$1.4. The first structure is most likely related to the large cluster core region ($\sim$350--430 kpc), and its Mach number is consistent with the XMM-Newton observation (${\cal M}\sim$1.24: Sakelliou &amp; Ponman 2006). Our detection of the second temperature jump, based on the Suzaku key project observation, shows the presence of a shock structure across the NE radio relic. This indicates a connection between the shock structure and the relativistic electrons that generate radio emission. Across the NE radio relic, however, we find a significantly lower temperature ratio ($T_1/T_2\sim1.44\pm0.16$ corresponds to~${\cal M}_{\rm X-ray}\sim1.4$) than the value expected from radio wavelengths, based on the standard diffusive shock acceleration mechanism ($T_1/T_2&gt;$ 3.2 or ${\cal M}_{\rm Radio}&gt;$ 2.8). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.03058v1-abstract-full').style.display = 'none'; document.getElementById('1612.03058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 600, A100 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02350">arXiv:1610.02350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.02350">pdf</a>, <a href="https://arxiv.org/ps/1610.02350">ps</a>, <a href="https://arxiv.org/format/1610.02350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.95.035209">10.1103/PhysRevC.95.035209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First measurement of unpolarized SIDIS cross section and cross section ratios from a $^3$He target </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yan%2C+X">X. Yan</a>, <a href="/search/?searchtype=author&amp;query=Allada%2C+K">K. Allada</a>, <a href="/search/?searchtype=author&amp;query=Aniol%2C+K">K. Aniol</a>, <a href="/search/?searchtype=author&amp;query=Annand%2C+J+R+M">J. R. M. Annand</a>, <a href="/search/?searchtype=author&amp;query=Averett%2C+T">T. Averett</a>, <a href="/search/?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/?searchtype=author&amp;query=Bertozzi%2C+W">W. Bertozzi</a>, <a href="/search/?searchtype=author&amp;query=Bradshaw%2C+P+C">P. C. Bradshaw</a>, <a href="/search/?searchtype=author&amp;query=Bosted%2C+P">P. Bosted</a>, <a href="/search/?searchtype=author&amp;query=Camsonne%2C+A">A. Camsonne</a>, <a href="/search/?searchtype=author&amp;query=Canan%2C+M">M. Canan</a>, <a href="/search/?searchtype=author&amp;query=Cates%2C+G+D">G. D. Cates</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+J+-">J. -P. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+W">W. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chirapatpimol%2C+K">K. Chirapatpimol</a>, <a href="/search/?searchtype=author&amp;query=Chudakov%2C+E">E. Chudakov</a>, <a href="/search/?searchtype=author&amp;query=Cisbani%2C+E">E. Cisbani</a>, <a href="/search/?searchtype=author&amp;query=Cornejo%2C+J+C">J. C. Cornejo</a>, <a href="/search/?searchtype=author&amp;query=Cusanno%2C+F">F. Cusanno</a>, <a href="/search/?searchtype=author&amp;query=Dalton%2C+M+M">M. M. Dalton</a>, <a href="/search/?searchtype=author&amp;query=Deconinck%2C+W">W. Deconinck</a>, <a href="/search/?searchtype=author&amp;query=de+Jager%2C+C+W">C. W. de Jager</a>, <a href="/search/?searchtype=author&amp;query=De+Leo%2C+R">R. De Leo</a>, <a href="/search/?searchtype=author&amp;query=Deng%2C+X">X. Deng</a> , et al. (93 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02350v2-abstract-short" style="display: inline;"> The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{\prime}蟺^{\pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9\,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0.12 &lt; x_{bj} &lt; 0.45$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02350v2-abstract-full').style.display = 'inline'; document.getElementById('1610.02350v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02350v2-abstract-full" style="display: none;"> The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{\prime}蟺^{\pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9\,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0.12 &lt; x_{bj} &lt; 0.45$, $1 &lt; Q^2 &lt; 4 \, \textrm{(GeV/c)}^2$, $0.45 &lt; z_{h} &lt; 0.65$, and $0.05 &lt; P_t &lt; 0.55 \, \textrm{GeV/c}$. The extracted SIDIS differential cross sections of $蟺^{\pm}$ production are compared with existing phenomenological models while the $^3$He nucleus approximated as two protons and one neutron in a plane wave picture, in multi-dimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02350v2-abstract-full').style.display = 'none'; document.getElementById('1610.02350v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 95, 035209 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.09408">arXiv:1606.09408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.09408">pdf</a>, <a href="https://arxiv.org/format/1606.09408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Contino%2C+R">R. Contino</a>, <a href="/search/?searchtype=author&amp;query=Curtin%2C+D">D. Curtin</a>, <a href="/search/?searchtype=author&amp;query=Katz%2C+A">A. Katz</a>, <a href="/search/?searchtype=author&amp;query=Mangano%2C+M+L">M. L. Mangano</a>, <a href="/search/?searchtype=author&amp;query=Panico%2C+G">G. Panico</a>, <a href="/search/?searchtype=author&amp;query=Ramsey-Musolf%2C+M+J">M. J. Ramsey-Musolf</a>, <a href="/search/?searchtype=author&amp;query=Zanderighi%2C+G">G. Zanderighi</a>, <a href="/search/?searchtype=author&amp;query=Anastasiou%2C+C">C. Anastasiou</a>, <a href="/search/?searchtype=author&amp;query=Astill%2C+W">W. Astill</a>, <a href="/search/?searchtype=author&amp;query=Bambhaniya%2C+G">G. Bambhaniya</a>, <a href="/search/?searchtype=author&amp;query=Behr%2C+J+K">J. K. Behr</a>, <a href="/search/?searchtype=author&amp;query=Bizon%2C+W">W. Bizon</a>, <a href="/search/?searchtype=author&amp;query=Dev%2C+P+S+B">P. S. Bhupal Dev</a>, <a href="/search/?searchtype=author&amp;query=Bortoletto%2C+D">D. Bortoletto</a>, <a href="/search/?searchtype=author&amp;query=Buttazzo%2C+D">D. Buttazzo</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+Q+-">Q. -H. Cao</a>, <a href="/search/?searchtype=author&amp;query=Caola%2C+F">F. Caola</a>, <a href="/search/?searchtype=author&amp;query=Chakrabortty%2C+J">J. Chakrabortty</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C+-">C. -Y. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+S+-">S. -L. Chen</a>, <a href="/search/?searchtype=author&amp;query=de+Florian%2C+D">D. de Florian</a>, <a href="/search/?searchtype=author&amp;query=Dulat%2C+F">F. Dulat</a>, <a href="/search/?searchtype=author&amp;query=Englert%2C+C">C. Englert</a>, <a href="/search/?searchtype=author&amp;query=Frost%2C+J+A">J. A. Frost</a>, <a href="/search/?searchtype=author&amp;query=Fuks%2C+B">B. Fuks</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.09408v1-abstract-short" style="display: inline;"> This report summarises the physics opportunities for the study of Higgs bosons and the dynamics of electroweak symmetry breaking at the 100 TeV pp collider. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.09408v1-abstract-full" style="display: none;"> This report summarises the physics opportunities for the study of Higgs bosons and the dynamics of electroweak symmetry breaking at the 100 TeV pp collider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.09408v1-abstract-full').style.display = 'none'; document.getElementById('1606.09408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">187 pages, 94 figures. Chapter 2 of the &#34;Physics at the FCC-hh&#34; Report</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2016-113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.02297">arXiv:1604.02297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.02297">pdf</a>, <a href="https://arxiv.org/ps/1604.02297">ps</a>, <a href="https://arxiv.org/format/1604.02297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphoton.2016.161">10.1038/nphoton.2016.161 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental realization of optomechanically induced non-reciprocity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shen%2C+Z">Z. Shen</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-">Y. -L. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/?searchtype=author&amp;query=Zou%2C+C+-">C. -L. Zou</a>, <a href="/search/?searchtype=author&amp;query=Xiao%2C+Y+-">Y. -F. Xiao</a>, <a href="/search/?searchtype=author&amp;query=Zou%2C+X+-">X. -B. Zou</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+F+-">F. -W. Sun</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+G+-">G. -C. Guo</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+C+-">C. -H. Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.02297v1-abstract-short" style="display: inline;"> Non-reciprocal devices, such as circulators and isolators, are indispensable components in classical and quantum information processing in an integrated photonic circuit. Aside from those applications, the non-reciprocal phase shift is of fundamental interest for exploring exotic topological photonics, such as the realization of chiral edge states and topological protection. However, incorporating&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02297v1-abstract-full').style.display = 'inline'; document.getElementById('1604.02297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.02297v1-abstract-full" style="display: none;"> Non-reciprocal devices, such as circulators and isolators, are indispensable components in classical and quantum information processing in an integrated photonic circuit. Aside from those applications, the non-reciprocal phase shift is of fundamental interest for exploring exotic topological photonics, such as the realization of chiral edge states and topological protection. However, incorporating low optical-loss magnetic materials into a photonic chip is technically challenging. In this study, we experimentally demonstrate non-magnetic non-reciprocity using optomechanical interactions in a whispering-gallery microresonator, as proposed by Hafezi and Rabl. Optomechanically induced non-reciprocal transparency and amplification are observed, and a non-reciprocal phase shift of up to 40 degrees is demonstrated in this study. The results of this study represent an important step towards integrated all-optical controllable isolators and circulators, as well as non-reciprocal phase shifters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02297v1-abstract-full').style.display = 'none'; document.getElementById('1604.02297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 Figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+-&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10