CINXE.COM

induction in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> induction in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> induction </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3484/#Item_15" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <blockquote> <p>This entry is about induction in the sense of <a class="existingWikiWord" href="/nlab/show/logic">logic</a>. For induction (functors) in <a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a> see <em><a class="existingWikiWord" href="/nlab/show/induced+module">induced module</a></em>, <em><a class="existingWikiWord" href="/nlab/show/induced+comodule">induced comodule</a></em>, <em><a class="existingWikiWord" href="/nlab/show/cohomological+induction">cohomological induction</a></em>.</p> </blockquote> <hr /> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="deduction_and_induction">Deduction and Induction</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/deductive+reasoning">deductive reasoning</a></strong>, <a class="existingWikiWord" href="/nlab/show/deduction">deduction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sequent">sequent</a></p> <p><a class="existingWikiWord" href="/nlab/show/hypothesis">hypothesis</a>/<a class="existingWikiWord" href="/nlab/show/context">context</a>/<a class="existingWikiWord" href="/nlab/show/antecedent">antecedent</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_77a3b8c239221bcb6b2f5d78b1dd70489c654f80_1"><semantics><mrow><mo>⊢</mo></mrow><annotation encoding="application/x-tex">\vdash</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/conclusion">conclusion</a>/<a class="existingWikiWord" href="/nlab/show/consequence">consequence</a>/<a class="existingWikiWord" href="/nlab/show/succedent">succedent</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/logical+framework">logical framework</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/deductive+system">deductive system</a>,</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+deduction">natural deduction</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/type+theory">type theory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequent+calculus">sequent calculus</a></p> </li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/inductive+reasoning">inductive reasoning</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/induction">induction</a>, <a class="existingWikiWord" href="/nlab/show/recursion">recursion</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inductive+type">inductive type</a>, <a class="existingWikiWord" href="/nlab/show/higher+inductive+type">higher inductive type</a></p> </li> </ul></div></div> <h4 id="induction">Induction</h4> <div class="hide"><div> <ul> <li><strong><a class="existingWikiWord" href="/nlab/show/inductive+type">inductive type</a></strong></li> <li><strong><a class="existingWikiWord" href="/nlab/show/higher+inductive+type">higher inductive type</a></strong></li> <li><strong><a class="existingWikiWord" href="/nlab/show/coinductive+type">coinductive type</a></strong></li> </ul> <h2 id="sidebar_rules">Rules</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/induction">induction</a>, <a class="existingWikiWord" href="/nlab/show/coinduction">coinduction</a></li> <li><a class="existingWikiWord" href="/nlab/show/recursion">recursion</a>, <a class="existingWikiWord" href="/nlab/show/corecursion">corecursion</a></li> </ul> <h2 id="sidebar_categorical_semantics">Categorical semantics</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/initial+algebra+of+an+endofunctor">initial algebra of an endofunctor</a>, <a class="existingWikiWord" href="/nlab/show/terminal+coalgebra+of+an+endofunctor">terminal coalgebra of an endofunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/initial+algebra+of+a+presentable+%E2%88%9E-monad">initial algebra of a presentable ∞-monad</a></p> </li> </ul> <h2 id="sidebar_examples">Examples</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+numbers+object">natural numbers object</a>, <a class="existingWikiWord" href="/nlab/show/natural+numbers+type">natural numbers type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/list">list</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/identity+type">identity type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/W-type">W-type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+type">circle type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/interval+type">interval type</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#formalization'>Formalization</a></li> <ul> <li><a href='#by_initial_algebras_over_endofunctors'>By initial algebras over endofunctors</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The <strong>principle of induction</strong> says that if a property of the <a class="existingWikiWord" href="/nlab/show/natural+numbers">natural numbers</a></p> <ol> <li> <p>is <a class="existingWikiWord" href="/nlab/show/true">true</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">0 \in \mathbb{N}</annotation></semantics></math>;</p> </li> <li> <p>if it is true for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math> then it is true for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n+1</annotation></semantics></math>;</p> </li> </ol> <p>then it is true for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>. The intuitive notion of a property is in practical mathematics identified with (belonging to) a subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">S\subseteq\mathbb{N}</annotation></semantics></math>. Thus the mathematical induction says that if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">0\in S</annotation></semantics></math> and if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∀</mo><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\forall n\in\mathbb{N}</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>S</mi><mo>⇒</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>∈</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">n\in S\implies n+1\in S</annotation></semantics></math> then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>=</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">S = \mathbb{N}</annotation></semantics></math>. This is the way in the formal Dedekind-Peano arithmetics. Usually in logic one however uses a weaker form of induction which can be stated in a first order language (or in a type theory), namely where one limits to properties given by the predicates <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(n)</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/dependent+type">depending</a> on natural numbers. The corresponding conclusion is the <a class="existingWikiWord" href="/nlab/show/proposition">proposition</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi><mo>⊢</mo><mi>P</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">n \in \mathbb{N} \vdash P(n)</annotation></semantics></math>. The latter version of the principle of induction is weaker because there are only <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℵ</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">\aleph_0</annotation></semantics></math> predicates but <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mn>2</mn> <mrow><msub><mi>ℵ</mi> <mn>0</mn></msub></mrow></msup></mrow><annotation encoding="application/x-tex">2^{\aleph_0}</annotation></semantics></math> subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math>.</p> <p>When formulated in one of the formalizations below, one finds that the principle of induction for propositions depending on natural numbers is the simplest special case of a very general notion of induction over <em><a class="existingWikiWord" href="/nlab/show/inductive+types">inductive types</a></em>. Other examples are induction over <a class="existingWikiWord" href="/nlab/show/lists">lists</a>, <a class="existingWikiWord" href="/nlab/show/trees">trees</a>, terms in a <a class="existingWikiWord" href="/nlab/show/logic">logic</a>, and so on.</p> <p>The <a class="existingWikiWord" href="/nlab/show/duality">dual</a> notion is that of <em><a class="existingWikiWord" href="/nlab/show/coinduction">coinduction</a></em>.</p> <h2 id="formalization">Formalization</h2> <h3 id="by_initial_algebras_over_endofunctors">By initial algebras over endofunctors</h3> <p>The induction principle may neatly be formalized in terms of the notion of <a class="existingWikiWord" href="/nlab/show/initial+algebras+of+an+endofunctor">initial algebras of an endofunctor</a>.</p> <p>In the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/Set">Set</a>, the <a class="existingWikiWord" href="/nlab/show/initial+algebra">initial algebra</a> <a class="existingWikiWord" href="/nlab/show/algebra+for+an+endofunctor">for the endofunctor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>X</mi><mo>→</mo><mn>1</mn><mo>+</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">F: X \to 1 + X</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">⟨</mo><mn>0</mn><mo>,</mo><mi>s</mi><mo stretchy="false">⟩</mo><mo>:</mo><mn>1</mn><mo>+</mo><mi>ℕ</mi><mo>→</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\langle 0, s \rangle : 1 + \mathbb{N} \to \mathbb{N}</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math> is the set of <a class="existingWikiWord" href="/nlab/show/natural+numbers">natural numbers</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math> is the smallest natural number, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/successor">successor</a> operation.</p> <p>In terms of this the <strong>principle of induction</strong> is equivalent to saying that there is no proper <a class="existingWikiWord" href="/nlab/show/subobject">subalgebra</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math>; that is, the only subalgebra is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math> itself. This follows from the general property of <a class="existingWikiWord" href="/nlab/show/initial+objects">initial objects</a> that <a class="existingWikiWord" href="/nlab/show/monomorphisms">monomorphisms</a> to them are <a class="existingWikiWord" href="/nlab/show/isomorphisms">isomorphisms</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/transfinite+induction">transfinite induction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/deduction">deduction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inductive+type">inductive type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inductive+definition">inductive definition</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/recursion">recursion</a></p> </li> </ul> <h2 id="references">References</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ji%C5%99%C3%AD+Ad%C3%A1mek">Jiří Adámek</a>, Stefan Milius, Lawrence Moss, <em>Initial algebras and terminal coalgebras: a survey</em> (<a href="https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf">pdf</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bart+Jacobs">Bart Jacobs</a>, Jan Rutten, <em>A tutorial on (co)algebras and (co)induction</em>, <a href="http://www.cs.ru.nl/~bart/PAPERS/JR.pdf">pdf</a> EATCS Bulletin (1997); extended and updated version: <em>An introduction to (co)algebras and (co)induction</em>, In: D. Sangiorgi and J. Rutten (eds), Advanced topics in bisimulation and coinduction, p.38-99, 2011, <a href="http://www.cwi.nl/~janr/papers/files-of-papers/2011_Jacobs_Rutten_new.pdf">pdf</a> 62 pp.</p> </li> <li> <p>Ch. 3, Formal arithmetics, in: Elliott Mendelson, <em>Introduction to mathematical logic</em>, D. Van Nostrad 1964</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on June 17, 2022 at 22:58:05. See the <a href="/nlab/history/induction" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/induction" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3484/#Item_15">Discuss</a><span class="backintime"><a href="/nlab/revision/induction/20" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/induction" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/induction" accesskey="S" class="navlink" id="history" rel="nofollow">History (20 revisions)</a> <a href="/nlab/show/induction/cite" style="color: black">Cite</a> <a href="/nlab/print/induction" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/induction" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10