CINXE.COM

Search results for: neurodegeneration

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neurodegeneration</title> <meta name="description" content="Search results for: neurodegeneration"> <meta name="keywords" content="neurodegeneration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neurodegeneration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neurodegeneration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 46</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neurodegeneration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Histological Evaluation of the Neuroprotective Roles of Trans Cinnamaldehyde against High Fat Diet and Streptozotozin Induced Neurodegeneration in Wistar Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samson%20Ehindero">Samson Ehindero</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwole%20Akinola"> Oluwole Akinola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substantial evidence has shown an association between type 2 diabetes (T2D) and cognitive decline, Trans Cinnamaldehyde (TCA) has been shown to have many potent pharmacological properties. In this present study, we are currently investigating the effects of TCA on type II diabetes-induced neurodegeneration. Neurodegeneration was induced in forty (40) adult wistar rats using high fat diet (HFD) for 4 months followed by low dose of streptozotocin (STZ) (40 mg/kg, i.p.) administration. TCA was administered orally for 30 days at the doses of 40mg/kg and 60mg/kg body weight. Animals were randomized and divided into following groups; A- control group, B- diabetic group, C- TCA (high dose), D- diabetic + TCA (high dose), E- diabetic + TCA (high dose) with high fat diet, F- TCA Low dose, G- diabetic + TCA (low dose) and H- diabetic + TCA (low dose) with high fat diet. Animals were subjected to behavioral tests followed by histological studies of the hippocampus. Demented rats showed impaired behavior in Y- Maze test compared to treated and control groups. Trans Cinnamaldehyde restores the histo architecture of the hippocampus of demented rats. This present study demonstrates that treatment with trans- cinnamaldehyde improves behavioral deficits, restores cellular histo architecture in rat models of neurodegeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title="neurodegeneration">neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=trans%20cinnamaldehyde" title=" trans cinnamaldehyde"> trans cinnamaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a>, <a href="https://publications.waset.org/abstracts/search?q=streptozotocin" title=" streptozotocin "> streptozotocin </a> </p> <a href="https://publications.waset.org/abstracts/131178/histological-evaluation-of-the-neuroprotective-roles-of-trans-cinnamaldehyde-against-high-fat-diet-and-streptozotozin-induced-neurodegeneration-in-wistar-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Peripheral Inflammation and Neurodegeneration; A Potential for Therapeutic Intervention in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lourdes%20Hanna">Lourdes Hanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Poluyi"> Edward Poluyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chibuikem%20Ikwuegbuenyi"> Chibuikem Ikwuegbuenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eghosa%20Morgan"> Eghosa Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Imaguezegie"> Grace Imaguezegie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments. Main body: Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neu-ronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not the same finding. Conclusion: Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intervention" title="intervention">intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a> </p> <a href="https://publications.waset.org/abstracts/153806/peripheral-inflammation-and-neurodegeneration-a-potential-for-therapeutic-intervention-in-alzheimers-disease-parkinsons-disease-and-amyotrophic-lateral-sclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Envy and Schadenfreude Domains in a Model of Neurodegeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hernando%20Santamar%C3%ADa-Garc%C3%ADa">Hernando Santamaría-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20B%C3%A1ez"> Sandra Báez</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Reyes"> Pablo Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Santamar%C3%ADa-Garc%C3%ADa"> José Santamaría-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Matallana"> Diana Matallana</a>, <a href="https://publications.waset.org/abstracts/search?q=Adolfo%20Garc%C3%ADa"> Adolfo García</a>, <a href="https://publications.waset.org/abstracts/search?q=Agust%C3%ADn%20Iba%C3%B1ez"> Agustín Ibañez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of moral emotions (i.e., Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as monolithic domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested 20 patients with behavioral variant frontotemporal dementia (bvFTD), 24 patients with Alzheimer’s disease (AD), as a contrastive neurodegeneration model, and 20 healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the AD and control groups, bvFTD patients obtained significantly higher scores on all dimensions for both emotions. Interestingly, the legal dimension for both envy and Schadenfreude elicited higher emotional scores than the deservingness and moral dimensions. Furthermore, correlational analyses in bvFTD showed that higher envy and Schadenfreude scores were associated with greater deficits in social cognition, inhibitory control, and behavior. Brain anatomy findings (restricted to bvFTD and controls) confirmed differences in how these groups process each dimension. Schadenfreude was associated with the ventral striatum in all subjects. Also, in bvFTD patients, increased Schadenfreude across dimensions was negatively correlated with regions supporting social-value rewards, mentalizing, and social cognition (frontal pole, temporal pole, angular gyrus and precuneus). In all subjects, all dimensions of envy positively correlated with the volume of the anterior cingulate cortex, a region involved in processing unfair social comparisons. By contrast, in bvFTD patients, the intensified experience of envy across all dimensions was negatively correlated with a set of areas subserving social cognition, including the prefrontal cortex, the parahippocampus, and the amygdala. Together, the present results provide the first lesion-based evidence for the multidimensional nature of the emotional experiences of envy and Schadenfreude. Moreover, this is the first demonstration of a selective exacerbation of envy and Schadenfreude in bvFTD patients, probably triggered by atrophy to social cognition networks. Our results offer new insights into the mechanisms subserving complex emotions and moral cognition in neurodegeneration, paving the way for groundbreaking research on their interaction with other cognitive, social, and emotional processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20cognition" title="social cognition">social cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=moral%20emotions" title=" moral emotions"> moral emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroimaging" title=" neuroimaging"> neuroimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=frontotemporal%20dementia" title=" frontotemporal dementia"> frontotemporal dementia</a> </p> <a href="https://publications.waset.org/abstracts/75106/envy-and-schadenfreude-domains-in-a-model-of-neurodegeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Maresin Like 1 Treatment: Curbing the Pathogenesis of Behavioral Dysfunction and Neurodegeneration in Alzheimer&#039;s Disease Mouse Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lu">Yan Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Hong"> Song Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Janakiraman%20Udaiyappan"> Janakiraman Udaiyappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarti%20Nagayach"> Aarti Nagayach</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc-Viet%20A.%20Duong"> Quoc-Viet A. Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Masao%20Morita"> Masao Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun%20Saito"> Shun Saito</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuichi%20Kobayashi"> Yuichi Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhai"> Yuhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao"> Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongying%20Peng"> Hongying Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20B.%20Pham"> Nicholas B. Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20J%20Lukiw"> Walter J Lukiw</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20A.%20Vuong"> Christopher A. Vuong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20G.%20Bazan"> Nicolas G. Bazan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Neurodegeneration and behavior dysfunction occurs in patients with Alzheimer's Disease (AD), and as the disease progresses many patients develop cognitive impairment. 5XFAD mouse model of AD is widely used to study AD pathogenesis and treatment. This study aimed to investigate the effect of maresin like 1 (MaR-L1) treatment in AD pathology using 5XFAD mice. Methods: We tested 12-month-old male 5XFAD mice and wild type control mice treated with MaR-L1 in a battery of behavioral tasks. We performed open field test, beam walking test, clasping test, inverted grid test, acetone test, marble burring test, elevated plus maze test, cross maze test and novel object recognition test. We also studied neuronal loss, amyloid β burden, and inflammation in the brains of 5XFAD mice using immunohistology and Western blotting. Results: MaR-L1 treatment to the 5XFAD mice showed improved cognitive function of 5XFAD mice. MaR-L1 showed decreased anxiety behavior in open field test and marble burring test, increased muscular strength in the beam walking test, clasping test and inverted grid test. Cognitive function was improved in MaR-L1 treated 5XFAD mice in the novel object recognition test. MaR-L1 prevented neuronal loss and aberrant inflammation. Conclusion: Our finding suggests that behavioral abnormalities were normalized by the administration of MaR-L1 and the neuroprotective role of MaR-L1 in the AD. It also indicates that MaR-L1 treatment is able to prevent and or ameliorate neuronal loss and aberrant inflammation. Further experiments to validate the results are warranted using other AD models in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20and%20cognitive%20behavior" title=" motor and cognitive behavior"> motor and cognitive behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=5XFAD%20mice" title=" 5XFAD mice"> 5XFAD mice</a>, <a href="https://publications.waset.org/abstracts/search?q=Maresin%20Like%201" title=" Maresin Like 1"> Maresin Like 1</a>, <a href="https://publications.waset.org/abstracts/search?q=microglial%20cell" title=" microglial cell"> microglial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=astrocyte" title=" astrocyte"> astrocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution%20of%20inflammation" title=" resolution of inflammation"> resolution of inflammation</a> </p> <a href="https://publications.waset.org/abstracts/131955/maresin-like-1-treatment-curbing-the-pathogenesis-of-behavioral-dysfunction-and-neurodegeneration-in-alzheimers-disease-mouse-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huafeng%20Wei">Huafeng Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer" title="alzheimer">alzheimer</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20dysfunction" title=" cognitive dysfunction"> cognitive dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=dementia" title=" dementia"> dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=neurogenesis" title=" neurogenesis"> neurogenesis</a> </p> <a href="https://publications.waset.org/abstracts/136963/targeting-calcium-dysregulation-for-treatment-of-dementia-in-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakina%20Fatima">Sakina Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph-Patrick%20W.%20E.%20Clarke"> Joseph-Patrick W. E. Clarke</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20A.%20Thibault"> Patricia A. Thibault</a>, <a href="https://publications.waset.org/abstracts/search?q=Subha%20Kalyaanamoorthy"> Subha Kalyaanamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Levin"> Michael Levin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravindhan%20Ganesan"> Aravindhan Ganesan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hnRNPA1" title="hnRNPA1">hnRNPA1</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-binding%20proteins" title=" RNA-binding proteins"> RNA-binding proteins</a> </p> <a href="https://publications.waset.org/abstracts/155246/molecular-interactions-driving-rna-binding-to-hnrnpa1-implicated-in-neurodegeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tivani%20Phosa%20Mashamba-Thompson">Tivani Phosa Mashamba-Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20E.%20S.%20Soliman"> Mahmoud E. S. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathepsin%20B" title="cathepsin B">cathepsin B</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold%20hopping" title=" scaffold hopping"> scaffold hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=binding-free%20energy" title=" binding-free energy"> binding-free energy</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegerative%20diseases" title=" neurodegerative diseases"> neurodegerative diseases</a> </p> <a href="https://publications.waset.org/abstracts/14127/insight-into-the-binding-theme-of-ca-074me-to-cathepsin-b-molecular-dynamics-simulations-and-scaffold-hopping-to-identify-potential-analogues-as-anti-neurodegenerative-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Characterization and Correlation of Neurodegeneration and Biological Markers of Model Mice with Traumatic Brain Injury and Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20DeBoard">J. DeBoard</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Dietrich"> R. Dietrich</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hughes"> J. Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yurko"> K. Yurko</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Harms"> G. Harms</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is a predominant type of dementia and is likely a major cause of neural network impairment. The pathogenesis of this neurodegenerative disorder has yet to be fully elucidated. There are currently no known cures for the disease, and the best hope is to be able to detect it early enough to impede its progress. Beyond age and genetics, another prevalent risk factor for AD might be traumatic brain injury (TBI), which has similar neurodegenerative hallmarks. Our research focuses on obtaining information and methods to be able to predict when neurodegenerative effects might occur at a clinical level by observation of events at a cellular and molecular level in model mice. First, we wish to introduce our evidence that brain damage can be observed via brain imaging prior to the noticeable loss of neuromuscular control in model mice of AD. We then show our evidence that some blood biomarkers might be able to be early predictors of AD in the same model mice. Thus, we were interested to see if we might be able to predict which mice might show long-term neurodegenerative effects due to differing degrees of TBI and what level of TBI causes further damage and earlier death to the AD model mice. Upon application of TBIs via an apparatus to effectively induce extremely mild to mild TBIs, wild-type (WT) mice and AD mouse models were tested for cognition, neuromuscular control, olfactory ability, blood biomarkers, and brain imaging. Experiments are currently still in process, and more results are therefore forthcoming. Preliminary data suggest that neuromotor control diminishes as well as olfactory function for both AD and WT mice after the administration of five consecutive mild TBIs. Also, seizure activity increases significantly for both AD and WT after the administration of the five TBI treatment. If future data supports these findings, important implications about the effect of TBI on those at risk for AD might be possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20biomarker" title=" blood biomarker"> blood biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20control" title=" neuromuscular control"> neuromuscular control</a>, <a href="https://publications.waset.org/abstracts/search?q=olfaction" title=" olfaction"> olfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a> </p> <a href="https://publications.waset.org/abstracts/131616/characterization-and-correlation-of-neurodegeneration-and-biological-markers-of-model-mice-with-traumatic-brain-injury-and-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Involvement of Nrf2 in Kolaviron-Mediated Attenuation of Behavioural Incompetence and Neurodegeneration in a Murine Model of Parkinson&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20E.%20Mustapha">Yusuf E. Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Inioluwa%20A%20Akindoyeni"> Inioluwa A Akindoyeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatoyin%20G.%20Ezekiel"> Oluwatoyin G. Ezekiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeoluwa%20O.%20Awogbindin"> Ifeoluwa O. Awogbindin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebenezer%20O.%20Farombi"> Ebenezer O. Farombi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Parkinson's disease (PD) is the most prevalent motor disorder. Available therapies are palliative with no effect on disease progression. Kolaviron (KV), a natural anti-inflammatory and antioxidant agent, has been reported to possess neuroprotective effects in Parkinsonian flies and rats. Objective: The present study investigates the neuroprotective effect of KV, focusing on the DJ1/Nrf2 signaling pathway. Methodology: All-trans retinoic acid (ATRA, 10 mg/kg, i.p.) was used to inhibit Nrf2. Murine model of PD was established with four doses of MPTP (20 mg/kg i.p.) at 2 hours interval. MPTP mice were pre-treated with either KV (200 mg/kg/day p.o), ATRA, or both conditions for seven days before PD induction. Motor behaviour was evaluated, and markers of oxidative stress/damage and its regulators were assessed with immunofluorescence and ELISA techniques. Results: MPTP-treated mice covered less distance with reduced numbers of anticlockwise rotations, heightened freezing, and prolonged immobility when compared to control. However, KV significantly attenuated these deficits. Pretreatment of MPTP mice with KV upregulated Nrf2 expression beyond MPTP level with a remarkable reduction in Keap1 expression and marked elevation of DJ-1 level, whereas co-administration with ATRA abrogated these effects. KV treatment restored MPTP-mediated depletion of endogenous antioxidant, striatal oxidative stress, oxidative damage, and inhibition of acetylcholinesterase activity. However, ATRA treatment potentiated acetylcholinesterase inhibition and attenuated the protective effect of KV on the level of nitric oxide and activities of catalase and superoxide dismutase. Conclusion: Kolaviron protects Parkinsonian mice by stabilizing and activating the Nrf2 signaling pathway. Thus, kolaviron can be explored as a pharmacological lead in PD management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Garcinia%20kola" title="Garcinia kola">Garcinia kola</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolaviron" title=" Kolaviron"> Kolaviron</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%20Disease" title=" Parkinson Disease"> Parkinson Disease</a>, <a href="https://publications.waset.org/abstracts/search?q=Nrf2" title=" Nrf2"> Nrf2</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20incompetence" title=" behavioral incompetence"> behavioral incompetence</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a> </p> <a href="https://publications.waset.org/abstracts/129217/involvement-of-nrf2-in-kolaviron-mediated-attenuation-of-behavioural-incompetence-and-neurodegeneration-in-a-murine-model-of-parkinsons-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Sotoudeheian">Mohammadjavad Sotoudeheian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mTORC1" title="mTORC1">mTORC1</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=PI3K" title=" PI3K"> PI3K</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a> </p> <a href="https://publications.waset.org/abstracts/162174/il6pi3kmtorgfap-molecular-pathway-role-in-covid-19-induced-neurodegenerative-autophagy-impacts-and-relatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Innate Immune Dysfunction in Niemann Pick Disease Type C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Newman">Stephanie Newman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Niemann-Pick Type C disease is a rare, usually fatal lysosomal storage disorder. Although clinically characterized by progressive neurodegeneration, there is also evidence of altered innate immune responses such as neuroinflammation that promote disease progression. We have initiated an investigation into whether phagocytosis, an important innate immune activity and the process by which particles are ingested is defective in NPC. Using an in vitro assay, we have shown that NPC macrophages have a deficiency in the phagocytosis of different particles. We plan to investigate the mechanistic basis for impaired phagocytosis, the contribution that this deficiency makes to disease pathology, and whether therapies that have shown in vivo benefit are able to restore phagocytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niemann%20Pick%20Disease%20C" title="Niemann Pick Disease C">Niemann Pick Disease C</a>, <a href="https://publications.waset.org/abstracts/search?q=phagocytosis" title=" phagocytosis"> phagocytosis</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunity" title=" innate immunity"> innate immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=lysosomal%20storage%20disorder" title=" lysosomal storage disorder "> lysosomal storage disorder </a> </p> <a href="https://publications.waset.org/abstracts/34154/innate-immune-dysfunction-in-niemann-pick-disease-type-c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Epigallocatechin Gallate Protects against Oxidative Stress-Mediated Neurotoxicity and Hippocampus Dysfunction Induced by Fluoride in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thangapandiyan">S. Thangapandiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Miltonprabu"> S. Miltonprabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fl (Fl) exposure engenders neurodegeneration and induces oxidative stress in the brain. The Neuroprotective role of EGCG on oxidative stress-mediated neurotoxicity in Fl intoxicated rat hippocampus has not yet been explored so far. Hence, the present study is focused on witnessing whether EGCG (40mg/kg) supplementation prevents Fl induced oxidative stress in the brain of rats with special emphasis on the hippocampus. Fl (25mg/kg) intoxication for four weeks in rats showed an increase in Fl concentration along with the decrease the AChE, NP, DA, and 5-HT activity in the brain. The oxidative stress markers (ROS, TBARS, NO, and PC) were significantly increased with decreased enzymatic (SOD, CAT, GPx, GR, GST, and G6PD) and non-enzymatic antioxidants (GSH, TSH, and Vit.C) in Fl intoxicated rat hippocampus. Moreover, Fl intoxicated rats exhibited an intrinsic and extrinsic pathway mediated apoptosis in the hippocampus of rats. Fl intoxication significantly increased the DNA damage as evidenced by increased DNA fragmentation. Furthermore, the toxic impact of Fl on hippocampus was also proved by the immunohistochemical, histological, and ultrastructural studies. Pre-administration of EGCG has significantly protected the Fl induced oxidative stress, biochemical changes, cellular apoptotic, and histological alternations in the hippocampus of rats. In conclusion, EGCG supplementation significantly attenuated the Fl induced oxidative stress mediated neurotoxicity via its free radical scavenging and antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=hippocampal" title=" hippocampal"> hippocampal</a>, <a href="https://publications.waset.org/abstracts/search?q=NaF" title=" NaF"> NaF</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=EGCG" title=" EGCG"> EGCG</a> </p> <a href="https://publications.waset.org/abstracts/17597/epigallocatechin-gallate-protects-against-oxidative-stress-mediated-neurotoxicity-and-hippocampus-dysfunction-induced-by-fluoride-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> GABARAPL1 (GEC1) mRNA Expression Levels in Patients with Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bayram">Ali Bayram</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Uz"> Burak Uz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilhan%20Dolasik"> Ilhan Dolasik</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yi%C4%9Fiter"> Remzi Yiğiter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The GABARAP (GABAA-receptor-associated protein) family consists of GABARAP, GABARAPL1 (GABARAP-like 1) and GABARAPL2 (GABARAP-like 2). GABARAPL1, like GABARAP, was described to interact with both GABAA receptor and tubulin, and to be involved in intracellular GABAA receptor trafficking and promoting tubulin polymerization. In addition, GABARAPL1 is thought to be involved in various physiological (autophagosome closure, regulation of circadian rhythms) and/or pathological mechanisms (cancer, neurodegeneration). Alzheimer’s disease (AD) is a progressive neuro degenerative disorder characterized with impaired cognitive functions. Disruption of the GABAergic neuro transmission as well as cholinergic and glutamatergic interactions, may also be involved in the pathogenesis of AD. GABARAPL1 presents a regulated tissue expression and is the most expressed gene among the GABARAP family members in the central nervous system. We, herein, conducted a study to investigate the GABARAPL1 mRNA expression levels in patients with AD. 50 patients with AD and 49 control patients were enrolled to the present study. Messenger RNA expression levels of GABARAPL1 were detected by real-time polymerase chain reaction. GABARAPL1 mRNA expression in AD / control patients was 0,495 (95% confidence interval: 0,404-0,607), p= 0,00000002646. Reduced activity of GABARAPL1 gene might play a role, at least partly, in the pathophysiology of AD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=GABARAPL1" title=" GABARAPL1"> GABARAPL1</a>, <a href="https://publications.waset.org/abstracts/search?q=mRNA%20expression" title=" mRNA expression"> mRNA expression</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a> </p> <a href="https://publications.waset.org/abstracts/19029/gabarapl1-gec1-mrna-expression-levels-in-patients-with-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Synthesis and Biological Evaluation of Some Benzoxazole Derivatives as Inhibitors of Acetylcholinesterase / Butyrylcholinesterase and Tyrosinase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Temiz-Arpaci">Ozlem Temiz-Arpaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Meryem%20Tasci"> Meryem Tasci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Sezer%20Senol"> Fatma Sezer Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lkay%20Erdogan%20Orhan"> İlkay Erdogan Orhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD), a neurodegenerative disorder characterized by a progressive deterioration of memory and cognition, occurs more frequently in elderly people. Current treatment approaches in this disease with the major therapeutic strategy are based on the AChE and BChE inhibition. On the other hand, tyrosinase inhibition has become a target for the treatment of Parkinson’s disease (PD) since this enzyme may play a role in neuromelanin formation in the human brain and could be critical in the formation of dopamine neurotoxicity associated with neurodegeneration linked to PD. Also benzoxazoles are structural isosteres of natural nucleotides that can interact with biopolymers so that benzoxazoles showed a lot of different biological activities. In this study, a series of 2,5-disubstituted-benzoxazole derivatives were synthesized and were evaluated as possible inhibitors of acetylcholinesterase (AChE) / butyrylcholinesterase (BChE) and tyrosinase. The results demonstrated that the compounds exhibited a weak spectrum of AChE / BChE inhibitory activity ranging between 3.92% - 54.32% except compound 8 which showed no activity against AChE and compound 4 which showed no activity against BChE at the specified molar concentrations. Also, the compounds indicated lower than tyrosinase inhibitory activity of ranging between 8.14% - 22.90% to that of reference (kojic acid). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AChE%20and%20BChE%20inhibition" title="AChE and BChE inhibition">AChE and BChE inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=benzoxazoles" title=" benzoxazoles"> benzoxazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosinase%20inhibition" title=" tyrosinase inhibition"> tyrosinase inhibition</a> </p> <a href="https://publications.waset.org/abstracts/66790/synthesis-and-biological-evaluation-of-some-benzoxazole-derivatives-as-inhibitors-of-acetylcholinesterase-butyrylcholinesterase-and-tyrosinase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Gut-Microbiota-Brain-Axis, Leaky Gut, Leaky Brain: Pathophysiology of Second Brain Aging and Alzheimer’s Disease- A Neuroscientific Riddle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Ahmad">Bilal Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is one of the most common neurodegenerative illnesses. However, how Gut-microbiota plays a role in the pathogenesis of AD is not well elucidated. The purpose of this literature review is to summarize and understand the current findings that may elucidate the gut microbiota's role in the development of AD. Methods: A literature review of all the relevant papers known to the author was conducted. Relevant articles, abstracts and research papers were collected from well-accepted web sources like PubMed, PMC, and Google Scholar. Results: Recent studies have shown that Gut-microbiota has an important role in the progression of AD via Gut-Microbiota-Brain Axis. The onset of AD supports the ‘Hygiene Hypothesis’, which shows that AD might begin in the Gut, causing dysbiosis, which interferes with the intestinal barrier by releasing pro-inflammatory cytokines and making its way up to the brain via the blood-brain barrier (BBB). Molecular mechanisms lipopolysaccharides and serotonin kynurenine (tryptophan) pathways have a direct association with inflammation, the immune system, neurodegeneration, and AD. Conclusion: The studies helped to analyze the molecular basis of AD, other neurological conditions like depression, autism, and Parkinson's disease and how they are linked to Gut-microbiota. Further, studies to explore the therapeutic effects of probiotics in AD and cognitive enhancement should be warranted to provide significant clinical and practical value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut-microbiota" title="gut-microbiota">gut-microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20brain%20aging" title=" second brain aging"> second brain aging</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopolysaccharides" title=" lipopolysaccharides"> lipopolysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=short-chain%20fatty%20acids" title=" short-chain fatty acids"> short-chain fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/185444/gut-microbiota-brain-axis-leaky-gut-leaky-brain-pathophysiology-of-second-brain-aging-and-alzheimers-disease-a-neuroscientific-riddle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Activation of Mitophagy and Autophagy in Familial Forms of Parkinson&#039;s Disease, as a Potential Strategy for Cell Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafisa%20Komilova">Nafisa Komilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Plamena%20Angelova"> Plamena Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Abramov"> Andrey Abramov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulugbek%20Mirkhodjaev"> Ulugbek Mirkhodjaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is induced by the loss of dopaminergic neurons in the midbrain. The mechanism of neurodegeneration is associated with the aggregation of misfolded proteins, oxidative stress, and mitochondrial disfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of cytosol can activate mitophagy and autophagy, and here we used sodium pyruvate and sodium lactate in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-syn triplication, A53T) to induce changes in intracellular pH. We have found that both lactate and pyruvate in millimolar concentrations can induce short-time acidification of cytosol in these cells. It induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, the application of lactate to acute brain slices of control and Pink1 knockout mice also induced a reduction of pH in neurons and astrocytes that increase the level of mitophagy. Thus, acidification of cytosol by compounds which play important role in cell metabolism also can activate mitophagy and autophagy and protect cells in the familial form of PD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title="Parkinson&#039;s disease">Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=mutations" title=" mutations"> mutations</a>, <a href="https://publications.waset.org/abstracts/search?q=mitophagy" title=" mitophagy"> mitophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a> </p> <a href="https://publications.waset.org/abstracts/138945/activation-of-mitophagy-and-autophagy-in-familial-forms-of-parkinsons-disease-as-a-potential-strategy-for-cell-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Investigation of the Effects of Monoamine Oxidase Levels on the 20S Proteasome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavini%20Patel">Bhavini Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Aslihan%20Ugun-Klusek"> Aslihan Ugun-Klusek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Billet"> Ellen Billet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two main contributing factors to familial and idiopathic form of Parkinson’s disease (PD) are oxidative stress and altered proteolysis. Monoamine oxidase-A (MAO-A) plays a significant role in redox homeostasis by producing reactive oxygen species (ROS) via deamination of for example, dopamine. The ROS generated induces chemical modification of proteins resulting in altered biological function. The ubiquitin-proteasome system, which consists of three different types or proteolytic activity, namely “chymotrypsin-like” activity (CLA), “trypsin-like” activity (TLA) and “post acidic-like” activity (PLA), is responsible for the degradation of ubiquitinated proteins. Defects in UPS are known to be strongly correlated to PD. Herein, the effect of ROS generated by MAO-A on proteasome activity and the effects of proteasome inhibition on MAO-A protein levels in WT, mock and MAO-A overexpressed (MAO-A+) SHSY5Y neuroblastoma cell lines were investigated. The data in this study report increased proteolytic activity when MAO-A protein levels are significantly increased, in particular CLA and PLA. Additionally, 20S proteasome inhibition induced a decrease in MAO-A levels in WT and mock cells in comparison to MAO-A+ cells in which 20S proteasome inhibition induced increased MAO-A levels to be further increased at 48 hours of inhibition. This study supports the fact that MAO-A could be a potential pharmaceutical target for neuronal protection as data suggests that endogenous MAO-A levels may be essential for modulating cell death and survival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monoamine%20oxidase" title="monoamine oxidase">monoamine oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title=" Parkinson&#039;s disease"> Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=proteasome" title=" proteasome"> proteasome</a> </p> <a href="https://publications.waset.org/abstracts/122381/investigation-of-the-effects-of-monoamine-oxidase-levels-on-the-20s-proteasome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Serum Levels of Plasminogen Activator Inhibitor-1 (PAI-1) Are Increased in Alzheimer’s Disease and MCI Patients and Correlate With Cognitive Deficits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Angelucci">Francesco Angelucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Veverova"> Katerina Veverova</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%C5%BEbeta%20Katonov%C3%A1"> Alžbeta Katonová</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Piendel"> Lydia Piendel</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Vyhnalek"> Martin Vyhnalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Hort"> Jakub Hort</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by loss of memory, cognitive functions and neurodegeneration. Plasmin is an enzyme degrading many plasma proteins. In the CNS, plasmin may reduce the accumulation of A, and have other actions relevant to AD pathophysiology. Brain plasmin synthesis is regulated by two enzymes: one activating, the tissue plasminogen activator (tPA), and the other inhibiting, the plasminogen activator inhibitor-1 (PAI-1). We investigated whether tPA and PAI-1 serum levels in AD and amnestic mild cognitive impairment (aMCI) patients are altered compared to cognitively healthy controls. Moreover, we examined the PAI-1/tPA ratio in these patient groups. 40 AD, 40 aMCI and 10 healthy controls were recruited. Venous blood was collected and PAI-1 and tPA serum concentrations were quantified by sandwich ELISAs. The results showed that PAI-1 levels increased in AD and aMCI patients. This increase negatively correlated with cognitive deficit measured by MMSE. Similarly, the ratio between tPA and PAI-1 gradually increases in aMCI and AD patients. This study demonstrates that AD and aMCI patients have altered PAI-1 serum levels and PAI-1/tPA ratio. Since these enzymes are CNS regulators of plasmin, PAI-1 serum levels could be a marker reflecting a cognitive decline in AD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%20disease" title="Alzheimer disease">Alzheimer disease</a>, <a href="https://publications.waset.org/abstracts/search?q=amnestic%20mild%20cognitive%20impairment" title=" amnestic mild cognitive impairment"> amnestic mild cognitive impairment</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmin" title=" plasmin"> plasmin</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue-type%20plasminogen%20activator" title=" tissue-type plasminogen activator"> tissue-type plasminogen activator</a> </p> <a href="https://publications.waset.org/abstracts/155055/serum-levels-of-plasminogen-activator-inhibitor-1-pai-1-are-increased-in-alzheimers-disease-and-mci-patients-and-correlate-with-cognitive-deficits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Nitric Oxide: Role in Immunity and Therapeutics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anusha%20Bhardwaj">Anusha Bhardwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Shekhar%20Shinde"> Shekhar Shinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitric oxide (NO•) has been documented in research papers as one of the most versatile player in the therapeutics. It is identified as a biological multifunctional messenger molecule which is synthesized by the action of nitric oxide synthase (NOS) enzyme from L-arginine. The protective and the toxic effect in conjunction form the complete picture of the biological function of nitric oxide in humans. The dual nature is because of various factors such as concentration of NO, the isoform of NOS involved, type of cells in which it is synthesized, reaction partners like proteins, reactive oxygen intermediates, prosthetic groups, thiols etc., availability of the substrate L-arginine, intracellular environment in which NO is produced and generation of guanosine 3, 5’- cyclic monophosphate (cGMP). Activation of NOS through infection or trauma leads to one or more systemic effects including enhanced immune activity against invading pathogens, vaso/bronchodilatation in the cardiovascular and respiratory systems and altered neurotransmission which can be protective or toxic. Hence, NO affects the balance between healthy signaling and neurodegeneration in the brain. In lungs, it has beneficial effects on the function of airways as a bronchodilator and acts as the neurotransmitter of bronchodilator nerves. Whereas, on the other hand, NO may have deleterious effects by amplifying the asthmatic inflammatory response and also act as a vasodilator in the airways by increasing plasma exudation. But NOS Inhibitors and NO donors hamper the signalling pathway and hence a therapeutic application of NO is compromised. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title="nitric oxide">nitric oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=multifunctional" title=" multifunctional"> multifunctional</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20nature" title=" dual nature"> dual nature</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20applications" title=" therapeutic applications"> therapeutic applications</a> </p> <a href="https://publications.waset.org/abstracts/21561/nitric-oxide-role-in-immunity-and-therapeutics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Muscle Relaxant Dantrolene Repurposed to Treat Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huafeng%20Wei">Huafeng Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Failures of developing new drugs primarily based on the amyloid pathology hypothesis after decades of efforts internationally lead to changes of focus targeting alternative pathways of pathology in Alzheimer’s disease (AD). Disruption of intracellular Ca2+ homeostasis, especially the pathological and excessive Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) Ca2+ channels, has been considered an upstream pathology resulting in major AD pathologies, such as amyloid and Tau pathology, mitochondria damage and inflammation, etc. Therefore, dantrolene, an inhibitor of RyRs that reduces the pathological Ca2+ release from ER and a clinically available drug for the treatment of malignant hyperthermia and muscle spasm, is expected to ameliorate AD multiple pathologies synapse and cognitive dysfunction. Our own studies indicated that dantrolene ameliorated impairment of neurogenesis and synaptogenesis in neurons developed from induced pluripotent stem cells (iPSCs) originated from skin fibroblasts of either familiar (FAD) or sporadic (SAD) AD by restoring intracellular Ca2+ homeostasis. Intranasal administration of dantrolene significantly increased its passage across the blood-brain barrier (BBB) and, therefore its brain concentrations and durations. This can render dantrolene a more effective therapeutic drug with fewer side effects for chronic AD treatment. This review summarizes the potential therapeutic and side effects of dantrolene and repurposes intranasal dantrolene as a disease-modifying drug for future AD treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a>, <a href="https://publications.waset.org/abstracts/search?q=dementia" title=" dementia"> dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=neurogenesis" title=" neurogenesis"> neurogenesis</a> </p> <a href="https://publications.waset.org/abstracts/136962/muscle-relaxant-dantrolene-repurposed-to-treat-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Phyllantus nuriri Protect against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Rich Fractions of Rats Brain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Olalekan%20Elekofehinti">Olusola Olalekan Elekofehinti</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Gbadura%20Adanlawo"> Isaac Gbadura Adanlawo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joao%20Batista%20Teixeira%20Rocha"> Joao Batista Teixeira Rocha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We evaluated the potential neuroprotective effect of Phyllantus nuriri against Fe2+ and SNP induced oxidative stress in mitochondria of rats brain. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10µM) and SNP (5µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-100 µg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.54±0.01), caffeic acid (7.93±0.02), rutin (25.31±0.05), quercetin (31.28±0.03) and kaemferol (14.36±0.01). This result suggests that these phytochemicals account for the protective actions of Phyllantus nuriri against Fe2+ and SNP -induced oxidative stress. Our results show that Phyllantus nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phyllantus%20niruri" title="Phyllantus niruri">Phyllantus niruri</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprotection" title=" neuroprotection"> neuroprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=synaptosome" title=" synaptosome"> synaptosome</a> </p> <a href="https://publications.waset.org/abstracts/20633/phyllantus-nuriri-protect-against-fe2-and-snp-induced-oxidative-damage-in-mitochondrial-rich-fractions-of-rats-brain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhuvanesh%20Baniya">Bhuvanesh Baniya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holy%20basil" title="holy basil">holy basil</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20pharmacology" title=" network pharmacology"> network pharmacology</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20phytochemicals" title=" active phytochemicals"> active phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking%20and%20simulation" title=" molecular docking and simulation"> molecular docking and simulation</a> </p> <a href="https://publications.waset.org/abstracts/162002/network-pharmacological-evaluation-of-holy-basil-bioactive-phytochemicals-for-identifying-novel-potential-inhibitors-against-neurodegenerative-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Disturbed Cellular Iron Metabolism Genes in Neurodevelopmental Disorders is Different from Neurodegenerative Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20H.%20Gebril">O. H. Gebril</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Meguid"> N. A. Meguid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Iron had been a focus of interest recently as a main exaggerating factor for oxidative stresses in the central nervous system and a link to various neurological disorders is suspected. Many studies with various techniques showed evidence of disturbed iron-related proteins in the cell in human and animal models of neurodegenerative disorders. Also, linkage to significant pathological changes had been evidenced e.g. apoptosis and cell signaling. On the other hand, the role of iron in neurodevelopmental disorders is still unclear. With increasing prevalence of autism worldwide, some changes in iron parameters and its stores were documented in many studies. This study includes Haemochromatosis HFE gene polymorphisms (p.H63D and p.C282Y) and ferroportin gene (SLC40A1) Q248H polymorphism in autism and control children. Materials and Methods: Whole genome DNA was extracted; p.H63D and p.C282Y genotyping was studied using specific sequence amplification followed by restriction enzyme digestion on a sample of autism patients (25 cases) and twenty controls. Results: The p.H63D is seen more than the C282Y among both autism and control samples, with no significant association of p.H63D or p.C282Y polymorphism and autism was revealed. Also, no association with Q248H polymorphism was evidenced. Conclusion: The study results do not prove the role of cellular iron genes polymorphisms as risk factors for neurodevelopmental disorders, and in turn highlights the specificity of cellular iron related pathways in neurodegeneration. These results demand further gene expression studies to elucidate the main pathophysiological pathways that are disturbed in autism and other neurodevelopmental disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron" title="iron">iron</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodevelopmental" title=" neurodevelopmental"> neurodevelopmental</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=haemohromatosis" title=" haemohromatosis"> haemohromatosis</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroportin" title=" ferroportin"> ferroportin</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a> </p> <a href="https://publications.waset.org/abstracts/29144/disturbed-cellular-iron-metabolism-genes-in-neurodevelopmental-disorders-is-different-from-neurodegenerative-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> The Ameliorative Effects of the Histamine H3 Receptor Antagonist/Inverse Agonist DL77 on MK801-Induced Memory Deficits in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sadek">B. Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khan"> N. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreesh%20K.%20Ojha"> Shreesh K. Ojha</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Sadeq"> Adel Sadeq</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lazewska"> D. Lazewska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kiec-Kononowicz"> K. Kiec-Kononowicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The involvement of Histamine H3 receptors (H3Rs) in memory and the potential role of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD) is well established. Therefore, the memory-enhancing effects of the H3R antagonist DL77 on MK801-induced cognitive deficits were evaluated in passive avoidance paradigm (PAP) and novel object recognition (NOR) tasks in adult male rats, applying donepezil (DOZ) as a reference drug. Animals pretreated with acute systemic administration of DL77 (2.5, 5, and 10 mg/kg, i.p.) were significantly ameliorated in regard to MK801-induced memory deficits in PAP. The ameliorative effect of most effective dose of DL77 (5 mg/kg, i.p.) was abrogated when animals were pretreated with a co-injection with the H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.). Moreover, and in the NOR paradigm, DL77 (5 mg/kg, i.p.) reversed MK801-induced deficits long-term memory (LTM), and the DL77-provided procognitive effect was comparable to that of reference drug DOZ, and was reversed when animals were co-injected with RAMH (10 mg/kg, i.p.). However, DL77(5 mg/kg, i.p.) failed to alter short-term memory (STM) impairment in NOR test. Furthermore, DL77 (5 mg/kg) failed to induce any alterations of anxiety and locomotor behaviors of animals naive to elevated-plus maze (EPM), indicating that the ameliorative effects observed in PAP or NOR tests were not associated to alterations in emotions or in natural locomotion of tested animals. These results reveal the potential contribution of H3Rs in modulating CNS neurotransmission systems associated with neurodegenerative disorders, e.g., AD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=histamine%20H3%20receptor" title="histamine H3 receptor">histamine H3 receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=antagonist" title=" antagonist"> antagonist</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20and%20memory" title=" learning and memory"> learning and memory</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title=" Alzheimer&#039;s disease"> Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20avoidance%20paradigm" title=" passive avoidance paradigm"> passive avoidance paradigm</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20object%20recognition" title=" novel object recognition"> novel object recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20research" title=" behavioral research"> behavioral research</a> </p> <a href="https://publications.waset.org/abstracts/89786/the-ameliorative-effects-of-the-histamine-h3-receptor-antagonistinverse-agonist-dl77-on-mk801-induced-memory-deficits-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Examining the Relationship between Concussion and Neurodegenerative Disorders: A Review on Amyotrophic Lateral Sclerosis and Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edward%20Poluyi">Edward Poluyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eghosa%20Morgan"> Eghosa Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Poluyi"> Charles Poluyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chibuikem%20Ikwuegbuenyi"> Chibuikem Ikwuegbuenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Imaguezegie"> Grace Imaguezegie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them. Objectives : This review will discuss the available literature linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). Materials and Methods: Given the complexity of this subject, a realistic review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic. Results: Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyotrophic%20lateral%20sclerosis" title="amyotrophic lateral sclerosis">amyotrophic lateral sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title=" Alzheimer&#039;s disease"> Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20traumatic%20brain%20injury" title=" mild traumatic brain injury"> mild traumatic brain injury</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a> </p> <a href="https://publications.waset.org/abstracts/153802/examining-the-relationship-between-concussion-and-neurodegenerative-disorders-a-review-on-amyotrophic-lateral-sclerosis-and-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Cellular Senescence and Neuroinflammation Following Controlled Cortical Impact Traumatic Brain Injury in Juvenile Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20F.%20Al-Khateeb">Zahra F. Al-Khateeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Shenel%20Shekerzade"> Shenel Shekerzade</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasna%20Boumenar"> Hasna Boumenar</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%C3%A2n%20M.%20Henson"> Siân M. Henson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20L.%20Tremoleda"> Jordi L. Tremoleda</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Michael-Titus"> A. T. Michael-Titus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traumatic brain injury (TBI) is the leading cause of disability and death in young adults and also increases the risk ofneurodegeneration. The mechanisms linking moderate to severe TBI to neurodegeneration are not known. It has been proposed that cellular senescence inductionpost-injury could amplify neuroinflammation and induce long-term changes. The impact of these processes after injury to an immature brain has not been characterised yet. We carried out a controlled cortical impact injury (CCI) in juvenile 1 month-old male CD1 mice. Animals were anesthetised and received a unilateral CCI injury. The sham group received anaesthesia and had a craniotomy. A naïve group had no intervention. The brain tissue was analysed at 5 days and 35 days post-injury using immunohistochemistry and markers for microglia, astrocytes, and senescence. Compared tonaïve animals, injured mice showed an increased microglial and astrocytic reaction early post-injury, as reflected in Iba1 and GFAP markers, respectively; the GFAP increase persisted in the later phase. The senescence analysis showed a significant increase inγH2AX-53BP1 nuclear foci, 8-oxoguanine, p19ARF, p16INK4a, and p53 expression in naïve vs. sham groups and naïve vs. CCI groups, at 5 dpi. At 35 days, the difference was no longer statistically significant in all markers. The injury induced a decrease p21 expression vs. the naïve group, at 35 dpi. These results indicate the induction of a complex senescence response after immature brain injury. Some changes occur early and may reflect the activation/proliferation of non-neuronal cells post-injury that had been hindered, whereas changes such as p21 downregulation may reflect a delayed response and pro-repair processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20senescence" title="cellular senescence">cellular senescence</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20injury" title=" brain injury"> brain injury</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20cortical%20impact" title=" controlled cortical impact"> controlled cortical impact</a> </p> <a href="https://publications.waset.org/abstracts/146087/cellular-senescence-and-neuroinflammation-following-controlled-cortical-impact-traumatic-brain-injury-in-juvenile-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> SUMOylation Enhances Nurr1/1a Mediated Transactivation in a Neuronal Cell Type</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jade%20Edey">Jade Edey</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Bennett"> Andrew Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20Hathway"> Gareth Hathway</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear receptor-related 1 protein (also known as Nurr1 or NR4A2) is an orphan nuclear receptor which plays a vital role in the development, survival and maintenance of dopaminergic (DA) neurons particularly in the substantia nigra (SN). Increasing research has investigated Nurr1’s additional role within microglia and astrocytes where it has been suggested to act as a negative regulator of inflammation; potentially offering neuroprotection. Considering both DA neurodegeneration and neuroinflammation are commonly accepted constituents of Parkinson’s Disease (PD), understanding the mechanisms by which Nurr1 regulates inflammatory processes could provide an attractive therapeutic target. Nurr1 regulates inflammation via a transrepressive mechanism possibly dependent upon SUMOylation. In addition, Nurr1 can transactivate numerous genes involved in DA synthesis, such as Tyrosine Hydroxylase (TH). A C-terminal splice variant of Nurr1, Nurr-1a, has been reported in both neuronal and glial cells. However, research into its transcriptional activity is minimal. We employed in vitro methods such as SUMO-Pulldown experiments alongside Luciferase reporter assays to investigate the SUMOylation status and transactivation capabilities of Nurr1 and Nurr-1a respectively. The SUMO-Pulldown assay demonstrated Nurr-1a undergoes significantly more SUMO modification than its full-length variant. Consequently, despite having less transcriptional activation than Nurr1, Nurr1a may play a more prominent role in repression of microglial inflammation. Contrary to published literature we also identified that SUMOylation enhances transcriptional activation by Nurr1 and Nurr1a. SUMOylation-dependent increases in Nurr1 and Nurr1a transcriptional activation were only evident in neuronal SHSY5Y cells but not in HEK293 cells. This research provides novel insight into the regulation of Nurr-1a and indicates differential effects of SUMOylation dependent regulation in neuronal and inflammatory cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20receptors" title="nuclear receptors">nuclear receptors</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%E2%80%99s%20disease" title=" Parkinson’s disease"> Parkinson’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptional%20regulation" title=" transcriptional regulation"> transcriptional regulation</a> </p> <a href="https://publications.waset.org/abstracts/144056/sumoylation-enhances-nurr11a-mediated-transactivation-in-a-neuronal-cell-type" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> The Multiple Sclerosis condition and the Role of Varicella-zoster virus in its Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Asghari%20Ozma"> Mahdi Asghari Ozma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human Varicella-zoster virus (VZV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on VZV retrovirus infection in MS disease progression. For this study, the keywords "Multiple sclerosis", " Human Varicella-zoster virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles were chosen, studied, and analyzed. Analysis of the amino acid sequences of HNRNPA1 with VZV proteins has shown a 62% amino acid sequence similarity between VZV gE and the PrLD/M9 epitope region (TNPO1 binding domain) of mutant HNRNPA1. A heterogeneous nuclear ribonucleoprotein (hnRNP), which is produced by HNRNPA1, is involved in the processing and transfer of mRNA and pre-mRNA. Mutant HNRNPA1 mimics gE of VZV as an antigen that leads to autoantibody production. Mutant HnRNPA1 translocates to the cytoplasm, after aggregation is presented by MHC class I, followed by CD8 + cells. Of these, antibodies and immune cells against the gE epitopes of VZV remain due to the memory immune response, causing neurodegeneration and the development of MS in genetically predisposed individuals. VZV expression during the course of MS is present in genetically predisposed individuals with HNRNPA1 mutation, suggesting a link between VZV and MS, and that this virus may play a role in the development of MS by inducing an inflammatory state. Therefore, measures to modulate VZV expression may be effective in reducing inflammatory processes in demyelinated areas of MS patients in genetically predisposed individuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=varicella-zoster%20virus" title=" varicella-zoster virus"> varicella-zoster virus</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title=" autoimmunity"> autoimmunity</a> </p> <a href="https://publications.waset.org/abstracts/159414/the-multiple-sclerosis-condition-and-the-role-of-varicella-zoster-virus-in-its-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Mansour">Parisa Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glial%20activity" title="glial activity">glial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese-enhanced%20magnetic%20resonance%20imaging" title=" manganese-enhanced magnetic resonance imaging"> manganese-enhanced magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroarchitecture" title=" neuroarchitecture"> neuroarchitecture</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20activity" title=" neuronal activity"> neuronal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20tract%20tracing" title=" neuronal tract tracing"> neuronal tract tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20pathway" title=" visual pathway"> visual pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=eye" title=" eye"> eye</a> </p> <a href="https://publications.waset.org/abstracts/188703/the-utilization-of-manganese-enhanced-magnetic-resonance-imaging-in-the-fields-of-ophthalmology-and-visual-neuroscience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Investigation of Ameliorative Effect of a Polyphenolic Compound of Green Tea Extract against Rotenone Induced Neurotoxicity: A Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Goyal">Sandeep Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Saluja"> Sandeep Saluja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural antioxidants have major role in maintenance of health. Green tea extract principally contains epigallocatechin-3-gallate (EGCG), as its abundant antioxidant constituent. Green tea is consumed daily worldwide as antioxidant to combat CNS diseases and has traditional importance also. EGCG has neuroprotective potential in various animal models of Parkinson disease, Alzheimer’s disease etc. but its exact mechanism has not been ruled out. The present study has been designed to investigate the anti-inflammatory, antioxidant and mitochondrial modulating mechanism of neuroprotective effect of epigallocatechin-3-gallate against rodent model of rotenone induced Parkinson’s disease (PD). The behavioural alterations were assessed by using open field test apparatus, Chatilon’s grip strength test apparatus and elevated plus maze for determining the locomotor activity, grip strength and cognition respectively. Biochemically, various parameters to assess oxidative stress, neuroinflammation and neurochemical estimations were performed on rat brain homogenates. A histological examination of rat brain striatum was done to check the neurodegeneration. Epigallocatechin-3-gallate (EGCG) at 10 & 20 mg/kg, were investigated for their neuroprotective potential along with levodopa as a standard agent. Minocycline, a microglial activation inhibitor, was administered alone and in combination with EGCG. EGCG and minocycline produced ameliorative effect against rotenone induced PD like symptoms by significantly reduced behavioral, biochemical and histological alterations. Results of our study reveal the neuroprotective effect of EGCG and minocycline against rotenone induced PD. Results of our study indicate that EGCG exerted neuroprotective effect against rotenone induced PD via its antioxidant, anti-inflammatory and mitochondrial modulating mechanisms and substantiate its previously reported and traditional claims for its use in CNS diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=rotenone" title=" rotenone"> rotenone</a>, <a href="https://publications.waset.org/abstracts/search?q=EGCG" title=" EGCG"> EGCG</a> </p> <a href="https://publications.waset.org/abstracts/64973/investigation-of-ameliorative-effect-of-a-polyphenolic-compound-of-green-tea-extract-against-rotenone-induced-neurotoxicity-a-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neurodegeneration&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neurodegeneration&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10