CINXE.COM

High-Temperature Materials - Journal - SCIEPublish

<!DOCTYPE html> <html class="no-js" lang="en"> <head> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="ie=edge" /> <title>High-Temperature Materials - Journal - SCIEPublish</title> <meta name="keywords" content="SCIE Publishing, SCIEPublish, open access, fast publication" /> <meta name="description" content="SCIEPublish is an international open-access journal publishing service provider run by SCIE Publishing Limited, dedicated to supporting and inspiring scientists or institutions/societies who aspire to publish high-quality journals." /> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1.0,maximum-scale=1.0,minimum-scale=1.0"> <link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" /> <link rel="stylesheet" href="/static/css/bootstrap.css" /> <link rel="stylesheet" href="/static/font/bootstrap-icons.css"> <link rel="stylesheet" href="/static/css/lightbox.css" /> <link rel="stylesheet" href="/static/css/theme.css?74" /> <link rel="stylesheet" href="/static/css/common.css?90" /> <link rel="stylesheet" href="/static/css/ckeditorStyle.css?2" /> <link rel="stylesheet" href="/static/css/select-mania.min.css" /> <script src="/static/js/jquery-3.7.1.min.js"></script> <script src="/static/js/lightbox.js"></script> <script src="/static/js/bootstrap.bundle.min.js"></script> <script src="/static/js/select-mania.js"></script> </head> <body class="header-no-fixed"> <header> <nav class="navbar navbar-expand-lg navbar-light my-body-container"> <div class="navbar-left"> <a href="/" class="uk-navbar-item" alt="Back to the homepage"> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <div class="btn-menu"> <span></span> <span></span> <span></span> </div> </button> <div class="collapse navbar-collapse" id="navbarSupportedContent"> <div class="nav-form-search"> <form class="form-search" method="get" action="/index/search/index.html"> <input class="search-input" type="text" name="search" placeholder="What are you looking for?" autofocus /> <button type="submit">Search</button> </form> </div> <ul class="navbar-nav uk-navbar-nav"> <li class="nav-item "> <a class="nav-link" href="/">Home</a> </li> <li class="nav-item "> <a class="nav-link" href="/About_SCIEPublish">About</a> </li> <li class="nav-item uk-active"> <a class="nav-link" href="/index/journals/index">Journals</a> </li> <li class="nav-item "> <a class="nav-link" href="/news/list">News</a> </li> </ul> <a class="js-navbar-toggle sc-icon-button sc-transition" title="Search" href="#"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-search" viewBox="0 0 16 16"> <path d="M11.742 10.344a6.5 6.5 0 1 0-1.397 1.398h-.001c.03.04.062.078.098.115l3.85 3.85a1 1 0 0 0 1.415-1.414l-3.85-3.85a1.007 1.007 0 0 0-.115-.1zM12 6.5a5.5 5.5 0 1 1-11 0 5.5 5.5 0 0 1 11 0z"/> </svg> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"/> </svg> </a> <a class="uk-button sc-transition" href="/my/submitting">Publish with us</a> <a class="text-login" title="Sign in" href="/index/user/login.html"> Sign in </a> </div> </nav> </header> <section class="book-item"> <div class="my-body-container"> <div class="d-flex align-items-start pb-1 pt-3"> <div class="articles-img align-self-start"> <div class="journals-cover article-img mb-2"> <a href="/uploads/2024/05/28/1716875096gmcg.jpg" data-lightbox="image-4" data-title=""> <img src="/uploads/2024/05/28/1716875096gmcg.jpg" alt="High-Temperature Materials-logo"> </a> </div> </div> <div class="flex-grow-1 pl-5 pb-2"> <div class="d-flex justify-content-center"> <div class="left-title"> <h1 class="d-flex justify-content-between align-items-center"> High-Temperature Materials <a class="orange-color mb-0" href="/journals/htm/apc"> <img src="/style/image/open_access.png"> Open Access </a> </h1> <div class="d-flex"> <div class="flex-grow-1"> <div class="right-title d-flex align-items-center"> <p class="text-right mr-2">ISSN: 3006-9971 <span>(Online)</span></p> <p class="text-right mr-2">3006-9963 <span>(Print)</span></p> <p class="text-right mr-2"></p> </div> <div class="item-text"> <p><strong>An Official Journal of&nbsp;State Key Laboratory of Refractory Materials and Metallurgy, <a href="https://en.wust.edu.cn/">Wuhan University of Science and Technology</a></strong></p> <em>High-Temperature Materials</em> is a peer-reviewed and open-access journal publishing original, high-quality research on all aspects of materials relating to high-temperature processing in science and technology and high-temperature applications in the energy generation, aerospace, metallurgy, chemical and other process industries.&nbsp;It is published quarterly online by SCIEPublish. </div> </div> </div> </div> </div> </div> </div> </div> </section> <section class="mb-3 book-column"> <div class="my-body-container padding0"> <div class="book-item-fixed default-hide pt-2 pb-2"> <div class="d-flex align-items-center"> <div class="left-logo mr-3"> <a href="/" alt="Back to the homepage"> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </a> </div> <div class="journals-cover mr-3"><a href="/journals/htm"> <img src="/uploads/2024/05/28/1716875096gmcg.jpg" alt="High-Temperature Materials-logo"></a> </div> <h2 class="flex-grow-1"><a href="/journals/htm">High-Temperature Materials</a></h2> </div> </div> <div class="column-bottom d-flex align-self-stretch"> <div class="column-left"> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarToggleExternalContent" aria-controls="navbarToggleExternalContent" aria-expanded="false" aria-label="Toggle navigation"> <div class="d-flex align-items-center justify-content-center"> <div class="btn-menu"> <span></span> <span></span> <span></span> </div> <div class="btn-menu-text">Menu</div> </div> </button> <div class="collapse" id="navbarToggleExternalContent"> <div class="row ml-0 mr-0"> <div class="dropdown line-dropdown col pl-0 pr-0"> <a class="btn dropdown-toggle" href="javescipt:void(0);" role="button" data-toggle="dropdown" aria-expanded="false"> About </a> <div class="dropdown-menu rounded-0 mt-0"> <a class="dropdown-item" href="/journals/htm/about">Aim &amp; Scope</a> <a class="dropdown-item" href="/journals/htm/editors">Editorial Board</a> <a class="dropdown-item" href="/journals/htm/indexing">Indexing &amp; Archiving</a> <a class="dropdown-item" href="/journals/htm/article_processing_charge">Article Processing Charge</a> <a class="dropdown-item" href="/journals/htm/news">News</a> <a class="dropdown-item" href="/Open_Access_Policy">Open Access Policy</a> <!-- Policies栏目下 Open Access Policy --> <a class="dropdown-item" href="/Editorial_Policy">Editorial Policy</a> <!-- Policies栏目下 Editorial Policy --> <a class="dropdown-item" href="/journals/htm/editorial_office">Editorial Office</a> </div> </div> <div class="dropdown line-dropdown col pl-0 pr-0"> <a class="btn dropdown-toggle" href="#" role="button" data-toggle="dropdown" aria-expanded="false"> Articles </a> <div class="dropdown-menu rounded-0 mt-0"> <a class="dropdown-item" href="/journals/htm/roll/1/2">Current lssue</a> <!-- 即将发行的一期 --> <!-- <a class="dropdown-item" href="/journals/htm/roll/1/1">Current lssue 111</a> --> <!-- 最新的一期 --> <a class="dropdown-item" href="/journals/htm/issues">Issue Archives</a> </div> </div> </div> </div> </div> <form class="form-search flex-grow-1 d-flex" method="get" action=""> <input type="hidden" name="issues" value="0"> <input id="search-input" class="search-input flex-grow-1 flex-shrink-1" type="text" name="search" placeholder="Search in this journal" value="" autofocus /> <div class="s-btn-close d-flex align-items-center" title="Empty search box"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"/> </svg> </div> <button type="submit"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-search" viewBox="0 0 16 16"> <path d="M11.742 10.344a6.5 6.5 0 1 0-1.397 1.398h-.001c.03.04.062.078.098.115l3.85 3.85a1 1 0 0 0 1.415-1.414l-3.85-3.85a1.007 1.007 0 0 0-.115-.1zM12 6.5a5.5 5.5 0 1 1-11 0 5.5 5.5 0 0 1 11 0z"/> </svg> </button> </form> <div class="column-right-title d-flex"> <a class="d-flex align-items-center" href="/journals/htm/instructions"> Guide for Authors <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-double-right" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M3.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L9.293 8 3.646 2.354a.5.5 0 0 1 0-.708z"></path> <path fill-rule="evenodd" d="M7.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L13.293 8 7.646 2.354a.5.5 0 0 1 0-.708z"></path> </svg> </a> <a class="d-flex align-items-center" href="/my/submitting/journal/56"> Submit to HTM <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-double-right" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M3.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L9.293 8 3.646 2.354a.5.5 0 0 1 0-.708z"></path> <path fill-rule="evenodd" d="M7.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L13.293 8 7.646 2.354a.5.5 0 0 1 0-.708z"></path> </svg> </a> </div> </div> </div> </section> <section class="mb-1 avatar-news-item"> <div class="my-body-container"> <div class="section-heading border-top-0"> <h3 class="section-title"> Editors-in-Chief </h3> </div> <ul class="row mt-3"> <li class="col pb-2 mb-2"> <div class="d-flex align-items-center height100"> <div class="avatar-container"> <a class="avatar-img" href="/journals/htm/editors"> <img src="/uploads/2023/12/11/1702261705o804.jpg" class="avatar img-thumbnail"> </a> </div> <div class="flex-grow-1 ml-3"> <h5>Prof. Dr. Xinping Mao</h5> <p>Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083, China</p> </div> </div> </li> <li class="col pb-2 mb-2"> <div class="d-flex align-items-center height100"> <div class="avatar-container"> <a class="avatar-img" href="/journals/htm/editors"> <img src="/uploads/2024/03/25/1711352876a7zi.jpg" class="avatar img-thumbnail"> </a> </div> <div class="flex-grow-1 ml-3"> <h5>Prof. Dr. Victor Carlos Pandolfelli</h5> <p>Departamento de Engenharia de Materiais, Universidade Federal de S&atilde;o Carlos, 13565-905, S&atilde;o Carlos, S.P., Brazil</p> </div> </div> </li> </ul> </div> </section> <section class="articles-list1 mb-3"> <div class="my-body-container padding0"> <div class="section-heading"> <h3 class="section-title"> Articles <span>(9)</span> <a class="right" href="/journals/htm/articles" target="_blank"> All articles <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-double-right" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M3.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L9.293 8 3.646 2.354a.5.5 0 0 1 0-.708z"/> <path fill-rule="evenodd" d="M7.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L13.293 8 7.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </a> </h3> </div> <ul class="nav nav-tabs mt-2"> <li class="nav-item"><a class="nav-link active" id="all-tab" data-toggle="tab" href="#id-all">Latest published</a></li> <li class="nav-item"><a class="nav-link" id="downloaded-tab" data-toggle="tab" href="#id-downloaded">Most downloaded</a></li> <li class="nav-item"><a class="nav-link" id="popular-tab" data-toggle="tab" href="#id-popular" role="tab">Most popular</a></li> </ul> <div class="tab-content" id="myTabContent"> <div class="tab-pane fade show active" id="id-all"> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>19 November 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/341">Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia</a> </h3> <p class="article-abseract clamp">Fused zirconia-mullite (ZM) and zirconia-alumina (ZA) are expensive aggregates used in refractory formulations to enhance thermal shock tolerance and corrosion resistance, respectively. A cost-effective alternative approach was explored in this work to produce 37.4 wt% ZrO<sub>2</sub> containing ZM utilizing conventional reaction sintering of siliceous clay, calcined alumina and monoclinic ZrO<sub>2</sub>. A series of chemical reactions ensued from 1200 °C, forming low quartz and cristobalite from the clay, in situ ZrSiO<sub>4</sub>, monoclinic ZrO<sub>2</sub>, α-Al<sub>2</sub>O<sub>3</sub> and traces of leucite. 1600 °C was required to fully form mullite and monoclinic ZrO<sub>2</sub> but it had 26.5% porosity even after firing at 1650 °C for 2 h. It consisted of small equiaxed primary mullite grains secondary mullite rods, and scattered and clustered, round ZrO<sub>2</sub> grains. With 1.05% CaO addition, tetragonal ZrO<sub>2</sub> formed, but 22.7% porosity remained despite the presence of 13.5% liquid phase having a low viscosity (0.6 Pa.s, from FactSage). With 2.11% CaO, porosity reduced to 10.7% but mullite partly dissolved, forming α-Al<sub>2</sub>O<sub>3</sub> (ZMA aggregate). The added CaO mostly remained in the intergranular glassy phase rather than inside the ZrO<sub>2</sub> grains but increased the thickness of the secondary mullite and the ZrO<sub>2</sub> grains. Mullite was completely lost with 4.21% CaO doping but favorably formed cubic ZrO<sub>2</sub> containing up to 0.26 at% Ca, interlinked α-Al<sub>2</sub>O<sub>3</sub> rods and attained a low porosity of 0.2%. This ZA aggregate is limited to 1550 °C application temperature as excess liquid phase drained out beyond that. 7.37% CaO addition was detrimental as it formed an excessive anorthite-like liquid phase that percolated out at 1550 °C with 5.6% weight loss. Thus, in ZM-based calcium aluminate cement bonded refractory castables, the final CaO content should be restricted to below 2.1% to avoid partial dissolution of mullite.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=SomnathMandal" target="_blank"> Somnath&nbsp;Mandal* </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=HarshitAgrawal" target="_blank"> Harshit&nbsp;Agrawal </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=AbhijeetPhatak" target="_blank"> Abhijeet&nbsp;Phatak </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=PrashantGupta" target="_blank"> Prashant&nbsp;Gupta </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=IlonaJastrzębska" target="_blank"> Ilona&nbsp;Jastrzębska </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=OmParkash" target="_blank"> Om&nbsp;Parkash </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=DevendraKumar" target="_blank"> Devendra&nbsp;Kumar </a> </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" data-lightbox="image-1" data-title=""><img src="/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>14 November 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/333">Hardness-Porosity-Grain Size Interrelationship in Conventionally Sintered 3 mol% Yttria Stabilized Zirconia</a> </h3> <p class="article-abseract clamp">Considerable research has been done in the past on expensive, <50 nm particle size 3 mol% yttria-stabilized zirconia (3YSZ) using advanced sintering techniques. However, insights are still needed to reveal which factors among grain size and porosity, when both are changing simultaneously, more strongly control the hardness of conventionally sintered, relatively coarse, 250 nm 3YSZ powder, which can be used to make large industrial engineering ceramic parts at a lower cost. This investigation showed that elevating the sintering temperature from 1500 °C to 1650 °C increased the Rockwell hardness from 49.4 HRA to 86.0 HRA, which was concomitant with an increase in grain size and bulk density. A pseudo-inverse Hall-Petch relationship between hardness and grain size was observed given by H (in HRA) = 153.1 − 69.2/$$\small\sqrt{(\mathrm{grain}\,\mathrm{size})}$$ with a somewhat low R<sup>2</sup> of 0.95, which was mainly due to the porosity being an additional important variable. Compared to grain size, the impact of open pore fraction (P) on hardness was stronger, inferred from a higher R<sup>2</sup> of 0.99 while fitting the data into the well-known exponential decay equation, H = 92.9 exp(−11.1P). Finally, it was observed that the 3YSZ conventionally sintered at 1650 °C for 2 h had 0.8% open porosity, 6.08 g/cm<sup>3 </sup>bulk density, 960 nm grain size and consisted of only tetragonal ZrO<sub>2</sub>.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=AbhijeetPhatak" target="_blank"> Abhijeet&nbsp;Phatak </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=PrashantGupta" target="_blank"> Prashant&nbsp;Gupta </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=SomnathMandal" target="_blank"> Somnath&nbsp;Mandal* </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=HarshitAgrawal" target="_blank"> Harshit&nbsp;Agrawal </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=OmParkash" target="_blank"> Om&nbsp;Parkash </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=DevendraKumar" target="_blank"> Devendra&nbsp;Kumar </a> </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202411/14/18a1e56c19a6d61a33d28f4ac9297f51.jpg" data-lightbox="image-2" data-title=""><img src="/uploads/image/202411/14/18a1e56c19a6d61a33d28f4ac9297f51.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>14 October 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/302">Characterization, Exploitation and Application of Tibetan Microcrystalline Magnesite</a> </h3> <p class="article-abseract clamp">This paper provides a comprehensive account of the properties, development and extensive utilisation of Tibetan microcrystalline magnesite in industry. Tibetan microcrystalline magnesite has become a significant raw material for refractories, high-temperature insulating materials and magnesium chemical materials due to its high purity, low impurity content (mainly Si and Fe elements) and micrometre-sized crystallisation size (2~4 μm). The article presents a detailed analysis of the microstructure of Tibetan microcrystalline magnesite, its thermal decomposition behaviour and the key technologies employed in preparing high-purity magnesium oxide and sintered magnesia through light burning and electrofusion processes. Furthermore, this paper examines the potential applications of Tibetan microcrystalline magnesite in producing high-performance magnesium materials, including activated magnesium oxide, nano-magnesium oxide, and magnesium hydroxide, which are extensively utilized in environmental protection and high-temperature technology. It is demonstrated that the performance of Tibetan microcrystalline magnesite products can be markedly enhanced by optimising the process parameters and modification techniques, thereby further expanding their application prospects in industrial fields. This review offers a theoretical foundation and technical support for effectively utilising Tibetan microcrystalline magnesite, which possesses significant industrial application value and potential.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=SiLi" target="_blank"> Si&nbsp;Li </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=ZiyangYin" target="_blank"> Ziyang&nbsp;Yin </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=AnxiuWang" target="_blank"> Anxiu&nbsp;Wang </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=CanjunYu" target="_blank"> Canjun&nbsp;Yu </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=RuntangFeng" target="_blank"> Runtang&nbsp;Feng </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=GuoweiLiu" target="_blank"> Guowei&nbsp;Liu </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=XiaoliTian" target="_blank"> Xiaoli&nbsp;Tian </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=LiugangChen" target="_blank"> Liugang&nbsp;Chen* </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=ChengliangMa" target="_blank"> Chengliang&nbsp;Ma* </a> </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/10/14/9804bc5980cb09e59550b474674dd647.jpg" data-lightbox="image-3" data-title=""><img src="/uploads/2024/10/14/9804bc5980cb09e59550b474674dd647.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>29 September 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/293">Reactions and Phase Transformations at Sintering of Cubic Boron Nitride Based Materials</a> </h3> <p class="article-abseract clamp">Superhard cubic boron nitride (cBN) cutting materials with different contents of cBN were investigated. The compositions of cBN-based materials included ceramic and metallic binders. The sintering of materials was performed by high-temperature hot pressing (HPHT) six-anvil apparatus at pressure 4.5 GPa and temperatures 1400–1450 °C. The process of compaction and processing of superhard cBN materials is followed by numerous chemical reactions. The chemical reactions are very important in compaction and sintering. The volume transformations during chemical reactions affect the shrinkage of the materials and may also impact the residual porosity of the finished products.<i> </i>The adhesion between the grains also depends on these chemical reactions. The research analyzed the volume transformations of various reactions during HPHT sintering of cBN materials, which may play a significant role in forming their structure and properties.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=StepanPavlov" target="_blank"> Stepan&nbsp;Pavlov </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=AndreyYurkov" target="_blank"> Andrey&nbsp;Yurkov* </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=MikhailAndrianov" target="_blank"> Mikhail&nbsp;Andrianov </a> </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/09/30/64543ee36e5221f27ef5197409d56f4b.jpg" data-lightbox="image-4" data-title=""><img src="/uploads/2024/09/30/64543ee36e5221f27ef5197409d56f4b.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>02 September 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/270">A Review on the Application of Nanomaterials to Boost the Service Performances of Carbon-Containing Refractories</a> </h3> <p class="article-abseract clamp">To meet the high-quality requirements for clean steel production and fully exploit the performance advantages of carbon-containing refractories, nanomaterial has been introduced into the matrix to develop advanced carbon-containing refractories. Nanomaterials, as critical additives, play a crucial role in developing novel refractories. The service performances of carbon-containing refractories are affected not only by their physical and chemical properties but also by their microstructure. This review provides a comprehensive overview of the latest research on oxide-carbon composite refractories containing nanomaterials, categorized by their composition: nanocarbons, nano oxides, and nano non-oxides. Incorporating nanomaterials can enhance the service performances of the refractories, optimizing phase composition and microstructure. Furthermore, future research directions in nanomaterial technology for carbon-containing refractories are discussed.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=JunyiLv" target="_blank"> Junyi&nbsp;Lv </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=HaijunZhang" target="_blank"> Haijun&nbsp;Zhang </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=HaohuiGu" target="_blank"> Haohui&nbsp;Gu </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=FengLiang" target="_blank"> Feng&nbsp;Liang* </a> </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/09/03/f6b699ed7b3d2d1745de0505215d93f3.png" data-lightbox="image-5" data-title=""><img src="/uploads/2024/09/03/f6b699ed7b3d2d1745de0505215d93f3.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>27 August 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/260">Strongly Correlated Electrons and High Temperature Superconductivity</a> </h3> <p class="article-abseract clamp">It is very important to clarify the mechanism of high-temperature superconductivity in strongly correlated electron systems. The mechanism of superconductivity in high temperature cuprate superconductors has been studied extensively since their discovery. We investigate the properties of correlated electron systems and mechanism of superconductivity by using the optimization quantum variational Monte Carlo method. The many-body wave function is constructed by multiplying by correlation operators of exponential type. We show that <i>d</i>-wave superconducting phase exists in the strongly correlated region where the on-site repulsive interaction is as large as the bandwidth or more than the bandwidth. The <i>d</i>-wave pairing correlation function is shown as a function of lattice sites, showing that the long-range order indeed exists.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=TakashiYanagisawa" target="_blank"> Takashi&nbsp;Yanagisawa* </a> </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/08/28/000ff837d584cbd61638d255a19416c3.png" data-lightbox="image-6" data-title=""><img src="/uploads/2024/08/28/000ff837d584cbd61638d255a19416c3.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>22 August 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/257">Erosion Resistance of BaZrO<sub>3</sub>-Y<sub>2</sub>O<sub>3</sub> Two-Phase Crucibles against Highly Active Ti<sub>2</sub>Ni Alloys</a> </h3> <p class="article-abseract clamp">In this paper, (100-m) BaZrO<sub>3</sub>-mY<sub>2</sub>O<sub>3</sub> (m = 0, 20, 25, 33, 50, 100) crucibles were prepared, respectively. Then, the effect of crucible composition on the interaction between crucibles and highly active titanium alloys (Ti<sub>2</sub>Ni) was investigated. The degree of the erosion resistance of crucibles was compared before and after melting as well as the contaminated extent of the alloys. The results show that the two-phase crucibles consisting of BaZr<sub>1−x</sub>Y<sub>x</sub>O<sub>3−δ</sub> and Y<sub>2</sub>O<sub>3</sub>(ZrO<sub>2</sub>), could be prepared after adding Y<sub>2</sub>O<sub>3</sub> into the BaZrO<sub>3</sub> crucible. As the amount of Y<sub>2</sub>O<sub>3</sub> addition in the crucible was increased, the erosion resistance of the crucible to the alloy melt was gradually improved. The two-phase crucible with 50 wt.% Y<sub>2</sub>O<sub>3</sub> addition exhibited the best erosion resistance with a 7 μm thick erosion layer, which was at the same level compared to the pure Y<sub>2</sub>O<sub>3</sub> crucible (6.5 μm). However, the inclusion contaminants caused by this two-phase crucible were smaller than those of the pure Y<sub>2</sub>O<sub>3</sub> crucible. This study provided a theoretical basis for further research on the preparation of highly stable crucibles for melting highly active titanium alloys.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=QishengFeng" target="_blank"> Qisheng&nbsp;Feng </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=ShaowenDeng" target="_blank"> Shaowen&nbsp;Deng </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=HoujinLiao" target="_blank"> Houjin&nbsp;Liao </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=ChenxiLiu" target="_blank"> Chenxi&nbsp;Liu </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=PengyueGao" target="_blank"> Pengyue&nbsp;Gao </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=EnhuiWang" target="_blank"> Enhui&nbsp;Wang </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=XinmeiHou" target="_blank"> Xinmei&nbsp;Hou* </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=GuangyaoChen" target="_blank"> Guangyao&nbsp;Chen* </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=ChongheLi" target="_blank"> Chonghe&nbsp;Li* </a> </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202408/22/b3f107a850ee0e9e0e10c6172f24af87.jpg" data-lightbox="image-7" data-title=""><img src="/uploads/image/202408/22/b3f107a850ee0e9e0e10c6172f24af87.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>17 April 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/171">Thermogravimetric Study of the Oxidation Behavior of the Cantor’s Alloy at 1000 °C and Beyond</a> </h3> <p class="article-abseract clamp">A polycrystalline Cantor alloy, equimolar in Co, Cr, Fe, Mn and Ni, was cast. It was subjected to oxidation in a thermo-balance in a flow of synthetic dry air, at 1000, 1050, 1100 and 1150 °C. The mass gain was globally parabolic but rather irregular. The parabolic constants, ranging from 55 to 700 × 10<sup>−12</sup>·g<sup>2</sup>·cm<sup>−4</sup>·s<sup>−1</sup>, are much higher than for a chromia-forming alloy. They obey an Arrhenius law with an activation energy equal to 270 kJ/mol. The external oxide scales formed are composed of an outer part made of manganese oxide and an inner part made of (Cr, Mn) oxide containing a thin internal layer of chromia. The Mn and Cr-depleted depths and the Mn and Cr masses lost by the alloy increase with the oxidation temperature. Cr-rich acicular particles precipitated in subsurface at 1100 °C and internal oxidation along the grain boundaries are present in the whole thickness of the sample oxidized at 1150 °C. Oxide spallation occurred during the cooling, at temperatures in the 200–350 °C range, only for the alloys oxidized at 1050 and 1100 °C. Not too thick scale (1000 °C) or deep internal oxidation (1150 °C) may be favorable for scale adherence.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=PatriceBerthod" target="_blank"> Patrice&nbsp;Berthod* </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=LionelAranda" target="_blank"> Lionel&nbsp;Aranda </a> </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202404/17/d7d54f299e2c6d232051f079d2025747.png" data-lightbox="image-8" data-title=""><img src="/uploads/image/202404/17/d7d54f299e2c6d232051f079d2025747.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Editorial</h4> <span>17 April 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/170"><i>High-Temperature Materials</i>: A New Open-access Journal to Share Your Research on Materials Relating High-temperature Processing or Applications</a> </h3> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=XinpingMao" target="_blank"> Xinping&nbsp;Mao* </a> </div> <div class="author-name"> <a href="https://scholar.google.com/scholar?q=Victor CarlosPandolfelli" target="_blank"> Victor Carlos&nbsp;Pandolfelli* </a> </div> </div> </div> </div> </div> <div class="tab-pane fade" id="id-downloaded"> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>17 April 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/171">Thermogravimetric Study of the Oxidation Behavior of the Cantor’s Alloy at 1000 °C and Beyond</a> </h3> <p class="article-abseract clamp">A polycrystalline Cantor alloy, equimolar in Co, Cr, Fe, Mn and Ni, was cast. It was subjected to oxidation in a thermo-balance in a flow of synthetic dry air, at 1000, 1050, 1100 and 1150 °C. The mass gain was globally parabolic but rather irregular. The parabolic constants, ranging from 55 to 700 × 10<sup>−12</sup>·g<sup>2</sup>·cm<sup>−4</sup>·s<sup>−1</sup>, are much higher than for a chromia-forming alloy. They obey an Arrhenius law with an activation energy equal to 270 kJ/mol. The external oxide scales formed are composed of an outer part made of manganese oxide and an inner part made of (Cr, Mn) oxide containing a thin internal layer of chromia. The Mn and Cr-depleted depths and the Mn and Cr masses lost by the alloy increase with the oxidation temperature. Cr-rich acicular particles precipitated in subsurface at 1100 °C and internal oxidation along the grain boundaries are present in the whole thickness of the sample oxidized at 1150 °C. Oxide spallation occurred during the cooling, at temperatures in the 200–350 °C range, only for the alloys oxidized at 1050 and 1100 °C. Not too thick scale (1000 °C) or deep internal oxidation (1150 °C) may be favorable for scale adherence.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> PatriceBerthod </div> <div class="author-name"> LionelAranda </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202404/17/d7d54f299e2c6d232051f079d2025747.png" data-lightbox="image-1" data-title=""><img src="/uploads/image/202404/17/d7d54f299e2c6d232051f079d2025747.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Editorial</h4> <span>17 April 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/170"><i>High-Temperature Materials</i>: A New Open-access Journal to Share Your Research on Materials Relating High-temperature Processing or Applications</a> </h3> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> Xinping Mao </div> <div class="author-name"> Victor Carlos Pandolfelli </div> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>02 September 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/270">A Review on the Application of Nanomaterials to Boost the Service Performances of Carbon-Containing Refractories</a> </h3> <p class="article-abseract clamp">To meet the high-quality requirements for clean steel production and fully exploit the performance advantages of carbon-containing refractories, nanomaterial has been introduced into the matrix to develop advanced carbon-containing refractories. Nanomaterials, as critical additives, play a crucial role in developing novel refractories. The service performances of carbon-containing refractories are affected not only by their physical and chemical properties but also by their microstructure. This review provides a comprehensive overview of the latest research on oxide-carbon composite refractories containing nanomaterials, categorized by their composition: nanocarbons, nano oxides, and nano non-oxides. Incorporating nanomaterials can enhance the service performances of the refractories, optimizing phase composition and microstructure. Furthermore, future research directions in nanomaterial technology for carbon-containing refractories are discussed.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> JunyiLv </div> <div class="author-name"> HaijunZhang </div> <div class="author-name"> HaohuiGu </div> <div class="author-name"> FengLiang </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/09/03/f6b699ed7b3d2d1745de0505215d93f3.png" data-lightbox="image-3" data-title=""><img src="/uploads/2024/09/03/f6b699ed7b3d2d1745de0505215d93f3.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>22 August 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/257">Erosion Resistance of BaZrO<sub>3</sub>-Y<sub>2</sub>O<sub>3</sub> Two-Phase Crucibles against Highly Active Ti<sub>2</sub>Ni Alloys</a> </h3> <p class="article-abseract clamp">In this paper, (100-m) BaZrO<sub>3</sub>-mY<sub>2</sub>O<sub>3</sub> (m = 0, 20, 25, 33, 50, 100) crucibles were prepared, respectively. Then, the effect of crucible composition on the interaction between crucibles and highly active titanium alloys (Ti<sub>2</sub>Ni) was investigated. The degree of the erosion resistance of crucibles was compared before and after melting as well as the contaminated extent of the alloys. The results show that the two-phase crucibles consisting of BaZr<sub>1−x</sub>Y<sub>x</sub>O<sub>3−δ</sub> and Y<sub>2</sub>O<sub>3</sub>(ZrO<sub>2</sub>), could be prepared after adding Y<sub>2</sub>O<sub>3</sub> into the BaZrO<sub>3</sub> crucible. As the amount of Y<sub>2</sub>O<sub>3</sub> addition in the crucible was increased, the erosion resistance of the crucible to the alloy melt was gradually improved. The two-phase crucible with 50 wt.% Y<sub>2</sub>O<sub>3</sub> addition exhibited the best erosion resistance with a 7 μm thick erosion layer, which was at the same level compared to the pure Y<sub>2</sub>O<sub>3</sub> crucible (6.5 μm). However, the inclusion contaminants caused by this two-phase crucible were smaller than those of the pure Y<sub>2</sub>O<sub>3</sub> crucible. This study provided a theoretical basis for further research on the preparation of highly stable crucibles for melting highly active titanium alloys.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> QishengFeng </div> <div class="author-name"> ShaowenDeng </div> <div class="author-name"> HoujinLiao </div> <div class="author-name"> ChenxiLiu </div> <div class="author-name"> PengyueGao </div> <div class="author-name"> EnhuiWang </div> <div class="author-name"> XinmeiHou </div> <div class="author-name"> GuangyaoChen </div> <div class="author-name"> ChongheLi </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202408/22/b3f107a850ee0e9e0e10c6172f24af87.jpg" data-lightbox="image-4" data-title=""><img src="/uploads/image/202408/22/b3f107a850ee0e9e0e10c6172f24af87.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>14 October 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/302">Characterization, Exploitation and Application of Tibetan Microcrystalline Magnesite</a> </h3> <p class="article-abseract clamp">This paper provides a comprehensive account of the properties, development and extensive utilisation of Tibetan microcrystalline magnesite in industry. Tibetan microcrystalline magnesite has become a significant raw material for refractories, high-temperature insulating materials and magnesium chemical materials due to its high purity, low impurity content (mainly Si and Fe elements) and micrometre-sized crystallisation size (2~4 μm). The article presents a detailed analysis of the microstructure of Tibetan microcrystalline magnesite, its thermal decomposition behaviour and the key technologies employed in preparing high-purity magnesium oxide and sintered magnesia through light burning and electrofusion processes. Furthermore, this paper examines the potential applications of Tibetan microcrystalline magnesite in producing high-performance magnesium materials, including activated magnesium oxide, nano-magnesium oxide, and magnesium hydroxide, which are extensively utilized in environmental protection and high-temperature technology. It is demonstrated that the performance of Tibetan microcrystalline magnesite products can be markedly enhanced by optimising the process parameters and modification techniques, thereby further expanding their application prospects in industrial fields. This review offers a theoretical foundation and technical support for effectively utilising Tibetan microcrystalline magnesite, which possesses significant industrial application value and potential.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> SiLi </div> <div class="author-name"> ZiyangYin </div> <div class="author-name"> AnxiuWang </div> <div class="author-name"> CanjunYu </div> <div class="author-name"> RuntangFeng </div> <div class="author-name"> GuoweiLiu </div> <div class="author-name"> XiaoliTian </div> <div class="author-name"> LiugangChen </div> <div class="author-name"> ChengliangMa </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/10/14/9804bc5980cb09e59550b474674dd647.jpg" data-lightbox="image-5" data-title=""><img src="/uploads/2024/10/14/9804bc5980cb09e59550b474674dd647.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>27 August 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/260">Strongly Correlated Electrons and High Temperature Superconductivity</a> </h3> <p class="article-abseract clamp">It is very important to clarify the mechanism of high-temperature superconductivity in strongly correlated electron systems. The mechanism of superconductivity in high temperature cuprate superconductors has been studied extensively since their discovery. We investigate the properties of correlated electron systems and mechanism of superconductivity by using the optimization quantum variational Monte Carlo method. The many-body wave function is constructed by multiplying by correlation operators of exponential type. We show that <i>d</i>-wave superconducting phase exists in the strongly correlated region where the on-site repulsive interaction is as large as the bandwidth or more than the bandwidth. The <i>d</i>-wave pairing correlation function is shown as a function of lattice sites, showing that the long-range order indeed exists.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> Takashi Yanagisawa </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/08/28/000ff837d584cbd61638d255a19416c3.png" data-lightbox="image-6" data-title=""><img src="/uploads/2024/08/28/000ff837d584cbd61638d255a19416c3.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>29 September 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/293">Reactions and Phase Transformations at Sintering of Cubic Boron Nitride Based Materials</a> </h3> <p class="article-abseract clamp">Superhard cubic boron nitride (cBN) cutting materials with different contents of cBN were investigated. The compositions of cBN-based materials included ceramic and metallic binders. The sintering of materials was performed by high-temperature hot pressing (HPHT) six-anvil apparatus at pressure 4.5 GPa and temperatures 1400–1450 °C. The process of compaction and processing of superhard cBN materials is followed by numerous chemical reactions. The chemical reactions are very important in compaction and sintering. The volume transformations during chemical reactions affect the shrinkage of the materials and may also impact the residual porosity of the finished products.<i> </i>The adhesion between the grains also depends on these chemical reactions. The research analyzed the volume transformations of various reactions during HPHT sintering of cBN materials, which may play a significant role in forming their structure and properties.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> StepanPavlov </div> <div class="author-name"> AndreyYurkov </div> <div class="author-name"> MikhailAndrianov </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/09/30/64543ee36e5221f27ef5197409d56f4b.jpg" data-lightbox="image-7" data-title=""><img src="/uploads/2024/09/30/64543ee36e5221f27ef5197409d56f4b.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>14 November 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/333">Hardness-Porosity-Grain Size Interrelationship in Conventionally Sintered 3 mol% Yttria Stabilized Zirconia</a> </h3> <p class="article-abseract clamp">Considerable research has been done in the past on expensive, <50 nm particle size 3 mol% yttria-stabilized zirconia (3YSZ) using advanced sintering techniques. However, insights are still needed to reveal which factors among grain size and porosity, when both are changing simultaneously, more strongly control the hardness of conventionally sintered, relatively coarse, 250 nm 3YSZ powder, which can be used to make large industrial engineering ceramic parts at a lower cost. This investigation showed that elevating the sintering temperature from 1500 °C to 1650 °C increased the Rockwell hardness from 49.4 HRA to 86.0 HRA, which was concomitant with an increase in grain size and bulk density. A pseudo-inverse Hall-Petch relationship between hardness and grain size was observed given by H (in HRA) = 153.1 − 69.2/$$\small\sqrt{(\mathrm{grain}\,\mathrm{size})}$$ with a somewhat low R<sup>2</sup> of 0.95, which was mainly due to the porosity being an additional important variable. Compared to grain size, the impact of open pore fraction (P) on hardness was stronger, inferred from a higher R<sup>2</sup> of 0.99 while fitting the data into the well-known exponential decay equation, H = 92.9 exp(−11.1P). Finally, it was observed that the 3YSZ conventionally sintered at 1650 °C for 2 h had 0.8% open porosity, 6.08 g/cm<sup>3 </sup>bulk density, 960 nm grain size and consisted of only tetragonal ZrO<sub>2</sub>.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> Abhijeet Phatak </div> <div class="author-name"> Prashant Gupta </div> <div class="author-name"> Somnath Mandal </div> <div class="author-name"> Harshit Agrawal </div> <div class="author-name"> Om Parkash </div> <div class="author-name"> Devendra Kumar </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202411/14/18a1e56c19a6d61a33d28f4ac9297f51.jpg" data-lightbox="image-8" data-title=""><img src="/uploads/image/202411/14/18a1e56c19a6d61a33d28f4ac9297f51.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>19 November 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/341">Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia</a> </h3> <p class="article-abseract clamp">Fused zirconia-mullite (ZM) and zirconia-alumina (ZA) are expensive aggregates used in refractory formulations to enhance thermal shock tolerance and corrosion resistance, respectively. A cost-effective alternative approach was explored in this work to produce 37.4 wt% ZrO<sub>2</sub> containing ZM utilizing conventional reaction sintering of siliceous clay, calcined alumina and monoclinic ZrO<sub>2</sub>. A series of chemical reactions ensued from 1200 °C, forming low quartz and cristobalite from the clay, in situ ZrSiO<sub>4</sub>, monoclinic ZrO<sub>2</sub>, α-Al<sub>2</sub>O<sub>3</sub> and traces of leucite. 1600 °C was required to fully form mullite and monoclinic ZrO<sub>2</sub> but it had 26.5% porosity even after firing at 1650 °C for 2 h. It consisted of small equiaxed primary mullite grains secondary mullite rods, and scattered and clustered, round ZrO<sub>2</sub> grains. With 1.05% CaO addition, tetragonal ZrO<sub>2</sub> formed, but 22.7% porosity remained despite the presence of 13.5% liquid phase having a low viscosity (0.6 Pa.s, from FactSage). With 2.11% CaO, porosity reduced to 10.7% but mullite partly dissolved, forming α-Al<sub>2</sub>O<sub>3</sub> (ZMA aggregate). The added CaO mostly remained in the intergranular glassy phase rather than inside the ZrO<sub>2</sub> grains but increased the thickness of the secondary mullite and the ZrO<sub>2</sub> grains. Mullite was completely lost with 4.21% CaO doping but favorably formed cubic ZrO<sub>2</sub> containing up to 0.26 at% Ca, interlinked α-Al<sub>2</sub>O<sub>3</sub> rods and attained a low porosity of 0.2%. This ZA aggregate is limited to 1550 °C application temperature as excess liquid phase drained out beyond that. 7.37% CaO addition was detrimental as it formed an excessive anorthite-like liquid phase that percolated out at 1550 °C with 5.6% weight loss. Thus, in ZM-based calcium aluminate cement bonded refractory castables, the final CaO content should be restricted to below 2.1% to avoid partial dissolution of mullite.</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> SomnathMandal </div> <div class="author-name"> HarshitAgrawal </div> <div class="author-name"> AbhijeetPhatak </div> <div class="author-name"> PrashantGupta </div> <div class="author-name"> IlonaJastrzębska </div> <div class="author-name"> OmParkash </div> <div class="author-name"> DevendraKumar </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" data-lightbox="image-9" data-title=""><img src="/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" class=""></a> </div> </div> </div> </div> <div class="tab-pane fade" id="id-popular"> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>17 April 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/171">Thermogravimetric Study of the Oxidation Behavior of the Cantor’s Alloy at 1000 °C and Beyond</a> </h3> <p class="article-abseract clamp"> A polycrystalline Cantor alloy, equimolar in Co, Cr, Fe, Mn and Ni, was cast. It was subjected to oxidation in a thermo-balance in a flow of synthetic dry air, at 1000, 1050, 1100 and 1150 °C. The mass gain was globally parabolic but rather irregular. The parabolic constants, ranging from 55 to 700 × 10<sup>−12</sup>·g<sup>2</sup>·cm<sup>−4</sup>·s<sup>−1</sup>, are much higher than for a chromia-forming alloy. They obey an Arrhenius law with an activation energy equal to 270 kJ/mol. The external oxide scales formed are composed of an outer part made of manganese oxide and an inner part made of (Cr, Mn) oxide containing a thin internal layer of chromia. The Mn and Cr-depleted depths and the Mn and Cr masses lost by the alloy increase with the oxidation temperature. Cr-rich acicular particles precipitated in subsurface at 1100 °C and internal oxidation along the grain boundaries are present in the whole thickness of the sample oxidized at 1150 °C. Oxide spallation occurred during the cooling, at temperatures in the 200–350 °C range, only for the alloys oxidized at 1050 and 1100 °C. Not too thick scale (1000 °C) or deep internal oxidation (1150 °C) may be favorable for scale adherence.utf-8</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> PatriceBerthod </div> <div class="author-name"> LionelAranda </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202404/17/d7d54f299e2c6d232051f079d2025747.png" data-lightbox="image-1" data-title=""><img src="/uploads/image/202404/17/d7d54f299e2c6d232051f079d2025747.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Editorial</h4> <span>17 April 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/170"><i>High-Temperature Materials</i>: A New Open-access Journal to Share Your Research on Materials Relating High-temperature Processing or Applications</a> </h3> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> Xinping Mao </div> <div class="author-name"> Victor Carlos Pandolfelli </div> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>29 September 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/293">Reactions and Phase Transformations at Sintering of Cubic Boron Nitride Based Materials</a> </h3> <p class="article-abseract clamp"> Superhard cubic boron nitride (cBN) cutting materials with different contents of cBN were investigated. The compositions of cBN-based materials included ceramic and metallic binders. The sintering of materials was performed by high-temperature hot pressing (HPHT) six-anvil apparatus at pressure 4.5 GPa and temperatures 1400–1450 °C. The process of compaction and processing of superhard cBN materials is followed by numerous chemical reactions. The chemical reactions are very important in compaction and sintering. The volume transformations during chemical reactions affect the shrinkage of the materials and may also impact the residual porosity of the finished products.<i> </i>The adhesion between the grains also depends on these chemical reactions. The research analyzed the volume transformations of various reactions during HPHT sintering of cBN materials, which may play a significant role in forming their structure and properties.utf-8</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> StepanPavlov </div> <div class="author-name"> AndreyYurkov </div> <div class="author-name"> MikhailAndrianov </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/09/30/64543ee36e5221f27ef5197409d56f4b.jpg" data-lightbox="image-3" data-title=""><img src="/uploads/2024/09/30/64543ee36e5221f27ef5197409d56f4b.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>22 August 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/257">Erosion Resistance of BaZrO<sub>3</sub>-Y<sub>2</sub>O<sub>3</sub> Two-Phase Crucibles against Highly Active Ti<sub>2</sub>Ni Alloys</a> </h3> <p class="article-abseract clamp"> In this paper, (100-m) BaZrO<sub>3</sub>-mY<sub>2</sub>O<sub>3</sub> (m = 0, 20, 25, 33, 50, 100) crucibles were prepared, respectively. Then, the effect of crucible composition on the interaction between crucibles and highly active titanium alloys (Ti<sub>2</sub>Ni) was investigated. The degree of the erosion resistance of crucibles was compared before and after melting as well as the contaminated extent of the alloys. The results show that the two-phase crucibles consisting of BaZr<sub>1−x</sub>Y<sub>x</sub>O<sub>3−δ</sub> and Y<sub>2</sub>O<sub>3</sub>(ZrO<sub>2</sub>), could be prepared after adding Y<sub>2</sub>O<sub>3</sub> into the BaZrO<sub>3</sub> crucible. As the amount of Y<sub>2</sub>O<sub>3</sub> addition in the crucible was increased, the erosion resistance of the crucible to the alloy melt was gradually improved. The two-phase crucible with 50 wt.% Y<sub>2</sub>O<sub>3</sub> addition exhibited the best erosion resistance with a 7 μm thick erosion layer, which was at the same level compared to the pure Y<sub>2</sub>O<sub>3</sub> crucible (6.5 μm). However, the inclusion contaminants caused by this two-phase crucible were smaller than those of the pure Y<sub>2</sub>O<sub>3</sub> crucible. This study provided a theoretical basis for further research on the preparation of highly stable crucibles for melting highly active titanium alloys.utf-8</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> QishengFeng </div> <div class="author-name"> ShaowenDeng </div> <div class="author-name"> HoujinLiao </div> <div class="author-name"> ChenxiLiu </div> <div class="author-name"> PengyueGao </div> <div class="author-name"> EnhuiWang </div> <div class="author-name"> XinmeiHou </div> <div class="author-name"> GuangyaoChen </div> <div class="author-name"> ChongheLi </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202408/22/b3f107a850ee0e9e0e10c6172f24af87.jpg" data-lightbox="image-4" data-title=""><img src="/uploads/image/202408/22/b3f107a850ee0e9e0e10c6172f24af87.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>02 September 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/270">A Review on the Application of Nanomaterials to Boost the Service Performances of Carbon-Containing Refractories</a> </h3> <p class="article-abseract clamp"> To meet the high-quality requirements for clean steel production and fully exploit the performance advantages of carbon-containing refractories, nanomaterial has been introduced into the matrix to develop advanced carbon-containing refractories. Nanomaterials, as critical additives, play a crucial role in developing novel refractories. The service performances of carbon-containing refractories are affected not only by their physical and chemical properties but also by their microstructure. This review provides a comprehensive overview of the latest research on oxide-carbon composite refractories containing nanomaterials, categorized by their composition: nanocarbons, nano oxides, and nano non-oxides. Incorporating nanomaterials can enhance the service performances of the refractories, optimizing phase composition and microstructure. Furthermore, future research directions in nanomaterial technology for carbon-containing refractories are discussed.utf-8</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> JunyiLv </div> <div class="author-name"> HaijunZhang </div> <div class="author-name"> HaohuiGu </div> <div class="author-name"> FengLiang </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/09/03/f6b699ed7b3d2d1745de0505215d93f3.png" data-lightbox="image-5" data-title=""><img src="/uploads/2024/09/03/f6b699ed7b3d2d1745de0505215d93f3.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>27 August 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/260">Strongly Correlated Electrons and High Temperature Superconductivity</a> </h3> <p class="article-abseract clamp"> It is very important to clarify the mechanism of high-temperature superconductivity in strongly correlated electron systems. The mechanism of superconductivity in high temperature cuprate superconductors has been studied extensively since their discovery. We investigate the properties of correlated electron systems and mechanism of superconductivity by using the optimization quantum variational Monte Carlo method. The many-body wave function is constructed by multiplying by correlation operators of exponential type. We show that <i>d</i>-wave superconducting phase exists in the strongly correlated region where the on-site repulsive interaction is as large as the bandwidth or more than the bandwidth. The <i>d</i>-wave pairing correlation function is shown as a function of lattice sites, showing that the long-range order indeed exists.utf-8</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> Takashi Yanagisawa </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/08/28/000ff837d584cbd61638d255a19416c3.png" data-lightbox="image-6" data-title=""><img src="/uploads/2024/08/28/000ff837d584cbd61638d255a19416c3.png" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Review</h4> <span>14 October 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/302">Characterization, Exploitation and Application of Tibetan Microcrystalline Magnesite</a> </h3> <p class="article-abseract clamp"> This paper provides a comprehensive account of the properties, development and extensive utilisation of Tibetan microcrystalline magnesite in industry. Tibetan microcrystalline magnesite has become a significant raw material for refractories, high-temperature insulating materials and magnesium chemical materials due to its high purity, low impurity content (mainly Si and Fe elements) and micrometre-sized crystallisation size (2~4 μm). The article presents a detailed analysis of the microstructure of Tibetan microcrystalline magnesite, its thermal decomposition behaviour and the key technologies employed in preparing high-purity magnesium oxide and sintered magnesia through light burning and electrofusion processes. Furthermore, this paper examines the potential applications of Tibetan microcrystalline magnesite in producing high-performance magnesium materials, including activated magnesium oxide, nano-magnesium oxide, and magnesium hydroxide, which are extensively utilized in environmental protection and high-temperature technology. It is demonstrated that the performance of Tibetan microcrystalline magnesite products can be markedly enhanced by optimising the process parameters and modification techniques, thereby further expanding their application prospects in industrial fields. This review offers a theoretical foundation and technical support for effectively utilising Tibetan microcrystalline magnesite, which possesses significant industrial application value and potential.utf-8</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> SiLi </div> <div class="author-name"> ZiyangYin </div> <div class="author-name"> AnxiuWang </div> <div class="author-name"> CanjunYu </div> <div class="author-name"> RuntangFeng </div> <div class="author-name"> GuoweiLiu </div> <div class="author-name"> XiaoliTian </div> <div class="author-name"> LiugangChen </div> <div class="author-name"> ChengliangMa </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/2024/10/14/9804bc5980cb09e59550b474674dd647.jpg" data-lightbox="image-7" data-title=""><img src="/uploads/2024/10/14/9804bc5980cb09e59550b474674dd647.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>14 November 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/333">Hardness-Porosity-Grain Size Interrelationship in Conventionally Sintered 3 mol% Yttria Stabilized Zirconia</a> </h3> <p class="article-abseract clamp"> Considerable research has been done in the past on expensive, <50 nm particle size 3 mol% yttria-stabilized zirconia (3YSZ) using advanced sintering techniques. However, insights are still needed to reveal which factors among grain size and porosity, when both are changing simultaneously, more strongly control the hardness of conventionally sintered, relatively coarse, 250 nm 3YSZ powder, which can be used to make large industrial engineering ceramic parts at a lower cost. This investigation showed that elevating the sintering temperature from 1500 °C to 1650 °C increased the Rockwell hardness from 49.4 HRA to 86.0 HRA, which was concomitant with an increase in grain size and bulk density. A pseudo-inverse Hall-Petch relationship between hardness and grain size was observed given by H (in HRA) = 153.1 − 69.2/$$\small\sqrt{(\mathrm{grain}\,\mathrm{size})}$$ with a somewhat low R<sup>2</sup> of 0.95, which was mainly due to the porosity being an additional important variable. Compared to grain size, the impact of open pore fraction (P) on hardness was stronger, inferred from a higher R<sup>2</sup> of 0.99 while fitting the data into the well-known exponential decay equation, H = 92.9 exp(−11.1P). Finally, it was observed that the 3YSZ conventionally sintered at 1650 °C for 2 h had 0.8% open porosity, 6.08 g/cm<sup>3 </sup>bulk density, 960 nm grain size and consisted of only tetragonal ZrO<sub>2</sub>.utf-8</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> Abhijeet Phatak </div> <div class="author-name"> Prashant Gupta </div> <div class="author-name"> Somnath Mandal </div> <div class="author-name"> Harshit Agrawal </div> <div class="author-name"> Om Parkash </div> <div class="author-name"> Devendra Kumar </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202411/14/18a1e56c19a6d61a33d28f4ac9297f51.jpg" data-lightbox="image-8" data-title=""><img src="/uploads/image/202411/14/18a1e56c19a6d61a33d28f4ac9297f51.jpg" class=""></a> </div> </div> </div> <div class="d-flex article-box pt-3 pb-3"> <div class="sc-width-200 pr-3"> <h4>Article</h4> <span>19 November 2024</span> </div> <div class="sc-flex-value1 d-flex flex-wrap"> <div> <h3 class="article-title"> <a class="anchor" href="/article/pii/341">Calcite as a Mineralizer and Stabilizer for Low-Cost Zirconia-Mullite-Alumina Composites Synthesized from Siliceous Clay, Alumina and Zirconia</a> </h3> <p class="article-abseract clamp"> Fused zirconia-mullite (ZM) and zirconia-alumina (ZA) are expensive aggregates used in refractory formulations to enhance thermal shock tolerance and corrosion resistance, respectively. A cost-effective alternative approach was explored in this work to produce 37.4 wt% ZrO<sub>2</sub> containing ZM utilizing conventional reaction sintering of siliceous clay, calcined alumina and monoclinic ZrO<sub>2</sub>. A series of chemical reactions ensued from 1200 °C, forming low quartz and cristobalite from the clay, in situ ZrSiO<sub>4</sub>, monoclinic ZrO<sub>2</sub>, α-Al<sub>2</sub>O<sub>3</sub> and traces of leucite. 1600 °C was required to fully form mullite and monoclinic ZrO<sub>2</sub> but it had 26.5% porosity even after firing at 1650 °C for 2 h. It consisted of small equiaxed primary mullite grains secondary mullite rods, and scattered and clustered, round ZrO<sub>2</sub> grains. With 1.05% CaO addition, tetragonal ZrO<sub>2</sub> formed, but 22.7% porosity remained despite the presence of 13.5% liquid phase having a low viscosity (0.6 Pa.s, from FactSage). With 2.11% CaO, porosity reduced to 10.7% but mullite partly dissolved, forming α-Al<sub>2</sub>O<sub>3</sub> (ZMA aggregate). The added CaO mostly remained in the intergranular glassy phase rather than inside the ZrO<sub>2</sub> grains but increased the thickness of the secondary mullite and the ZrO<sub>2</sub> grains. Mullite was completely lost with 4.21% CaO doping but favorably formed cubic ZrO<sub>2</sub> containing up to 0.26 at% Ca, interlinked α-Al<sub>2</sub>O<sub>3</sub> rods and attained a low porosity of 0.2%. This ZA aggregate is limited to 1550 °C application temperature as excess liquid phase drained out beyond that. 7.37% CaO addition was detrimental as it formed an excessive anorthite-like liquid phase that percolated out at 1550 °C with 5.6% weight loss. Thus, in ZM-based calcium aluminate cement bonded refractory castables, the final CaO content should be restricted to below 2.1% to avoid partial dissolution of mullite.utf-8</p> </div> <div class="authors-list align-self-end"> <i class="fal fa-user"></i> <div class="author-name"> SomnathMandal </div> <div class="author-name"> HarshitAgrawal </div> <div class="author-name"> AbhijeetPhatak </div> <div class="author-name"> PrashantGupta </div> <div class="author-name"> IlonaJastrzębska </div> <div class="author-name"> OmParkash </div> <div class="author-name"> DevendraKumar </div> </div> </div> <div class="article-img"> <div class="img-thumbnail"> <a href="/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" data-lightbox="image-9" data-title=""><img src="/uploads/image/202411/19/8d7eea7da52f9de05f4fa1d20c771ec8.jpg" class=""></a> </div> </div> </div> </div> </div> </div> </section> <section class="issues-item mb-4"> <div class="my-body-container padding0"> <div class="section-heading section-heading-padding"> <h3 class="section-title"> Journal Issues <a class="right" href="/journals/htm/issues" target="_blank"> All issues <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-double-right" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M3.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L9.293 8 3.646 2.354a.5.5 0 0 1 0-.708z"/> <path fill-rule="evenodd" d="M7.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L13.293 8 7.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </a> </h3> </div> <ul class="journals-list d-flex flex-wrap pt-2 pb-3"> <li> <div class="img-cover"> <a href="/journals/htm/roll/1/1"> <img src="/uploads/2024/10/10/17285428082xNp.jpg" alt="Issue Cover"> </a> </div> </li> </ul> </div> </section> <script> $(function () { /**/ $('.article-img > img').click(function () { var img = $(this).attr('src'); event.preventDefault(); lightbox.close(); }); /**/ $(window).scroll(function(){ var scrollTop = $(this).scrollTop(), column = $('.book-column'), columnTop = $('.avatar-news-item').offset().top; scrollTop > columnTop ? column.addClass('fixed') : column.removeClass('fixed'); }) /**/ $('.s-btn-close').click(function () { $('.form-search input').val(''); $('.form-search').submit(); }); search_txt=""; if(search_txt){ hightText(search_txt,$('#myTabContent')); } $('select[name=issues]').change(function(){ $('input[name=issues]').val($(this).val()); $('.form-search').submit(); }); //高亮匹配项方法 function hightText(inputVal,findItem){ var searchTerm = (typeof inputVal === 'string') ? inputVal:inputVal.val(); var regex = new RegExp(searchTerm, 'gi'); // 遍历所有节点并高亮匹配项 function highlightText(node) { if (node.nodeType === 3) { // Node.TEXT_NODE var match = node.data.match(regex); if (match) { var highlight = document.createElement('mark'); var words = node.data.replace(regex, function(matched) { return '<mark>' + matched + '</mark>'; }); highlight.innerHTML = words; var frag = document.createDocumentFragment(); while (highlight.firstChild) { frag.appendChild(highlight.firstChild); } while (frag.firstChild) { node.parentNode.insertBefore(frag.firstChild, node); } node.parentNode.removeChild(node); } } else if ((node.nodeType === 1) && (node.nodeName.toLowerCase() !== 'script') && (node.nodeName.toLowerCase() !== 'style')) { // Node.ELEMENT_NODE $(node).contents().each(function() { highlightText(this); }); } } highlightText(findItem[0]); } }) </script> <!-- Footer --> <footer class="mt-1"> <div class="my-body-container pt-4 pb-4"> <div class="fotter-top"> <div> <div class="item-text"> <h3>About</h3> <ul> <li> <a href="/About_SCIEPublish" title="About SClEPublish">About SClEPublish</a> </li> <li> <a href="/Management_Team" title="Management Team">Management Team</a> </li> <li> <a href="/Careers" title="Careers">Careers</a> </li> <li> <a href="/Contact" title="Contact">Contact</a> </li> </ul> </div> <div class="item-text"> <h3>Policies</h3> <ul> <li> <a href="/Peer_Review_Policy" title="Peer Review Policy">Peer Review Policy</a> </li> <li> <a href="/Open_Access_Policy" title="Open Access Policy">Open Access Policy</a> </li> <li> <a href="/Licensing_and_Copyright" title="Licensing and Copyright">Licensing and Copyright</a> </li> <li> <a href="/Editorial_Policy" title="Editorial Policy">Editorial Policy</a> </li> <li> <a href="/Advertising_Policy" title="Advertising Policy">Advertising Policy</a> </li> </ul> </div> <div class="item-text"> <h3>Information</h3> <ul> <li> <a href="/For_Authors" title="For Authors">For Authors</a> </li> <li> <a href="/For_Reviewers" title="For Reviewers">For Reviewers</a> </li> <li> <a href="/For_Editors" title="For Editors">For Editors</a> </li> </ul> </div> <div class="item-text item-text-membership"> <h3>A Member of</h3> <ul> <li class="membership-img1"> <a href="https://stm-assoc.org/" target="_blank" rel="nofollow"> <img src="/style/image/stm2024-logo.png"> </a> </li> <li class="membership-img2"> <a href="https://www.alpsp.org/" target="_blank" rel="nofollow" title=""> <img src="/style/image/alpsp-logo.png" alt=""> </a> </li> <!-- <li class="membership-img3"> <a href="https://publicationethics.org/publisher-membership-application-form-1" target="_blank" rel="nofollow" title=""> <img src="/style/image/cope-logo.png" alt=""> </a> </li> --> </ul> </div> </div> <div class="item-text item-text-right"> <h3> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </h3> <div class="text-share"> <a href="https://x.com/SCIEPublish" class="share-btn twitter-btn" title="Share on Twitter" target="_blank"> <svg t="1713929395475" class="icon" width="32" height="32" viewBox="0 0 1399 1024" fill="#000000" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn LinkedIn-btn" id="email-LinkedIn-btn" title="Share on LinkedIn" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="#000000" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="javaScript:void(0)" class="share-btn wechat-btn" id="wechat-share-btn"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> <div class="cord"> <div class="img"> <img src="/style/image/wechat.jpg" alt="SCIEPublish wechat" /> </div> </div> </a> <a href="mailto:office@sciepublish.org" class="share-btn email-btn" id="email-share-btn" title="Share on Email" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> </div> </div> </div> <div class="copyright-box mt-4 mb-0 pt-3 pb-0"> <p class="text-left">Copyright © 2021-2024 SCIE Publishing Ltd. unless otherwise stated.</p> <p class="text-right"> <a href="/Privacy" title="Privacy">Privacy</a> <!-- <a href="" title="Cookies">Cookies</a> --> <a href="/Terms_of_Use" title="Terms of Use">Terms of Use</a> </p> </div> </div> </footer> <!-- Back-top --> <div class="back-top"> <div class="d-flex justify-content-center align-items-center flex-wrap"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> <span>TOP</span> </div> </div> <!-- Toast --> <div class="toast-container"> <div class="toast" id="liveToast" role="alert" data-delay="3000" aria-live="assertive" aria-atomic="true"> <div class="toast-header"> <strong class="mr-auto">Message</strong> <button type="button" class="ml-2 mb-1 close" data-dismiss="toast" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="toast-body"> </div> </div> </div> <script> $(function () { $('.js-navbar-toggle').on('click', function () { $('header nav').toggleClass('nav-search-active'); }); var windowHeight = $(window).height(), header = $('header'), backTop = $('.back-top'); $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); scrollTop > 0 ? header.addClass('fixed') : header.removeClass('fixed'); scrollTop > windowHeight ? backTop.addClass('fixed') : backTop.removeClass('fixed'); }) backTop.click(function(){ $("body,html").animate({scrollTop:0},300); }) $(".article-abseract.clamp").each(function () { $(this).click(function () { $(this).toggleClass("clamp-open"); }); }); //初始化select $('select.select-mania').selectMania(); }) $('.logout').click(function () { $.get('/index/user/login_out', function (res) { if (res.err == 0) { window.location.href = res.data layer.msg('exit successfully!') } else { layer.msg('Exit failed!') } }) }) </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10