CINXE.COM
Search results for: shear field test method
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shear field test method</title> <meta name="description" content="Search results for: shear field test method"> <meta name="keywords" content="shear field test method"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shear field test method" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shear field test method"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 31948</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shear field test method</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31948</span> Study on the Impact of Size and Position of the Shear Field in Determining the Shear Modulus of Glulam Beam Using Photogrammetry Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niaz%20Gharavi">Niaz Gharavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hexin%20Zhang"> Hexin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shear modulus of a timber beam can be determined using torsion test or shear field test method. The shear field test method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test. The current code of practice advises using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. The size and the position of the constructing square might influence the shear modulus determination. This study aimed to investigate the size and the position effect of the square in the shear field test method. A binocular stereo vision system has been employed to determine the 3D displacement of a grid of target points. Six glue laminated beams were produced and tested. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of the size effect and the position effect of the square. The results have shown that the size of the square has a noticeable influence on the value of shear modulus, while, the position of the square within the area with the constant shear force does not affect the measured mean shear modulus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method" title="shear field test method">shear field test method</a>, <a href="https://publications.waset.org/abstracts/search?q=structural-sized%20test" title=" structural-sized test"> structural-sized test</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus%20of%20Glulam%20beam" title=" shear modulus of Glulam beam"> shear modulus of Glulam beam</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry%20approach" title=" photogrammetry approach"> photogrammetry approach</a> </p> <a href="https://publications.waset.org/abstracts/90264/study-on-the-impact-of-size-and-position-of-the-shear-field-in-determining-the-shear-modulus-of-glulam-beam-using-photogrammetry-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31947</span> A Study on Shear Field Test Method in Timber Shear Modulus Determination Using Stereo Vision System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niaz%20Gharavi">Niaz Gharavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hexin%20Zhang"> Hexin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the structural timber design, the shear modulus of the timber beam is an important factor that needs to be determined accurately. According to BS EN 408, shear modulus can be determined using torsion test or shear field test method. Although torsion test creates pure shear status in the beam, it does not represent the real-life situation when the beam is in the service. On the other hand, shear field test method creates similar loading situation as in reality. The latter method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test as indicated in BS EN 408. Current testing practice code advised using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. Timber is not a homogenous material, but a heterogeneous and this characteristic makes timber to undergo a non-uniform deformation. Therefore, the dimensions and the location of the constructing square in the area with the constant transverse force might alter the shear modulus determination. This study aimed to investigate the impact of the shape, size, and location of the square in the shear field test method. A binocular stereo vision system was developed to capture the 3D displacement of a grid of target points. This approach is an accurate and non-contact method to extract the 3D coordination of targeted object using two cameras. Two group of three glue laminated beams were produced and tested by the mean of four-point bending test according to BS EN 408. Group one constructed using two materials, laminated bamboo lumber and structurally graded C24 timber and group two consisted only structurally graded C24 timber. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of size and location of the square in the determination of shear modulus of the beam. The results have shown that the size of the square is an affecting factor in shear modulus determination. However, the location of the square in the area with the constant shear force does not affect the shear modulus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method" title="shear field test method">shear field test method</a>, <a href="https://publications.waset.org/abstracts/search?q=BS%20EN%20408" title=" BS EN 408"> BS EN 408</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20shear%20modulus" title=" timber shear modulus"> timber shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry%20approach" title=" photogrammetry approach "> photogrammetry approach </a> </p> <a href="https://publications.waset.org/abstracts/85208/a-study-on-shear-field-test-method-in-timber-shear-modulus-determination-using-stereo-vision-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31946</span> Calculating Shear Strength Parameter from Simple Shear Apparatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Nitesh">G. Nitesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shear strength of soils is a crucial parameter instability analysis. Therefore, it is important to determine reliable values for the accuracy of stability analysis. Direct shear tests are mostly performed to determine the shear strength of cohesionless soils. The major limitation of the direct shear test is that the failure takes place through the pre-defined failure plane but the failure is not along pre-defined plane and is along the weakest plane in actual shearing mechanism that goes on in the field. This leads to overestimating the strength parameter; hence, a new apparatus called simple shear is developed and used in this study to determine the shear strength parameter that simulates the field conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20shear" title="direct shear">direct shear</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20shear" title=" simple shear"> simple shear</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20shear%20resistance" title=" angle of shear resistance"> angle of shear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionless%20soils" title=" cohesionless soils"> cohesionless soils</a> </p> <a href="https://publications.waset.org/abstracts/15739/calculating-shear-strength-parameter-from-simple-shear-apparatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31945</span> Correlation between the Undrained Shear Strength of Clay of the Champlain Sea as Determined by the Vane Test and the Swedish Cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Ayadat">Tahar Ayadat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The undrained shear strength is an essential parameter for determining the consistency and the ultimate bearing capacity of a clay layer. The undrained shear strength can be determined by field tests such as the in situ vane test or in laboratory, including hand vane test, triaxial, simple compression test, and the consistency penetrometer (i.e. Swedish cone). However, the field vane test and the Swedish cone are the most commonly used tests by geotechnical experts. In this technical note, a comparison between the shear strength results obtained by the in situ vane test and the cone penetration test (Swedish cone) was conducted. A correlation between the results of these two tests, concerning the undrained shear strength of the Champlain sea clay, has been developed. Moreover, some applications of the proposed correlation on some geotechnical problems have been included, such as the determination of the consistency and the bearing capacity of a clay layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=vane%20test" title=" vane test"> vane test</a>, <a href="https://publications.waset.org/abstracts/search?q=Swedish%20cone" title=" Swedish cone"> Swedish cone</a> </p> <a href="https://publications.waset.org/abstracts/59650/correlation-between-the-undrained-shear-strength-of-clay-of-the-champlain-sea-as-determined-by-the-vane-test-and-the-swedish-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31944</span> Punching Shear Behavior of RC Column Footing on Stabilized Ground</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukanta%20K.%20Shill">Sukanta K. Shill</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20M.%20Hoque"> Md. M. Hoque</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shaifullah"> Md. Shaifullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment on the punching of RC column footing, comparison of test result to established different codes for punching shear calculation of column footings is presented in the paper. The principal aim of this study is to investigate the punching shear behavior of an isolated column footing using brick aggregate as coarse aggregate. Consequence, a RC model footing was constructed on a stabilized soil and tested the footing under field condition. The test result yields that the experimental punching shear capacity is greater than all the theoretical punching shear capacities obtained by using different codes of practices. It can be stated that BNBC 1993, as well as ACI 318, 2002 code formulae are very conservative in predicting the punching shear resistance of RC footing, whereas the CEB-FIP MC, 1990 formula and Eurocode2 formula are less conservative in predicting the punching shear resistance of footing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=footing" title="footing">footing</a>, <a href="https://publications.waset.org/abstracts/search?q=punching%20shear" title=" punching shear"> punching shear</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20condition" title=" field condition"> field condition</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilized%20soil" title=" stabilized soil"> stabilized soil</a>, <a href="https://publications.waset.org/abstracts/search?q=brick%20aggregate" title=" brick aggregate"> brick aggregate</a> </p> <a href="https://publications.waset.org/abstracts/17204/punching-shear-behavior-of-rc-column-footing-on-stabilized-ground" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31943</span> Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumia%20Merat">Soumia Merat</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20Djerbal"> Lynda Djerbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramdane%20Bahar"> Ramdane Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Amin%20Benbouras"> Mohammed Amin Benbouras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20models" title="empirical models">empirical models</a>, <a href="https://publications.waset.org/abstracts/search?q=RMSE" title=" RMSE"> RMSE</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title=" standard penetration test"> standard penetration test</a> </p> <a href="https://publications.waset.org/abstracts/77386/use-of-statistical-correlations-for-the-estimation-of-shear-wave-velocity-from-standard-penetration-test-n-values-case-study-of-algiers-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31942</span> The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nghizaderokni">M. Nghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Janalizadechobbasty"> A. Janalizadechobbasty</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Azizi"> M. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naghizaderokni"> M. Naghizaderokni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20resistance" title=" standard penetration resistance "> standard penetration resistance </a> </p> <a href="https://publications.waset.org/abstracts/28944/the-evaluation-of-soil-liquefaction-potential-using-shear-wave-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31941</span> Particle Size Effect on Shear Strength of Granular Materials in Direct Shear Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Alias">R. Alias</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kasa"> A. Kasa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Taha"> M. R. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of particle size on shear strength of granular materials are investigated using direct shear tests. Small direct shear test (60 mm by 60 mm by 24 mm deep) were conducted for particles passing the sieves with opening size of 2.36 mm. Meanwhile, particles passing the standard 20 mm sieves were tested using large direct shear test (300 mm by 300 mm by 200 mm deep). The large direct shear tests and the small direct shear tests carried out using the same shearing rate of 0.09 mm/min and similar normal stresses of 100, 200, and 300 kPa. The results show that the peak and residual shear strength decreases as particle size increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title="particle size">particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20material" title=" granular material"> granular material</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear%20test" title=" direct shear test"> direct shear test</a> </p> <a href="https://publications.waset.org/abstracts/16566/particle-size-effect-on-shear-strength-of-granular-materials-in-direct-shear-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31940</span> Shear Strength of Unsaturated Clayey Soils Using Laboratory Vane Shear Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed">Reza Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abdolhassan%20Naeini"> Seyed Abdolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Nouri"> Peyman Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Yekehdehghan"> Hamed Yekehdehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shear strength of soils is a significant parameter in the design of clay structures, depots, clay gables, and freeways. Most research has addressed the shear strength of saturated soils. However, soils can become partially saturated with changes in weather, changes in groundwater levels, and the absorption of water by plant roots. Hence, it is necessary to study the strength behavior of partially saturated soils. The shear vane test is an experiment that determines the undrained shear strength of clay soils. This test may be performed in the laboratory or at the site. The present research investigates the effect of liquidity index (LI), plasticity index (PI), and saturation degree of the soil on its undrained shear strength obtained from the shear vane test. According to the results, an increase in the LI and a decrease in the PL of the soil decrease its undrained shear strength. Furthermore, studies show that a rise in the degree of saturation decreases the shear strength obtained from the shear vane test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquidity%20index" title="liquidity index">liquidity index</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a> </p> <a href="https://publications.waset.org/abstracts/147252/shear-strength-of-unsaturated-clayey-soils-using-laboratory-vane-shear-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31939</span> Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Khavaninzadeh"> E. Khavaninzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghorbani%20Tochaee"> M. Ghorbani Tochaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength%20parameters" title="shear strength parameters">shear strength parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear%20test" title=" direct shear test"> direct shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=silty%20sand" title=" silty sand"> silty sand</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deformation" title=" shear deformation"> shear deformation</a> </p> <a href="https://publications.waset.org/abstracts/106132/effect-of-silt-presence-on-shear-strength-parameters-of-unsaturated-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31938</span> Full-Field Estimation of Cyclic Threshold Shear Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20S.%20Uy">E. E. S. Uy</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Noda"> T. Noda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Nakai"> K. Nakai</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Dungca"> J. R. Dungca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20threshold%20shear%20strain" title=" cyclic threshold shear strain"> cyclic threshold shear strain</a>, <a href="https://publications.waset.org/abstracts/search?q=full-field%20measurement" title=" full-field measurement"> full-field measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title=" optical flow"> optical flow</a> </p> <a href="https://publications.waset.org/abstracts/76850/full-field-estimation-of-cyclic-threshold-shear-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31937</span> Estimation of Shear Wave Velocity from Cone Penetration Test for Structured Busan Clays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20K.%20Singh">Vinod K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Chung"> S. G. Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degree of structuration of Busan clays at the mouth of Nakdong River mouth was highly influenced by the depositional environment, i.e., flow of the river stream, marine regression, and transgression during the sedimentation process. As a result, the geotechnical properties also varies along the depth with change in degree of structuration. Thus, the in-situ tests such as cone penetration test (CPT) could not be used to predict various geotechnical properties properly by using the conventional empirical methods. In this paper, the shear wave velocity (Vs) was measured from the field using the seismic dilatometer. The Vs was also measured in the laboratory from high quality undisturbed and remolded samples using bender element method to evaluate the degree of structuration. The degree of structuration was quantitatively defined by the modulus ratio of undisturbed to remolded soil samples which is found well correlated with the normalized void ratio (e0/eL) where eL is the void ratio at the liquid limit. It is revealed that the empirical method based on laboratory results incorporating e0/eL can predict Vs from the field more accurately. Thereafter, the CPT based empirical method was developed to estimate the shear wave velocity taking the effect of structuration in the consideration. The developed method was found to predict shear wave velocity reasonably for Busan clays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20of%20structuration" title="level of structuration">level of structuration</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20modulus" title=" normalized modulus"> normalized modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20void%20ratio" title=" normalized void ratio"> normalized void ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20characterization" title=" site characterization"> site characterization</a> </p> <a href="https://publications.waset.org/abstracts/80527/estimation-of-shear-wave-velocity-from-cone-penetration-test-for-structured-busan-clays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31936</span> Development of a New Method for T-Joint Specimens Testing under Shear Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radek%20Doubrava">Radek Doubrava</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Ruzek"> Roman Ruzek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=T-joint" title="T-joint">T-joint</a>, <a href="https://publications.waset.org/abstracts/search?q=shear" title=" shear"> shear</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20testing" title=" mechanical testing"> mechanical testing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=methodology" title=" methodology"> methodology</a> </p> <a href="https://publications.waset.org/abstracts/17685/development-of-a-new-method-for-t-joint-specimens-testing-under-shear-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31935</span> Mechanical Properties of a Soil Stabilized With a Portland Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Emad%20Ahmed">Ahmed Emad Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20El%20Abd"> Mostafa El Abd</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Wakeb"> Ahmed Wakeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Moahmmed%20Eissa"> Moahmmed Eissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil modification and reinforcing aims to increase soil shear strength and stiffness. In this report, different amounts of cement were added to the soil to explore its effect on shear strength and penetration using 3 tests. The first test is proctor compaction test which was conducted to determine the optimal moisture content and maximum dry density. The second test was direct shear test which was conducted to measure shear strength of soil. The third experiment was California bearing ratio test which was done to measure the penetration in soil. Each test was done different amount of times using different amounts of cement. The results from every test show that cement improve soil shear strength properties and stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilized" title="soil stabilized">soil stabilized</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20soil" title=" mechanical properties of soil"> mechanical properties of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilized%20with%20a%20portland%20cement" title=" soil stabilized with a portland cement"> soil stabilized with a portland cement</a> </p> <a href="https://publications.waset.org/abstracts/156917/mechanical-properties-of-a-soil-stabilized-with-a-portland-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31934</span> Relationship between Blow Count Number (N) and Shear Wave Velocity (Vs30) from the Specified Embankment Material: A Case Study on Three Selected Earthen Dams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanapon%20Suklim">Tanapon Suklim</a>, <a href="https://publications.waset.org/abstracts/search?q=Prachaya%20Intaphrom"> Prachaya Intaphrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Noppadol%20Poomvises"> Noppadol Poomvises</a>, <a href="https://publications.waset.org/abstracts/search?q=Anchalee%20Kongsuk"> Anchalee Kongsuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between shear wave velocity (Vs30) and blow count Number from Standard Penetration Tests (NSPT) was investigated on specified embankment dam to find the solution which can be used to estimate the value of N. Shear wave velocity, Vs30 and blow count number, NSPT were performed at three specified dam sites. At each site, Vs30 measurement was recorded by using seismic survey of MASW technique and NSPT were measured by field Standard Penetration Test. Regression analysis was used to derive statistical relation. The relation is giving a final solution to applicable calculated N-value with other earthen dam. Dam engineer can use the statistical relation to convert field Vs30 to estimated N-value instead of absolute N-value from field Standard Penetration Test. It can be noted that the formulae can be applied only in the earthen dam of specified material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blow%20count%20number" title="blow count number">blow count number</a>, <a href="https://publications.waset.org/abstracts/search?q=earthen%20dam" title=" earthen dam"> earthen dam</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment" title=" embankment"> embankment</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a> </p> <a href="https://publications.waset.org/abstracts/62428/relationship-between-blow-count-number-n-and-shear-wave-velocity-vs30-from-the-specified-embankment-material-a-case-study-on-three-selected-earthen-dams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31933</span> Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20M%20Albadri">Wael M Albadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassnen%20M%20Jafer"> Hassnen M Jafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehab%20H%20Sfoog"> Ehab H Sfoog</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title="shear strength">shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=over-consolidation%20ratio" title=" over-consolidation ratio"> over-consolidation ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=vane%20shear%20test" title=" vane shear test"> vane shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title=" clayey soil"> clayey soil</a> </p> <a href="https://publications.waset.org/abstracts/55043/developing-a-new-relationship-between-undrained-shear-strength-and-over-consolidation-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31932</span> Comparison of Modulus from Repeated Plate Load Test and Resonant Column Test for Compaction Control of Trackbed Foundation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JinWoog%20Lee">JinWoog Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=SeongHyeok%20Lee"> SeongHyeok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=ChanYong%20Choi"> ChanYong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Lim"> Yujin Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hojin%20Cho"> Hojin Cho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Primary function of the trackbed in a conventional railway track system is to decrease the stresses in the subgrade to be in an acceptable level. A properly designed trackbed layer performs this task adequately. Many design procedures have used assumed and/or are based on critical stiffness values of the layers obtained mostly in the field to calculate an appropriate thickness of the sublayers of the trackbed foundation. However, those stiffness values do not consider strain levels clearly and precisely in the layers. This study proposes a method of computation of stiffness that can handle with strain level in the layers of the trackbed foundation in order to provide properly selected design values of the stiffness of the layers. The shear modulus values are dependent on shear strain level so that the strain levels generated in the subgrade in the trackbed under wheel loading and below plate of Repeated Plate Bearing Test (RPBT) are investigated by finite element analysis program ABAQUS and PLAXIS programs. The strain levels generated in the subgrade from RPBT are compared to those values from RC (Resonant Column) test after some consideration of strain levels and stress consideration. For comparison of shear modulus G obtained from RC test and stiffness moduli Ev2 obtained from RPBT in the field, many numbers of mid-size RC tests in laboratory and RPBT in field were performed extensively. It was found in this study that there is a big difference in stiffness modulus when the converted Ev2 values were compared to those values of RC test. It is verified in this study that it is necessary to use precise and increased loading steps to construct nonlinear curves from RPBT in order to get correct Ev2 values in proper strain levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulus" title="modulus">modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20column%20test" title=" resonant column test"> resonant column test</a>, <a href="https://publications.waset.org/abstracts/search?q=trackbed%20foundation" title=" trackbed foundation "> trackbed foundation </a> </p> <a href="https://publications.waset.org/abstracts/14392/comparison-of-modulus-from-repeated-plate-load-test-and-resonant-column-test-for-compaction-control-of-trackbed-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31931</span> Shear Behavior of Steel-Fiber-Reinforced Precast/Prestressed Concrete Hollow Core Slabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Nguyet%20Hang%20Nguyen">Thi Nguyet Hang Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Hai%20Tan"> Kang Hai Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast/prestressed concrete hollow core (PCHC) slabs, especially ones with depth more than 300 mm, are susceptible to web-shear failure. The reasons lie on the fact that the production process of PCHC slabs, i.e., the extrusion method (the most common method to cast PCHC slabs nowadays), does not allow them to contain any shear reinforcement. Moreover, due to the presence of the longitudinal voids, cross sections of PCHC slabs are reduced. Therefore, the shear capacity of the slabs depends solely on the tensile strength of concrete which is relatively low. Given that shear is a major concern in using hollow-core slabs, this paper investigates the possibility of adopting steel fibers in PCHC slabs produced by the extrusion method to enhance the shear capacity of the slabs. Three full-scale PCHC slabs with and without hooked-steel fibers were cast and tested until failure. Three different volumetric fiber contents of 0, 0.51 and 0.89% were investigated. The test results showed that there were substantial increases in shear capacity and ductility with the use of hooked-steel fibers. Ultimate shear strength increased with fiber content. In addition, while the specimen without steel fibers and the one with the steel-fiber volume fraction of 0.51% failed in web-shear mode, the specimen with the higher fiber content (0.89%) collapsed in flexural-shear mode. However, as the hooked-steel fibers with the fiber content of 0.89% were used, difficulties in concrete consolidation were observed while concrete was being cast. This could lead to a lower ultimate shear capacity due to a poorer bond between the concrete and the steel fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow-core%20slabs" title="hollow-core slabs">hollow-core slabs</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=web-shear%20failure" title=" web-shear failure"> web-shear failure</a> </p> <a href="https://publications.waset.org/abstracts/108492/shear-behavior-of-steel-fiber-reinforced-precastprestressed-concrete-hollow-core-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31930</span> Repair and Strengthening of Plain and FRC Shear Deficient Beams Using Externally Bonded CFRP Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20S.%20Abou%20El-Mal">H. S. S. Abou El-Mal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20M.%20Sallam"> H. E. M. Sallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents experimental and analytical study on the behavior of repaired and strengthened shear critical RC beams using externally bonded CFRP bi-directional fabrics. The use of CFRP sheets to repair or strengthen RC beams has been repetitively studied and proven feasible. However, the use of combined repair techniques and applying that method to both plain and FRC beams can maximize the shear capacity of RC shear deficient beams. A total of twelve slender beams were tested under four-point bending. The test parameters included CFRP layout, number of layers and fiber direction, injecting cracks before applying repairing sheets, enhancing the flexural capacity to differentiate between shear repair and strengthening techniques, and concrete matrix types. The findings revealed that applying CFRP sheets increased the overall shear capacity, the amount and orientation of wrapping is of prime importance in both repairing and strengthening, CFRP wrapping could change the failure mode from shear to flexural shear, the use of crack injection combined to CFRP wrapping further improved the shear capacity while, applying the previous method to FRC beams enhanced both shear capacity and failure ductility. Acceptable agreement was found between predicted shear capacities using the Canadian code and the experimental results of the current study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=FRC" title=" FRC"> FRC</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strengthening" title=" shear strengthening"> shear strengthening</a> </p> <a href="https://publications.waset.org/abstracts/28345/repair-and-strengthening-of-plain-and-frc-shear-deficient-beams-using-externally-bonded-cfrp-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31929</span> Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Khosrowshahi">S. K. Khosrowshahi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G%C3%BCler"> E. Güler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title="image processing">image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20reinforcement" title=" soil reinforcement"> soil reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title=" geosynthetics"> geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20shear%20test" title=" simple shear test"> simple shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strain%20profile" title=" shear strain profile"> shear strain profile</a> </p> <a href="https://publications.waset.org/abstracts/71433/image-processing-on-geosynthetic-reinforced-layers-to-evaluate-shear-strength-and-variations-of-the-strain-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31928</span> Shear Strength and Consolidation Behavior of Clayey Soil with Vertical and Radial Drainage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Pillai%20Aparna">R. Pillai Aparna</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Gandhi"> S. R. Gandhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soft clay deposits having low strength and high compressibility are found all over the world. Preloading with vertical drains is a widely used method for improving such type of soils. The coefficient of consolidation, irrespective of the drainage type, plays an important role in the design of vertical drains and it controls accurate prediction of the rate of consolidation of soil. Also, the increase in shear strength of soil with consolidation is another important factor considered in preloading or staged construction. To our best knowledge no clear guidelines are available to estimate the increase in shear strength for a particular degree of consolidation (U) at various stages during the construction. Various methods are available for finding out the consolidation coefficient. This study mainly focuses on the variation of, consolidation coefficient which was found out using different methods and shear strength with pressure intensity. The variation of shear strength with the degree of consolidation was also studied. The consolidation test was done using two types of highly compressible clays with vertical, radial and a few with combined drainage. The test was carried out at different pressures intensities and for each pressure intensity, once the target degree of consolidation is achieved, vane shear test was done at different locations in the sample, in order to determine the shear strength. The shear strength of clayey soils under the application of vertical stress with vertical and radial drainage with target U value of 70% and 90% was studied. It was found that there is not much variation in cv or cr value beyond 80kPa pressure intensity. Correlations were developed between shear strength ratio and consolidation pressure based on laboratory testing under controlled condition. It was observed that the shear strength of sample with target U value of 90% is about 1.4 to 2 times than that of 70% consolidated sample. Settlement analysis was done using Asaoka’s and hyperbolic method. The variation of strength with respect to the depth of sample was also studied, using large-scale consolidation test. It was found, based on the present study that the gain in strength is more on the top half of the clay layer, and also the shear strength of the sample ensuring radial drainage is slightly higher than that of the vertical drainage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consolidation%20coefficient" title="consolidation coefficient">consolidation coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20consolidation" title=" degree of consolidation"> degree of consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDs" title=" PVDs"> PVDs</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/84962/shear-strength-and-consolidation-behavior-of-clayey-soil-with-vertical-and-radial-drainage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31927</span> A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Sang%20Lee">Min Sang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jae%20Shin"> Hee Jae Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Pyo%20Cha"> In Pyo Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Ho%20Ko"> Sun Ho Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyung%20Yoon"> Hyun Kyung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Gun%20Kim"> Hong Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ku%20Kwac"> Lee Ku Kwac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated. the reality is, however, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside. to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20plastic%28CFRP%29" title="carbon fiber reinforced plastic(CFRP)">carbon fiber reinforced plastic(CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-impregnation" title=" pre-impregnation"> pre-impregnation</a>, <a href="https://publications.waset.org/abstracts/search?q=laminating%20method" title=" laminating method"> laminating method</a>, <a href="https://publications.waset.org/abstracts/search?q=interlaminar%20shear%20strength%20%28ILSS%29" title=" interlaminar shear strength (ILSS)"> interlaminar shear strength (ILSS)</a> </p> <a href="https://publications.waset.org/abstracts/21484/a-study-on-the-interlaminar-shear-strength-of-carbon-fiber-reinforced-plastics-depending-on-the-lamination-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31926</span> Experimental Procedure of Identifying Ground Type by Downhole Test: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Akhavan%20Tavakkoli"> Maedeh Akhavan Tavakkoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluating the shear wave velocity (V_s) and primary wave velocity (Vₚ) is necessary to identify the ground type of the site. Identifying the soil type based on different codes can affect the dynamic analysis of geotechnical properties. This study aims to separate the underground layers at the project site based on the shear wave and primary wave velocity (Sₚ) in different depths and determine dynamic elastic modulus based on the shear wave velocity. Bandar Anzali is located in a tectonically very active area. Several active faults surround the study site. In this case, a field investigation of downhole testing is conducted as a geophysics method to identify the ground type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=downhole" title="downhole">downhole</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysics" title=" geophysics"> geophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=case-study" title=" case-study"> case-study</a> </p> <a href="https://publications.waset.org/abstracts/155639/experimental-procedure-of-identifying-ground-type-by-downhole-test-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31925</span> Development of a Large-Scale Cyclic Shear Testing Machine Under Constant Normal Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mahdi%20Niktabara">S. M. Mahdi Niktabara</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Seshagiri%20Raob"> K. Seshagiri Raob</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Shrivastavac"> Amit Kumar Shrivastavac</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20%C5%A0%C4%8Du%C4%8Dkaa"> Jiří Ščučkaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of the discontinuity in the form of joints is one of the most significant factors causing instability in the rock mass. On the other hand, dynamic loads, including earthquake and blasting induce cyclic shear loads along the joints in rock masses; therefore, failure of rock mass exacerbates along the joints due to changing shear resistance. Joints are under constant normal load (CNL) and constant normal stiffness (CNS) conditions. Normal stiffness increases on the joints with increasing depth, and it can affect shear resistance. For correct assessment of joint shear resistance under varying normal stiffness and number of cycles, advanced laboratory shear machine is essential for the shear test. Conventional direct shear equipment has limitations such as boundary conditions, working under monotonic movements only, or cyclic shear loads with constant frequency and amplitude of shear loads. Hence, a large-scale servo-controlled direct shear testing machine was designed and fabricated to perform shear test under the both CNL and CNS conditions with varying normal stiffness at different frequencies and amplitudes of shear loads. In this study, laboratory cyclic shear tests were conducted on non-planar joints under varying normal stiffness. In addition, the effects of different frequencies and amplitudes of shear loads were investigated. The test results indicate that shear resistance increases with increasing normal stiffness at the first cycle, but the influence of normal stiffness significantly decreases with an increase in the number of shear cycles. The frequency of shear load influences on shear resistance, i.e. shear resistance increases with increasing frequency. However, at low shear amplitude the number of cycles does not affect shear resistance on the joints, but it decreases with higher amplitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20shear%20load" title="cyclic shear load">cyclic shear load</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20of%20load" title=" frequency of load"> frequency of load</a>, <a href="https://publications.waset.org/abstracts/search?q=amplitude%20of%20displacement" title=" amplitude of displacement"> amplitude of displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20stiffness" title=" normal stiffness"> normal stiffness</a> </p> <a href="https://publications.waset.org/abstracts/153114/development-of-a-large-scale-cyclic-shear-testing-machine-under-constant-normal-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31924</span> Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dogan%20Cetin">Dogan Cetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hamdi%20Jasim"> Omar Hamdi Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compaction%20test" title="compaction test">compaction test</a>, <a href="https://publications.waset.org/abstracts/search?q=sawdust" title=" sawdust"> sawdust</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=UU%20Triaxial%20Test" title=" UU Triaxial Test"> UU Triaxial Test</a> </p> <a href="https://publications.waset.org/abstracts/61946/immediate-and-long-term-effect-of-the-sawdust-usage-on-shear-strength-of-the-clayey-silt-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31923</span> Effects of Magnetic Field Strength on Fluid Flow Behavior in a Constricted Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Javadzadegan">Ashkan Javadzadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aitak%20Javadzadegan"> Aitak Javadzadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Fakhim"> Babak Fakhim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of possible ways to retard movement of fluid is through applying an external magnetic field. In this regard, this study is focused on the effect of a uniform transverse magnetic field on fluid flow behavior inside a channel with a local symmetric constriction. Also, Ellis Non-Newtonian model is implemented to address the effects of shear-dependent viscosity. According to the results, the flow separation downstream of the constriction can be controlled by applying an external magnetic field and/or manipulating the shear-thinning degree of fluid. It is also demonstrated that pressure drop increases by an increase in the strength of the magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian" title=" non-Newtonian"> non-Newtonian</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning" title=" shear thinning"> shear thinning</a> </p> <a href="https://publications.waset.org/abstracts/3080/effects-of-magnetic-field-strength-on-fluid-flow-behavior-in-a-constricted-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31922</span> A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badr%20Alsulami">Badr Alsulami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Elamary"> Ahmed S. Elamary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to the welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglund’s theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglund’s theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglund’s theory, BS8118 design method, and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory proposed to predict theoretically the USR of aluminum plate girders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20resistance" title="shear resistance">shear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=Cardiff%20theory" title=" Cardiff theory"> Cardiff theory</a>, <a href="https://publications.waset.org/abstracts/search?q=H%D3%A7glund%27s%20theory" title=" Hӧglund's theory"> Hӧglund's theory</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20girder" title=" plate girder"> plate girder</a> </p> <a href="https://publications.waset.org/abstracts/2896/a-new-developed-formula-to-determine-the-shear-buckling-stress-in-welded-aluminum-plate-girders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31921</span> Assessment of the Interface Strength between High-Density Polyethylene Geomembrane and Expanded Polystyrene by the Direct Shear Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Luiz%20da%20Costa%20Junior">Sergio Luiz da Costa Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Fofonka%20Palomino"> Carolina Fofonka Palomino</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Cesar%20Lodi"> Paulo Cesar Lodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of light landfills is an effective solution for road works in soft ground sites, such as Rio de Janeiro (RJ) and Santos (SP) - the Southeastern Brazilian coast. The technique consists in replacing the topsoil by expandable polystyrene (EPS) geofoam, lined with geomembrane to prevent the attack of chemical products.Thus, knowing the interface shear strength of those materials is important in projects to avoid rupturing the system. The purpose of this paper is to compare the shear strength in the geomembrane-EPS interfaces by the direct shear test. The tests were performed under the dry and saturated condition, and four kind of high-density polyethylene (HDPE) 2,00mm geomembranes were used, smooth and texturized - manufactured in the flat die and blown film process. It was found that the shear strength is directly influenced by the roughness of the geomembrane, showed higher friction angle in the textured geomembrane. The direct shear test, in the saturated condition, also showed smaller friction angle than the now-wetted test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geofoam" title="geofoam">geofoam</a>, <a href="https://publications.waset.org/abstracts/search?q=geomembrane" title=" geomembrane"> geomembrane</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20ground" title=" soft ground"> soft ground</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20shear" title=" strength shear"> strength shear</a> </p> <a href="https://publications.waset.org/abstracts/78315/assessment-of-the-interface-strength-between-high-density-polyethylene-geomembrane-and-expanded-polystyrene-by-the-direct-shear-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31920</span> Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sadeghzadegan">R. Sadeghzadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini"> S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirzaii"> A. Mirzaii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20shear%20modulus" title="small shear modulus">small shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=bender%20element%20test" title=" bender element test"> bender element test</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20fines" title=" plastic fines"> plastic fines</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/78616/determination-of-small-shear-modulus-of-clayey-sand-using-bender-element-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31919</span> Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Y.%20Park">Jin Y. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Wan%20Lee"> Jeong Wan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strain%20sensor" title="strain sensor">strain sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20sensor" title=" displacement sensor"> displacement sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20buckling" title=" shear buckling"> shear buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite%20I-section" title=" polymer composite I-section"> polymer composite I-section</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20loading" title=" asymmetric loading"> asymmetric loading</a> </p> <a href="https://publications.waset.org/abstracts/23154/shear-buckling-of-a-large-pultruded-composite-i-section-under-asymmetric-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=1064">1064</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=1065">1065</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>