CINXE.COM

Search results for: epoxy supports

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: epoxy supports</title> <meta name="description" content="Search results for: epoxy supports"> <meta name="keywords" content="epoxy supports"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="epoxy supports" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="epoxy supports"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1330</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: epoxy supports</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1330</span> Immobilization of Enzymes and Proteins on Epoxy-Activated Supports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Khorshidian">Ehsan Khorshidian</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Aghili"> Sina Aghili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymes are promising biocatalysts for many organic reactions. They have excellent features like high activity, specificity and selectivity, and can catalyze under mild and environment friendly conditions. Epoxy-activated supports are almost-ideal ones to perform very easy immobilization of proteins and enzymes at both laboratory and industrial scale. The activated epoxy supports (chitosan/alginate, Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. The enzyme is firstly covalently immobilized under conditions pH 7.0 and 10.0. The remaining groups of the support are blocked to stop additional interaction between the enzyme and support by mercaptoethanol or Triton X-100. The results show support allowed obtaining biocatalysts with high immobilized protein amount and hydrolytic activity. The immobilization of lipases on epoxy support may be considered as attractive tool for obtaining highly active biocatalysts to be used in both aqueous and anhydrous aqueous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilization%20of%20enzymes" title="immobilization of enzymes">immobilization of enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20supports" title=" epoxy supports"> epoxy supports</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20multipoint%20covalent%20attachment" title=" enzyme multipoint covalent attachment"> enzyme multipoint covalent attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20lipases" title=" microbial lipases"> microbial lipases</a> </p> <a href="https://publications.waset.org/abstracts/9260/immobilization-of-enzymes-and-proteins-on-epoxy-activated-supports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1329</span> Characterization of Mechanical Properties of Graphene-Modified Epoxy Resin for Pipeline Repair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Afifah%20Azraai">Siti Nur Afifah Azraai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Kar%20Sing"> Lim Kar Sing</a>, <a href="https://publications.waset.org/abstracts/search?q=Nordin%20Yahaya"> Nordin Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhazilan%20Md%20Noor"> Norhazilan Md Noor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental study consists of a characterization of epoxy grout where an amount of 2% of graphene nanoplatelets particles were added to commercial epoxy resin to evaluate their behavior regarding neat epoxy resin. Compressive tests, tensile tests and flexural tests were conducted to study the effect of graphene nanoplatelets on neat epoxy resin. By comparing graphene-based and neat epoxy grout, there is no significant increase of strength due to weak interface in the graphene nanoplatelets/epoxy composites. From this experiment, the tension and flexural strength of graphene-based epoxy grouts is slightly lower than ones of neat epoxy grout. Nevertheless, the addition of graphene has produced more consistent results according to a smaller standard deviation of strength. Furthermore, the graphene has also improved the ductility of the grout, hence reducing its brittle behaviour. This shows that the performance of graphene-based grout is reliably predictable and able to minimize sudden rupture. This is important since repair design of damaged pipeline is of deterministic nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoplatelets" title=" graphene nanoplatelets"> graphene nanoplatelets</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a> </p> <a href="https://publications.waset.org/abstracts/35293/characterization-of-mechanical-properties-of-graphene-modified-epoxy-resin-for-pipeline-repair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1328</span> Newly Developed Epoxy-Polyol and Epoxy- Polyurethane from Renewable Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akintayo%20Emmanuel%20Temitope">Akintayo Emmanuel Temitope</a>, <a href="https://publications.waset.org/abstracts/search?q=Akintayo%20Cecilia%20Olufunke"> Akintayo Cecilia Olufunke</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziegler%20Thomas"> Ziegler Thomas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-polyols are important components in polyurethane industries. The preliminary studies into the synthesis of bio-polyol products (epoxy-polyol and epoxyl-polyurethanes) from Jatropha curcas were investigated. The reactions were followed by both infrared and nuclear magnetic resonance. Physico-chemical characterisation of the samples for iodine value (IV), acid value (AV), saponification value (SV) and hydroxyl value (HV) were carried out. Thermal transitions of the products were studied by heating 5 mg of the sample from 20ºC to 800ºC and then cooling down to -500ºC on a differential scanning calorimeter (DSC). The preparation of epoxylpolyol and polyurethane from Jatropha curcas oil was smooth and efficient. Results of film and solubility properties revealed that coatings of Jatropha curcas epoxy-polyurethanes performed better with increased loading of toluylene 2, 4-diisocyanate (TDI) up to 2 wt% while their solvent resistance decreased beyond a TDI loading of 1.2 wt%. DSC analysis shows the epoxy-polyurethane to be less stable compared to the epoxy-polyol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy-polyol" title=" epoxy-polyol"> epoxy-polyol</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy-polyurethane" title=" epoxy-polyurethane"> epoxy-polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcas%20oil" title=" jatropha curcas oil"> jatropha curcas oil</a> </p> <a href="https://publications.waset.org/abstracts/6080/newly-developed-epoxy-polyol-and-epoxy-polyurethane-from-renewable-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1327</span> Formation and Characterization of the Epoxy Resin-Porous Glass Interphases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Ostrowski">Aleksander Ostrowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugh%20J.%20Byrne"> Hugh J. Byrne</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Sanctuary"> Roland Sanctuary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of the polymer interphases is an emerging field nowadays. In many cases interphases determine the functionality of a system. There is a great demand for exploration of fundamental understanding of the interphases and elucidation of their formation, dimensions dependent on various influencing factors, change of functional properties, etc. The epoxy applied on porous glass penetrates its pores with an extent dependent on the pore size, temperature and epoxy components mixing ratio. Developed over the recent time challenging sample preparation procedure allowed to produce very smooth epoxy-porous glass cross-sections. In this study, Raman spectroscopy was used to investigate the epoxy-porous glass interphases. It allowed for chemical differentiation between different regions at the cross-section and determination of the degree of cure of epoxy system in the porous glass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interphases" title="interphases">interphases</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20glass" title=" porous glass"> porous glass</a> </p> <a href="https://publications.waset.org/abstracts/9393/formation-and-characterization-of-the-epoxy-resin-porous-glass-interphases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1326</span> Evaluation of the Mechanical Properties of Nano TiO2 and Clay Filler Filled Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mimaroglu">A. Mimaroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Unal"> H. Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical properties of nano filled epoxy composites were evaluated. The matrix material is epoxy. nano fillers are Al2O3, TiO2 and clay added in 2.5- 10 wt% by weight ratio. Test samples were prepared using an open mould type die. Mechanical tests were carried out. The tensile strength, elastic modulus, elongation at break and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the filler content had a high influence on the level of the mechanical properties of the epoxy composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano" title="nano">nano</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fillers" title=" fillers"> fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a> </p> <a href="https://publications.waset.org/abstracts/28293/evaluation-of-the-mechanical-properties-of-nano-tio2-and-clay-filler-filled-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1325</span> Effect of Epoxy-ZrP Nanocomposite Top Coating on Inorganic Barrier Layer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haesook%20Kim">Haesook Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ha%20Na%20Ra"> Ha Na Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansu%20Kim"> Mansu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Gi%20Kim"> Hyun Gi Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Soo%20Kim"> Sung Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxy-ZrP (α-zirconium phosphate) nanocomposites were coated on inorganic barrier layer such as sputtering and atomic layer deposition (ALD) to improve the barrier properties and protect the layer. ZrP nanoplatelets were synthesized using a reflux method and exfoliated in the polymer matrix. The barrier properties of coating layer were characterized by measuring water vapor transmission rate (WVTR). The WVTR dramatically decreased after epoxy-ZrP nanocomposite coating, while maintaining the optical properties. It was also investigated the effect of epoxy-ZrP coating on inorganic layer after bending and reliability test. The optimal structure composed of inorganic and epoxy-ZrP nanocomposite layers was used in organic light emitting diodes (OLED) encapsulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-zirconium%20phosphate" title="α-zirconium phosphate">α-zirconium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier%20properties" title=" barrier properties"> barrier properties</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20nanocomposites" title=" epoxy nanocomposites"> epoxy nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=OLED%20encapsulation" title=" OLED encapsulation"> OLED encapsulation</a> </p> <a href="https://publications.waset.org/abstracts/67636/effect-of-epoxy-zrp-nanocomposite-top-coating-on-inorganic-barrier-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1324</span> Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dehghan">M. Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Al-Mahaidi"> R. Al-Mahaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Sbarski"> I. Sbarski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP)-strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer" title="carbon fiber reinforced polymer">carbon fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotube" title=" multi-walled carbon nanotube"> multi-walled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=DMA" title=" DMA"> DMA</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition%20temperature" title=" glass transition temperature"> glass transition temperature</a> </p> <a href="https://publications.waset.org/abstracts/2485/thermo-mechanical-characterization-of-mwcnts-modified-epoxy-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1323</span> Influence of Micro Fillers Content on the Mechanical Properties of Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Unal">H. Unal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mimaroglu"> A. Mimaroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ozsoy"> I. Ozsoy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical properties of micro filled epoxy composites were investigated. The matrix material is epoxy. Micro fillers are Al2O3 and TiO2 added in 10-30 wt% by weight ratio. Test samples were prepared using an open mould type die. Tensile, three point bending and hardness tests were carried out. The tensile strength, elastic modulus, elongation at break, flexural strength, flexural modulus and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the level of the mechanical properties of the epoxy composites is highly influenced by micro filler content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=fillers" title=" fillers"> fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/28295/influence-of-micro-fillers-content-on-the-mechanical-properties-of-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1322</span> Dielectric Properties of MWCNT-Muscovite/Epoxy Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Suraya%20Anis%20Ahmad%20Bakhtiar">Nur Suraya Anis Ahmad Bakhtiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazizan%20Md%20Akil"> Hazizan Md Akil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the dielectric properties of Epoxy/MWCNTs-muscovite HYBRID and MIXED composites based on ratio 30:70 were studies. The multi-wall carbon nanotubes (MWCNTs) were prepared by two method; (a) muscovite-MWCNTs hybrids were synthesized by chemical vapor deposition (CVD) and (b) physically mixing of muscovite with MWCNTs. The effect of different preparations of the composites and filler loading was evaluated. It is revealed that the dielectric constants of HYBRID epoxy composites are slightly higher compared to MIXED epoxy composites. It is also indicated that the dielectric constant increased by increases the MWCNTs filler loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=muscovite" title="muscovite">muscovite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title=" hybrid composite"> hybrid composite</a> </p> <a href="https://publications.waset.org/abstracts/20252/dielectric-properties-of-mwcnt-muscoviteepoxy-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">650</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1321</span> Flammability of Banana Fibre Reinforced Epoxy/Sodium Bromate Blend: Investigation of Variation in Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Badrinarayanan">S. Badrinarayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Vimal"> R. Vimal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sivaraman"> H. Sivaraman</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Deepak"> P. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Vignesh%20Kumar"> R. Vignesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ponshanmugakumar"> A. Ponshanmugakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the flammability properties of banana fibre reinforced epoxy/ sodium bromate blended composites are studied. Two sets of composite material were prepared, one formed by blending sodium bromate with epoxy matrix and other with neat epoxy matrix. Epoxy resin was blended with various weight fractions of sodium bromate, 4%, 8% and 12%. The composite made with plain epoxy matrix was used as the standard reference material. The mechanical tests, heat deflection tests and flammability tests were carried out on all the composite samples. Flammability test shows the improved flammability properties of the sodium bromated banana-epoxy composite. The modification in flammability properties of the composites by the addition of sodium bromate results in the reduced mechanical properties. The fractured surfaces under various mechanical testing were analysed using morphological analysis done using scanning electron microscope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=banana%20fibres" title="banana fibres">banana fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20bromate" title=" sodium bromate"> sodium bromate</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability%20test" title=" flammability test"> flammability test</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20deflection" title=" heat deflection"> heat deflection</a> </p> <a href="https://publications.waset.org/abstracts/30169/flammability-of-banana-fibre-reinforced-epoxysodium-bromate-blend-investigation-of-variation-in-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1320</span> Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Irshidat">Mohammad R. Irshidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Al-Saleh"> Mohammed H. Al-Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Al-Shoubaki"> Mahmoud Al-Shoubaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nano tubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT" title="CNT">CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20columns" title=" RC columns "> RC columns </a> </p> <a href="https://publications.waset.org/abstracts/20856/strengthening-rc-columns-using-carbon-fiber-reinforced-epoxy-composites-modified-with-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1319</span> Thermal Insulation, Sound Insulation, and Tensile Properties of Epoxy-Silica Aerogel and Epoxy-Polystyrene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ucar">Mehmet Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar"> Nuray Ucar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both thermal insulation and sound insulation play a key role in energy saving and the quality of life. In this study, the effects of different fillers, such as silica aerogel and polystyrene, on the tensile strength, thermal insulation, and sound insulation of epoxy composites have been analyzed. Results from the experimental studies show that both tensile strength and insulation properties (sound and thermal insulation) of the epoxy composite increased by the use of silica aerogel additive. Polystyrene additive significantly increases the sound absorption coefficient of the epoxy composite. Such composites offer great potential for many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20composite" title="epoxy composite">epoxy composite</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20aerogel" title=" silica aerogel"> silica aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20insulation" title=" sound insulation"> sound insulation</a> </p> <a href="https://publications.waset.org/abstracts/192633/thermal-insulation-sound-insulation-and-tensile-properties-of-epoxy-silica-aerogel-and-epoxy-polystyrene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1318</span> New Platform of Biobased Aromatic Building Blocks for Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Caillol">Sylvain Caillol</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxence%20Fache"> Maxence Fache</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Boutevin"> Bernard Boutevin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years have witnessed an increasing demand on renewable resource-derived polymers owing to increasing environmental concern and restricted availability of petrochemical resources. Thus, a great deal of attention was paid to renewable resources-derived polymers and to thermosetting materials especially, since they are crosslinked polymers and thus cannot be recycled. Also, most of thermosetting materials contain aromatic monomers, able to confer high mechanical and thermal properties to the network. Therefore, the access to biobased, non-harmful, and available aromatic monomers is one of the main challenges of the years to come. Starting from phenols available in large volumes from renewable resources, our team designed platforms of chemicals usable for the synthesis of various polymers. One of these phenols, vanillin, which is readily available from lignin, was more specifically studied. Various aromatic building blocks bearing polymerizable functions were synthesized: epoxy, amine, acid, carbonate, alcohol etc. These vanillin-based monomers can potentially lead to numerous polymers. The example of epoxy thermosets was taken, as there is also the problematic of bisphenol A substitution for these polymers. Materials were prepared from the biobased epoxy monomers obtained from vanillin. Their thermo-mechanical properties were investigated and the effect of the monomer structure was discussed. The properties of the materials prepared were found to be comparable to the current industrial reference, indicating a potential replacement of petrosourced, bisphenol A-based epoxy thermosets by biosourced, vanillin-based ones. The tunability of the final properties was achieved through the choice of monomer and through a well-controlled oligomerization reaction of these monomers. This follows the same strategy than the one currently used in industry, which supports the potential of these vanillin-derived epoxy thermosets as substitutes of their petro-based counterparts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignin" title="lignin">lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=amine" title=" amine"> amine</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate" title=" carbonate"> carbonate</a> </p> <a href="https://publications.waset.org/abstracts/40489/new-platform-of-biobased-aromatic-building-blocks-for-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1317</span> Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pujan%20Sarkar">Pujan Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20powder" title="Al powder">Al powder</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber" title=" glass fiber"> glass fiber</a> </p> <a href="https://publications.waset.org/abstracts/114202/frictional-behavior-of-glass-epoxy-and-aluminium-particulate-glass-epoxy-composites-sliding-against-smooth-stainless-steel-counterface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1316</span> Investigation of Alfa Fibers Reinforced Epoxy-Amine Composites Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Boukerrou">Amar Boukerrou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouerdia%20Belhadj"> Ouerdia Belhadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Hammiche"> Dalila Hammiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Francois%20Gerard"> Jean Francois Gerard</a>, <a href="https://publications.waset.org/abstracts/search?q=Jannick%20Rumeau"> Jannick Rumeau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this study is the investigation of alfa fiber content, treated with alkali treatment, on the thermal and mechanical properties of epoxy-amine matrix-based composites. The fibers were treated with 5% of sodium hydroxide solution and varied between 10% to 30% weight fractions. The tensile, flexural, and hardness tests are carried out to investigate the mechanical properties of composites. The results show those composites’ mechanical properties are higher than the neat epoxy-amine. It was noticed that the alkali treatment is more effective in the case of the tensile and flexural modulus than the tensile and flexural strength. The decline of both the tensile and flexural behavior of all composites with the increasing of the filler content was due probably to the random dispersion of the fibers in the epoxy resin The Fourier transform infrared (FTIR) was employed to analyze the chemical structure of epoxy resin before and after curing with amine hardener. FTIR and DSC analysis confirmed that epoxy resin was completely cured with amine hardener at room temperature. SEM analysis has highlighted the microstructure of epoxy matrix and its composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alfa%20fiber" title="alfa fiber">alfa fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20treatment" title=" alkali treatment"> alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/152199/investigation-of-alfa-fibers-reinforced-epoxy-amine-composites-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1315</span> Effect of Fiber Content and Chemical Treatment on Hardness of Bagasse Fiber Reinforced Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varun%20Mittal">Varun Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Sinha"> Shishir Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study focused on the hardness behavior of bagasse fiber-epoxy composites. The relationship between bagasse fiber content and effect of chemical treatment on bagasse fiber as a function of Brinell hardness of bagasse fiber epoxy was investigated. Bagasse fiber was treated with sodium hydroxide followed by acrylic acid before they were reinforced with epoxy resin. Compared hardness properties with the untreated bagasse filled epoxy composites. It was observed that Brinell hardness increased up to 15 wt% fiber content and further decreases, however, chemical treatment also improved the hardness properties of composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse%20fiber" title="bagasse fiber">bagasse fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/52160/effect-of-fiber-content-and-chemical-treatment-on-hardness-of-bagasse-fiber-reinforced-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1314</span> Compressive Response of Unidirectional Basalt Fiber/Epoxy/MWCNTs Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Eslami-Farsani">Reza Eslami-Farsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Khosravi"> Hamed Khosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to study the influence of multi-walled carbon nanotubes (MWCNTs) addition at various contents with respect to the matrix (0-0.5 wt.% at a step of 0.1 wt.%) on the compressive response of unidirectional basalt fiber (UD-BF)/epoxy composites. Toward this end, MWCNTs were firstly functionalized with 3-glycidoxypropyltrimethoxysilane (3-GPTMS) to improve their dispersion state and interfacial compatibility with the epoxy. Subsequently, UD-BF/epoxy and multiscale 3-GPTMS-MWCNTs/UD-BF/epoxy composites were prepared. The mechanical properties of the composites were determined by quasi-static compression test. The compressive strength of the composites was obtained through performing the compression test on the off-axis specimens and extracting their longitudinal compressive strength. Results demonstrated that the highest value in compressive strength was attained at 0.4 wt.% MWCNTs with 41% increase, compared to the BF/epoxy composite. Potential mechanisms behind these were implied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20polymeric%20composites" title="multiscale polymeric composites">multiscale polymeric composites</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20basalt%20fibers" title=" unidirectional basalt fibers"> unidirectional basalt fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20properties" title=" compressive properties"> compressive properties</a> </p> <a href="https://publications.waset.org/abstracts/53542/compressive-response-of-unidirectional-basalt-fiberepoxymwcnts-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1313</span> Using Sugar Mill Waste for Biobased Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ulku%20Soydal">Ulku Soydal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Esen%20Marti"> Mustafa Esen Marti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnare%20Ahmetli"> Gulnare Ahmetli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20waste" title=" lime waste"> lime waste</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/50205/using-sugar-mill-waste-for-biobased-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1312</span> Protection of Steel Bars in Reinforce Concrete with Zinc Based Coverings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Rajabzadeh%20Gatabi">Hamed Rajabzadeh Gatabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soroush%20Dastgheibifard"> Soroush Dastgheibifard</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Asnafi"> Mahsa Asnafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is no doubt that reinforced concrete is known as one of the most significant materials which is used in construction industry for many years. Although, some natural elements in dealing with environment can contribute to its corrosion or failure. One of which is bar or so-called reinforcement failure. So as to combat this problem, one of the oxidization prevention methods investigated was the barrier protection method implemented over the application of an organic coating, specifically fusion-bonded epoxy. In this study comparative method is prepared on two different kinds of covered bars (zinc-riches epoxy and polyamide epoxy coated bars) and also uncoated bar. With the aim of evaluate these reinforced concretes, the stickiness, toughness, thickness and corrosion performance of coatings were compared by some tools like Cu/CuSo4 electrodes, EIS and etc. Different types of concretes were exposed to the salty environment (NaCl 3.5%) and their durability was measured. As stated by the experiments in research and investigations, thick coatings (named epoxies) have acceptable stickiness and strength. Polyamide epoxy coatings stickiness to the bars was a bit better than that of zinc-rich epoxy coatings; nonetheless it was stiffer than the zinc rich epoxy coatings. Conversely, coated bars with zinc-rich epoxy showed more negative oxidization potentials, which take revenge protection of bars by zinc particles. On the whole, zinc-rich epoxy coverings is more corrosion-proof than polyamide epoxy coatings due to consuming zinc elements and some other parameters, additionally if the epoxy coatings without surface defects are applied on the rebar surface carefully, it can be said that the life of steel structures is subjected to increase dramatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title="surface coating">surface coating</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20polyamide" title=" epoxy polyamide"> epoxy polyamide</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforce%20concrete%20bars" title=" reinforce concrete bars"> reinforce concrete bars</a>, <a href="https://publications.waset.org/abstracts/search?q=salty%20environment" title=" salty environment"> salty environment</a> </p> <a href="https://publications.waset.org/abstracts/40405/protection-of-steel-bars-in-reinforce-concrete-with-zinc-based-coverings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1311</span> The Effect of Interfacial Chemistry on Mechanical Properties of Epoxy Composites Containing Poly (Ether Ether Ketone) Grafted Multiwall Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prajakta%20Katti">Prajakta Katti</a>, <a href="https://publications.waset.org/abstracts/search?q=Suryasarathi%20Bose"> Suryasarathi Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, carboxyl functionalized multiwall carbon nanotubes (a-MWNTs) covalently grafted with hydroxylated functionalized poly (ether ether ketone), HPEEK, which is miscible with the pre-polymer (epoxy) through the esterification reaction. The functionalized MWNTs were systematically characterized using spectroscopic techniques. The epoxy composites containing a-MWNTs and HPEEK grafted multiwall carbon nanotubes (HPEEK-g-MWNTs) were formulated using mechanical stirring coupled with a bath sonicator to improve the dispersion property of the nanoparticles and were subsequently cured at 80 ̊C and post cured at 180 ̊C. With the addition of 0.5 wt% of HPEEK-g-MWNTs, an impressive 44% enhancement in the storage modulus, 22% increase in tensile strength and 38% increase in fracture toughness was observed with respect to neat epoxy. In addition to these mechanical properties, the epoxy composites displayed significant enhancement in the hardness without reducing thermal stability. These improved properties were attributed to the tailored interface between HPEEK-MWNTs and epoxy matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=MWNTs" title=" MWNTs"> MWNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=HPEEK-g-MWNTs" title=" HPEEK-g-MWNTs"> HPEEK-g-MWNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a> </p> <a href="https://publications.waset.org/abstracts/63639/the-effect-of-interfacial-chemistry-on-mechanical-properties-of-epoxy-composites-containing-poly-ether-ether-ketone-grafted-multiwall-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1310</span> Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Krushnamurty">K. Krushnamurty</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rasmitha"> D. Rasmitha</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Srikanth"> I. Srikanth</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ramji"> K. Ramji</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Subrahmanyam"> Ch. Subrahmanyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-glass-epoxy%20composite%20laminates" title="e-glass-epoxy composite laminates">e-glass-epoxy composite laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=e-glass%20fiber" title=" e-glass fiber"> e-glass fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a> </p> <a href="https://publications.waset.org/abstracts/41619/effect-of-volume-fraction-of-fibre-on-the-mechanical-properties-of-nanoclay-reinforced-e-glass-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1309</span> Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oiane%20Ruiz%20de%20Azua">Oiane Ruiz de Azua</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Borros"> Salvador Borros</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuria%20Agullo"> Nuria Agullo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Arbusa"> Jordi Arbusa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20adhesive" title="epoxy adhesive">epoxy adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20process%20of%20pieces" title=" manufacturing process of pieces"> manufacturing process of pieces</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfanilamide" title=" sulfanilamide"> sulfanilamide</a>, <a href="https://publications.waset.org/abstracts/search?q=tackifiers" title=" tackifiers"> tackifiers</a> </p> <a href="https://publications.waset.org/abstracts/131587/sulfanilamideepoxy-resin-and-its-application-as-tackifier-in-epoxy-adhesives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1308</span> Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kugler">Szymon Kugler</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Kowalczyk"> Krzysztof Kowalczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Spychaj"> Tadeusz Spychaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20cardanol" title="bio-based cardanol">bio-based cardanol</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20coatings" title=" epoxy coatings"> epoxy coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=tolylbiguanide" title=" tolylbiguanide"> tolylbiguanide</a> </p> <a href="https://publications.waset.org/abstracts/74761/amine-hardeners-with-carbon-nanotubes-dispersing-ability-for-epoxy-coating-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1307</span> Properties of Epoxy Composite Reinforced with Amorphous and Crystalline Silica from Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norul%20Hisham%20Hamid">Norul Hisham Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Affan"> Amir Affan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ummi%20Hani%20Abdullah"> Ummi Hani Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Paridah%20Md.%20Tahir"> Paridah Md. Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Akmal%20Azhar"> Khairul Akmal Azhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Nawai"> Rahmat Nawai</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20H.%20Wan%20Sulwani%20Izzati"> W. B. H. Wan Sulwani Izzati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensional stability and static bending properties of epoxy composite reinforced with amorphous and crystalline silica were investigated. The amorphous and crystalline silica was obtained by the precipitation method from carbonisation process of the rice husk at a temperature of 600 °C and 1000 °C for 7 hours respectively. The epoxy resin was mixed with 5%, 10% and 15% concentrations of amorphous and crystalline silica. The mixture was stirred for 10 minutes and cured at 28 °C for 72 hours and oven dried at 80 °C for 72 hours. The scanning electron microscope image showed the silica sized of 10-30nm was obtained. The water absorption and thickness swelling of epoxy/amorphous silica composite was not significantly different with silica concentration ranged from 0.08% to 0.09% and 0.17% to 0.20% respectively. The maximum modulus of rupture (85 MPa) and modulus of elasticity (3284 MPa) were achieved for 10% silica concentration. For epoxy/crystalline silica composite; the water absorption and thickness swelling were also not significantly different with silica concentration, ranged from 0.08% to 0.11% and 0.16% to 0.18% respectively. The maximum modulus of rupture (47.9 MPa) and modulus of elasticity (2760 MPa) were achieved for 10% silica concentration. Overall, the water absorption and thickness swelling were almost identical for epoxy composite made from either amorphous or crystalline silica. The epoxy composite made from amorphous silica was stronger than crystalline silica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stability" title=" dimensional stability"> dimensional stability</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20bending" title=" static bending"> static bending</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a> </p> <a href="https://publications.waset.org/abstracts/84173/properties-of-epoxy-composite-reinforced-with-amorphous-and-crystalline-silica-from-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1306</span> Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20A.%20Higazy">Shimaa A. Higazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Selim"> Mohamed S. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Olfat%20E.%20El-Azabawy"> Olfat E. El-Azabawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abeer%20A.%20Hassan"> Abeer A. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title=" surface coating"> surface coating</a>, <a href="https://publications.waset.org/abstracts/search?q=anticorrosive%20properties" title=" anticorrosive properties"> anticorrosive properties</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20durability" title=" mechanical durability"> mechanical durability</a> </p> <a href="https://publications.waset.org/abstracts/159842/novel-anticorrosion-epoxy-reinforced-graphitic-nanocomposite-as-a-durable-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1305</span> Poly (Lactic Acid)/Poly (Butylene Adipate-Co-terephthalate) Films Reinforced with Polyhedral Oligomeric Silsesquioxane Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elahe%20Moradi">Elahe Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ali%20Khonakdar"> Hossein Ali Khonakdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of the growing interest in renewable polymers, this study presents an innovative approach to environmental conservation through the development of an eco-friendly structure. The research focused on enhancing the compatibility between two immiscible polymers, poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT), using polyhedral oligomeric silsesquioxanes (POSS) nanoparticles with an epoxy functional group (Epoxy-POSS). This was achieved through a solution casting method. The study found that the modulus in the glassy region for blends containing Epoxy-POSS was significantly higher than that of the PLA/PBAT blend without Epoxy-POSS. However, in the transition and rubbery regions, the modulus of the Epoxy-POSS-containing blends was only marginally greater. From a mechanical properties’ perspective, the study demonstrated that the incorporation of POSS-EPOXY at varying concentrations enhanced the tensile strength of the PLA/PBAT blend by 30%, thereby acting as a reinforcement. This finding underscores the potential of this approach in the development of renewable polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polyhedral%20oligomeric%20silsesquioxane" title="Polyhedral oligomeric silsesquioxane">Polyhedral oligomeric silsesquioxane</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA" title=" PLA"> PLA</a>, <a href="https://publications.waset.org/abstracts/search?q=PBAT" title=" PBAT"> PBAT</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/179381/poly-lactic-acidpoly-butylene-adipate-co-terephthalate-films-reinforced-with-polyhedral-oligomeric-silsesquioxane-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1304</span> Advanced Phosphorus-Containing Polymer Materials towards Eco-Friendly Flame Retardant Epoxy Thermosets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionela-Daniela%20Carja">Ionela-Daniela Carja</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Serbezeanu"> Diana Serbezeanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tachita%20Vlad-Bubulac"> Tachita Vlad-Bubulac</a>, <a href="https://publications.waset.org/abstracts/search?q=Corneliu%20Hamciuc"> Corneliu Hamciuc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, epoxy materials are extensively used in ever more areas and under ever more demanding environmental conditions due to their remarkable combination of properties, light weight and ease of processing. However, these materials greatly increase the fire risk due to their flammability and possible release of toxic by-products as a result of their chemical composition which consists mainly from carbon and hydrogen atoms. Therefore, improving the fire retardant behaviour to prevent the loss of life and property is of particular concern among government regulatory bodies, consumers and manufacturers alike. Modification of epoxy resins with organophosphorus compounds, as reactive flame retardants or additives, is the key to achieving non-flammable advanced epoxy materials. Herein, a detailed characterization of fire behaviour for a series of phosphorus-containing epoxy thermosets is reported. A carefully designed phosphorus flame retardant additive was simply blended with a bifunctional bisphenol-A based epoxy resin. Further thermal cross-linking in the presence of various aminic hardeners led to eco-friendly flame retardant epoxy resins. The type of hardener, concentration of flame retardant additive, compatibility between the components of the mixture, char formation and morphology, thermal stability, flame retardant mechanisms were investigated. It was found that even a very low content of phosphorus introduced into the epoxy matrix increased the limiting oxygen index value to about 30%. In addition, the peak of the heat release rate value decreased up to 45% as compared to the one of the neat epoxy system. The main flame retardant mechanism was the condensed-phase one as revealed by SEM and XPS measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensed-phase%20mechanism" title="condensed-phase mechanism">condensed-phase mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20phosphorus%20flame%20retardant" title=" eco-friendly phosphorus flame retardant"> eco-friendly phosphorus flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/31068/advanced-phosphorus-containing-polymer-materials-towards-eco-friendly-flame-retardant-epoxy-thermosets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1303</span> Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Rezghimaleki">Hadi Rezghimaleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Masatoshi%20Kubouchi"> Masatoshi Kubouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshihiko%20Arao"> Yoshihiko Arao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber%20composites" title="natural fiber composites">natural fiber composites</a>, <a href="https://publications.waset.org/abstracts/search?q=flax%2Fepoxy" title=" flax/epoxy"> flax/epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20CT" title=" X-ray CT"> X-ray CT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing"> ultrasonic testing</a> </p> <a href="https://publications.waset.org/abstracts/50723/evaluation-of-drilling-induced-delamination-of-flaxepoxy-composites-by-non-destructive-testing-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1302</span> Eco-Friendly Natural Filler Based Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suheyla%20Kocaman">Suheyla Kocaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnare%20Ahmetli"> Gulnare Ahmetli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young&rsquo;s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biobased%20composite" title="biobased composite">biobased composite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fillers" title=" natural fillers"> natural fillers</a> </p> <a href="https://publications.waset.org/abstracts/43088/eco-friendly-natural-filler-based-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1301</span> Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Graur">I. Graur</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bria"> V. Bria</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Muntenita"> C. Muntenita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20powder" title=" organic powder"> organic powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20needles" title=" pine needles"> pine needles</a> </p> <a href="https://publications.waset.org/abstracts/96794/friction-coefficient-of-epiphen-epoxy-system-filled-with-powder-resulting-from-the-grinding-of-pine-needles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epoxy%20supports&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10