CINXE.COM
Search results for: carboxymethyl cellulose
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: carboxymethyl cellulose</title> <meta name="description" content="Search results for: carboxymethyl cellulose"> <meta name="keywords" content="carboxymethyl cellulose"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="carboxymethyl cellulose" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="carboxymethyl cellulose"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 418</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: carboxymethyl cellulose</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitlada%20Chumee">Jitlada Chumee</a>, <a href="https://publications.waset.org/abstracts/search?q=Drenpen%20Seeburin"> Drenpen Seeburin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pomelo%20peel" title="pomelo peel">pomelo peel</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose" title=" carboxymethyl cellulose"> carboxymethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=bioplastic" title=" bioplastic"> bioplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/9705/cellulose-extraction-from-pomelo-peel-synthesis-of-carboxymethyl-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Synthesis and Characterization of Carboxymethyl Cellulose from Rice Stubble Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rungsinee%20Sothornvit">Rungsinee Sothornvit</a>, <a href="https://publications.waset.org/abstracts/search?q=Pattrathip%20Rodsamran"> Pattrathip Rodsamran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice stubble consists of a high content of cellulose and can be synthesized as a cellulose derivative such as carboxymethyl cellulose (CMC) to value added products from agricultural waste. Therefore, the synthesis conditions and characterization the properties of CMC from rice stubble (CMCr) were investigated. Hemicellulose and lignin were first removed from the rice stubble using 10% NaOH at 55 C for 3 h and 5% NaOCl at 75 C for 15 min, respectively. Rice stubble cellulose was swollen in 30% NaOH and isopropanol as a solvent. The content of chloroacetic acid (5–7 g in 5 g of alkali cellulose), reaction temperature (50 and 70 C) and time (180, 270 and 360 min) were explored to obtain CMC. It was found that synthesis conditions did not affect significantly on moisture content and pH of CMCr. The best quality of CMCr was synthesized by using 7 g of chloroacetic acid and reacted at 50 C for 180 min based on 5 g of rice stubble cellulose. Degree of substitution (DS), viscosity and purity of CMCr were 0.64, 36.03 cP and 90.18 %, respectively. Furthermore, Fourier transform infrared (FT–IR) spectroscopy confirmed the presence of carboxymethyl substituents. CMCr was categorized in commercial scale as a low viscosity material and it can be used as film forming packaging materials for food and pharmaceutical product applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20stubble" title="rice stubble">rice stubble</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose" title=" carboxymethyl cellulose"> carboxymethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20substitution" title=" degree of substitution"> degree of substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=purity" title=" purity"> purity</a> </p> <a href="https://publications.waset.org/abstracts/83519/synthesis-and-characterization-of-carboxymethyl-cellulose-from-rice-stubble-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Extended Shelf Life of Chicken Meat Using Carboxymethyl Cellulose Coated Polypropylene Films Containing Zataria multiflora Essential Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Honarvar">Z. Honarvar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farhoodi"> M. Farhoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khani"> M. R. Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shojaee-Aliabadi"> S. Shojaee-Aliabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to evaluate carboxymethyl cellulose (CMC) coated polypropylene (PP) films containing <em>Zataria multiflora</em> (ZEO) essential oils (4%) as an antimicrobial packaging for chicken breast stored at 4 °C. To increase PP film hydrophilicity, it was treated by atmospheric cold plasma prior to coating by CMC. Then, different films including PP, PP/CMC, PP/CMC containing 4% of ZEO were used for the chicken meat packaging in vapor phase. Total viable count and pseudomonads population and oxidative (TBA) changes of the chicken breast were analyzed during shelf life. Results showed that the shelf life of chicken meat kept in films containing ZEO improved from three to nine days compared to the control sample without any direct contact with the film. Study of oxygen barrier properties of bilayer film without essential oils (0.096 cm<sup>3 </sup>μm/m<sup>2</sup> d kPa) in comparison with PP film (416 cm<sup>3 </sup>μm/m<sup>2</sup> d kPa) shows that coating of PP with CMC significantly reduces oxygen permeation of the obtained packaging (P<0.05), which reduced aerobic bacteria growth. Chemical composition of ZEO was also evaluated by gas chromatography–mass spectrometry (GC–MS), and this shows that thymol was the main antimicrobial and antioxidant component of the essential oil. The results revealed that PP/CMC containing ZEO has good potential for application as active food packaging in indirect contact which would also improve sensory properties of product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title="shelf life">shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken%20breast" title=" chicken breast"> chicken breast</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose" title=" carboxymethyl cellulose"> carboxymethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/73868/extended-shelf-life-of-chicken-meat-using-carboxymethyl-cellulose-coated-polypropylene-films-containing-zataria-multiflora-essential-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Improving Paper Mechanical Properties and Printing Quality by Using Carboxymethyl Cellulose as a Strength Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Simonian">G. N. Simonian</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Basalah"> R. F. Basalah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Abd%20El%20Halim"> F. T. Abd El Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20F.%20Abd%20El%20Latif"> F. F. Abd El Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Adel"> A. M. Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El%20Shafey."> A. M. El Shafey. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carboxymethyl cellulose (CMC) is an anionic water soluble polymer that has been introduced in paper coating as a strength agent. One of the main objectives of this research is to investigate the influence of CMC concentration in improving the strength properties of paper fiber. In this work, we coated the paper sheets; Xerox paper sheets by different concentration of carboxymethyl cellulose solution (0.1, 0.5, 1, 1.5, 2, 3%) w/v. The mechanical properties; breaking length and tearing resistance (tear factor) were measured for the treated and untreated paper specimens. The retained polymer in the coated paper samples were also calculated. The more the concentration of the coating material; CMC increases, the more the mechanical properties; breaking length and tear factor increases. It can be concluded that CMC enhance the improvement of the mechanical properties of paper sheets result in increasing paper stability. The aim of the present research was also to study the effects on the vessel element structure and vessel picking tendency of the coated paper sheets. In addition to the improved strength properties of the treated sheet, a significant decrease in the vessel picking tendency was expected whereas refining of the original paper sheets (untreated paper sheets) improved mainly the bonding ability of fibers, CMC effectively enhanced the bonding of vessels as well. Moreover, film structures were formed in the fibrillated areas of the coated paper specimens, and they were concluded to reinforce the bonding within the sheet. Also, fragmentation of vessel elements through CMC modification was found to be important and results in a decreasing picking tendency which reflects in a good printability. Moreover, Scanning – Electron Microscope (SEM) images are represented to specifically explain the improved bonding ability of vessels and fibers after CMC modification. Finally, CMC modification enhance paper mechanical properties and print quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose%20%28CMC%29" title="carboxymethyl cellulose (CMC)">carboxymethyl cellulose (CMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20length" title=" breaking length"> breaking length</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20factor" title=" tear factor"> tear factor</a>, <a href="https://publications.waset.org/abstracts/search?q=vessel%20picking" title=" vessel picking"> vessel picking</a>, <a href="https://publications.waset.org/abstracts/search?q=printing" title=" printing"> printing</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration "> concentration </a> </p> <a href="https://publications.waset.org/abstracts/18136/improving-paper-mechanical-properties-and-printing-quality-by-using-carboxymethyl-cellulose-as-a-strength-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Regenerated Cellulose Prepared by Using NaOH/Urea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Chiau%20Yeng">Lee Chiau Yeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayani%20Othman"> Norhayani Othman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regenerated cellulose fiber is fabricated in the NaOH/urea aqueous solution. In this work, cellulose is dissolved in 7 .wt% NaOH/12 .wt% urea in the temperature of -12 °C to prepare regenerated cellulose. Thermal and structure properties of cellulose and regenerated cellulose was compared and investigated by Field Emission Scanning Electron Microscopy (FeSEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry. Results of FeSEM revealed that the regenerated cellulose fibers showed a more circular shape with irregular size due to fiber agglomeration. FTIR showed the difference in between the structure of cellulose and the regenerated cellulose fibers. In this case, regenerated cellulose fibers have a cellulose II crystalline structure with lower degree of crystallinity. Regenerated cellulose exhibited better thermal stability than the cellulose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regenerated%20cellulose" title="regenerated cellulose">regenerated cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=NaOH" title=" NaOH"> NaOH</a>, <a href="https://publications.waset.org/abstracts/search?q=urea" title=" urea"> urea</a> </p> <a href="https://publications.waset.org/abstracts/19617/regenerated-cellulose-prepared-by-using-naohurea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Carboxymethyl Cellulose Coating onto Polypropylene Film Using Cold Atmospheric Plasma Treatment as Food Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Honarvar">Z. Honarvar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farhoodi"> M. Farhoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khani"> M. R. Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shojaee-Aliabadi"> S. Shojaee-Aliabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, edible films and coating have attracted much attention in food industry due to their environmentally friendly nature and safety in direct contact with food. However edible films have relatively weak mechanical properties and high water vapor permeability. Therefore, the aim of the study was to develop bilayer carboxymethyl cellulose (CMC) coated polypropylene (PP) films to increase mechanical properties and water vapor resistance of each pure CMC or PP films. To modify the surface properties of PE for better attachment of CMC coating layer to PP the atmospheric cold plasma treatment was used. Then the PP surface changes were evaluated by contact angle, AFM, and ATR-FTIR. Furthermore, the physical, mechanical, optical and microstructure characteristics of plasma-treated and untreated films were analyzed. ATR-FTIR results showed that plasma treatment created oxygen-containing groups on PP surface leading to an increase in hydrophilic properties of PP surface. Moreover, a decrease in water contact angle (from 88.92° to 52.15°) and an increase of roughness were observed on PP film surface indicating good adhesion between hydrophilic CMC and hydrophobic PP. Furthermore, plasma pre-treatment improved the tensile strength of CMC coated-PP films from 58.19 to 61.82. Water vapor permeability of plasma treated bilayer film was lower in comparison with untreated film. Therefore, cold plasma treatment has potential to improve attachment of CMC coating to PP layer, leading to enhanced water barrier and mechanical properties of CMC coated polypropylene as food packaging in which also CMC is in contact with food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose%20film" title="carboxymethyl cellulose film">carboxymethyl cellulose film</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20plasma" title=" cold plasma"> cold plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20properties" title=" surface properties"> surface properties</a> </p> <a href="https://publications.waset.org/abstracts/74884/carboxymethyl-cellulose-coating-onto-polypropylene-film-using-cold-atmospheric-plasma-treatment-as-food-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Rheological Properties of Cellulose/TBAF/DMSO Solutions and Their Application to Fabrication of Cellulose Hydrogel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe">Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Eun%20Nam"> Jae Eun Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hoon%20Roh"> Young Hoon Roh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Soo%20Shin"> Chul Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of hydrogels with a high mechanical strength is important for numerous applications of hydrogels. As a material for tough hydrogels, cellulose has attracted much interest. However, cellulose cannot be melted and is very difficult to be dissolved in most solvents. Therefore, its dissolution in tetrabutylammonium fluoride/dimethyl sulfoxide (TBAF/DMSO) solvents has attracted researchers for chemical processing of cellulose. For this reason, studies about rheological properties of cellulose/TBAF/DMSO solution will provide useful information. In this study, viscosities of cellulose solutions prepared using different amounts of cellulose and TBAF in DMSO were measured. As expected, the viscosity of cellulose solution decreased with respect to the increasing volume of DMSO. The most viscose cellulose solution was achieved at a 1:1 mass ratio of cellulose to TBAF regardless of their contents in DMSO. At a 1:1 mass ratio of cellulose to TBAF, the formation of cellulose nanoparticles (467 nm) resulted in a dramatic increase in the viscosity, which led to the fabrication of 3D cellulose hydrogels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=TBAF%2FDMSO" title=" TBAF/DMSO"> TBAF/DMSO</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/55446/rheological-properties-of-cellulosetbafdmso-solutions-and-their-application-to-fabrication-of-cellulose-hydrogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Physicochemical Characterization of Mercerized Cellulose-Supported Nickel-Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20M.%20A.%20S.%20Keshk">Sherif M. A. S. Keshk</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisham%20S.%20M.%20Abd-Rabboh"> Hisham S. M. Abd-Rabboh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Hamdy"> Mohamed S. Hamdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20H.%20A.%20Badr"> Ibrahim H. A. Badr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave radiation was applied to synthesize nanoparticles of nickel oxide supported on pretreated cellulose with metal acetate in the presence of NaOH. Optimization, in terms of irradiation time and metal concentration, was investigated. FT-IR spectrum of cellulose/NiO spectrum shows a band at 445 cm^-1 that is related to the Ni–O stretching vibration of NiO6 octahedral in the cubic NiO structure. cellulose/NiO showed similar XRD pattern of cellulose I and exhibited sharpened reflection peak at 2q = 29.8°, corresponding to (111) plane of NiO, with two weak broad peaks at 48.5°, and 49.2°, representing (222) planes of NiO. XPS spectrum of mercerized cellulose/NiO composite showed did not show any peaks corresponding to Na ion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=mercerized%20cellulose" title=" mercerized cellulose"> mercerized cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%2Fzinc%20and%20nickeloxides%20composite" title=" cellulose/zinc and nickeloxides composite"> cellulose/zinc and nickeloxides composite</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS" title=" XPS"> XPS</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectrum" title=" Raman spectrum"> Raman spectrum</a> </p> <a href="https://publications.waset.org/abstracts/38240/physicochemical-characterization-of-mercerized-cellulose-supported-nickel-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Eco-Friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hebat%E2%80%91Allah%20S.%20Tohamy">Hebat‑Allah S. Tohamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%E2%80%91Sakhawy"> Mohamed El‑Sakhawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kamel"> Samir Kamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure based on microwave heating of urea with sugarcane bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had small size, strong absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48 for QCMC, QC, and QSCB. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQD isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R², the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20quantum%20dots" title="carbon quantum dots">carbon quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title=" graphene quantum dots"> graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20yield" title=" quantum yield"> quantum yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title=" agricultural wastes"> agricultural wastes</a> </p> <a href="https://publications.waset.org/abstracts/157843/eco-friendly-synthesis-of-carbon-quantum-dots-as-an-effective-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Uyanga">K. Uyanga</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Daoud"> W. Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title="citric acid">citric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=fumaric%20acid" title=" fumaric acid"> fumaric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=tartaric%20acid" title=" tartaric acid"> tartaric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20nitrate%20hexahydrate" title=" zinc nitrate hexahydrate"> zinc nitrate hexahydrate</a> </p> <a href="https://publications.waset.org/abstracts/110048/synthesis-and-characterization-of-carboxymethyl-cellulose-chitosan-based-composite-hydrogels-for-biomedical-and-non-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Microcrystalline Cellulose (MCC) from Oil Palm Empty Fruit Bunch (EFB) Fiber via Simultaneous Ultrasonic and Alkali Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridzuan%20Ramli">Ridzuan Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhafzan%20Junadi"> Norhafzan Junadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20D.H.%20Beg"> Mohammad D.H. Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20M.%20Yunus"> Rosli M. Yunus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (EFB) cellulose which was earlier isolated from oil palm EFB fibre. In order to isolate the cellulose, the chlorination method was carried out. Then, the MCC was prepared by simultaneous ultrasonic and alkali treatment from the isolated α-cellulose. Based on mass balance calculation, the yields for MCC obtained from EFB was 44%. For fiber characterization, it is observed that the chemical composition of the hemicellulose and lignin for all samples decreased while composition for cellulose increased. The structural property of the MCC was studied by X-ray diffraction (XRD) method and the result shows that the MCC produced is a cellulose-I polymorph, with 73% crystallinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunch" title="oil palm empty fruit bunch">oil palm empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=microcrystalline%20cellulose" title=" microcrystalline cellulose"> microcrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20treatment" title=" alkali treatment"> alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20diffraction" title=" x-ray diffraction"> x-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/17460/microcrystalline-cellulose-mcc-from-oil-palm-empty-fruit-bunch-efb-fiber-via-simultaneous-ultrasonic-and-alkali-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Bioethanol Synthesis Using Cellulose Recovered from Biowaste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Faisal%20Najmuldeen">Ghazi Faisal Najmuldeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Noridah%20Abdullah"> Noridah Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah"> Mimi Sakinah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioethanol is an alcohol made by fermentation, mostly from carbohydrates, Cellulosic biomass, derived from non-food sources, such as castor shell waste, is also being developed as a feedstock for ethanol production Cellulose extracted from biomass sources is considered the future feedstock for many products due to the availability and eco-friendly nature of cellulose. In this study, castor shell (CS) biowaste resulted from the extraction of Castor oil from castor seeds was evaluated as a potential source of cellulose. The cellulose was extracted after pretreatment process was done on the CS. The pretreatment process began with the removal of other extractives from CS, then an alkaline treatment, bleaching process with hydrogen peroxide, and followed by a mixture of acetic and nitric acids. CS cellulose was analysed by infrared absorption spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The result showed that the overall process was adequate to produce cellulose with high purity and crystallinity from CS waste. The cellulose was then hydrolyzed to produce glucose and then fermented to bioethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20shell" title=" castor shell"> castor shell</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=biowaste" title=" biowaste"> biowaste</a> </p> <a href="https://publications.waset.org/abstracts/45623/bioethanol-synthesis-using-cellulose-recovered-from-biowaste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Microwave Assisted Synthesis of Ag/ZnO Sub-Microparticles Deposited on Various Cellulose Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Munster">Lukas Munster</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Bazant"> Pavel Bazant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Kuritka"> Ivo Kuritka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide sub-micro particles and metallic silver nano particles (Ag/ZnO) were deposited on micro crystalline cellulose surface by a fast, simple and environmentally friendly one-pot microwave assisted solvo thermal synthesis in an open vessel system equipped with an external reflux cooler. In order to increase the interaction between the surface of cellulose and the precipitated Ag/ZnO particles, oxidized form of cellulose (cellulose dialdehyde, DAC) prepared by periodate oxidation of micro crystalline cellulose was added to the reaction mixture of Ag/ZnO particle precursors and untreated micro crystalline cellulose. The structure and morphology of prepared hybrid powder materials were analysed by X-ray diffraction (XRD), energy dispersive analysis (EDX), scanning electron microscopy (SEM) and nitrogen absorption method (BET). Microscopic analysis of the prepared materials treated by ultra-sonication showed that Ag/ZnO particles deposited on the cellulose/DAC sample exhibit increased adhesion to the surface of the cellulose substrate which can be explained by the DAC adhesive effect in comparison with the material prepared without DAC addition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microcrystalline%20cellulose" title="microcrystalline cellulose">microcrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20sub-microparticles" title=" zinc oxide sub-microparticles"> zinc oxide sub-microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20dialdehyde" title=" cellulose dialdehyde"> cellulose dialdehyde</a> </p> <a href="https://publications.waset.org/abstracts/10728/microwave-assisted-synthesis-of-agzno-sub-microparticles-deposited-on-various-cellulose-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surasak%20Siripornadulsil">Surasak Siripornadulsil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nutt%20Poomai"> Nutt Poomai</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilailak%20Siripornadulsil"> Wilailak Siripornadulsil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to a high ethanol demand, the approach for effective ethanol production is important and has been developed rapidly worldwide. Several agricultural wastes are highly abundant in celluloses and the effective cellulose enzymes do exist widely among microorganisms. Accordingly, the cellulose degradation using microbial cellulose to produce a low-cost substrate for ethanol production has attracted more attention. In this study, the cellulose producing bacterial strain has been isolated from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulose activity. The optimal temperature for its growth and cellulose production is 37 °C. The optimal temperature of bacterial cellulose activity is 60 °C. The cellulose enzyme from Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36 h. showed highest cellulose activity at 120 U/mL when grown in LB medium containing 2% (w/v). The capability of Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulose activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20enzyme" title="cellulose enzyme">cellulose enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse" title=" bagasse"> bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20straw" title=" rice straw"> rice straw</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=acinetobacter%20sp.%20KKU44" title=" acinetobacter sp. KKU44"> acinetobacter sp. KKU44</a> </p> <a href="https://publications.waset.org/abstracts/5731/application-of-acinetobacter-sp-kku44-for-cellulase-production-from-agricultural-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20F%C3%BCl%C3%B6p">András Fülöp</a>, <a href="https://publications.waset.org/abstracts/search?q=Lejla%20Heilmann"> Lejla Heilmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Szab%C3%B3"> Zsolt Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81kos%20Ko%C3%B3s"> Ákos Koós</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnological%20solution" title=" biotechnological solution"> biotechnological solution</a> </p> <a href="https://publications.waset.org/abstracts/25292/soil-bioremediation-monitoring-systems-powered-by-microbial-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Production and Characterization of Nanofibrillated Cellulose from Kenaf Core (Hibiscus cannabinus) via Ultrasonic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley">R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati"> M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal"> A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana"> M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ainun%20Zuriyati"> M. A. Ainun Zuriyati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on production and characterizations of nanofibrillated cellulose (NFC) from kenaf core. NFC was produced by employing ultrasonic treatments in aqueous solution. Field emission scanning electron microscope (FESEM) and scanning transmission electron microscopy (STEM) were used to study the size and morphology structure. The chemical and characteristics of the cellulose and NFC were studied using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscometer. Degrees of polymerization (DP) of cellulose and NFC were obtained via viscosity value. Results showed that 5 to 47 nm diameters of fibrils were measured. Moreover, the thermal stability of the NFC was increased as compared to the cellulose that confirmed by TGA analysis. It was also found that NFC had higher crystallinity and lower viscosity than the cellulose which were measured by XRD and viscometer, respectively. The NFC characteristics have enormous prospect related to bio-nanocomposite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallinity" title="crystallinity">crystallinity</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20core" title=" kenaf core"> kenaf core</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrillated%20cellulose" title=" nanofibrillated cellulose"> nanofibrillated cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/42007/production-and-characterization-of-nanofibrillated-cellulose-from-kenaf-core-hibiscus-cannabinus-via-ultrasonic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gouda">Mohamed Gouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning%20technique" title="electrospinning technique">electrospinning technique</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticles" title=" metal nanoparticles"> metal nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosic%20nanofibers" title=" cellulosic nanofibers"> cellulosic nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20dressing" title=" wound dressing"> wound dressing</a> </p> <a href="https://publications.waset.org/abstracts/39779/antibacterial-wound-dressing-based-on-metal-nanoparticles-containing-cellulose-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Microencapsulation of Tuna Oil and Mentha Piperita Oil Mixture using Different Combinations of Wall Materials with Whey Protein Isolate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amr%20Mohamed%20Bakry%20Ibrahim">Amr Mohamed Bakry Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingzhou%20Ni"> Yingzhou Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng"> Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang"> Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuna oil (omega-3 oil) has become increasingly popular in the last ten years, because it is considered one of the treasures of food which has many beneficial health effects for the humans. Nevertheless, the susceptibility of omega-3 oils to oxidative deterioration, resulting in the formation of oxidation products, in addition to organoleptic problems including “fishy” flavors, have presented obstacles to the more widespread use of tuna oils in the food industry. This study sought to evaluate the potential impact of Mentha piperita oil on physicochemical characteristics and oxidative stability of tuna oil microcapsules formed by spray drying using the partial substitution to whey protein isolate by carboxymethyl cellulose and pullulan. The emulsions before the drying process were characterized regarding size and ζ-potential, viscosity, surface tension. Confocal laser scanning microscopy showed that all emulsions were sphericity and homogeneous distribution without any visible particle aggregation. The microcapsules obtained after spray drying were characterized regarding microencapsulation efficiency, water activity, color, bulk density, flowability, scanning surface morphology and oxidative stability. The microcapsules were spherical shape had low water activity (0.11-0.23 aw). The microcapsules containing both tuna oil and Mentha piperita oil were smaller than others and addition of pullulan into wall materials improved the morphology of microcapsules. Microencapsulation efficiency of powdered oil ranged from 90% to 94%. Using Mentha piperita oil in the process of microencapsulation tuna oil enhanced the oxidative stability using whey protein isolate only or with carboxymethyl cellulose or pullulan as wall materials, resulting in improved storage stability and mask fishy odor. Therefore, it is foreseen using tuna-Mentha piperita oil mixture microcapsules in the applications of the food industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mentha%20piperita%20oil" title="Mentha piperita oil">Mentha piperita oil</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsule" title=" microcapsule"> microcapsule</a>, <a href="https://publications.waset.org/abstracts/search?q=tuna%20oil" title=" tuna oil"> tuna oil</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein%20isolate" title=" whey protein isolate"> whey protein isolate</a> </p> <a href="https://publications.waset.org/abstracts/33292/microencapsulation-of-tuna-oil-and-mentha-piperita-oil-mixture-using-different-combinations-of-wall-materials-with-whey-protein-isolate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> Prevention of Cellulose and Hemicellulose Degradation on Fungal Pretreatment of Water Hyacinth Using Phanerochaete Chrysosporium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eka%20Sari">Eka Sari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potential degradation of cellulose and hemicellulose during the fungal pretreatment of lignocellulose has led to fermentable sugar yield will be low. This potential is even greater if the pretreatment of lignocellulosic that have low lignin such as water hyacinth. In order to prepare lignocellulose that have low lignin content, especially water hyacinth efforts are needed to prevent the degradation of cellulose and cellulose. One attempt to prevent the degradation of cellulose and hemicellulose is to replace the substrate needed by the addition of a simple carbon compounds such as glucose. Glucose sources used in this study is molasses. The purpose of this research to get the right of concentration of molasses to reduce the degradation of cellulose and hemicellulose during the pretreatment process and obtain fermentable sugar yields on high. The results showed that the addition of molasses with a concentration of 2% is able to reduce the degradation of cellulose from 25.53% to 10% and hemicellulose degradation of 20.12% to 10.89%. Fermentable sugar yields produced only reached 43.91%. To improve the yield of glucose is then performed additional combonation of molasses of 2% molasses and co-factor Mn2+ 0.5%. Fermentable sugar yield increased to 67.66% and the degradation of cellulose and hemicellulose decreased to 2.44% and 2.71%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20hyacinth" title="water hyacinth">water hyacinth</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=hemicelulose" title=" hemicelulose"> hemicelulose</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=fungus" title=" fungus"> fungus</a> </p> <a href="https://publications.waset.org/abstracts/28774/prevention-of-cellulose-and-hemicellulose-degradation-on-fungal-pretreatment-of-water-hyacinth-using-phanerochaete-chrysosporium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">399</span> Development of Kenaf Cellulose CNT Paper for Electrical Conductive Paper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal">A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley"> R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati"> M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana"> M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kenaf cellulose CNT paper production was for lightweight, high strength and excellent flexibility electrical purposes. Aqueous dispersions of kenaf cellulose and varied weight percentage of CNT were combined with the assistance of PEI solution by using ultrasonic probe. The solution was dried using vacuum filter continued with air drying in condition room for 2 days. Circle shape conductive paper was characterized with Fourier transformed infrared (FTIR) spectra, scanning electron microscopy (SEM) and therma gravimetric analysis (TGA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=CNT%20paper" title=" CNT paper"> CNT paper</a>, <a href="https://publications.waset.org/abstracts/search?q=PEI%20solution" title=" PEI solution"> PEI solution</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductive%20paper" title=" electrical conductive paper"> electrical conductive paper</a> </p> <a href="https://publications.waset.org/abstracts/17243/development-of-kenaf-cellulose-cnt-paper-for-electrical-conductive-paper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana">M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley"> R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati"> M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal"> A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Suriani"> A. B. Suriani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zakaria"> S. Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube%20%28CNT%29" title="carbon nanotube (CNT)">carbon nanotube (CNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrillated%20cellulose%20%28NFC%29" title=" nanofibrillated cellulose (NFC)"> nanofibrillated cellulose (NFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/16843/effect-of-carbon-nanotubes-on-nanocomposite-from-nanofibrillated-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahana%20Sharmin">Shahana Sharmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diltiazem%20hydrochloride" title="diltiazem hydrochloride">diltiazem hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20cellulose" title=" ethyl cellulose"> ethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxy%20propyl%20methyl%20cellulose" title=" hydroxy propyl methyl cellulose"> hydroxy propyl methyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20kinetics" title=" release kinetics"> release kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20release%20pellets" title=" sustained release pellets"> sustained release pellets</a> </p> <a href="https://publications.waset.org/abstracts/21180/effect-of-ethyl-cellulose-and-hydroxy-propyl-methyl-cellulose-polymer-on-the-release-profile-of-diltiazem-hydrochloride-sustained-release-pellets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Effect of Dietary Cellulose Levels on the Growth Parameters of Nile Tilapia Oreochromis Niloticus Fingerlings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keri%20Alhadi%20Ighwela">Keri Alhadi Ighwela</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Bin%20Ahmad"> Aziz Bin Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Abol-Munafi"> A. B. Abol-Munafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three purified diets were formulated using fish meal, soya bean, wheat flour, palm oil, minerals and maltose. The carbohydrate in the diets was increased from 5 to 15% by changing the cellulose content to study the effect of dietary carbohydrate level on the growth parameters of Nile tilapia Oreochromis niloticus.The protein and the lipid contents were kept constant in all the diets. The results showed that, weight gain, protein efficiency ratio, net protein utilisation and hepatosomatic index of fish fed the diet containing 15% cellulose were the lowest among all groups. Addition, the fish fed the diet containing 5% cellulose had the best specific growth rate, and food conversion ratio. While, there was no effect of the dietary cellulose levels on condition factor and survival rate. These results indicate that Nile tilapia fingerlings are able to utilize dietary cellulose does not exceed 10% in their feed for optimum growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietary%20cellulose" title="dietary cellulose">dietary cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20parameters" title=" growth parameters"> growth parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=oreochromis%20niloticus" title=" oreochromis niloticus"> oreochromis niloticus</a>, <a href="https://publications.waset.org/abstracts/search?q=purified%20diets" title=" purified diets"> purified diets</a> </p> <a href="https://publications.waset.org/abstracts/34481/effect-of-dietary-cellulose-levels-on-the-growth-parameters-of-nile-tilapia-oreochromis-niloticus-fingerlings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> Khaya Cellulose Supported Copper Nanoparticles for Chemo Selective Aza-Michael Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shaheen%20Sarkar">M. Shaheen Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lutfor%20Rahman"> M. Lutfor Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20Mohd%20Yusoff"> Mashitah Mohd Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We prepared a highly active Khaya cellulose supported poly(hydroxamic acid) copper nanoparticles by the surface modification of Khaya cellulose through graft co-polymerization and subsequently amidoximation. The Cu-nanoparticle (0.05 mol% to 50 mol ppm) was selectively promoted Aza-Michael reaction of aliphatic amines to give the corresponding alkylated products at room temperature in methanol. The supported nanoparticle was easy to recover and reused seven times without significance loss of its activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aza-Michael" title="Aza-Michael">Aza-Michael</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28hydroxamic%20acid%29" title=" poly(hydroxamic acid)"> poly(hydroxamic acid)</a> </p> <a href="https://publications.waset.org/abstracts/48532/khaya-cellulose-supported-copper-nanoparticles-for-chemo-selective-aza-michael-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Synthesis of NiNW/ Cellulose Nano Hybrid via Liquid-Phase Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Rahmah%20Shamsuri">Siti Rahmah Shamsuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Eiichiro%20Matsubara"> Eiichiro Matsubara</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohei%20Shiomi"> Shohei Shiomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 1D nanomaterial is far surpassed the 0D nanomaterial. It does not just offer most of the benefit of the 0D nanomaterial such as the large surface area, a great number of active site and an efficient interfacial charge transfer but also can assemble into free-standing and flexible electrode due to their high aspect ratio. Thus, it is essential to develop a simple and ease synthesis of this 1D nanomaterial for the practical application. Here, nickel nanowire/cellulose hybrid has been successfully fabricated via a simple liquid-phase method with the assist of the magnetic field. A finer nickel nanowire was heterogeneously nucleated on the surface of the cellulose fiber, which demonstrated the effect of the hydroxyl group on the cellulose structure. The result of the nickel nanowire size was found to vary from 66-114 nm. A detailed discussion on the mechanism of the nickel nanowire/ cellulose hybrid formation is also shown in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanofiber" title="cellulose nanofiber">cellulose nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-phase%20reduction" title=" liquid-phase reduction"> liquid-phase reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nanowire" title=" metal nanowire"> metal nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20hybrid%20material" title=" nano hybrid material"> nano hybrid material</a> </p> <a href="https://publications.waset.org/abstracts/67588/synthesis-of-ninw-cellulose-nano-hybrid-via-liquid-phase-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubusuyi%20Ayowole">Olubusuyi Ayowole</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Khoda"> Bashir Khoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20bioprinting" title="green bioprinting">green bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20bioprinting" title=" 3d bioprinting"> 3d bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae%20cell" title=" microalgae cell"> microalgae cell</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20hydrogel%20scaffolds" title=" hybrid hydrogel scaffolds"> hybrid hydrogel scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20analysis" title=" spectrophotometric analysis"> spectrophotometric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bioink%20development" title=" bioink development"> bioink development</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning%20properties" title=" shear thinning properties"> shear thinning properties</a> </p> <a href="https://publications.waset.org/abstracts/188298/spectrophotometric-evaluation-of-custom-microalgae-based-bioink-formulations-for-optimized-green-bioprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Pretreatment of Cattail (Typha domingensis) Fibers to Obtain Cellulose Nanocrystals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marivane%20Turim%20Koschevic">Marivane Turim Koschevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Maycon%20dos%20Santos"> Maycon dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcello%20Lima%20Bertuci"> Marcello Lima Bertuci</a>, <a href="https://publications.waset.org/abstracts/search?q=Farayde%20Matta%20Fakhouri"> Farayde Matta Fakhouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Maria%20Martelli"> Silvia Maria Martelli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers are rich raw materials in cellulose and abundant in the world, its use for the cellulose nanocrystals extraction is promising as an example cited is the cattail, macrophyte native weed in South America. This study deals with the pre-treatment cattail of crushed fibers, at six different methods of mercerization, followed by the use of bleaching. As a result, have found The positive effects of treating fibers by means of optical microscopy and spectroscopy, Fourier transform (FTIR). The sample selected for future testing of cellulose nanocrystals extraction was treated in 2.5% NaOH for 2 h, 60 °C in the first stage and 30vol H2O2, NaOH 5% in the proportion 30/70% (v/v) for 1 hour 60 °C, followed by treatment at 50/50% (v/v) 15 minutes, 50°C, with the same constituents of the solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystal" title="cellulose nanocrystal">cellulose nanocrystal</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20treatment" title=" chemical treatment"> chemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mercerization" title=" mercerization"> mercerization</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibers" title=" natural fibers"> natural fibers</a> </p> <a href="https://publications.waset.org/abstracts/59641/pretreatment-of-cattail-typha-domingensis-fibers-to-obtain-cellulose-nanocrystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Microstructure Study of NanoCrystalline Cellulose Obtained from Cotton Linter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Amidi-Fazli">Farid Amidi-Fazli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems and disadvantages of using conventional plastics are more apparent in recent years and have attracted researchers' attention. Polymers from natural resources or bio polymers represent a suitable replacement to overcome to the disadvantages of plastics. But due to the some flaws of bio polymers, using suitable filler almost seems necessary. Nanocrystalline cellulose with low cost and availability can be applied as appropriate filler. In this study nanocrystalline cellulose was produced from cotton Linter and was characterized. The cotton Linter was hydrolyzed in sulfuric acid then neutralized by the two different concentrations of NaOH. The resulted suspension was treated by ultrasound waves. Process efficiency was determined as 90%. The final product was studied using scanning electron microscopy and x-ray diffraction technique. The obtained diagram of XRD experiment confirmed that the produced material was nanocrystalline cellulose. Also percentage of crystallinity was calculated as 84% in the obtained material as well as the size of crystals. It can be said that the applied method is a rapid and easy method for the production of nanocrystalline cellulose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20cellulose" title="nanocrystalline cellulose">nanocrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallinity" title=" crystallinity"> crystallinity</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20linter" title=" cotton linter "> cotton linter </a> </p> <a href="https://publications.waset.org/abstracts/32979/microstructure-study-of-nanocrystalline-cellulose-obtained-from-cotton-linter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Preparation of Bacterial Cellulose Membranes from Nata de Coco for CO2/CH4 Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanin%20Hosakun">Yanin Hosakun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujitra%20Wongkasemjit"> Sujitra Wongkasemjit</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanyalak%20Chaisuwan"> Thanyalak Chaisuwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide removal from natural gas is an important process because the existence of carbon dioxide in natural gas contributes to pipeline corrosion, reduces the heating value, and takes up volume in the pipeline. In this study, bacterial cellulose was chosen for the CO2/CH4 gas separation membrane due to its unique structure and prominent properties. Additionally, it can simply be obtained by culturing the bacteria so called “Acetobacter xylinum” through fermentation of coconut juice. Bacterial cellulose membranes with and without silver ions were prepared and studied for the separation performance of CO2 and CH4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20cellulose" title="bacterial cellulose">bacterial cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=CH4%20separation" title=" CH4 separation"> CH4 separation</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nata%20de%20coco" title=" nata de coco"> nata de coco</a> </p> <a href="https://publications.waset.org/abstracts/4084/preparation-of-bacterial-cellulose-membranes-from-nata-de-coco-for-co2ch4-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Synthesis of Ni/Mesopore Silica-Alumina Catalyst for Hydrocracking of Pyrolyzed α-Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wega%20Trisunaryanti">Wega Trisunaryanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesty%20Kusumastuti"> Hesty Kusumastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Iip%20Izul%20Falah"> Iip Izul Falah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fajar%20Marsuki"> Muhammad Fajar Marsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmad%20Nuryanto"> Rahmad Nuryanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis of Ni supported on mesopore silica-alumina (MSA) for hydrocracking of pyrolyzed α-cellulose had been carried out. The silica and alumina were extracted from Sidoarjo mud. Gelatin from catfish bone was used as a template for the mesopore design. The MSA was synthesized by using hydrothermal method at 100 °C for 24 h and calcined at 550 °C for 4 h then characterized by using X-Ray Diffraction Spectrometer (XRD) and Nitrogen Gas Sorption Analyzer (GAS). The Ni metal was loaded to the MSA by wet impregnation method. The catalytic activity in the hydrocracking reaction of pyrolyzed α-cellulose was carried out at 450 °C for 2 h. The MSA synthesized in this work is an amorphous material with specific surface area, total pore volume, and average pore diameter of 212.29 m²/g, 1.29 cm³/g, and 20.05 nm, respectively. The Ni/MSA catalyst produced 73.02 wt.% of liquid product in hydrocracking of pyrolyzed α-cellulose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocracking" title=" hydrocracking"> hydrocracking</a>, <a href="https://publications.waset.org/abstracts/search?q=mesopore%20silica-alumina" title=" mesopore silica-alumina"> mesopore silica-alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-cellulose" title=" α-cellulose"> α-cellulose</a> </p> <a href="https://publications.waset.org/abstracts/84532/synthesis-of-nimesopore-silica-alumina-catalyst-for-hydrocracking-of-pyrolyzed-a-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>