CINXE.COM

Search results for: heuristic algorithms

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: heuristic algorithms</title> <meta name="description" content="Search results for: heuristic algorithms"> <meta name="keywords" content="heuristic algorithms"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="heuristic algorithms" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="heuristic algorithms"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2216</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: heuristic algorithms</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2216</span> A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Nugraheni">C. E. Nugraheni</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Abednego"> L. Abednego</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as meta-heuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyper-heuristics" title="hyper-heuristics">hyper-heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title=" evolutionary algorithms"> evolutionary algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20scheduling" title=" production scheduling"> production scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristic" title=" meta-heuristic"> meta-heuristic</a> </p> <a href="https://publications.waset.org/abstracts/12732/a-combined-meta-heuristic-with-hyper-heuristic-approach-to-single-machine-production-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2215</span> SMART: Solution Methods with Ants Running by Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Zufferey">Nicolas Zufferey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ant algorithms are well-known metaheuristics which have been widely used since two decades. In most of the literature, an ant is a constructive heuristic able to build a solution from scratch. However, other types of ant algorithms have recently emerged: the discussion is thus not limited by the common framework of the constructive ant algorithms. Generally, at each generation of an ant algorithm, each ant builds a solution step by step by adding an element to it. Each choice is based on the greedy force (also called the visibility, the short term profit or the heuristic information) and the trail system (central memory which collects historical information of the search process). Usually, all the ants of the population have the same characteristics and behaviors. In contrast in this paper, a new type of ant metaheuristic is proposed, namely SMART (for Solution Methods with Ants Running by Types). It relies on the use of different population of ants, where each population has its own personality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20algorithms" title="ant algorithms">ant algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20procedures" title=" evolutionary procedures"> evolutionary procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristics" title=" metaheuristics"> metaheuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=population-based%20methods" title=" population-based methods"> population-based methods</a> </p> <a href="https://publications.waset.org/abstracts/36375/smart-solution-methods-with-ants-running-by-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2214</span> Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Rajabighamchi">Farzaneh Rajabighamchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20van%20Hoesel"> Stan van Hoesel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christof%20Defryn"> Christof Defryn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=warehouse%20optimization" title="warehouse optimization">warehouse optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20picking%20problem" title=" order picking problem"> order picking problem</a>, <a href="https://publications.waset.org/abstracts/search?q=generalised%20travelling%20salesman%20problem" title=" generalised travelling salesman problem"> generalised travelling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/151459/order-picking-problem-an-exact-and-heuristic-algorithms-for-the-generalized-travelling-salesman-problem-with-geographical-overlap-between-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2213</span> Two Efficient Heuristic Algorithms for the Integrated Production Planning and Warehouse Layout Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Pourmohammadi%20Fallah">Mohammad Pourmohammadi Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Salahi"> Maziar Salahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the literature, a mixed-integer linear programming model for the integrated production planning and warehouse layout problem is proposed. To solve the model, the authors proposed a Lagrangian relax-and-fix heuristic that takes a significant amount of time to stop with gaps above 5$\%$ for large-scale instances. Here, we present two heuristic algorithms to solve the problem. In the first one, we use a greedy approach by allocating warehouse locations with less reservation costs and also less transportation costs from the production area to locations and from locations to the output point to items with higher demands. Then a smaller model is solved. In the second heuristic, first, we sort items in descending order according to the fraction of the sum of the demands for that item in the time horizon plus the maximum demand for that item in the time horizon and the sum of all its demands in the time horizon. Then we categorize the sorted items into groups of 3, 4, or 5 and solve a small-scale optimization problem for each group, hoping to improve the solution of the first heuristic. Our preliminary numerical results show the effectiveness of the proposed heuristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitated%20lot-sizing" title="capacitated lot-sizing">capacitated lot-sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse%20layout" title=" warehouse layout"> warehouse layout</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20linear%20programming" title=" mixed-integer linear programming"> mixed-integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics%20algorithm" title=" heuristics algorithm"> heuristics algorithm</a> </p> <a href="https://publications.waset.org/abstracts/154415/two-efficient-heuristic-algorithms-for-the-integrated-production-planning-and-warehouse-layout-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2212</span> Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinyan%20Li">Jinyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Fong"> Simon Fong</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Wong"> Raymond Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sabah"> Mohammed Sabah</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiaidhi%20Jinan"> Fiaidhi Jinan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imbalanced%20dataset" title="Imbalanced dataset">Imbalanced dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristic%20algorithm" title=" meta-heuristic algorithm"> meta-heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=SMOTE" title=" SMOTE"> SMOTE</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data "> big data </a> </p> <a href="https://publications.waset.org/abstracts/41481/adaptive-swarm-balancing-algorithms-for-rare-event-prediction-in-imbalanced-healthcare-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2211</span> Heuristic to Generate Random X-Monotone Polygons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamaljit%20Pati">Kamaljit Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Manas%20Kumar%20Mohanty"> Manas Kumar Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjib%20Sadhu"> Sanjib Sadhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A heuristic has been designed to generate a random simple monotone polygon from a given set of ‘n’ points lying on a 2-Dimensional plane. Our heuristic generates a random monotone polygon in O(n) time after O(nℓogn) preprocessing time which is improved over the previous work where a random monotone polygon is produced in the same O(n) time but the preprocessing time is O(k) for n < k < n2. However, our heuristic does not generate all possible random polygons with uniform probability. The space complexity of our proposed heuristic is O(n). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sorting" title="sorting">sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20polygon" title=" monotone polygon"> monotone polygon</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a>, <a href="https://publications.waset.org/abstracts/search?q=chain" title=" chain"> chain</a> </p> <a href="https://publications.waset.org/abstracts/19252/heuristic-to-generate-random-x-monotone-polygons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2210</span> Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitat%20Uysal">Mitat Uysal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=Bezier%20curves" title=" Bezier curves"> Bezier curves</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20optimization" title=" heuristic optimization"> heuristic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=migrating%20birds%20optimization" title=" migrating birds optimization"> migrating birds optimization</a> </p> <a href="https://publications.waset.org/abstracts/78026/curve-fitting-by-cubic-bezier-curves-using-migrating-birds-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2209</span> Approximation Algorithms for Peak-Demand Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Jamal%20Saeed%20Almahmoud">Zaid Jamal Saeed Almahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing peak power consumption under a fixed delay requirement is a significant problem in the smart grid.For this problem, all appliances must be scheduled within a given finite time duration. We consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-hard, we analyze the performance of a version of the natural greedy heuristic for solving this problem. Our theoretical analysis and experimental results show that the proposed heuristic outperforms existing methods by providing a better approximation to the optimal solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20demand%20scheduling" title="peak demand scheduling">peak demand scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=approximation%20algorithms" title=" approximation algorithms"> approximation algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a> </p> <a href="https://publications.waset.org/abstracts/157964/approximation-algorithms-for-peak-demand-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2208</span> Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Javadzadeh">Ramin Javadzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title="cellular automata">cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20learning%20automata" title=" cellular learning automata"> cellular learning automata</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20search" title=" local search"> local search</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/24739/improved-particle-swarm-optimization-with-cellular-automata-and-fuzzy-cellular-automata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2207</span> Schedule a New Production Plan by Heuristic Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanife%20Merve%20%C3%96zt%C3%BCrk">Hanife Merve Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C4%B1d%C4%B1ka%20Dalgan"> Sıdıka Dalgan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this project, a capacity analysis study is done at TAT A. Ş. Maret Plant. Production capacity of products which generate 80% of sales amount are determined. Obtained data entered the LEKIN Scheduling Program and we get production schedules by using heuristic methods. Besides heuristic methods, as mathematical model, disjunctive programming formulation is adapted to flexible job shop problems by adding a new constraint to find optimal schedule solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20job%20shop%20problem" title=" flexible job shop problem"> flexible job shop problem</a>, <a href="https://publications.waset.org/abstracts/search?q=shifting%20bottleneck%20heuristic" title=" shifting bottleneck heuristic"> shifting bottleneck heuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a> </p> <a href="https://publications.waset.org/abstracts/13135/schedule-a-new-production-plan-by-heuristic-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2206</span> The Whale Optimization Algorithm and Its Implementation in MATLAB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Adhirai">S. Adhirai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Mahapatra"> R. P. Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramjit%20Singh"> Paramjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20value" title=" optimal value"> optimal value</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20function" title=" objective function"> objective function</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20problems" title=" optimization problems"> optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristic%20optimization%20algorithms" title=" meta-heuristic optimization algorithms"> meta-heuristic optimization algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=Whale%20Optimization%20Algorithm" title=" Whale Optimization Algorithm"> Whale Optimization Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/93749/the-whale-optimization-algorithm-and-its-implementation-in-matlab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2205</span> Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mafarja%20Majdi">Mafarja Majdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwani%20Abdullah"> Salwani Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20S.%20Jaddi"> Najmeh S. Jaddi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rough%20set%20theory" title="rough set theory">rough set theory</a>, <a href="https://publications.waset.org/abstracts/search?q=attribute%20reduction" title=" attribute reduction"> attribute reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=memetic%20algorithms" title=" memetic algorithms"> memetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=record%20to%20record%20algorithm" title=" record to record algorithm"> record to record algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=great%20deluge%20algorithm" title=" great deluge algorithm"> great deluge algorithm</a> </p> <a href="https://publications.waset.org/abstracts/33663/fuzzy-population-based-meta-heuristic-approaches-for-attribute-reduction-in-rough-set-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2204</span> Heuristic Algorithms for Time Based Weapon-Target Assignment Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Seop%20Uhm">Hyun Seop Uhm</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ho%20Choi"> Yong Ho Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Eun%20Kim"> Ji Eun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hoon%20Lee"> Young Hoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weapon-target assignment (WTA) is a problem that assigns available launchers to appropriate targets in order to defend assets. Various algorithms for WTA have been developed over past years for both in the static and dynamic environment (denoted by SWTA and DWTA respectively). Due to the problem requirement to be solved in a relevant computational time, WTA has suffered from the solution efficiency. As a result, SWTA and DWTA problems have been solved in the limited situation of the battlefield. In this paper, the general situation under continuous time is considered by Time based Weapon Target Assignment (TWTA) problem. TWTA are studied using the mixed integer programming model, and three heuristic algorithms; decomposed opt-opt, decomposed opt-greedy, and greedy algorithms are suggested. Although the TWTA optimization model works inefficiently when it is characterized by a large size, the decomposed opt-opt algorithm based on the linearization and decomposition method extracted efficient solutions in a reasonable computation time. Because the computation time of the scheduling part is too long to solve by the optimization model, several algorithms based on greedy is proposed. The models show lower performance value than that of the decomposed opt-opt algorithm, but very short time is needed to compute. Hence, this paper proposes an improved method by applying decomposition to TWTA, and more practical and effectual methods can be developed for using TWTA on the battlefield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20and%20missile%20defense" title="air and missile defense">air and missile defense</a>, <a href="https://publications.waset.org/abstracts/search?q=weapon%20target%20assignment" title=" weapon target assignment"> weapon target assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20programming" title=" mixed integer programming"> mixed integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20linearization" title=" piecewise linearization"> piecewise linearization</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition%20algorithm" title=" decomposition algorithm"> decomposition algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20operations%20research" title=" military operations research"> military operations research</a> </p> <a href="https://publications.waset.org/abstracts/51706/heuristic-algorithms-for-time-based-weapon-target-assignment-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2203</span> A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaohuizi%20Guo">Gaohuizi Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Zhang"> Ning Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=firefly%20algorithm" title="firefly algorithm">firefly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sine%20cosine%20algorithm" title=" sine cosine algorithm"> sine cosine algorithm</a> </p> <a href="https://publications.waset.org/abstracts/129731/a-hybrid-multi-objective-firefly-sine-cosine-algorithm-for-multi-objective-optimization-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2202</span> Heuristic Evaluation of Children’s Authoring Tool for Game Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laili%20Farhana%20Md%20Ibharim">Laili Farhana Md Ibharim</a>, <a href="https://publications.waset.org/abstracts/search?q=Maizatul%20Hayati%20Mohamad%20Yatim"> Maizatul Hayati Mohamad Yatim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to evaluate the heuristic inspection of children’s authoring tools to develop games. The researcher has selected 15 authoring tools for making games specifically for educational purposes. Nine students from Diploma of Game Design and Development course and four lecturers from the computing department involved in this evaluation. A set of usability heuristic checklist used as a guideline for the students and lecturers to observe and test the authoring tools selected. The study found that there are just a few authoring tools that fulfill most of the heuristic requirement and suitable to apply to children. In this evaluation, only six out of fifteen authoring tools have passed above than five elements in the heuristic inspection checklist. The researcher identified that in order to develop a usable authoring tool developer has to emphasis children acceptance and interaction of the authoring tool. Furthermore, the authoring tool can be a tool to enhance their mental development especially in creativity and skill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authoring%20tool" title="authoring tool">authoring tool</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20making" title=" game making"> game making</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a> </p> <a href="https://publications.waset.org/abstracts/1364/heuristic-evaluation-of-childrens-authoring-tool-for-game-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2201</span> Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Suresh">P. Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gunasekaran"> K. Gunasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Thanigaivelan"> R. Thanigaivelan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20distribution%20network" title=" supply chain distribution network"> supply chain distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop%20supply%20chain" title=" open loop supply chain"> open loop supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a> </p> <a href="https://publications.waset.org/abstracts/110012/design-and-optimization-of-open-loop-supply-chain-distribution-network-using-hybrid-k-means-cluster-based-heuristic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2200</span> Comparison Between Genetic Algorithms and Particle Swarm Optimization Optimized Proportional Integral Derirative and PSS for Single Machine Infinite System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Nadia">Benalia Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zerzouri%20Nora"> Zerzouri Nora</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Si%20Ali%20Nadia"> Ben Si Ali Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: Among the many different modern heuristic optimization methods, genetic algorithms (GA) and the particle swarm optimization (PSO) technique have been attracting a lot of interest. The GA has gained popularity in academia and business mostly because to its simplicity, ability to solve highly nonlinear mixed integer optimization problems that are typical of complex engineering systems, and intuitiveness. The mechanics of the PSO methodology, a relatively recent heuristic search tool, are modeled after the swarming or cooperative behavior of biological groups. It is suitable to compare the performance of the two techniques since they both aim to solve a particular objective function but make use of distinct computing methods. In this article, PSO and GA optimization approaches are used for the parameter tuning of the power system stabilizer and Proportional integral derivative regulator. Load angle and rotor speed variations in the single machine infinite bus bar system is used to measure the performance of the suggested solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMIB" title="SMIB">SMIB</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20stability" title=" transient stability"> transient stability</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20stabilizer" title=" power system stabilizer"> power system stabilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a> </p> <a href="https://publications.waset.org/abstracts/171020/comparison-between-genetic-algorithms-and-particle-swarm-optimization-optimized-proportional-integral-derirative-and-pss-for-single-machine-infinite-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2199</span> Enunciation on Complexities of Selected Tree Searching Algorithms </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parag%20Bhalchandra">Parag Bhalchandra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Khamitkar"> S. D. Khamitkar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Searching trees is a most interesting application of Artificial Intelligence. Over the period of time, many innovative methods have been evolved to better search trees with respect to computational complexities. Tree searches are difficult to understand due to the exponential growth of possibilities when increasing the number of nodes or levels in the tree. Usually it is understood when we traverse down in the tree, traverse down to greater depth, in the search of a solution or a goal. However, this does not happen in reality as explicit enumeration is not a very efficient method and there are many algorithmic speedups that will find the optimal solution without the burden of evaluating all possible trees. It was a common question before all researchers where they often wonder what algorithms will yield the best and fastest result The intention of this paper is two folds, one to review selected tree search algorithms and search strategies that can be applied to a problem space and the second objective is to stimulate to implement recent developments in the complexity behavior of search strategies. The algorithms discussed here apply in general to both brute force and heuristic searches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trees%20search" title="trees search">trees search</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20complexity" title=" asymptotic complexity"> asymptotic complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=brute%20force" title=" brute force"> brute force</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics%20algorithms" title=" heuristics algorithms"> heuristics algorithms</a> </p> <a href="https://publications.waset.org/abstracts/13407/enunciation-on-complexities-of-selected-tree-searching-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2198</span> Improving the Global Competitiveness of SMEs by Logistics Transportation Management: Case Study Chicken Meat Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Vanichkobchinda">P. Vanichkobchinda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Logistics Transportation techniques, Open Vehicle Routing (OVR) is an approach toward transportation cost reduction, especially for long distance pickup and delivery nodes. The outstanding characteristic of OVR is that the route starting node and ending node are not necessary the same as in typical vehicle routing problems. This advantage enables the routing to flow continuously and the vehicle does not always return to its home base. This research aims to develop a heuristic for the open vehicle routing problem with pickup and delivery under time window and loading capacity constraints to minimize the total distance. The proposed heuristic is developed based on the Insertion method, which is a simple method and suitable for the rapid calculation that allows insertion of the new additional transportation requirements along the original paths. According to the heuristic analysis, cost comparisons between the proposed heuristic and companies are using method, nearest neighbor method show that the insertion heuristic. Moreover, the proposed heuristic gave superior solutions in all types of test problems. In conclusion, the proposed heuristic can effectively and efficiently solve the open vehicle routing. The research indicates that the improvement of new transport's calculation and the open vehicle routing with "Insertion Heuristic" represent a better outcome with 34.3 percent in average. in cost savings. Moreover, the proposed heuristic gave superior solutions in all types of test problems. In conclusion, the proposed heuristic can effectively and efficiently solve the open vehicle routing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20competitiveness" title="business competitiveness">business competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20reduction" title=" cost reduction"> cost reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics%20transportation" title=" logistics transportation"> logistics transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=VRP" title=" VRP"> VRP</a> </p> <a href="https://publications.waset.org/abstracts/25842/improving-the-global-competitiveness-of-smes-by-logistics-transportation-management-case-study-chicken-meat-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">685</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2197</span> Solving the Pseudo-Geometric Traveling Salesman Problem with the “Union Husk” Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20Melnikov">Boris Melnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Zhang"> Ye Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Chaikovskii"> Dmitrii Chaikovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the pseudo-geometric version of the extensively researched Traveling Salesman Problem (TSP), proposing a novel generalization of existing algorithms which are traditionally confined to the geometric version. By adapting the "onion husk" method and introducing auxiliary algorithms, this research fills a notable gap in the existing literature. Through computational experiments using randomly generated data, several metrics were analyzed to validate the proposed approach's efficacy. Preliminary results align with expected outcomes, indicating a promising advancement in TSP solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization%20problems" title="optimization problems">optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms" title=" heuristic algorithms"> heuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%9Conion%20husk%E2%80%9D%20algorithm" title=" “onion husk” algorithm"> “onion husk” algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-geometric%20version" title=" pseudo-geometric version"> pseudo-geometric version</a> </p> <a href="https://publications.waset.org/abstracts/172842/solving-the-pseudo-geometric-traveling-salesman-problem-with-the-union-husk-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2196</span> Routing Medical Images with Tabu Search and Simulated Annealing: A Study on Quality of Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mej%C3%ADa%20M.%20Paula">Mejía M. Paula</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%C3%ADrez%20L.%20Leonardo"> Ramírez L. Leonardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Puerta%20A.%20Gabriel"> Puerta A. Gabriel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In telemedicine, the image repository service is important to increase the accuracy of diagnostic support of medical personnel. This study makes comparison between two routing algorithms regarding the quality of service (QoS), to be able to analyze the optimal performance at the time of loading and/or downloading of medical images. This study focused on comparing the performance of Tabu Search with other heuristic and metaheuristic algorithms that improve QoS in telemedicine services in Colombia. For this, Tabu Search and Simulated Annealing heuristic algorithms are chosen for their high usability in this type of applications; the QoS is measured taking into account the following metrics: Delay, Throughput, Jitter and Latency. In addition, routing tests were carried out on ten images in digital image and communication in medicine (DICOM) format of 40 MB. These tests were carried out for ten minutes with different traffic conditions, reaching a total of 25 tests, from a server of Universidad Militar Nueva Granada (UMNG) in Bogot&aacute;-Colombia to a remote user in Universidad de Santiago de Chile (USACH) - Chile. The results show that Tabu search presents a better QoS performance compared to Simulated Annealing, managing to optimize the routing of medical images, a basic requirement to offer diagnostic images services in telemedicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20image" title="medical image">medical image</a>, <a href="https://publications.waset.org/abstracts/search?q=QoS" title=" QoS"> QoS</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabu%20search" title=" Tabu search"> Tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=telemedicine" title=" telemedicine"> telemedicine</a> </p> <a href="https://publications.waset.org/abstracts/99705/routing-medical-images-with-tabu-search-and-simulated-annealing-a-study-on-quality-of-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2195</span> Heuristic for Scheduling Correlated Parallel Machine to Minimize Maximum Lateness and Total Weighed Completion Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang-Kuei%20Lin">Yang-Kuei Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Xi%20Zhang"> Yun-Xi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on the bicriteria correlated parallel machine scheduling problem. The two objective functions considered in this problem are to minimize maximum lateness and total weighted completion time. We first present a mixed integer programming (MIP) model that can find the entire efficient frontier for the studied problem. Next, we have proposed a bicriteria heuristic that can find non-dominated solutions for the studied problem. The performance of the proposed bicriteria heuristic is compared with the efficient frontier generated by solving the MIP model. Computational results indicate that the proposed bicriteria heuristic can solve the problem efficiently and find a set of diverse solutions that are uniformly distributed along the efficient frontier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bicriteria" title="bicriteria">bicriteria</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20parallel%20machines" title=" correlated parallel machines"> correlated parallel machines</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a> </p> <a href="https://publications.waset.org/abstracts/108546/heuristic-for-scheduling-correlated-parallel-machine-to-minimize-maximum-lateness-and-total-weighed-completion-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2194</span> A Coordinate-Based Heuristic Route Search Algorithm for Delivery Truck Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tarek">Ahmed Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alveed"> Ahmed Alveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle routing problem is a well-known re-search avenue in computing. Modern vehicle routing is more focused with the GPS-based coordinate system, as the state-of-the-art vehicle, and trucking systems are equipped with digital navigation. In this paper, a new two dimensional coordinate-based algorithm for addressing the vehicle routing problem for a supply chain network is proposed and explored, and the algorithm is compared with other available, and recently devised heuristics. For the algorithms discussed, which includes the pro-posed coordinate-based search heuristic as well, the advantages and the disadvantages associated with the heuristics are explored. The proposed algorithm is studied from the stand point of a small supermarket chain delivery network that supplies to its stores in four different states around the East Coast area, and is trying to optimize its trucking delivery cost. Minimizing the delivery cost for the supply network of a supermarket chain is important to ensure its business success. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate-based%20optimal%20routing" title="coordinate-based optimal routing">coordinate-based optimal routing</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20Circuit" title=" Hamiltonian Circuit"> Hamiltonian Circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20problem" title=" vehicle routing problem"> vehicle routing problem</a> </p> <a href="https://publications.waset.org/abstracts/136218/a-coordinate-based-heuristic-route-search-algorithm-for-delivery-truck-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2193</span> A New Tool for Global Optimization Problems: Cuttlefish Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Sabry%20Eesa">Adel Sabry Eesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Mohsin%20Abdulazeez%20Brifcani"> Adnan Mohsin Abdulazeez Brifcani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Orman"> Zeynep Orman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuttlefish%20Algorithm" title="Cuttlefish Algorithm">Cuttlefish Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-inspired%20algorithms" title=" bio-inspired algorithms"> bio-inspired algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20optimization%20problems" title=" global optimization problems"> global optimization problems</a> </p> <a href="https://publications.waset.org/abstracts/11956/a-new-tool-for-global-optimization-problems-cuttlefish-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2192</span> A New Heuristic Algorithm for Maximization Total Demands of Nodes and Number of Covered Nodes Simultaneously</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Saghehei">Ehsan Saghehei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Eghbali"> Mahdi Eghbali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The maximal covering location problem (MCLP) was originally developed to determine a set of facility locations which would maximize the total customers' demand serviced by the facilities within a predetermined critical service criterion. However, on some problems that differences between the demand nodes are covered or the number of nodes each node is large, the method of solving MCLP may ignore these differences. In this paper, Heuristic solution based on the ranking of demands in each node and the number of nodes covered by each node according to a predetermined critical value is proposed. The output of this method is to maximize total demands of nodes and number of covered nodes, simultaneously. Furthermore, by providing an example, the solution algorithm is described and its results are compared with Greedy and Lagrange algorithms. Also, the results of the algorithm to solve the larger problem sizes that compared with other methods are provided. A summary and future works conclude the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heuristic%20solution" title="heuristic solution">heuristic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20covering%20location%20problem" title=" maximal covering location problem"> maximal covering location problem</a>, <a href="https://publications.waset.org/abstracts/search?q=ranking" title=" ranking"> ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=set%20covering" title=" set covering"> set covering</a> </p> <a href="https://publications.waset.org/abstracts/29314/a-new-heuristic-algorithm-for-maximization-total-demands-of-nodes-and-number-of-covered-nodes-simultaneously" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2191</span> New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Baraketi">Sami Baraketi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Marie%20Garcia"> Jean Marie Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Brun"> Olivier Brun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WDM" title="WDM">WDM</a>, <a href="https://publications.waset.org/abstracts/search?q=lightpath" title=" lightpath"> lightpath</a>, <a href="https://publications.waset.org/abstracts/search?q=RWA" title=" RWA"> RWA</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelength%20fragmentation" title=" wavelength fragmentation"> wavelength fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a> </p> <a href="https://publications.waset.org/abstracts/25101/new-approach-for-minimizing-wavelength-fragmentation-in-wavelength-routed-wdm-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2190</span> Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Benhaoua">M. K. Benhaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Singh"> A. K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Benyamina"> A. E. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Boulet"> P. Boulet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiprocessor%20system%20on%20chip" title="multiprocessor system on chip">multiprocessor system on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=MPSoC" title=" MPSoC"> MPSoC</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20on%20chip" title=" network on chip"> network on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=NoC" title=" NoC"> NoC</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20architectures" title=" heterogeneous architectures"> heterogeneous architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=run-time%20mapping%20heuristics" title=" run-time mapping heuristics"> run-time mapping heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20algorithm" title=" routing algorithm "> routing algorithm </a> </p> <a href="https://publications.waset.org/abstracts/24295/algorithms-for-run-time-task-mapping-in-noc-based-heterogeneous-mpsocs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2189</span> Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tripatjot%20S.%20Panag">Tripatjot S. Panag</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Dhillon"> J. S. Dhillon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coverage" title="coverage">coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=disjoint%20sets" title=" disjoint sets"> disjoint sets</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=Wireless%20sensor%20networks" title=" Wireless sensor networks"> Wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a> </p> <a href="https://publications.waset.org/abstracts/34165/heuristic-search-algorithm-hsa-for-enhancing-the-lifetime-of-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2188</span> An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Fatnassi">Ahlem Fatnassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Gharsellaoui"> Hamza Gharsellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadok%20Bouamama"> Sadok Bouamama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics%20and%20metaheuristics%20algorithms" title=" heuristics and metaheuristics algorithms"> heuristics and metaheuristics algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20systems" title=" embedded systems"> embedded systems</a>, <a href="https://publications.waset.org/abstracts/search?q=low-power%20consumption" title=" low-power consumption"> low-power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=steganalysis%20heuristic%20approach" title=" steganalysis heuristic approach"> steganalysis heuristic approach</a> </p> <a href="https://publications.waset.org/abstracts/44034/an-optimal-steganalysis-based-approach-for-embedding-information-in-image-cover-media-with-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2187</span> Engineering Optimization Using Two-Stage Differential Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Tseng">K. Y. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y.%20Wu"> C. Y. Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20evolution" title="differential evolution">differential evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Truss%20structure%20optimization" title=" Truss structure optimization"> Truss structure optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20chiller%20loading" title=" optimal chiller loading"> optimal chiller loading</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20binary%20differential%20evolution" title=" modified binary differential evolution"> modified binary differential evolution</a> </p> <a href="https://publications.waset.org/abstracts/109896/engineering-optimization-using-two-stage-differential-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=73">73</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=74">74</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10