CINXE.COM

» Contrats ERC / Simons Foundation

<!DOCTYPE html> <html lang="fr"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title> &raquo; Contrats ERC / Simons Foundation</title> <meta name="description" content="L’Institut est dédié à la recherche en mathématiques fondamentales. Il rassemble notamment les enseignants-chercheurs de Sorbonne Université (SU) et de l’Université Paris Cité (UP) et des chercheurs affectés par le CNRS."> <meta name='robots' content='max-image-preview:large' /> <style>img:is([sizes="auto" i], [sizes^="auto," i]) { contain-intrinsic-size: 3000px 1500px }</style> <link rel='dns-prefetch' href='//stackpath.bootstrapcdn.com' /> <script type="text/javascript"> /* <![CDATA[ */ window._wpemojiSettings = {"baseUrl":"https:\/\/s.w.org\/images\/core\/emoji\/15.0.3\/72x72\/","ext":".png","svgUrl":"https:\/\/s.w.org\/images\/core\/emoji\/15.0.3\/svg\/","svgExt":".svg","source":{"concatemoji":"https:\/\/www.imj-prg.fr\/wp-includes\/js\/wp-emoji-release.min.js?ver=6.7.1"}}; /*! This file is auto-generated */ !function(i,n){var o,s,e;function c(e){try{var t={supportTests:e,timestamp:(new Date).valueOf()};sessionStorage.setItem(o,JSON.stringify(t))}catch(e){}}function p(e,t,n){e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(t,0,0);var t=new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data),r=(e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(n,0,0),new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data));return t.every(function(e,t){return e===r[t]})}function u(e,t,n){switch(t){case"flag":return n(e,"\ud83c\udff3\ufe0f\u200d\u26a7\ufe0f","\ud83c\udff3\ufe0f\u200b\u26a7\ufe0f")?!1:!n(e,"\ud83c\uddfa\ud83c\uddf3","\ud83c\uddfa\u200b\ud83c\uddf3")&&!n(e,"\ud83c\udff4\udb40\udc67\udb40\udc62\udb40\udc65\udb40\udc6e\udb40\udc67\udb40\udc7f","\ud83c\udff4\u200b\udb40\udc67\u200b\udb40\udc62\u200b\udb40\udc65\u200b\udb40\udc6e\u200b\udb40\udc67\u200b\udb40\udc7f");case"emoji":return!n(e,"\ud83d\udc26\u200d\u2b1b","\ud83d\udc26\u200b\u2b1b")}return!1}function f(e,t,n){var r="undefined"!=typeof WorkerGlobalScope&&self instanceof WorkerGlobalScope?new OffscreenCanvas(300,150):i.createElement("canvas"),a=r.getContext("2d",{willReadFrequently:!0}),o=(a.textBaseline="top",a.font="600 32px Arial",{});return e.forEach(function(e){o[e]=t(a,e,n)}),o}function t(e){var t=i.createElement("script");t.src=e,t.defer=!0,i.head.appendChild(t)}"undefined"!=typeof Promise&&(o="wpEmojiSettingsSupports",s=["flag","emoji"],n.supports={everything:!0,everythingExceptFlag:!0},e=new Promise(function(e){i.addEventListener("DOMContentLoaded",e,{once:!0})}),new Promise(function(t){var n=function(){try{var e=JSON.parse(sessionStorage.getItem(o));if("object"==typeof e&&"number"==typeof e.timestamp&&(new Date).valueOf()<e.timestamp+604800&&"object"==typeof e.supportTests)return e.supportTests}catch(e){}return null}();if(!n){if("undefined"!=typeof Worker&&"undefined"!=typeof OffscreenCanvas&&"undefined"!=typeof URL&&URL.createObjectURL&&"undefined"!=typeof Blob)try{var e="postMessage("+f.toString()+"("+[JSON.stringify(s),u.toString(),p.toString()].join(",")+"));",r=new Blob([e],{type:"text/javascript"}),a=new Worker(URL.createObjectURL(r),{name:"wpTestEmojiSupports"});return void(a.onmessage=function(e){c(n=e.data),a.terminate(),t(n)})}catch(e){}c(n=f(s,u,p))}t(n)}).then(function(e){for(var t in e)n.supports[t]=e[t],n.supports.everything=n.supports.everything&&n.supports[t],"flag"!==t&&(n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&n.supports[t]);n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&!n.supports.flag,n.DOMReady=!1,n.readyCallback=function(){n.DOMReady=!0}}).then(function(){return e}).then(function(){var e;n.supports.everything||(n.readyCallback(),(e=n.source||{}).concatemoji?t(e.concatemoji):e.wpemoji&&e.twemoji&&(t(e.twemoji),t(e.wpemoji)))}))}((window,document),window._wpemojiSettings); /* ]]> */ </script> <style id='wp-emoji-styles-inline-css' type='text/css'> img.wp-smiley, img.emoji { display: inline !important; border: none !important; box-shadow: none !important; height: 1em !important; width: 1em !important; margin: 0 0.07em !important; vertical-align: -0.1em !important; background: none !important; padding: 0 !important; } </style> <link rel='stylesheet' id='wp-block-library-css' href='https://www.imj-prg.fr/wp-includes/css/dist/block-library/style.min.css?ver=6.7.1' type='text/css' media='all' /> <style id='classic-theme-styles-inline-css' type='text/css'> /*! This file is auto-generated */ .wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc(1.333em + 2px);font-size:1.125em}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none} </style> <style id='global-styles-inline-css' type='text/css'> :root{--wp--preset--aspect-ratio--square: 1;--wp--preset--aspect-ratio--4-3: 4/3;--wp--preset--aspect-ratio--3-4: 3/4;--wp--preset--aspect-ratio--3-2: 3/2;--wp--preset--aspect-ratio--2-3: 2/3;--wp--preset--aspect-ratio--16-9: 16/9;--wp--preset--aspect-ratio--9-16: 9/16;--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;--wp--preset--spacing--20: 0.44rem;--wp--preset--spacing--30: 0.67rem;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: 1.5rem;--wp--preset--spacing--60: 2.25rem;--wp--preset--spacing--70: 3.38rem;--wp--preset--spacing--80: 5.06rem;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:where(.is-layout-flex){gap: 0.5em;}:where(.is-layout-grid){gap: 0.5em;}body .is-layout-flex{display: flex;}.is-layout-flex{flex-wrap: wrap;align-items: center;}.is-layout-flex > :is(*, div){margin: 0;}body .is-layout-grid{display: grid;}.is-layout-grid > :is(*, div){margin: 0;}:where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;}:where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} :where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;} :where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;} :root :where(.wp-block-pullquote){font-size: 1.5em;line-height: 1.6;} </style> <link rel='stylesheet' id='eeb-css-frontend-css' href='https://www.imj-prg.fr/wp-content/plugins/email-encoder-bundle/core/includes/assets/css/style.css?ver=240615-133329' type='text/css' media='all' /> <link rel='stylesheet' id='bootstrap-css' href='https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css?ver=6.7.1' type='text/css' media='all' /> <link rel='stylesheet' id='style-css' href='https://www.imj-prg.fr/wp-content/themes/imjprg/style.css?ver=6.7.1' type='text/css' media='all' /> <script type="text/javascript" src="https://www.imj-prg.fr/wp-includes/js/jquery/jquery.min.js?ver=3.7.1" id="jquery-core-js"></script> <script type="text/javascript" src="https://www.imj-prg.fr/wp-includes/js/jquery/jquery-migrate.min.js?ver=3.4.1" id="jquery-migrate-js"></script> <script type="text/javascript" src="https://www.imj-prg.fr/wp-content/plugins/email-encoder-bundle/core/includes/assets/js/custom.js?ver=240615-133329" id="eeb-js-frontend-js"></script> <link rel="https://api.w.org/" href="https://www.imj-prg.fr/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://www.imj-prg.fr/wp-json/wp/v2/pages/110" /><link rel="EditURI" type="application/rsd+xml" title="RSD" href="https://www.imj-prg.fr/xmlrpc.php?rsd" /> <meta name="generator" content="WordPress 6.7.1" /> <link rel="canonical" href="https://www.imj-prg.fr/contrats/" /> <link rel='shortlink' href='https://www.imj-prg.fr/?p=110' /> <link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://www.imj-prg.fr/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.imj-prg.fr%2Fcontrats%2F" /> <link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://www.imj-prg.fr/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.imj-prg.fr%2Fcontrats%2F&#038;format=xml" /> <style type="text/css">.recentcomments a{display:inline !important;padding:0 !important;margin:0 !important;}</style><link rel="icon" href="https://www.imj-prg.fr/wp-content/uploads/2020/12/favico.png" sizes="32x32" /> <link rel="icon" href="https://www.imj-prg.fr/wp-content/uploads/2020/12/favico.png" sizes="192x192" /> <link rel="apple-touch-icon" href="https://www.imj-prg.fr/wp-content/uploads/2020/12/favico.png" /> <meta name="msapplication-TileImage" content="https://www.imj-prg.fr/wp-content/uploads/2020/12/favico.png" /> <!-- MathJax --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); </script> </head> <body> <!-- Header --> <header class="blog-header py-3"> <div class="row"> <div class=" col-lg-2 "> <a href="https://www.imj-prg.fr"> <img id="logo-header" src="https://www.imj-prg.fr/wp-content/themes/imjprg/images/logo-imj-prg-250.png" alt="Logo IMJ-PRG" > </a> </div><div class="col-lg-7 lemenu"> <!-- Menu header --> <nav class=" navbar navbar-expand-md navbar-light menu-centre" role="navigation"> <div class="container"> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#header-menu" aria-controls="#header-menu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div id="header-menu" class="collapse navbar-collapse"><ul id="menu-haut" class="nav navbar-nav navbar-expand-lg" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li id="menu-item-76" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-76 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/acces/" class="nav-link"><span itemprop="name">Accès</span></a></li> <li id="menu-item-551" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-551 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/diffusion-des-mathematiques" class="nav-link"><span itemprop="name">Grand public</span></a></li> <li id="menu-item-74" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-74 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/agenda/" class="nav-link"><span itemprop="name">Agenda</span></a></li> <li id="menu-item-101" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-101 nav-item"><a itemprop="url" href="https://www.math-info-paris.cnrs.fr/bibli/" class="nav-link"><span itemprop="name">Bibliothèque</span></a></li> <li id="menu-item-102" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-102 nav-item"><a itemprop="url" href="https://intranet.imj-prg.fr/" class="nav-link"><span itemprop="name">Intranet</span></a></li> <li id="menu-item-2035" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-2035 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/doctorants/" class="nav-link"><span itemprop="name">Espace doctorants</span></a></li> </ul></div> </div> </nav> <nav class="navbar navbar-expand-md navbar-light menu-centre" role="navigation"> <div class="container"> <div id="header-menu" class="collapse navbar-collapse"><ul id="menu-general" class="nav navbar-nav navbar-expand-lg" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li id="menu-item-53" class="menu-item menu-item-type-post_type menu-item-object-page current-menu-ancestor current-menu-parent current_page_parent current_page_ancestor menu-item-has-children dropdown active menu-item-53 nav-item"><a href="#" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="dropdown-toggle nav-link" id="menu-item-dropdown-53"><span itemprop="name">Présentation</span></a> <ul class="dropdown-menu" aria-labelledby="menu-item-dropdown-53"> <li id="menu-item-52" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-52 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/linstitut/" class="dropdown-item"><span itemprop="name">L’Institut</span></a></li> <li id="menu-item-51" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-51 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/organigramme/" class="dropdown-item"><span itemprop="name">Organigramme</span></a></li> <li id="menu-item-109" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-109 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/prix-et-distinctions/" class="dropdown-item"><span itemprop="name">Prix et distinctions</span></a></li> <li id="menu-item-118" class="menu-item menu-item-type-post_type menu-item-object-page current-menu-item page_item page-item-110 current_page_item active menu-item-118 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/contrats/" class="dropdown-item" aria-current="page"><span itemprop="name">Contrats ERC / Simons Foundation</span></a></li> <li id="menu-item-117" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-117 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/contacts/" class="dropdown-item"><span itemprop="name">Contact</span></a></li> <li id="menu-item-116" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-116 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/toutes-les-actualites/" class="dropdown-item"><span itemprop="name">Toutes les actualités</span></a></li> </ul> </li> <li id="menu-item-55" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children dropdown menu-item-55 nav-item"><a href="#" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="dropdown-toggle nav-link" id="menu-item-dropdown-55"><span itemprop="name">Équipes</span></a> <ul class="dropdown-menu" aria-labelledby="menu-item-dropdown-55"> <li id="menu-item-50" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-50 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/organisation-de-linstitut/" class="dropdown-item"><span itemprop="name">Organisation de l’Institut</span></a></li> <li id="menu-item-133" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-133 nav-item"><hr class="mhm-menu-separator"></li> <li id="menu-item-119" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-119 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/aa/" class="dropdown-item"><span itemprop="name">Analyse Algébrique</span></a></li> <li id="menu-item-120" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-120 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/acg/" class="dropdown-item"><span itemprop="name">Analyse Complexe et Géométrie</span></a></li> <li id="menu-item-121" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-121 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/af/" class="dropdown-item"><span itemprop="name">Analyse Fonctionnelle</span></a></li> <li id="menu-item-122" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-122 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/ao/" class="dropdown-item"><span itemprop="name">Algèbres d&rsquo;Opérateurs</span></a></li> <li id="menu-item-123" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-123 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/co/" class="dropdown-item"><span itemprop="name">Combinatoire et Optimisation</span></a></li> <li id="menu-item-124" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-124 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/fa/" class="dropdown-item"><span itemprop="name">Formes Automorphes</span></a></li> <li id="menu-item-125" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-125 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/gd/" class="dropdown-item"><span itemprop="name">Géométrie et Dynamique</span></a></li> <li id="menu-item-126" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-126 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/grg/" class="dropdown-item"><span itemprop="name">Groupes, Représentations et Géométrie</span></a></li> <li id="menu-item-127" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-127 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/hsm/" class="dropdown-item"><span itemprop="name">Histoire des Sciences Mathématiques</span></a></li> <li id="menu-item-128" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-128 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/lm/" class="dropdown-item"><span itemprop="name">Logique Mathématique</span></a></li> <li id="menu-item-129" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-129 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/tga/" class="dropdown-item"><span itemprop="name">Topologie et Géométrie Algébrique</span></a></li> <li id="menu-item-130" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-130 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/tn/" class="dropdown-item"><span itemprop="name">Théorie des nombres</span></a></li> <li id="menu-item-132" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-132 nav-item"><hr class="mhm-menu-separator"></li> <li id="menu-item-131" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-131 nav-item"><a itemprop="url" href="https://team.inria.fr/ouragan/" class="dropdown-item"><span itemprop="name">Ouragan</span></a></li> </ul> </li> <li id="menu-item-54" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children dropdown menu-item-54 nav-item"><a href="#" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="dropdown-toggle nav-link" id="menu-item-dropdown-54"><span itemprop="name">Annuaire</span></a> <ul class="dropdown-menu" aria-labelledby="menu-item-dropdown-54"> <li id="menu-item-311" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-311 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/enseignants-chercheur/" class="dropdown-item"><span itemprop="name">Chercheurs et Enseignants-Chercheurs</span></a></li> <li id="menu-item-321" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-321 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/emerites/" class="dropdown-item"><span itemprop="name">Emérites</span></a></li> <li id="menu-item-320" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-320 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/benevoles/" class="dropdown-item"><span itemprop="name">Bénévoles</span></a></li> <li id="menu-item-319" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-319 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/post-doctorants/" class="dropdown-item"><span itemprop="name">Post-doctorants</span></a></li> <li id="menu-item-339" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-339 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/jeunes-docteurs/" class="dropdown-item"><span itemprop="name">Jeunes docteurs</span></a></li> <li id="menu-item-338" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-338 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/liste-doctorants/" class="dropdown-item"><span itemprop="name">Doctorants</span></a></li> <li id="menu-item-340" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-340 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/equipe-administrative/" class="dropdown-item"><span itemprop="name">Équipe administrative</span></a></li> <li id="menu-item-337" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-337 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/associes/" class="dropdown-item"><span itemprop="name">Associés</span></a></li> <li id="menu-item-335" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-335 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/tous-les-membres/" class="dropdown-item"><span itemprop="name">Tous les membres</span></a></li> <li id="menu-item-334" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-334 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/visiteurs/" class="dropdown-item"><span itemprop="name">Visiteurs</span></a></li> </ul> </li> <li id="menu-item-59" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children dropdown menu-item-59 nav-item"><a href="#" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="dropdown-toggle nav-link" id="menu-item-dropdown-59"><span itemprop="name">Activités</span></a> <ul class="dropdown-menu" aria-labelledby="menu-item-dropdown-59"> <li id="menu-item-134" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-134 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/gestion/evenement/affEvenement/63" class="dropdown-item"><span itemprop="name">Colloquium</span></a></li> <li id="menu-item-149" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-149 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/seminaires/" class="dropdown-item"><span itemprop="name">Séminaires</span></a></li> <li id="menu-item-148" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-148 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/le-journal-de-limj/" class="dropdown-item"><span itemprop="name">Le Journal de l’IMJ</span></a></li> <li id="menu-item-146" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-146 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/ecole-dete/" class="dropdown-item"><span itemprop="name">École d’été</span></a></li> </ul> </li> <li id="menu-item-57" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children dropdown menu-item-57 nav-item"><a href="#" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="dropdown-toggle nav-link" id="menu-item-dropdown-57"><span itemprop="name">Formations</span></a> <ul class="dropdown-menu" aria-labelledby="menu-item-dropdown-57"> <li id="menu-item-56" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-56 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/les-masters/" class="dropdown-item"><span itemprop="name">Les masters</span></a></li> <li id="menu-item-159" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-159 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/preparer-un-these-a-linstitut/" class="dropdown-item"><span itemprop="name">Préparer une thèse à l’Institut</span></a></li> <li id="menu-item-160" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-160 nav-item"><a itemprop="url" href="http://ed386.sorbonne-universite.fr/fr/index.html" class="dropdown-item"><span itemprop="name">Ecole Doctorale</span></a></li> <li id="menu-item-166" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-166 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/theses-soutenues/" class="dropdown-item"><span itemprop="name">Thèses Soutenues</span></a></li> <li id="menu-item-165" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-165 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/recherche-de-post-doctorats/" class="dropdown-item"><span itemprop="name">Recherche de post-doctorats</span></a></li> </ul> </li> <li id="menu-item-61" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children dropdown menu-item-61 nav-item"><a href="#" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="dropdown-toggle nav-link" id="menu-item-dropdown-61"><span itemprop="name">Vie</span></a> <ul class="dropdown-menu" aria-labelledby="menu-item-dropdown-61"> <li id="menu-item-60" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-60 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/commissions-et-comites/" class="dropdown-item"><span itemprop="name">Commissions et comités</span></a></li> <li id="menu-item-172" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-172 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/equipe-administrative/" class="dropdown-item"><span itemprop="name">Équipe de gestion</span></a></li> <li id="menu-item-171" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-171 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/bien-etre-et-securite-au-travail/" class="dropdown-item"><span itemprop="name">Bien-être et sécurité au travail</span></a></li> <li id="menu-item-182" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-182 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/comite-parite/" class="dropdown-item"><span itemprop="name">Comité Parité</span></a></li> <li id="menu-item-181" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-181 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/liens-et-documents-utiles/" class="dropdown-item"><span itemprop="name">Liens et documents utiles</span></a></li> <li id="menu-item-180" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-180 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/ressources-et-services-numeriques/" class="dropdown-item"><span itemprop="name">Ressources et services numériques</span></a></li> <li id="menu-item-183" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-183 nav-item"><a itemprop="url" href="https://webmail.imj-prg.fr/rc/" class="dropdown-item"><span itemprop="name">Messagerie</span></a></li> <li id="menu-item-189" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-189 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/reservations/" class="dropdown-item"><span itemprop="name">Réservations</span></a></li> <li id="menu-item-188" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-188 nav-item"><a itemprop="url" href="https://www.imj-prg.fr/?page_id=186" class="dropdown-item"><span itemprop="name">Travail à distance</span></a></li> </ul> </li> </ul></div> </div> </nav> <!-- Fin du menu header --> </div> <div class=" col-lg-3 tutelle "> <a href="http://www.cnrs.fr/fr/page-daccueil"><img style="height:50px;" src="https://www.imj-prg.fr/wp-content/themes/imjprg/images/logo-cnrs.jpg" alt="CNRS" ></a> <a href="https://u-paris.fr/" ><img style="height:50px;" src="https://www.imj-prg.fr/wp-content/themes/imjprg/images/uparis.png" alt="Paris Diderot" ></a> <a href="http://www.sorbonne-universite.fr/"><img style="height:44px;" src="https://www.imj-prg.fr/wp-content/themes/imjprg/images/sorbonne.jpg" alt="Sorbonne Université" ></a> </div> </div> </header> <!-- Fin du header --> <hr id="ligne-header"> <div class="offset-sm-1 col-sm-10"> <h2 class="titre">Contrats ERC / Simons Foundation</h2> <hr id="ligne-header"> <div class="content"> <h3 class="wp-block-heading">2024</h3> <p><strong>UniGeoDyM &#8211; </strong><strong>Phénomènes d&rsquo;universalité en géométrie et dynamique des espaces de modules</strong> </p> <p>Financement ERC AdG &#8211; 60 mois &#8211; PI&nbsp;: Anton Zorich</p> <p>« La géométrie et la dynamique dans les espaces de modules se sont révélées extrêmement efficaces pour l’études des feuilletages sur les surfaces, des billards en polygones et dans les modèles mathématiques de physique comme les billard d&rsquo;Ehrenfest ou le transport d&rsquo;électrons sur les surfaces de Fermi. Les idées pionnières pour étudier la dynamique des surfaces à travers la géométrie des espaces de modules proviennent des travaux de Thurston, Masur et Veech. Depuis, le domaine est en pleine expansion. Les contributions d&rsquo;Avila, Eskin, McMullen, Mirzakhani, Kontsevich, Okounkov, Yoccoz, pour ne citer que les lauréats de la médaille Fields et du Breakthrough Prize, ont fait de la géométrie et de la dynamique dans les espaces de modules l&rsquo;un des domaines les plus actifs des mathématiques modernes.</p> <p>Les espaces de modules des surfaces de Riemann sont paramétrés par un genre <em>g</em> de la surface. En considérant simultanément toutes les métriques hyperboliques (respectivement plates) associées, on observe une diversité de plus en plus sophistiquée quand le genre <em>g</em> grandit. Au contraire, la plupart des métriques partagent progressivement des comportements communs. Ici, la notion de « la plupart&nbsp;» a une signification quantitative explicite en termes de mesure de Weil-Petersson. Le projet vise à étudier la géométrie asymptotique des espaces de modules en grand genre et la dynamique des structures associées. Avec mes collaborateurs, nous visons à dévoiler le portrait d’une surface aléatoire de grand genre. »</p> <p></p> <h3 class="wp-block-heading">2023</h3> <p><strong>Simons Collaboration</strong></p> <p>2 Simons Collaborations on Perfection in Algebra, Geometry, and Topology </p> <p>48 mois &#8211; PI : Wiesława Nizioł</p> <p>48 mois &#8211; PI : Pierre Colmez </p> <div class="wp-block-columns are-vertically-aligned-bottom is-layout-flex wp-container-core-columns-is-layout-2 wp-block-columns-is-layout-flex"> <div class="wp-block-column is-vertically-aligned-bottom is-layout-flow wp-block-column-is-layout-flow" style="flex-basis:100%"> <div class="wp-block-columns is-layout-flex wp-container-core-columns-is-layout-1 wp-block-columns-is-layout-flex"> <div class="wp-block-column is-layout-flow wp-block-column-is-layout-flow" style="flex-basis:33.33%"> <figure class="wp-block-image size-large is-resized"><img fetchpriority="high" decoding="async" width="1024" height="573" src="https://www.imj-prg.fr/wp-content/uploads/2023/12/Simons-1024x573.png" alt="" class="wp-image-2137" style="width:222px;height:auto" srcset="https://www.imj-prg.fr/wp-content/uploads/2023/12/Simons-1024x573.png 1024w, https://www.imj-prg.fr/wp-content/uploads/2023/12/Simons-300x168.png 300w, https://www.imj-prg.fr/wp-content/uploads/2023/12/Simons-768x430.png 768w, https://www.imj-prg.fr/wp-content/uploads/2023/12/Simons.png 1180w" sizes="(max-width: 1024px) 100vw, 1024px" /></figure> </div> <div class="wp-block-column is-layout-flow wp-block-column-is-layout-flow" style="flex-basis:66.66%"> <p class="has-text-align-left">La fondation Simons finance une <a href="https://scop.math.berkeley.edu">collaboration</a> autour de la perfection en algèbre, géométrie et topologie, qui regroupe <a href="https://scop.math.berkeley.edu/collaboration-members/">13 membres</a> dont Pierre Colmez et Wiesława Nizioł à Jussieu.</p> </div> </div> </div> </div> <p><strong>SIGMA &#8211;</strong> <strong>SinGular Monge-Ampère equations</strong> </p> <p>Financement ERC CoG &#8211; 60 mois &#8211; PI&nbsp;: Eleonora Di Nezza</p> <p>« Ce projet est motivé par la théorie M, la théorie des cordes en physique théorique et le Problème des Modèles Minimaux en géométrie algébrique. Nous étudions des espaces de Kähler singuliers en mettant l&rsquo;accent sur leurs structures spéciales (d&rsquo;origine géométrique différentielle) et leur interaction avec divers domaines de l&rsquo;analyse.</p> <p>Plus précisément, nous recherchons des métriques de Kähler singulières avec des propriétés de courbure spéciales, telles que les métriques Kähler-Einstein (KE) ou à courbure scalaire constante (cscK). Le problème de l&rsquo;existence de ces métriques peut être reformulé en termes d&rsquo;une équation de Monge-Ampère, qui est une équation aux dérivées partielles (EDP) non linéaire. Le cas KE a été résolu par Aubin, Yau (résolution de la conjecture de Calabi), et Chen-Donaldson-Sun (résolution de la conjecture de Yau-Tian-Donaldson) ; le cas cscK a été récemment résolu par Chen-Cheng (résolution d&rsquo;une conjecture due à Tian). Cependant, ces résultats ne s&rsquo;appliquent qu&rsquo;aux variétés de Kähler lisses, et il est encore nécessaire de traiter avec des variétés singulières.</p> <p>C&rsquo;est là que la Théorie Pluripotentielle entre en jeu. Boucksom-Eyssidieux-GuedjZeriahi et l&rsquo;auteur, avec Darvas et Lu, ont démontré que les méthodes pluripotentielles sont très flexibles et peuvent être adaptées pour travailler avec des équations de Monge-Ampère (singulières). Trouver une solution à ce type d&rsquo;équations qui soit régulière en dehors du lieu singulier équivaut à l&rsquo;existence de métriques KE ou cscK singulières.</p> <p>À ce stade, un ingrédient crucial manque : la régularité de ces solutions (faibles). L&rsquo;objectif principal de SiGMA est de relever ce défi. »&nbsp;</p> <h3 class="wp-block-heading">2021</h3> <p><strong>MoCoS &#8211;</strong> <strong>Motivic Cohomology of Schemes</strong></p> <p>Financement ERC CoG &#8211; 60 mois &#8211; PI&nbsp;: Matthew Morrow</p> <p>The project belongs to the field of arithmetic algebraic geometry and is centred around algebraic K-theory, motivic cohomology, and topological cyclic homology. The overall goal is to develop a general theory of motivic cohomology for arbitrary schemes, extending the existing theory of Bloch, Levine, Suslin, Voevodsky, and others in the special case of smooth algebraic varieties. This will describe non-connective algebraic K-theory via an Atiyah&#8211;Hirzebruch spectral sequence. The project relies on very recent breakthroughs in algebraic K-theory and topological cyclic homology In the case of singular algebraic varieties, our goal will be to develop a theory of motivic cohomology which both satisfies singular analogous of the Beilinson&#8211;Lichtenbaum conjectures and is also compatible with the trace maps to negative cyclic and topological cyclic homology. Its properties will refine those of K-theory in the presence of singularities; for example, we will study a motivic refinement of Weibel&rsquo;s vanishing conjecture and a theory of « infinitesimal motivic cohomology » satisfying cdh descent. In the case of regular arithmetic schemes we will propose a new approach to the theory of p-adic motivic cohomology, based on topological cyclic homology and syntomic cohomology, which works in much greater generality than previous approaches. Perfectoid techniques will play an important role and we will establish the p-adic Beilinson&#8211;Lichtenbaum and Bloch&#8211;Kato conjectures.</p> <h3 class="wp-block-heading">2020</h3> <p><strong>UnIntUniBd &#8211; Unlikely Intersection and Uniform Bounds for Points</strong></p> <p>Financement ERC StG &#8211; 60 mois &#8211; PI&nbsp;: Ziyang Gao</p> <p>I propose to investigate the following long expected but widely open uniform bounds on rational and algebraic points. (1) Mazur’s conjecture on the number of points on curves, which implies the following two strong bounds&nbsp;: (1.i) the number of rational points on a smooth projective curve of genus g at least 2 defined over a number field of degree d is bounded above in terms of g, d and the Mordell- Weil rank&nbsp;; (1.ii) the number of algebraic torsion points on a smooth projective curve of genus g at least 2 is bounded above only in terms of g. (2) Generalize the bound in (1) to higher dimensional subvarieties of abelian varieties. (3) Extend the bounds to semi-abelian varieties. Compared with existing results, the Faltings height is no longer involved in the bounds. The proofs I propose are via Diophantine estimates. Functional transcendence and unlikely intersections on mixed Shimura varieties play important roles in the proofs. Hence as pre-requests and extensions of the three goals listed above, I will also continue investigating on functional transcendence and unlikely intersection theories as well as their potential other interesting applications in Diophantine geometry. (<a href="https://cordis.europa.eu/project/id/945714">lire la suite</a>)</p> <p><strong>HyperK &#8211; Modern Aspects of Geometry&nbsp;: Categories, Cycles and Cohomology of Hyperkähler Varieties</strong></p> <p>Financement ERC SyG &#8211; 72 mois &#8211; PI&nbsp;: Olivier Debarre et Claire Voisin</p> <p>Emanuele Macrì (Université Paris-Sud), Daniel Huybrechts (Bonn Universität, Allemagne), Claire Voisin (Collège de France-IMJ) et moi-même (Université de Paris-IMJ) avons obtenu une bourse ERC Synergy, qui débutera le 1er septembre 2020, pour une durée de 6 années. Le projet est intitulé HyperK et porte sur divers aspects de l’étude des variétés hyperkählériennes&nbsp;: catégories, cycles algébriques et cohomologie. Ces variétés complexes (aussi appelées variétés symplectiques irréductibles) constituent l’analogue en toute dimension paire des surfaces complexes dites K3, dont le programme d’étude, initié par A. Weil à la fin des années cinquante, est maintenant quasiment terminé. Notre ambition est de reproduire une version moderne de ce programme dans le cadre des variétés hyperkählériennes. Cela comprend l’étude de leurs catégories dérivées et des espaces de modules d’objets stables pour des conditions de stabilité de Bridgeland, celle de la filtration de Beilinson sur leurs groupes de Chow, et enfin la restriction des types cohomologiques, topologiques ou même des types de déformation possibles. (<a href="https://cordis.europa.eu/project/id/854361">lire la suite</a>)</p> <h3 class="wp-block-heading">2019</h3> <p><strong>ROGW &#8211; Real and open Gromov-Witten theory</strong></p> <p>Financement ERC CoG &#8211; 60 mois &#8211; PI&nbsp;: Penka Georgieva</p> <p>This proposal focuses on establishing new relations between natural objects in symplectic geometry with other fields of mathematics including knot and representation theory and the theory of integrable systems. All of these relations are motivated by theoretical physics. The main objects of study are moduli spaces of pseudo-holomorphic maps giving rise to real and open Gromov-Witten invariants. The classical Gromov-Witten invariants were introduced by Gromov at the birth of symplectic topology giving rise to obstructions to symplectic embeddings. Their interpretation by Witten as the coefficients of a partition function of a field theory placed them in a new light&nbsp;: striking dualities understood in physics relate them to mathematical objects of completely different nature and on completely different manifolds. This has and continues to generate enormous amount of high-level research aimed at understanding these relations better.(<a href="https://cordis.europa.eu/project/id/864919">lire la suite</a>) &gt;&gt; Voir le <a href="https://youtu.be/hLFu9I3jmyk">portrait vidéo de Penka</a> sur la chaîne YouTube du CNRS.</p> <p><strong>EMERGENCE &#8211; Emergence of wild differentiable dynamical systems</strong></p> <p>Financement ERC CoG &#8211; 60 mois &#8211; PI&nbsp;: Pierre Berger</p> <p>Many physical or biological systems display time-dependent states which can be mathematically modelled by a differentiable dynamical system. The state of the system consists of a finite number of variables, and the short time evolution is given by a differentiable equation or the iteration of a differentiable map. The evolution of a state is called an orbit of the system. The theory of dynamical systems studies the long time evolution of the orbits. (<a href="https://cordis.europa.eu/project/rcn/220584/factsheet/en">lire la suite</a>)</p> <p><strong>HSD &#8211; Homeomorphisms in symplectic topology and dynamics</strong></p> <p>Financement ERC StG &#8211; 60 mois &#8211; PI :Sobhan Seyfaddini</p> <p>The subject of this proposal is the field of continuous symplectic topology. This is an area of symplectic topology which defines and studies continuous analogues of smooth symplectic objects such as symplectic and Hamiltonian homeomorphisms and asks questions about persistence of various symplectic phenomena under uniform limits and perturbations.<br>Our aim is to explore, and further develop, continuous symplectic topology from two different perspectives&nbsp;: The first is a symplectic topological perspective which is informed by Gromov’s soft and hard view of symplectic topology. The second is motivated by the recent interactions of continuous symplectic topology and dynamical systems and it falls under the new field of symplectic dynamics. (<a href="https://cordis.europa.eu/project/id/851701">lire la suite</a>)</p> <p></p> <p></p> <h3 class="wp-block-heading">2018</h3> <p><strong>SOS – Smooth Dynamics via Operators, with Singularities</strong></p> <p>Financement ERC AdG – 60 mois – PI&nbsp;: Viviane Baladi</p> <p>The ergodic theory of smooth dynamical systems enjoying some form of hyperbolicity has undergone important progress since the beginning of the twenty first century, in part due to the development of a new technical tool&nbsp;: anisotropic Banach or Hilbert spaces, on which transfer operators have good spectral properties. Very recently, such tools have yielded exponential mixing for dispersing (Sinai) billiard flows (i.e. the 2D periodic Lorentz gas), which are the archetypal smooth systems with singularities. (<a href="https://cordis.europa.eu/project/rcn/214877_en.html">lire la suite</a>)</p> <p></p> <h3 class="wp-block-heading">2017</h3> <p></p> <p><strong>ALMACRYPT – Algorithmic and Mathematical Cryptology</strong></p> <p>Financement ERC AdG – 48 mois – PI&nbsp;: Antoine Joux</p> <p>Cryptology is a foundation of information security in the digital world. Today’s internet is protected by a form of cryptography based on complexity theoretic hardness assumptions. Ideally, they should be strong to ensure security and versatile to offer a wide range of functionalities and allow efficient implementations. However, these assumptions are largely untested and internet security could be built on sand. The main ambition of Almacrypt is to remedy this issue by challenging the assumptions through an advanced algorithmic analysis. (<a href="https://cordis.europa.eu/project/rcn/199377_en.html">lire la suite</a>)</p> <p></p> <p><strong>GeoLocLang &#8211; Geometrization of the local Langlands correspondence</strong></p> <p>Financement ERC AdG – 60 mois – PI&nbsp;: Laurent Fargues</p> <p>I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Langlands correspondence. This conjecture says that given a discrete local Langlands parameter of a reductive group over a local field of equal or unequal characteristic, one should be able to construct a perverse Hecke eigensheaf on the stack of G-bundles on the « curve » I defined and studied in my joint work with Fontaine. (<a href="https://cordis.europa.eu/project/rcn/210561_en.html">lire la suite</a>)</p> <p></p> <p></p> </div> </div> <hr> <footer> <br> <p><a href="https://www.imj-prg.fr/mentions-legales"> Mentions Legales</a> &copy; IMJ-PRG </p> </footer> <style id='core-block-supports-inline-css' type='text/css'> .wp-container-core-columns-is-layout-1{flex-wrap:nowrap;}.wp-container-core-columns-is-layout-2{flex-wrap:nowrap;} </style> <script type="text/javascript" src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js?ver=1" id="boostrap-js-js"></script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-MML-AM_CHTML"> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10