CINXE.COM
Search results for: clay soils
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: clay soils</title> <meta name="description" content="Search results for: clay soils"> <meta name="keywords" content="clay soils"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="clay soils" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="clay soils"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1343</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: clay soils</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1343</span> Shear Strength of Unsaturated Clayey Soils Using Laboratory Vane Shear Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed">Reza Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abdolhassan%20Naeini"> Seyed Abdolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Nouri"> Peyman Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Yekehdehghan"> Hamed Yekehdehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shear strength of soils is a significant parameter in the design of clay structures, depots, clay gables, and freeways. Most research has addressed the shear strength of saturated soils. However, soils can become partially saturated with changes in weather, changes in groundwater levels, and the absorption of water by plant roots. Hence, it is necessary to study the strength behavior of partially saturated soils. The shear vane test is an experiment that determines the undrained shear strength of clay soils. This test may be performed in the laboratory or at the site. The present research investigates the effect of liquidity index (LI), plasticity index (PI), and saturation degree of the soil on its undrained shear strength obtained from the shear vane test. According to the results, an increase in the LI and a decrease in the PL of the soil decrease its undrained shear strength. Furthermore, studies show that a rise in the degree of saturation decreases the shear strength obtained from the shear vane test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquidity%20index" title="liquidity index">liquidity index</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a> </p> <a href="https://publications.waset.org/abstracts/147252/shear-strength-of-unsaturated-clayey-soils-using-laboratory-vane-shear-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1342</span> Surprising Behaviour of Kaolinitic Soils under Alkaline Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hari%20Prasad%20Reddy">P. Hari Prasad Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimna%20Paulose"> Shimna Paulose</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sai%20Kumar"> V. Sai Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Rama%20Vara%20Prasad"> C. H. Rama Vara Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali" title="alkali">alkali</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=swell%20potential" title=" swell potential"> swell potential</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/23569/surprising-behaviour-of-kaolinitic-soils-under-alkaline-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1341</span> The Increasing of Unconfined Compression Strength of Clay Soils Stabilized with Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%CC%87%20Si%CC%87nan%20So%C4%9Fanci">Ali̇ Si̇nan Soğanci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement stabilization is one of the ground improvement method applied worldwide to increase the strength of clayey soils. The using of cement has got lots of advantages compared to other stabilization methods. Cement stabilization can be done quickly, the cost is low and creates a more durable structure with the soil. Cement can be used in the treatment of a wide variety of soils. The best results of the cement stabilization were seen on silts as well as coarse-grained soils. In this study, blocks of clay were taken from the Apa-Hotamış conveyance channel route which is 125km long will be built in Konya that take the water with 70m3/sec from Mavi tunnel to Hotamış storage. Firstly, the index properties of clay samples were determined according to the Unified Soil Classification System. The experimental program was carried out on compacted soil specimens with 0%, 7 %, 15% and 30 % cement additives and the results of unconfined compression strength were discussed. The results of unconfined compression tests indicated an increase in strength with increasing cement content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20stabilization" title="cement stabilization">cement stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20test" title=" unconfined compression test"> unconfined compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soils" title=" clayey soils"> clayey soils</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20soil%20classification%20system." title=" unified soil classification system."> unified soil classification system.</a> </p> <a href="https://publications.waset.org/abstracts/35636/the-increasing-of-unconfined-compression-strength-of-clay-soils-stabilized-with-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1340</span> Stabilization of Soil Organic Carbon within Silt+Clay Fraction in Shrub-Encroached Rangeland Shallow Soil at the University of Limpopo Syferkuil Experimental Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Millicent%20N.%20Khumalo">Millicent N. Khumalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Phesheya%20E.%20Dlamini"> Phesheya E. Dlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shrub-encroachment leads to a gain or loss of soil organic carbon (SOC) in previously open rangelands. The stabilization mechanisms controlling the storage of soil organic carbon (SOC) within aggregates of shrub-encroached grassland soils are poorly understood, especially in shallow plinthic soils. In this study, physical fractionation of surface soils (0- 10 cm) collected from open and shrub-encroached grasslands was conducted to determine the distribution of SOC within macro-and- microaggregates. Soil aggregates were classified into four fractions by a wet-sieving procedure, namely >2000 (large macro-aggregates), 212-2000 (small macro-aggregates), 50-212 (microaggregates) and < 50µm (silt+clay). In both shrub-encroached and open grassland soils, SOC was greater in the silt+clay fraction. In this fraction, SOC was on average 133% greater in shrub-encroached compared to open grassland. The greater SOC within the silt+clay fraction is due to the greater surface area and thus more exchange sites for carbon absorption. This implies that the SOC physically protected within the silt+clay is stored long-term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate%20fractions" title="aggregate fractions">aggregate fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=shrub-encroachment" title=" shrub-encroachment"> shrub-encroachment</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/111177/stabilization-of-soil-organic-carbon-within-siltclay-fraction-in-shrub-encroached-rangeland-shallow-soil-at-the-university-of-limpopo-syferkuil-experimental-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1339</span> Laboratory Study on Behavior of Compacted Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Mekkakia">M. M. Mekkakia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P%20Luong"> M. P Luong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Arab"> A. Arab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These controlling the water content of compaction are a major concern of fundamental civil engineers. Also, the knowledge of the fundamentals of the behaviour of compacted clay soils is essential to predict and quantify the effects of a change in water content. The study of unsaturated soils is a very complex area which several studies are directed to in recent years. Our job work is to perform tests of Proctor, Oedometer and shear, on samples of unsaturated clay in order to see the influence of water content on the compressibility and the shear strength. The samples were prepared at different amounts of water from water content to optimum water contents close to saturation. This study thus allowed us to measure and monitor the parameters of compressibility and shear strength as a function of water content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laboratory%20tests" title="laboratory tests">laboratory tests</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title=" atterberg limits"> atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=compressibility" title=" compressibility"> compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=shear" title=" shear"> shear</a> </p> <a href="https://publications.waset.org/abstracts/3580/laboratory-study-on-behavior-of-compacted-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1338</span> Geopolymerization Methods for Clay Soils Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baba%20Hassane%20Ahmed%20Hisseini">Baba Hassane Ahmed Hisseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Bennabi"> Abdelkrim Bennabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Hamzaoui"> Rabah Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamis%20Makki"> Lamis Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaetan%20Blanck"> Gaetan Blanck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the clay soils are known as problematic soils due to their water content, which varies greatly over time. It is observed that they are used to be subject to shrinkage and swelling, thus causing a problem of stability on the structures of civil engineering construction work. They are often excavated and placed in a storage area giving rise to the opening of new quarries. This method has become obsolete today because to protect the environment, we are leading to think differently and opening the way to new research for the improvement of the performance of this type of clay soils to reuse them in the construction field. The solidification and stabilization technique is used to improve the properties of poor quality soils to transform them into materials with a suitable performance for a new use in the civil engineering field rather than to excavate them and store them in the discharge area. In our case, the polymerization method is used for bad clay soils classified as high plasticity soil class A4 according to the French standard NF P11-300, where classical treatment methods with cement or lime are not efficient. Our work concerns clay soil treatment study using raw materials as additives for solidification and stabilization. The geopolymers are synthesized by aluminosilicates materials like fly ash, metakaolin, or blast furnace slag and activated by alkaline solution based on sodium hydroxide (NaOH), sodium silicate (Na2SiO3) or a mixture of both of them. In this study, we present the mechanical properties of the soil clay (A4 type) evolution with geopolymerisation methods treatment. Various mix design of aluminosilicates materials and alkaline solutions were carried at different percentages and different curing times of 1, 7, and 28 days. The compressive strength of the untreated clayey soil could be increased from simple to triple. It is observed that the improvement of compressive strength is associated with a geopolymerization mechanism. The highest compressive strength was found with metakaolin at 28 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treatment%20and%20valorization%20of%20clay-soil" title="treatment and valorization of clay-soil">treatment and valorization of clay-soil</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification%20and%20stabilization" title=" solidification and stabilization"> solidification and stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali-activation%20of%20co-product" title=" alkali-activation of co-product"> alkali-activation of co-product</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymerization" title=" geopolymerization"> geopolymerization</a> </p> <a href="https://publications.waset.org/abstracts/112401/geopolymerization-methods-for-clay-soils-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1337</span> Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mlhem">M. Mlhem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/104928/compression-strength-of-treated-fine-grained-soils-with-epoxy-or-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1336</span> Improvement of Soft Clay Using Floating Cement Dust-Lime Columns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Belal">Adel Belal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20Aboelsoud"> Sameh Aboelsoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohy%20Elmashad"> Mohy Elmashad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abdelmonem"> Mohammed Abdelmonem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust–lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20dust%20%E2%80%93%20lime%20columns" title=" cement dust – lime columns"> cement dust – lime columns</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a> </p> <a href="https://publications.waset.org/abstracts/100854/improvement-of-soft-clay-using-floating-cement-dust-lime-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1335</span> Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moez%20Selmi">Moez Selmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariem%20Kacem"> Mariem Kacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20Jamei"> Mehrez Jamei</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Dubujet"> Philippe Dubujet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPB" title="EPB">EPB</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soils" title=" clay soils"> clay soils</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20agent" title=" foam agent"> foam agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro-mechanical%20properties" title=" hydro-mechanical properties"> hydro-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/50150/effects-of-an-added-foaming-agent-on-hydro-mechanical-properties-of-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1334</span> Effect of Clay Content on the Drained Shear Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Khayat">Navid Khayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand–clay at optimum water content is main purpose of this research. To prepare the required samples, first clay and sand are mixed in 10, 30, 50, and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress –strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=drained%20shear%20strength" title=" drained shear strength"> drained shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion%20intercept" title=" cohesion intercept "> cohesion intercept </a> </p> <a href="https://publications.waset.org/abstracts/15677/effect-of-clay-content-on-the-drained-shear-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1333</span> Secondary Compression Behavior of Organic Soils in One-Dimensional Consolidation Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rinku%20Varghese">Rinku Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrakaran"> S. Chandrakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rangaswamy"> K. Rangaswamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The standard one-dimensional consolidation test is used to find the consolidation behaviour of artificially consolidated organic soils. Incremental loading tests were conducted on the clay without and with organic matter. The study was conducted with soil having different organic content keeping all other parameters constant. The tests were conducted on clay and artificially prepared organic soil sample at different vertical pressure. The load increment ratio considered for the test is equal to one. Artificial organic soils are used for the test by adding starch to the clay. The percentage of organic content in starch is determined by adding 5% by weight starch into the clay (inorganic soil) sample and corresponding change in organic content of soil was determined. This was expressed as percentage by weight of starch, and it was found that about 95% organic content in the soil sample. Accordingly percentage of organic content fixed and added to the sample for testing to understand the consolidation behaviour clayey soils with organic content. A detailed study of the results obtained from IL test was investigated. The main items investigated were (i) coefficient of consolidation (cv), (ii) coefficient of volume compression (mv), (iii) coefficient of permeability (k). The consolidation parameter obtained from IL test was used for determining the creep strain and creep parameter and also predicting their variation with vertical stress and organic content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consolidation" title="consolidation">consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20compression" title=" secondary compression"> secondary compression</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a> </p> <a href="https://publications.waset.org/abstracts/54271/secondary-compression-behavior-of-organic-soils-in-one-dimensional-consolidation-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1332</span> Clay Develop Plasticity With Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boualla%20Nabila">Boualla Nabila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems created by the water in Civil Engineering are sometimes neglected or often badly posed when they are not completely ignored, and yet they are fundamental as regards both the conditions of execution of the worksites and the stability. Several damages were caused by the infiltration of water in the soils, in particular in clay regions which can swell under the effect of an increase in their water content as in the case of the Oued Tlelat clay which is made up of yellow-colored marly clays and red-colored El Maleh area. This study was carried out on soil from a site, located near the city of Oran and the city of Ain Tmouchent (northern Algeria) where we encounter many problems of cracking of buildings and bottom uplift of excavations. The study consists first of all in determining the mechanical and physical characteristics of the clay, namely the parameters of sheer, simple compression, and that of the odometer. Then the study focused on a comparison of the influence of water type on the mechanical and physical properties of swelling clay soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=liquidity%20limit" title=" liquidity limit"> liquidity limit</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20limit" title=" plastic limit"> plastic limit</a> </p> <a href="https://publications.waset.org/abstracts/150577/clay-develop-plasticity-with-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1331</span> Palygorskite Bearing Calcic-Soils from Western Thar Desert: Implications for Late Quaternary Monsoonal Fluctuations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hameed">A. Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Upreti"> N. Upreti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Srivastava"> P. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Main objective the present study is to investigate microscopic, sub-microscopic, clay mineralogical and geochemical characteristics of three calcic soil profiles from the western Thar Desert for the last 30 ka paleoclimatic information. Thin-sections of the soils show weakly to moderately developed pedofeatures dominated by powdery to well-indurated pedogenic calcium carbonate. Sub-microscopy of the representative calcretes show extensive growth of fibrous palygorskite in pore spaces of micritic and sparitic nodules. XRD of the total clay ( < 2 µm) and fine clay ( < 0.2 µm) fractions of the soils show dominance of smectite, palygorskite, chlorite, mica, kaolinite and small amounts of quartz and feldspar. Formation of the palygorskite is attributed to pedogenic processes associated with Bw, Bss and Bwk horizons during drier conditions over the last 30 ka. Formation of palygorskite was mainly favoured by strongly evaporating percolating water and precipitation of secondary calcite, high pH (9-10), high Mg, Si and low Al activities during pedogenesis. Age estimate and distribution of calcretes, palygorskite, and illuvial features indicate fluctuating monsoonal strength during MIS3-MIS1 stages. The pedogenic features in calcic soils of western Thar suggest relatively arid conditions during MIS3-MIS2 transition and LGM time that changed to relatively wetter conditions during post LGM time and again returned to dry conditions at ~4 ka in MIS1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palygorskite" title="palygorskite">palygorskite</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=Thar" title=" Thar"> Thar</a>, <a href="https://publications.waset.org/abstracts/search?q=aridisol" title=" aridisol"> aridisol</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20quaternary" title=" late quaternary"> late quaternary</a> </p> <a href="https://publications.waset.org/abstracts/85055/palygorskite-bearing-calcic-soils-from-western-thar-desert-implications-for-late-quaternary-monsoonal-fluctuations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1330</span> Mechanical and Hydraulic Behavior of Arid Zone Soils Treated with Lime: Case of Abadla, Bechar Clays, South of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadek%20Younes">Sadek Younes</a>, <a href="https://publications.waset.org/abstracts/search?q=Fali%20Leyla"> Fali Leyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Rikioui%20Tayeb"> Rikioui Tayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Zizouni%20Khaled"> Zizouni Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stabilization of clay with lime as bearing stratum is an alternative to replacement of original soil. By adding lime to clay soil, the soil workability is improved due to the combination of calcium ions to the clay minerals, which means, modified soil properties. The paper investigates the effect of hydrated lime on the behaviour of lime treated, arid zones clay (Abadla Clay). A number of mechanical and hydraulic tests were performed to identify the effect of lime dosage and compaction water content on the compressibility, permeability, and shear strength parameters of the soil. Test results show that the soil parameters can be improved through additives such as lime. Overall, the addition percentages of 6% and 9% lime give the best desired results. Also, results revealed that the compressibility behavior of lime-treated soil strongly affected by lime content. The results are presented in terms of modern interpretation of the behaviour of treated soils, in comparison with the parameters of the untreated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20zones" title="arid zones">arid zones</a>, <a href="https://publications.waset.org/abstracts/search?q=compressibility" title=" compressibility"> compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20behaviour" title=" soil behaviour"> soil behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a> </p> <a href="https://publications.waset.org/abstracts/93366/mechanical-and-hydraulic-behavior-of-arid-zone-soils-treated-with-lime-case-of-abadla-bechar-clays-south-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1329</span> Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Karam">Antoine Karam</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Khiari"> Lotfi Khiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Breton"> Bruno Breton</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Jaouich"> Alfred Jaouich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal" title="metal">metal</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20element" title=" trace element"> trace element</a> </p> <a href="https://publications.waset.org/abstracts/37762/zinc-sorption-by-six-agricultural-soils-amended-with-municipal-biosolids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1328</span> Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Younes">Rabah Younes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=naturaln%20pozzolana" title=" naturaln pozzolana"> naturaln pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title=" atterberg limits"> atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20shear%20strength" title="compressive strength shear strength">compressive strength shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a> </p> <a href="https://publications.waset.org/abstracts/28009/effect-of-mineral-additives-on-improving-the-geotechnical-properties-of-soils-in-chief" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1327</span> Static Response of Homogeneous Clay Stratum to Imposed Structural Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Aboshio">Aaron Aboshio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity%20factors" title="bearing capacity factors">bearing capacity factors</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20bearing%20pressure" title=" safe bearing pressure"> safe bearing pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-soil%20interaction" title=" structure-soil interaction"> structure-soil interaction</a> </p> <a href="https://publications.waset.org/abstracts/40676/static-response-of-homogeneous-clay-stratum-to-imposed-structural-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1326</span> Behavior of Reinforced Soil by Polypropylene Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamal%20Elbokl">M. Kamal Elbokl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fibers" title="polypropylene fibers">polypropylene fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=CBR" title=" CBR"> CBR</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20triaxial" title=" static triaxial"> static triaxial</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20triaxial" title=" cyclic triaxial"> cyclic triaxial</a>, <a href="https://publications.waset.org/abstracts/search?q=resilient%20strain" title=" resilient strain"> resilient strain</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20strain" title=" permanent strain"> permanent strain</a> </p> <a href="https://publications.waset.org/abstracts/4280/behavior-of-reinforced-soil-by-polypropylene-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1325</span> Effect of Plastic Fines on Undrained Behavior of Clayey Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Talamkhani">Saeed Talamkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini"> Seyed Abolhassan Naeini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the occurrence of several liquefactions in sandy soils containing various values of clay content has shown that in addition to silty sands, clayey sands are also susceptible to liquefaction. Therefore, it is necessary to investigate the properties of these soil compositions and their behavioral characteristics. This paper presents the effect of clay fines on the undrained shear strength of sands at various confining pressures. For this purpose, a series of unconsolidated undrained triaxial shear tests were carried out on clean sand and sand mixed with 5, 10, 15, 20, and 30 percent of clay fines. It was found that the presence of clay particle in sandy specimens change the dilative behavior to contraction. The result also showed that increasing the clay fines up to 10 percent causes to increase the potential for liquefaction, and decreases it at higher values fine content. These results reveal the important role of clay particles in changing the undrained strength of the sandy soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clayey%20sand" title="clayey sand">clayey sand</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20test" title=" triaxial test"> triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength" title=" undrained shear strength "> undrained shear strength </a> </p> <a href="https://publications.waset.org/abstracts/93873/effect-of-plastic-fines-on-undrained-behavior-of-clayey-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1324</span> Effect of Acid and Alkali Treatment on Physical and Surface Charge Properties of Clayey Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20John%20Kollannur">Nikhil John Kollannur</a>, <a href="https://publications.waset.org/abstracts/search?q=Dali%20Naidu%20Arnepalli"> Dali Naidu Arnepalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the surface related phenomena in the case of fine-grained soil are attributed to their unique surface charge properties and specific surface area. The temporal variations in soil behavior, to some extent, can be credited to the changes in these properties. Among the multitude of factors that affect the charge and surface area of clay minerals, the inherent system chemistry occupies the cardinal position. The impact is more profound when the chemistry change is manifested in terms of the system pH. pH plays a significant role by modifying the edge charges of clay minerals and facilitating mineral dissolution. Hence there is a need to address the variations in physical and charge properties of fine-grained soils treated over a range of acidic as well as alkaline conditions. In the present study, three soils (two soils commercially procured and one natural soil) exhibiting distinct mineralogical compositions are subjected to different pH environment over a range of 2 to 13. The soil-solutions prepared at a definite liquid to solid ratio are adjusted to the required pH value by adding measured quantities of 0.1M HCl/0.1M NaOH. The studies are conducted over a range of interaction time, varying from 1 to 96 hours. The treated soils are then analyzed for their physical properties in terms of specific surface area and particle size characteristics. Further, modifications in surface morphology are evaluated from scanning electron microscope (SEM) imaging. Changes in the surface charge properties are assessed in terms of zeta potential measurements. Studies show significant variations in total surface area, probably because of the dissolution of clay minerals. This observation is further substantiated by the morphological analysis with SEM imaging. The zeta potential measurements on soils indicate noticeable variation upon pH treatment, which is partially ascribed to the modifications in the pH-dependant edge charges and partially due to the clay mineral dissolution. The results provide valuable insight into the role of pH in a clay-electrolyte system upon surface related phenomena such as species adsorption, fabric modification etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20and%20alkali%20treatment" title="acid and alkali treatment">acid and alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20dissolution" title=" mineral dissolution "> mineral dissolution </a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20surface%20area" title=" specific surface area"> specific surface area</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential "> zeta potential </a> </p> <a href="https://publications.waset.org/abstracts/77580/effect-of-acid-and-alkali-treatment-on-physical-and-surface-charge-properties-of-clayey-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1323</span> Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivandic%20Kreso">Ivandic Kreso</a>, <a href="https://publications.waset.org/abstracts/search?q=Spiranec%20Miljenko"> Spiranec Miljenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavur%20Boris"> Kavur Boris</a>, <a href="https://publications.waset.org/abstracts/search?q=Strelec%20Stjepan"> Strelec Stjepan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (G<sub>o</sub> from v<sub>s</sub>) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (M<sub>DMT</sub>). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (M<sub>DMT</sub>), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (s<sub>vo</sub>'). Parametric study in this article defines the range of shear strain g<sub>DMT</sub> and <em>G<sub>DMT</sub>/G<sub>o</sub></em> relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilatometer%20testing" title="dilatometer testing">dilatometer testing</a>, <a href="https://publications.waset.org/abstracts/search?q=MASW%20testing" title=" MASW testing"> MASW testing</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave" title=" shear wave"> shear wave</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stiffness" title=" soil stiffness"> soil stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20reduction" title=" stiffness reduction"> stiffness reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strain" title=" shear strain"> shear strain</a> </p> <a href="https://publications.waset.org/abstracts/90287/determining-g-gh-degradation-curve-in-cohesive-soils-by-dilatometer-and-in-situ-seismic-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1322</span> Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivi%20Anggraini">Vivi Anggraini</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Asadi"> Afshin Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bujang%20B.%20K.%20Huat"> Bujang B. K. Huat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title="flexural strength">flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=durabilty" title=" durabilty"> durabilty</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=coir%20fibers" title=" coir fibers"> coir fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20force" title=" bending force"> bending force</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/35165/durability-of-lime-treated-soil-reinforced-by-natural-fibre-under-bending-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1321</span> Electrokinetic Application for the Improvement of Soft Clays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abiola%20Ayopo%20Abiodun">Abiola Ayopo Abiodun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zalihe%20Nalbantoglu"> Zalihe Nalbantoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrokinetic application (EKA), a relatively modern chemical treatment has a potential for in-situ ground improvement in an open field or under existing structures. It utilizes a low electrical gradient to transport electrolytic chemical ions between bespoke electrodes inserted in the fine-grained, low permeable soft soils. The paper investigates the efficacy of the EKA as a mitigation technique for the soft clay beds. The laboratory model of the EKA comprises of rectangular plexiglass test tank, electrolytes compartments, geosynthetic electrodes and direct electric current supply. Within this setup, the EK effects resulted from the exchange of ions between anolyte (anodic) and catholyte (cathodic) ends through the tested soil were examined by basic experimental laboratory testing methods. As such, the treated soft soil properties were investigated as a function of the anode-to-cathode distances and curing periods. The test results showed that there have been some changes in the physical and engineering properties of the treated soft soils. The significant changes in the physicochemical and electrical properties suggested that their corresponding changes can be utilized as a monitoring technique to evaluate the improvement in the engineering properties EK treated soft clay soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrokinetic" title="electrokinetic">electrokinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytes" title=" electrolytes"> electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20ions" title=" exchange ions"> exchange ions</a>, <a href="https://publications.waset.org/abstracts/search?q=geosynthetic%20electrodes" title=" geosynthetic electrodes"> geosynthetic electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soils" title=" soft soils"> soft soils</a> </p> <a href="https://publications.waset.org/abstracts/49662/electrokinetic-application-for-the-improvement-of-soft-clays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1320</span> The Role of Vibro-Stone Column for Enhancing the Soft Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Ramezan%20Shirazi">Mohsen Ramezan Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Orod%20Zarrin"> Orod Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Komeil%20Valipourian"> Komeil Valipourian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the behavior of improved soft soils through the vibro replacement technique by considering their settlements and consolidation rates and the applicability of this technique in various types of soils and settlement and bearing capacity calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=expansive%20clay" title=" expansive clay"> expansive clay</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title=" stone columns"> stone columns</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro%20techniques" title=" vibro techniques"> vibro techniques</a> </p> <a href="https://publications.waset.org/abstracts/22901/the-role-of-vibro-stone-column-for-enhancing-the-soft-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1319</span> New Approach to Encapsulated Clay/Wax Nanocomposites Inside Polystyrene Particles via Minemulstion Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagi%20Greesh">Nagi Greesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study highlights a new method to obtain multiphase composites particles containing hydrophobic (wax) and inorganic (clay) compounds. Multiphase polystyrene-clay-wax nanocomposites were successfully synthesized. Styrene monomer were polymerized in the presence of different wax-clay nanocomposites concentrations in miniemulsion. Wax-clay nanocomposites were firstly obtained through ultrasonic mixing at a temperature above the melting point of the wax at different clay loadings. The obtained wax-clay nanocomposites were then used as filler in the preparation of polystyrene-wax-clay nanocomposites via miniemulsion polymerization. The particles morphology of PS/wax-clay nanocomposites latexes was mainly determined by Transmission Electron Microscopy ( TEM) , core/shell morphology was clearly observed, with the encapsulation of most wax-clay nanocomposites inside the PS particles. On the other hand, the morphology of the PS/wax-clay nanocomposites (after film formation) ranged from exfoliated to intercalated structures, depending on the percentage of wax-clay nanocomposites loading. This strategy will allow the preparation materials with tailored properties for specific applications such as paint coatings and adhesives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer-wax" title="polymer-wax">polymer-wax</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin%20wax" title=" paraffin wax"> paraffin wax</a>, <a href="https://publications.waset.org/abstracts/search?q=miniemulsion" title=" miniemulsion"> miniemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=core%2Fshell" title=" core/shell"> core/shell</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/169298/new-approach-to-encapsulated-claywax-nanocomposites-inside-polystyrene-particles-via-minemulstion-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1318</span> Valorization of Clay Material in the Road Sector By Adding Granulated Recycled Plastic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouaaz%20Oum%20Essaad">Ouaaz Oum Essaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Melbouci%20Bachir"> Melbouci Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study conducted has a dual purpose: to valorize the clay material in the road domain and improve the lift of the shape layers by strengthening with plastic waste (in the form of aggregates). To do this, six mixtures of Clay and sand of different percentages were studied: 100% Clay, 95% Clay + 05% Sand, 90% Clay + 10% Sand, 85% Clay + 15% Sand, 80% Clay + 20% Sand, 75% Clay + 25% Sand. Proctor compaction and simple compression tests have been carried out on mixtures (sand + clay + plastic waste). The results obtained show a clear evolution of the characteristics of the Proctor test and the compressive strength of the mixtures according to the different types and percentages of the recycled plastic Plasticity and consistency index are important parameters that play a role in the toughness of plastic soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=valorization" title="valorization">valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20mixture" title=" soil mixture"> soil mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20tests" title=" mechanical tests"> mechanical tests</a> </p> <a href="https://publications.waset.org/abstracts/163504/valorization-of-clay-material-in-the-road-sector-by-adding-granulated-recycled-plastic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1317</span> Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuhu%20Dalhat%20Mu%E2%80%99azu">Nuhu Dalhat Mu’azu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Usman"> Abdullahi Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bukhari"> A. Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hussain%20Essa">Muhammad Hussain Essa</a>, <a href="https://publications.waset.org/abstracts/search?q=Salihu%20Lukman"> Salihu Lukman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20remediation" title=" soil remediation"> soil remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20contaminants" title=" mixed contaminants"> mixed contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20electrokinetic-adsorption" title=" and electrokinetic-adsorption"> and electrokinetic-adsorption</a> </p> <a href="https://publications.waset.org/abstracts/30898/removal-of-mixed-heavy-metals-from-contaminated-clay-soils-using-pulsed-electrokinetic-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1316</span> The Damage Assessment of Industrial Buildings Located on Clayey Soils Using in-Situ Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Akkaya">Ismail Akkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mucip%20Tapan"> Mucip Tapan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ozvan"> Ali Ozvan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some of the industrially prefabricated buildings located on clayey soils were damaged due to soil conditions. The reasons of these damages are generally due to different settlement capacity, the different plasticity of soils and the level of ground water. The aim of this study is to determine the source of these building damages by conducting in situ tests. Therefore, pressuremeter test, which is one of the borehole loading test conducted to determine the properties of soils under the foundations and Standart Penetration Test (SPT). The results of these two field tests were then used to accurately obtain the consistency and firmness of soils. Pressuremeter Deformation Module (EM) and Net Limiting Pressure (PL) of soils were calculated after the pressuremeter tests. These values were then compared with the SPT (N30) and SPT (N60) results. An empirical equation was developed to obtain EM and PL values of such soils from SPT test results. These values were then used to calculate soil bearing capacity as well as the soil settlement. Finally, the relationship between the foundation settlement and the damage of these buildings were checked. It was found that calculated settlement values were almost the same as measured settlement values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damaged%20building" title="damaged building">damaged building</a>, <a href="https://publications.waset.org/abstracts/search?q=pressuremeter" title=" pressuremeter"> pressuremeter</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title=" standard penetration test"> standard penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20and%20high%20plasticity%20clay" title=" low and high plasticity clay"> low and high plasticity clay</a> </p> <a href="https://publications.waset.org/abstracts/58584/the-damage-assessment-of-industrial-buildings-located-on-clayey-soils-using-in-situ-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1315</span> Improvement of Sandy Clay Soils with the Addition of Rice Husk Ash and Expanded Polystyrene Beads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Quino">Alvaro Quino</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Trejo"> Roger Trejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Duran"> Gary Duran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordy%20Viso"> Jordy Viso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a study on the lightening and improvement of properties of soil extracted in the province of Talara in the department of Piura -Peru, to be used in filling in the construction of embankments for roads. This soft soil has a high percentage of elastic settlement and consolidation settlement. Currently, there are different methods that seek to mitigate the impact of this problem, which have achieved favorable results. As a contribution to these investigations, we propose the use of two lightening materials to be used in the filling of embankments; these materials are expanded polystyrene beads (EPS) and rice husk ash (RHA). Favorable results were obtained, such as a reduction of 14.34% of the volumetric weight, so the settlement will be reduced. In addition, it is observed that as the RHA dosage increases, the shear resistance increases. In this article, soil mechanics tests were performed to determine the effectiveness of this method in lightening and improving properties for the soil under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandy%20clay%20soils" title="sandy clay soils">sandy clay soils</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=expanded%20polystyrene" title=" expanded polystyrene"> expanded polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soils" title=" soft soils"> soft soils</a> </p> <a href="https://publications.waset.org/abstracts/140613/improvement-of-sandy-clay-soils-with-the-addition-of-rice-husk-ash-and-expanded-polystyrene-beads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1314</span> Chemical Amelioration of Expansive Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Phanikumar">B. R. Phanikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Suri"> Sana Suri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soils" title="expansive soils">expansive soils</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=amelioration" title=" amelioration"> amelioration</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20chloride" title=" calcium chloride"> calcium chloride</a> </p> <a href="https://publications.waset.org/abstracts/2592/chemical-amelioration-of-expansive-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clay%20soils&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>