CINXE.COM

Search results for: amylase

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: amylase</title> <meta name="description" content="Search results for: amylase"> <meta name="keywords" content="amylase"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="amylase" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="amylase"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 83</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: amylase</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Inhibitory Effect of Hydroalcoholic Extract of Cestrum Nocturnum on α-Amylase Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kamboj"> Anil Kamboj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inhibition of α- amylase play a vital role in the clinical management of postprandial hyperglycemia. Although, powerful synthetic inhibitors are available, natural inhibitors are potentially safer. The present study was carried out to evaluate α- amylase inhibition activity from hydroalcoholic extracts from aerial parts of Cestrum nocturnum. Hydroalcoholic extract was prepared by Soxhletation Method. The extract showed strong inhibition towards α- amylase activity and IC50 value were 45.9 µg. This In vitro studies indicate the potential of C. nocturnum in the development of effective anti-diabetic agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-%20amylase" title="α- amylase">α- amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=cestrum%20nocturnum" title=" cestrum nocturnum"> cestrum nocturnum</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroalcoholic%20extracts" title=" hydroalcoholic extracts"> hydroalcoholic extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes "> diabetes </a> </p> <a href="https://publications.waset.org/abstracts/37583/inhibitory-effect-of-hydroalcoholic-extract-of-cestrum-nocturnum-on-a-amylase-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> A New Alpha-Amylase Inhibitor Isolated from the Stem Bark of Anthocleista Djalonensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oseyemi%20O.%20Olubomehin">Oseyemi O. Olubomehin</a>, <a href="https://publications.waset.org/abstracts/search?q=Edith%20O.%20Ajaiyeoba"> Edith O. Ajaiyeoba</a>, <a href="https://publications.waset.org/abstracts/search?q=Kio%20A.%20Abo"> Kio A. Abo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20D.%20Goosen"> Eleonora D. Goosen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a major degenerative disease of global concern and it is the third most lethal disease of mankind, accounting for about 3.2 million deaths annually. Lowering postprandial hyperglycemia by inhibition of carbohydrate hydrolyzing enzyme such as alpha-amylase is one of the therapeutic approaches to treat Type 2 Diabetes. Alpha-amylase inhibitors from plants have been found to be effective in managing postprandial hyperglycemia. In continuation of our anti-diabetic activities of this plant, bioassay-guided fractionation and isolation using 0.1-1.0 mg/mL furnished djalonenol, a monoterpene diol with a significant 53.7% α-amylase inhibition (p<0.001) from the stem bark which was comparable to acarbose which gave a 54.9% inhibition. Spectral characterization using Infra-red, Gas Chromatogrphy-Mass spectrometry, 1D and 2D NMR of the isolated compound was done to elucidate the structure of the compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase%20inhibitor" title="alpha-amylase inhibitor">alpha-amylase inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=postprandial" title=" postprandial"> postprandial</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a> </p> <a href="https://publications.waset.org/abstracts/19227/a-new-alpha-amylase-inhibitor-isolated-from-the-stem-bark-of-anthocleista-djalonensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Amylase Activities of Mould Isolated from Spoilt Ogi and Eko: Two (2) Fermented Maize Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gafar%20Bamigbade">Gafar Bamigbade</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebunkola%20Omemu"> Adebunkola Omemu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> “Ogi” is a fermented cereal gruel prepared from maize (Zea mays), millet (Pennisetum typhoideum) or guinea corn (Sorghum bicolour). It could be boiled to give a thicker consistency wrapped in leaf allowed to cool and set to a gel known as “eko”. The objective of this study is to determine the amylase activities of mould associated with the spoilage of Ogi and eko. Moulds were isolated from spoilt Ogi and eko samples using standard microbiological procedures. The isolate was then screened for amylase production using starch agar medium. Positive isolates were used for amylase production by solid state fermentation (SFF) using rice bran as the medium. An alpha-amylase and glucoamylase activity of the crude enzyme was determined using the DNS method. The mean mold Population ranged from 1.15 X 105cfu/g for raw Ogi to 6.25 X 105cfu/g for Eko (wrapped in Leaves). Twenty-seven (27) moulds isolated from the sample include A. niger, A. flavus, A. fumigatus, Rhizopus species and Penicillium species. Aspergillus flavus had the highest percentage (51.9%) of incidence while Penicillium species had the least (3.7%). Out of the 27 isolates screened, 19 were found to be amylase positive by showing a clear zone around their colony after flooding with iodine solution. Diameter of clear zone ranged from 3.00mm (Aspergillus niger, C4) to 22.00mm (Aspergillus flavus, A1). Aspergillus niger isolated from spoilt Eko wrapped in leaf has the highest percentage alpha-amylase activity (30.8%) and Aspergillus flavus isolated from spoilt raw ogi has the lowest activity (11.4%). Aspergillus niger isolated from spoilt Eko wrapped in nylon produces the highest glucoamylase activity (240U/ml) while penicillium specie isolated from spoilt cooked ogi has the lowest activity (100U/ml). This study shows that moulds associated with spoilage of ogi and eko can produce amylase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glucoamylase" title="glucoamylase">glucoamylase</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20amylase" title=" alpha amylase"> alpha amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=ogi" title=" ogi"> ogi</a>, <a href="https://publications.waset.org/abstracts/search?q=eko" title=" eko"> eko</a> </p> <a href="https://publications.waset.org/abstracts/65050/amylase-activities-of-mould-isolated-from-spoilt-ogi-and-eko-two-2-fermented-maize-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Effect of Thermal Treatment on Phenolic Content, Antioxidant, and Alpha-Amylase Inhibition Activities of Moringa stenopetala Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Assefa">Daniel Assefa</a>, <a href="https://publications.waset.org/abstracts/search?q=Engeda%20Dessalegn"> Engeda Dessalegn</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetan%20Chauhan"> Chetan Chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moringa stenopetala is a socioeconomic valued tree that is widely available and cultivated in the Southern part of Ethiopia. The leaves have been traditionally used as a food source with high nutritional and medicinal values. The present work was carried out to evaluate the effect of thermal treatment on the total phenolic content, antioxidant and alpha-amylase inhibition activities of aqueous leaf extracts during maceration and different decoction time interval (5, 10 and 15 min). The total phenolic content was determined by the Folin-ciocalteu methods whereas antioxidant activities were determined by 2,2-diphenyl-1-picryl-hydrazyl(DPPH) radical scavenging, reducing power and ferrous ion chelating assays and alpha-amylase inhibition activity was determined using 3,5-dinitrosalicylic acid method. Total phenolic content ranged from 34.35 to 39.47 mgGAE/g. Decoction for 10 min extract showed ferrous ion chelating (92.52), DPPH radical scavenging (91.52%), alpha-amylase inhibition (69.06%) and ferric reducing power (0.765), respectively. DPPH, reducing power and alpha-amylase inhibition activities showed positive linear correlation (R2=0.853, R2= 0.857 and R2=0.930), respectively with total phenolic content but ferrous ion chelating activity was found to be weakly correlated (R2=0.481). Based on the present investigation, it could be concluded that major loss of total phenolic content, antioxidant and alpha-amylase inhibition activities of the crude leaf extracts of Moringa stenopetala leaves were observed at decoction time for 15 min. Therefore, to maintain the total phenolic content, antioxidant, and alpha-amylase inhibition activities of leaves, cooking practice should be at the optimum decoction time (5-10 min). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase%20inhibition" title="alpha-amylase inhibition">alpha-amylase inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20stenopetala" title=" Moringa stenopetala"> Moringa stenopetala</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/51567/effect-of-thermal-treatment-on-phenolic-content-antioxidant-and-alpha-amylase-inhibition-activities-of-moringa-stenopetala-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> High Acid-Stable α-Amylase Production by Milk in Liquid Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shohei%20Matsuo">Shohei Matsuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Saki%20Mikai"> Saki Mikai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Shochu is a popular Japanese distilled spirits. In the production of shochu, the filamentous fungus Aspergillus kawachii has traditionally been used. A. kawachii produces two types of starch hydrolytic enzymes, α-amylase (enzymatic liquefaction) and glucoamylase (enzymatic saccharification). Liquid culture system is a relatively easy microorganism to ferment with relatively low cost of production compared for solid culture. In liquid culture system, acid-unstable α-amylase (α-A) was produced abundantly, but, acid-stable α-amylase (Aα-A) was not produced. Since there is high enzyme productivity, most in shochu brewing have been adopted by a solid culture method. In this study, therefore, we investigated production of Aα-A in liquid culture system. Materials and methods: Microorganism Aspergillus kawachii NBRC 4308 was used. The mold was cultured at 30 °C for 7~14 d to allow formation of conidiospores on slant agar medium. Liquid Culture System: A. kawachii was cultured in a 100 ml of following altered SLS medium: 1.0 g of rice flour, 0.1 g of K2HPO4, 0.1 g of KCl, 0.6 g of tryptone, 0.05 g of MgSO4・7H2O, 0.001 g of FeSO4・7H2O, 0.0003 g of ZnSO4・7H2O, 0.021 g of CaCl2, 0.33 of citric acid (pH 3.0). The pH of the medium was adjusted to the designated value with 10 % HCl solution. The cultivation was shaking at 30 °C and 200 rpm for 72 h. It was filtered to obtain a crude enzyme solution. Aα-A assay: The crude enzyme solution was analyzed. An acid-stable α-amylase activity was carried out using an α-amylase assay kit (Kikkoman Corporation, Noda, Japan). It was conducted after adding 9 ml of 100 mM acetate buffer (pH 3.0) to 1 ml of the culture product supernatant and acid treatment at 37°C for 1 h. One unit of a-amylase activity was defined as the amount of enzyme that yielded 1 mmol of 2-chloro-4-nitrophenyl 6-azide-6-deoxy-b-maltopentaoside (CNP) per minute. Results and Conclusion: We experimented with co-culture of A. kawachii and lactobacillus in order to get control of pH in altered SLS medium. However, high production of acid-stable α-amylase was not obtained. We experimented with yoghurt or milk made an addition to liquid culture. The result indicated that high production of acid-stable α-amylase (964 U/g-substrate) was obtained when milk made an addition to liquid culture. Phosphate concentration in the liquid medium was a major cause of increased acid-stable α-amylase activity. In liquid culture, acid-stable α-amylase activity was enhanced by milk, but Fats and oils in the milk were oxidized. In addition, Tryptone is not approved as a food additive in Japan. Thus, alter SLS medium added to skim milk excepting for the fats and oils in the milk instead of tryptone. The result indicated that high production of acid-stable α-amylase was obtained with the same effect as milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid-stable%20%CE%B1-amylase" title="acid-stable α-amylase">acid-stable α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20culture" title=" liquid culture"> liquid culture</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=shochu" title=" shochu"> shochu</a> </p> <a href="https://publications.waset.org/abstracts/49381/high-acid-stable-a-amylase-production-by-milk-in-liquid-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Physical Properties and Resistant Starch Content of Rice Flour Residues Hydrolyzed by α-Amylase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waranya%20Pongpaiboon">Waranya Pongpaiboon</a>, <a href="https://publications.waset.org/abstracts/search?q=Warangkana%20Srichamnong"> Warangkana Srichamnong</a>, <a href="https://publications.waset.org/abstracts/search?q=Supat%20Chaiyakul"> Supat Chaiyakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymatic modification of rice flour can produce highly functional derivatives use in food industries. This study aimed to evaluate the physical properties and resistant starch content of rice flour residues hydrolyzed by &alpha;-amylase. Rice flour hydrolyzed by &alpha;-amylase (60 and 300 u/g) for 1, 24 and 48 hours were investigated. Increasing enzyme concentration and hydrolysis time resulted in decreased rice flour residue&rsquo;s lightness (L*) but increased redness (a*) and yellowness (b*) of rice flour residues. The resistant starch content and peak viscosity increased when hydrolysis time increased. Pasting temperature, trough viscosity, breakdown, final viscosity, setback and peak time of the hydrolyzed flours were not significantly different (p&gt;0.05). The morphology of native flour was smooth without observable pores and polygonal with sharp angles and edges. However, after hydrolysis, granules with a slightly rough and porous surface were observed and a rough and porous surface was increased with increasing hydrolyzed time. The X-ray diffraction patterns of native flour showed A-type configuration, which hydrolyzed flour showed almost 0% crystallinity indicated that both amorphous and crystalline structures of starch were simultaneously hydrolyzed by &alpha;-amylase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Amylase" title="α-Amylase">α-Amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pasting%20properties" title=" pasting properties"> pasting properties</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20starch" title=" resistant starch"> resistant starch</a> </p> <a href="https://publications.waset.org/abstracts/57645/physical-properties-and-resistant-starch-content-of-rice-flour-residues-hydrolyzed-by-a-amylase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> α-Amylase Inhibitory Activity of Some Tunisian Aromatic and Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdi%20Belfeki">Hamdi Belfeki</a>, <a href="https://publications.waset.org/abstracts/search?q=Belgacem%20Chandoul"> Belgacem Chandoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mnasser%20Hassouna"> Mnasser Hassouna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mondher%20Mejri"> Mondher Mejri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous and ethanolic extracts of eight Tunisian aromatic and medicinal plants (TAMP) were characterized by studying their composition in polyphenols and also their antiradical and antioxidant capacities. In absence and in the presence of the various extracts, α-amylase from Bacillus subtlis activity, was measured in order to detect a potential inhibition. The total contents of polyphenols and flavonoid vary in function of TAMP and the mobile phase used for the extraction (distilled water or ethanol). The ethanolic extracts showed the most significant antiradical and antioxidant activities. Only the extracts from Coriandrum sativum showed a significant inhibiting effect on the α-amylase activity. This inhibiting capacity could be correlated with the chemical profile of the two extracts, due to the fact that they have the greatest amount of total flavonoid. The ethanolic extract has the most important antioxidant and anti-radicalizing activities among the sixteen extracts studied. The inhibition kinetics of the two coriander extracts were evaluated by pre-incubation method, using Lineweaver-Burk’s equation, obtained by linearization of Michaeilis-Menten’s expression. The results showed that both extracts exercised a competitive inhibition mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amylase" title="α-amylase">α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatic%20and%20medicinal%20plants" title=" aromatic and medicinal plants"> aromatic and medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a> </p> <a href="https://publications.waset.org/abstracts/10661/a-amylase-inhibitory-activity-of-some-tunisian-aromatic-and-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Enzyme Treatment of Sorghum Dough: Modifications of Rheological Properties and Product Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Sruthi">G. K. Sruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sila%20Bhattacharya"> Sila Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is an important food crop in the dry tropical areas of the world, and possesses significant levels of phytochemicals and dietary fiber to offer health benefits. However, the absence of gluten is a limitation for converting the sorghum dough into sheeted/flattened/rolled products. Chapathi/roti (flat unleavened bread prepared conventionally from whole wheat flour dough) was attempted from sorghum as wheat gluten causes allergic reactions leading to celiac disease. Dynamic oscillatory rheology of sorghum flour dough (control sample) and enzyme treated sorghum doughs were studied and linked to the attributes of the finished ready-to-eat product. Enzymes like amylase, xylanase, and a mix of amylase and xylanase treated dough affected drastically the rheological behaviour causing a lowering of dough consistency. In the case of amylase treated dough, marked decrease of the storage modulus (G') values from 85513 Pa to 23041 Pa and loss modulus (G") values from 8304 Pa to 7370 Pa was noticed while the phase angle (δ) increased from 5.6 to 10.1o for treated doughs. There was a 2 and 3 fold increase in the total sugar content after α-amylase and xylanase treatment, respectively, with simultaneous changes in the structure of the dough and finished product. Scanning electron microscopy exhibited enhanced extent of changes in starch granules. Amylase and mixed enzyme treatment produced a sticky dough which was difficult to roll/flatten. The dough handling properties were improved by the use of xylanase and quality attributes of the chapath/roti. It is concluded that enzyme treatment can offer improved rheological status of gluten free doughs and products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sorghum%20dough" title="sorghum dough">sorghum dough</a>, <a href="https://publications.waset.org/abstracts/search?q=amylase" title=" amylase"> amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20oscillatory%20rheology" title=" dynamic oscillatory rheology"> dynamic oscillatory rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20assessment" title=" sensory assessment"> sensory assessment</a> </p> <a href="https://publications.waset.org/abstracts/26226/enzyme-treatment-of-sorghum-dough-modifications-of-rheological-properties-and-product-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Phytochemistry and Alpha-Amylase Inhibitory Activities of Rauvolfia vomitoria (Afzel) Leaves and Picralima nitida (Stapf) Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oseyemi%20Omowunmi%20Olubomehin">Oseyemi Omowunmi Olubomehin</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20Michael%20Denton"> Olufemi Michael Denton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is a disease that is related to the digestion of carbohydrates, proteins and fats and how this affects the blood glucose levels. Various synthetic drugs employed in the management of the disease work through different mechanisms. Keeping postprandial blood glucose levels within acceptable range is a major factor in the management of type 2 diabetes and its complications. Thus, the inhibition of carbohydrate-hydrolyzing enzymes such as α-amylase is an important strategy in lowering postprandial blood glucose levels, but synthetic inhibitors have undesirable side effects like flatulence, diarrhea, gastrointestinal disorders to mention a few. Therefore, it is necessary to identify and explore the α-amylase inhibitors from plants due to their availability, safety, and low costs. In the present study, extracts from the leaves of Rauvolfia vomitoria and seeds of Picralima nitida which are used in the Nigeria traditional system of medicine to treat diabetes were tested for their α-amylase inhibitory effect. The powdered plant samples were subjected to phytochemical screening using standard procedures. The leaves and seeds macerated successively using n-hexane, ethyl acetate and methanol resulted in the crude extracts which at different concentrations (0.1, 0.5 and 1 mg/mL) alongside the standard drug acarbose, were subjected to α-amylase inhibitory assay using the Benfield and Miller methods, with slight modification. Statistical analysis was done using ANOVA, SPSS version 2.0. The phytochemical screening results of the leaves of Rauvolfia vomitoria and the seeds of Picralima nitida showed the presence of alkaloids, tannins, saponins and cardiac glycosides while in addition Rauvolfia vomitoria had phenols and Picralima nitida had terpenoids. The α-amylase assay results revealed that at 1 mg/mL the methanol, hexane, and ethyl acetate extracts of the leaves of Rauvolfia vomitoria gave (15.74, 23.13 and 26.36 %) α-amylase inhibitions respectively, the seeds of Picralima nitida gave (15.50, 30.68, 36.72 %) inhibitions which were not significantly different from the control at p < 0.05, while acarbose gave a significant 56 % inhibition at p < 0.05. The presence of alkaloids, phenols, tannins, steroids, saponins, cardiac glycosides and terpenoids in these plants are responsible for the observed anti-diabetic activity. However, the low percentages of α-amylase inhibition by these plant samples shows that α-amylase inhibition is not the major way by which both plants exhibit their anti-diabetic effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase" title="alpha-amylase">alpha-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=Picralima%20nitida" title=" Picralima nitida"> Picralima nitida</a>, <a href="https://publications.waset.org/abstracts/search?q=postprandial%20hyperglycemia" title=" postprandial hyperglycemia"> postprandial hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rauvolfia%20vomitoria" title=" Rauvolfia vomitoria"> Rauvolfia vomitoria</a> </p> <a href="https://publications.waset.org/abstracts/93002/phytochemistry-and-alpha-amylase-inhibitory-activities-of-rauvolfia-vomitoria-afzel-leaves-and-picralima-nitida-stapf-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Study of the Chronic Effects of CRACK on Some Biochemical Parameters Including Triglycerides, Cholesterol, HDL, LDL, VLDL, Amylase, Lipase, Albumin, Protein in Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Jafarzadeh">Alireza Jafarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Amu-Oqhli%20Tabrizi"> Bahram Amu-Oqhli Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Khayat%20Nouri"> Hadi Khayat Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Khaki"> Arash Khaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 30 head of adult Vistar rats were chosen to evaluate the chronic narcotic effects of crack on some biochemical parameters. The rats weighted approximately 200 to 250 g. They were divided into 5 groups of 6 and were housed in identical condition in terms of food and ambience. Rats were maintained at 12 hours light and 12 hours darkness. Rats were injected 7.8 mg/kg BW crack intraperitoneally. The groups one to four received daily medication for one to four weeks respectively. The control groups were injected identical dose of saline. The blood was taken from control and test groups then serum was separated from. Serum biochemical parameters of amylase, lipase, triglycerides, cholesterol, HDL, LDL, VLDL, protein and albumin were measured by diagnostic kits. Serum protein and albumin levels did not show statistically significant changes. Serum lipase and amylase showed significant changes both of which were increased. The serum levels of cholesterol, LDL and HDL demonstrated no significant changes. Triglycerides values showed a significant increase in serum. Serum VLDL in groups 3 and 4 exhibited significant changes compare to other groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=albumin" title="albumin">albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=amylase" title=" amylase"> amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=HDL" title=" HDL"> HDL</a>, <a href="https://publications.waset.org/abstracts/search?q=LDL" title=" LDL"> LDL</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=triglycerides" title=" triglycerides"> triglycerides</a>, <a href="https://publications.waset.org/abstracts/search?q=VLDL" title=" VLDL"> VLDL</a> </p> <a href="https://publications.waset.org/abstracts/6429/study-of-the-chronic-effects-of-crack-on-some-biochemical-parameters-including-triglycerides-cholesterol-hdl-ldl-vldl-amylase-lipase-albumin-protein-in-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">698</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Kumar">Alok Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Ram"> Hari Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebin%20Thomas"> Lebin Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ved%20Pal%20Singh"> Ved Pal Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amylase" title="amylase">amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activity" title=" enzyme activity"> enzyme activity</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent%20tolerant" title=" organic solvent tolerant"> organic solvent tolerant</a>, <a href="https://publications.waset.org/abstracts/search?q=protease" title=" protease"> protease</a> </p> <a href="https://publications.waset.org/abstracts/4042/production-of-organic-solvent-tolerant-hydrolytic-enzymes-amylase-and-protease-by-bacteria-isolated-from-soil-of-a-dairy-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Free Radical Scavenging, Antioxidant Activity, Phenolic, Alkaloids Contents and Inhibited Properties against α-Amylase and Invertase Enzymes of Stem Bark Extracts Coula edulis B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Beyegue">Eric Beyegue</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Azantza"> Boris Azantza</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Laure%20Ngondi"> Judith Laure Ngondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20E.%20Oben"> Julius E. Oben</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: It is clearly that phytochemical constituents of plants in relation exhibit free radical scavenging, antioxidant and glycosylation properties. This study investigated the in vitro antioxidant and free radical scavenging, inhibited activities against α-amylase and invertase enzymes of stem bark extracts C. edulis (Olacaceae). Methods: Four extracts (hexane, dichloromethane, ethanol and aqueous) from the barks of C. edulis were used in this study. Colorimetric in vitro methods were using for evaluate free radical scavenging activity DPPH, ABTS, NO, OH, antioxidant capacity, glycosylation activity, inhibition of α-amylase and invertase activities, phenolic, flavonoid and alkaloid contents. Results: C. edulis extracts (CEE) had a higher scavenging potential on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO), 2, 2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and glucose scavenging with the IC50 varied between 41.95 and 36694.43 µg/ml depending on the solvent of extraction. The ethanol extract of C. edulis stem bark (CE EtOH) showed the highest polyphenolic (289.10 + 30.32), flavonoid (1.12 + 0.09) and alkaloids (18.47 + 0.16) content. All the tested extracts demonstrated a relative high inhibition potential against α-amylase and invertase digestive enzymes activities. Conclusion: This study suggests that CEE exhibited higher antioxidant potential and significant inhibition potential against digestive enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coula%20edulis" title="Coula edulis">Coula edulis</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=scavenging%20activity" title=" scavenging activity"> scavenging activity</a>, <a href="https://publications.waset.org/abstracts/search?q=amylase" title=" amylase"> amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=invertase" title=" invertase"> invertase</a> </p> <a href="https://publications.waset.org/abstracts/65106/free-radical-scavenging-antioxidant-activity-phenolic-alkaloids-contents-and-inhibited-properties-against-a-amylase-and-invertase-enzymes-of-stem-bark-extracts-coula-edulis-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> In-Silico Evaluation and Antihyperglycemic Potential of Leucas Cephalotes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjali%20Verma">Anjali Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Pal"> Mahesh Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Veena%20Pande"> Veena Pande</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalip%20Kumar%20Upreti"> Dalip Kumar Upreti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is carried out to explore the anti-hyperglycemic activity of Leucas cephalotes plant parts. A fruit, leaves, stems, and roots part of the Leucas cephalotes has been extracted in ethanol and have been evaluated for anti-hyperglycemic activity. The present study indicated that, ethanolic extract of fruit and leaves have shown significant α- amylase inhibitory activity with IC50 value of 92.86 ± 0.89 μg/mL and 98.09 ± 0.69 μg/mL respectively. Two known compounds β-sitosterol and lupeol were isolated from ethanolic extract of L. cephalotes leaves and were subjected to anti-hyperglycemic activity. Lupeol shows the best activity with IC50 55.73 ± 0.47 μg/mL and the results were verified by docking study of these compounds with mammalian α-amylase was carried out on its active site. It was concluded from the study that β-sitosterol and lupeol form one H-bond interactions with the active site residues either Asp212 or Thr21. The estimated free energy binding of β-sitosterol was found to be -9.47 kcal mol-1 with an estimated inhibition constant (Ki) of 558.94 nmol whereas the estimated free energy binding of lupeol was -11.73 kcal mol-1 with an estimated inhibition constant (Ki) of 476.71pmmol. The present study clearly showed that lupeol is more potent in comparison to β-sitosterol. The study indicates that L. cephalotes have significant potential to inhibit α-amylase enzyme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase" title="alpha-amylase">alpha-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-sitosterol" title=" beta-sitosterol"> beta-sitosterol</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=lupeol" title=" lupeol"> lupeol</a> </p> <a href="https://publications.waset.org/abstracts/57898/in-silico-evaluation-and-antihyperglycemic-potential-of-leucas-cephalotes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> A Preliminary in vitro Investigation of the Acetylcholinesterase and α-Amylase Inhibition Potential of Pomegranate Peel Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoi%20Konsoula">Zoi Konsoula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing prevalence of Alzheimer’s disease (AD) and diabetes mellitus (DM) constitutes them major global health problems. Recently, the inhibition of key enzyme activity is considered a potential treatment of both diseases. Specifically, inhibition of acetylcholinesterase (AChE), the key enzyme involved in the breakdown of the neurotransmitter acetylcholine, is a promising approach for the treatment of AD, while inhibition of α-amylase retards the hydrolysis of carbohydrates and, thus, reduces hyperglycemia. Unfortunately, commercially available AChE and α-amylase inhibitors are reported to possess side effects. Consequently, there is a need to develop safe and effective treatments for both diseases. In the present study, pomegranate peel (PP) was extracted using various solvents of increasing polarity, while two extraction methods were employed, the conventional maceration and the ultrasound assisted extraction (UAE). The concentration of bioactive phytoconstituents, such as total phenolics (TPC) and total flavonoids (TFC) in the prepared extracts was evaluated by the Folin-Ciocalteu and the aluminum-flavonoid complex method, respectively. Furthermore, the anti-neurodegenerative and anti-hyperglycemic activity of all extracts was determined using AChE and α-amylase inhibitory activity assays, respectively. The inhibitory activity of the extracts against AChE and α-amylase was characterized by estimating their IC₅₀ value using a dose-response curve, while galanthamine and acarbose were used as positive controls, respectively. Finally, the kinetics of AChE and α-amylase in the presence of the most inhibitory potent extracts was determined by the Lineweaver-Burk plot. The methanolic extract prepared using the UAE contained the highest amount of phytoconstituents, followed by the respective ethanolic extract. All extracts inhibited acetylcholinesterase in a dose-dependent manner, while the increased anticholinesterase activity of the methanolic (IC₅₀ = 32 μg/mL) and ethanolic (IC₅₀ = 42 μg/mL) extract was positively correlated with their TPC content. Furthermore, the activity of the aforementioned extracts was comparable to galanthamine. Similar results were obtained in the case of α-amylase, however, all extracts showed lower inhibitory effect on the carbohydrate hydrolyzing enzyme than on AChE, since the IC₅₀ value ranged from 84 to 100 μg/mL. Also, the α-amylase inhibitory effect of the extracts was lower than acarbose. Finally, the methanolic and ethanolic extracts prepared by UAE inhibited both enzymes in a mixed (competitive/noncompetitive) manner since the Kₘ value of both enzymes increased in the presence of extracts, while the Vmax value decreased. The results of the present study indicate that PP may be a useful source of active compounds for the management of AD and DM. Moreover, taking into consideration that PP is an agro-industrial waste product, its valorization could not only result in economic efficiency but also reduce the environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetylcholinesterase" title="acetylcholinesterase">acetylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amylase" title=" α-amylase"> α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate" title=" pomegranate"> pomegranate</a> </p> <a href="https://publications.waset.org/abstracts/92004/a-preliminary-in-vitro-investigation-of-the-acetylcholinesterase-and-a-amylase-inhibition-potential-of-pomegranate-peel-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Fatty Acid Composition, Total Sugar Content and Anti-Diabetic Activity of Methanol and Water Extracts of Nine Different Fruit Tree Leaves Collected from Mediterranean Region of Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sengul%20Uysal">Sengul Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Zengin"> Gokhan Zengin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20Aktumsek"> Abdurrahman Aktumsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukru%20Karatas"> Sukru Karatas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we determined the total sugar content, fatty acid compositions and α-amylase and α-glucosidase inhibitory activity of methanolic and water extracts of nine different fruit tree leaves. α-amylase and α-glycosidase inhibitory activity were determined by using Caraway-Somogyi–iodine/potassium iodide (IKI) and 4-nitrophenyl-α-D-glucopyranoside (PNPG) as substrate, respectively. Total sugar content of the nine different fruit tree leaves varies from 281.02 mg GE/g (glucose equivalents) to 643.96 mg GE/g. Methanolic extract from avocado leaves had the strongest in α-amylase and α-glucosidase inhibitory activity, 69.21% and 96.26 %, respectively. Fatty acid composition of nine fruit tree leaves was characterized by GC (gas chromatography) and twenty-four components were identified. Among the tested fruit tree leaves, the main component was linolenic acid (49.09%). The level of essential fatty acids are over 50% in mulberry, grape and loquat leaves. PUFAs (polyunsaturated fatty acids) were major group of fatty acids present in oils of mulberry, fig, pomegranate, grape, and loquat leaves. Therefore, these oils can be considered as a good source of polyunsaturated fatty acids. Furthermore, avocado can be regarded as a new source for diabetic therapies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20compositions" title="fatty acid compositions">fatty acid compositions</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20sugar%20contents" title=" total sugar contents"> total sugar contents</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amylase" title=" α-amylase"> α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase" title=" α-glucosidase"> α-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20tree%20leaves" title=" fruit tree leaves"> fruit tree leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/19405/fatty-acid-composition-total-sugar-content-and-anti-diabetic-activity-of-methanol-and-water-extracts-of-nine-different-fruit-tree-leaves-collected-from-mediterranean-region-of-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> A Novel Alginate/Tea Waste Complex for Restoration and Conservation of Historical Textiles Using Immobilized Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Hassan">Mohamed E. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through numerous chemical linkages, historical textiles in burial contexts or in museums are exposed to many different forms of stains and filth. The cleaning procedure must be carried out carefully without causing any irreparable harm, and sediments must be removed without damaging the surface's original material. Science and technology continue to develop novel methods for cleaning historical textiles and artistic surfaces biologically (using enzymes). Lipase and α-amylase were immobilized on nanoparticles of alginate/tea waste nanoparticle complex and used in historical textile cleaning. The preparation of nanoparticles, activation, and enzyme immobilization were characterized. Optimization of loading times and units of the two enzymes was done. It was found that the optimum time and units of amylase were 3 hours and 30 U, respectively. While the optimum time and units of lipase were 2.5 hours and 20 U, respectively, FT-IR and TGA instruments were used in proving the preparation of nanoparticles and the immobilization process. SEM was used to examine the fibres before and after treatment. In conclusion, a new carrier was prepared from alginate/Tea waste and optimized to be used in the restoration and conservation of historical textiles using immobilized lipase and α-amylase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate%2Ftea%20waste" title="alginate/tea waste">alginate/tea waste</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title=" immobilized enzymes"> immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20textiles" title=" historical textiles"> historical textiles</a> </p> <a href="https://publications.waset.org/abstracts/166235/a-novel-alginatetea-waste-complex-for-restoration-and-conservation-of-historical-textiles-using-immobilized-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Mechanism of in Vitro Inhibition of Alpha-Amylase, Alpha-Glucosidase by Ethanolic Extracts of Polyalthia Longifolia, Its in Vitro Cytotoxicity on L6, Vero Cell-Lines and Influence of Glucose Uptake by Rat Hemi-Diaphragm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Gayathri">P. Gayathri</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Jeyanthi"> G. P. Jeyanthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bark of Polyalthia longifolia is used in ayurvedic system of medicine for the manangement of various ailments including diabetes mellitus. The bark of P. longifolia extracts was extracted using various polar and non-polar solvents and tested for inhibition of alpha-amylase and alpha-glucosidase among which the ethanolic extracts were found to be more potent. The ethanolic extracts of the bark were tested for the in vitro inhibition of alpha-amylase using starch as substrate and alpha-glucosidase using p-nitro phenyl alpha-D-gluco pyranoside as substrate to establish its in vitro antidiabetic effect. The mechanism of inhibition was determined by Dixon plot and Cornish-Bowden plot. The cytotoxic effect of the extract was tested on L6 and Vero cell-lines. The extract was partially purified by TLC. The individual effect of the ethanolic extract, TLC fractions and its combinatorial effect with insulin and glibenclamide on glucose uptake by rat hemi-diaphragm were studied.Results revealed that the ethanolic extracts of Polyalthia longifolia bark exhibited competitive inhibition of alpha-amylase and alpha-glucosidase. The extracts were also found not to be cytotoxic at the highest dose of 1 mg/mL. Glucose uptake study revealed that the extract alone and when combined with insulin, decreased the glucose uptake when compared to insulin control, however the purified TLC fractions exhibited significantly higher (p<0.05) glucose uptake by the rat hemi-diaphragm when compared to insulin. The study shows various possible mechanism of in vitro antidiabetic effect of the P. longifolia bark. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase" title="alpha-amylase">alpha-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha-glucosidase" title=" alpha-glucosidase"> alpha-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=dixon" title=" dixon"> dixon</a>, <a href="https://publications.waset.org/abstracts/search?q=cornish-bowden" title=" cornish-bowden"> cornish-bowden</a>, <a href="https://publications.waset.org/abstracts/search?q=L6" title=" L6 "> L6 </a>, <a href="https://publications.waset.org/abstracts/search?q=Vero%20cell-lines" title=" Vero cell-lines"> Vero cell-lines</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20uptake" title=" glucose uptake"> glucose uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=polyalthia%20longifolia%20bark" title=" polyalthia longifolia bark"> polyalthia longifolia bark</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanolic%20extract" title=" ethanolic extract"> ethanolic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC%20fractions" title=" TLC fractions"> TLC fractions</a> </p> <a href="https://publications.waset.org/abstracts/34899/mechanism-of-in-vitro-inhibition-of-alpha-amylase-alpha-glucosidase-by-ethanolic-extracts-of-polyalthia-longifolia-its-in-vitro-cytotoxicity-on-l6-vero-cell-lines-and-influence-of-glucose-uptake-by-rat-hemi-diaphragm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Phytochemicals from Enantia Chlorantha Stem Bark Inhibits the Activity ?-Amylase and ?-Glucosidase: Molecular Docking Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammed%20Tanimowo%20Aiyelabegan">Hammed Tanimowo Aiyelabegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluchukwu%20Franklin%20Aladi"> Oluchukwu Franklin Aladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiu%20Adewumi%20Alabi"> Mutiu Adewumi Alabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raliat%20Abimbola%20Aladodo"> Raliat Abimbola Aladodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Oladipupo%20Ajani"> Emmanuel Oladipupo Ajani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulganiyu%20Giwa"> Abdulganiyu Giwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Owolabi"> Esther Owolabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aimed to evaluate the inhibitory activities of ligands from Enantia chlorantha stem bark on α-amylase and α-glucosidase. In silico pharmacokinetic properties and docking scores were employed to analyse the inhibition using SwissADME and Autodock4.2, respectively. Results revealed that drug-likeness, pharmacokinetics and bioavailability radar of all the ligands except jatrorrhizine and acarbose falls within the radar according to the Lipinski rule of 5. The binding energies of the protein-ligand interactions also show that the ligand fits into the active site. The results obtained from this study show that the chemical constituents from Enantia chlorantha stem bark may bring about positive physiological changes in a patient suffering from diabetes mellitus. Further in vitro studies on diabetes cell lines and in vivo studies on the animal may validate these compounds for diabetes treatment. These phytoconstituents could help in the development of novel anti-diabetic molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title="diabetes mellitus">diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=%3F-amylase" title=" ?-amylase"> ?-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=%3F-glucosidase" title=" ?-glucosidase"> ?-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico" title=" in silico"> in silico</a>, <a href="https://publications.waset.org/abstracts/search?q=Enantia%20chlorantha%20stem%20bark" title=" Enantia chlorantha stem bark"> Enantia chlorantha stem bark</a> </p> <a href="https://publications.waset.org/abstracts/145916/phytochemicals-from-enantia-chlorantha-stem-bark-inhibits-the-activity-amylase-and-glucosidase-molecular-docking-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> In vitro α-Amylase and α-Glucosidase Inhibitory Activities of Bitter Melon (Momordica charantia) with Different Stage of Maturity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Percin">P. S. Percin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Inanli"> O. Inanli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Karakaya"> S. Karakaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bitter melon (Momordica charantia) is a medicinal vegetable, which is used traditionally to remedy diabetes. Bitter melon contains several classes of primary and secondary metabolites. In traditional Turkish medicine bitter melon is used for wound healing and treatment of peptic ulcers. Nowadays, bitter melon is used for the treatment of diabetes and ulcerative colitis in many countries. The main constituents of bitter melon, which are responsible for the anti-diabetic effects, are triterpene, protein, steroid, alkaloid and phenolic compounds. In this study total phenolics, total carotenoids and β-carotene contents of mature and immature bitter melons were determined. In addition, in vitro α-amylase and α-glucosidase activities of mature and immature bitter melons were studied. Total phenolic contents of immature and mature bitter melon were 74 and 123 mg CE/g bitter melon respectively. Although total phenolics of mature bitter melon was higher than that of immature bitter melon, this difference was not found statistically significant (p > 0.05). Carotenoids, a diverse group of more than 600 naturally occurring red, orange and yellow pigments, play important roles in many physiological processes both in plants and humans. The total carotenoid content of mature bitter melon was 4.36 fold higher than the total carotenoid content of immature bitter melon. The compounds that have hypoglycaemic effect of bitter melon are steroidal saponins known as charantin, insulin-like peptides and alkaloids. α-Amylase is one of the main enzymes in human that is responsible for the breakdown of starch to more simple sugars. Therefore, the inhibitors of this enzyme can delay the carbohydrate digestion and reduce the rate of glucose absorption. The immature bitter melon extract showed α-amylase and α-glucosidase inhibitory activities in vitro. α-Amylase inhibitory activity was higher than that of α-glucosidase inhibitory activity when IC50 values were compared. In conclusion, the present results provide evidence that aqueous extract of bitter melon may have an inhibitory effect on carbohydrate breakdown enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title="bitter melon">bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20antidiabetic%20activity" title=" in vitro antidiabetic activity"> in vitro antidiabetic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carotenoids" title=" total carotenoids"> total carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenols" title=" total phenols"> total phenols</a> </p> <a href="https://publications.waset.org/abstracts/81770/in-vitro-a-amylase-and-a-glucosidase-inhibitory-activities-of-bitter-melon-momordica-charantia-with-different-stage-of-maturity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Effect of Feed Supplement Optipartum C+ 200 (Alfa- Amylase and Beta-Glucanase) in In-Line Rumination Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%C5%ABnas%20Antanaitis">Ramūnas Antanaitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Anskien%C4%97"> Lina Anskienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Robertas%20Sto%C5%A1kus"> Robertas Stoškus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted during 2021.05.01 – 2021.08.31 at the Lithuanian University of health sciences and one Lithuanian dairy farm with 500 dairy cows (55.911381565736, 21.881321760608195). Average calving – 50 cows per month. Cows (n=20) in the treatment group (TG) were fed with feed supplement Optipartum C+ 200 (Enzymes: Alfa- Amylase 57 Units; Beta-Glucanase 107 Units) from 21 days before calving till 30 days after calving with feeding rate 200g/cow/day. Cows in the control group (CG) were fed a feed ration without feed supplement. Measurements started from 6 days before calving and continued till 21 days after calving. The following indicators were registered: with the RumiWatch System: Rumination time; Eating time; Drinking time; Rumination chews; Eating chews; Drinking gulps; Bolus; Chews per minute; Chews per bolus. With SmaXtec system - the temperature, pH of the contents of cows' reticulorumens and cows' activity. According to our results, we found that feeding of cows, from 21 days before calving to 30 days after calving, with a feed supplement with alfa- amylase and beta-glucanase (Optipartum C+ 200) (with dose 200g/cow/day) can produce an increase in: 9% rumination time and eating time, 19% drinking time, 11% rumination chews, 16% eating chews,13% number of boluses per rumination, 5% chews per minute and 16% chews per bolus. We found 1.28 % lower reiticulorumen pH and 0.64% lower reticulorumen temperature in cows fed with the supplement compared with control group cows. Also, cows feeding with enzymes were 8.80% more active. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfa-Amylase" title="Alfa-Amylase">Alfa-Amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=Beta-Glucanase" title=" Beta-Glucanase"> Beta-Glucanase</a>, <a href="https://publications.waset.org/abstracts/search?q=cows" title=" cows"> cows</a>, <a href="https://publications.waset.org/abstracts/search?q=in-line" title=" in-line"> in-line</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/143264/effect-of-feed-supplement-optipartum-c-200-alfa-amylase-and-beta-glucanase-in-in-line-rumination-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Extremophilic Amylases of Mycelial Fungi Strains Isolated in South Caucasus for Starch Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Urushadze">T. Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khvedelidze"> R. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kutateladze"> L. Kutateladze</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jobava"> M. Jobava</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Burduli"> T. Burduli</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Alexidze"> T. Alexidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing interest in reliable, wasteless, ecologically friendly technologies. About 40% of enzymes produced all over the world are used for production of syrups with high concentration of glucose-fructose. One of such technologies complies obtaining fermentable sugar glucose from raw materials containing starch by means of amylases. In modern alcohol-producing factories this process is running in two steps, involving two enzymes of different origin: bacterial α-amylase and fungal glucoamylase, as generally fungal amylases are less thermostable as compared to bacterial amylases. Selection of stable and operable at 700С and higher temperatures enzyme preparation with both α- and glucoamylase activities will allow conducting this process in one step. S. Durmishidze Institute of Biochemistry and Biotechnology owns unique collection of mycelial fungi, isolated from different ecological niches of Caucasus. As a result of screening our collection 39 strains poducing amylases were revealed. Most of them belong to the genus Aspergillus. Optimum temperatures of action of selected amylases from three producers were estableshed to be within the range 67-80°C. A. niger B-6 showed higher α-amylase activity at 67°C, and glucoamylase activity at 62°C, A. niger 6-12 showed higher α-amylase activity at 72°C, and glucoamylase activity at 65°C, Aspergillus niger p8-3 showed higher activities at 82°C and 70°C, for α-amylase and glucoamylase activities, respectively. Exhaustive hydrolysis process of starch solutions of different concentrations (3, 5, 15, and 30 %) with cultural liquid and technical preparation of Aspergillus niger p8-3 enzyme was studied. In case of low concentrations exhaustive hydrolysis of starch lasts 40–60 minutes, in case of high concentrations hydrolysis takes longer time. 98, 6% yield of glucose can be reached at incubation during 12 hours with enzyme cultural liquid and 8 hours incubation with technical preparation of the enzyme at gradual increase of temperature from 50°C to 82°C during the first 20 minutes and further decrease of temperature to 70°C. Temperature setting for high yield of glucose and high hydrolysis (pasteurizing), optimal for activity of these strains is the prerequisite to be able to carry out hydrolysis of starch to glucose in one step, and consequently, using one strain, what will be economically justified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amylase" title="amylase">amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20hydrolisis" title=" glucose hydrolisis"> glucose hydrolisis</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a> </p> <a href="https://publications.waset.org/abstracts/27123/extremophilic-amylases-of-mycelial-fungi-strains-isolated-in-south-caucasus-for-starch-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> The Role of Polyphenolic Compounds in the Alpha Amylase and Alpha Glucosidase Inhibitory Potentials of Extracts from the Leaves of Acalypha godseffiana from Eastern Nigeria: An in-vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Asekunowo">A. K. Asekunowo</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20O.%20T.%20Asafa"> A O. T. Asafa</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Okoh"> O. O. Okoh</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20T.%20Asekun"> O. T. Asekun</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Familoni"> O. B. Familoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Acalypha godseffiana is an important plant used both as an ornamental and herbs; its leaves are employed in management of diseases such as diabetics in Eastern Nigeria. Aim: The correlations of the polyphenolic compounds in the hypoglycemic potential of different extracts of leaves of A. godseffiana and their safety profile on cell lines were investigated. Materials and Methods: The phytochemical compositions and antioxidants potentials were determined using adopted methods. An in vitro approach was employed in determining the hypoglycemic potentials of the extracts on α-amylase and α-glucosidase. The Line weaver-Burke plot was used to evaluate the mechanisms of Inhibition mechanisms of the enzymes. Results and Conclusions: Antioxidants results revealed that total antioxidant capacity (TAC) of the acetone extract (IC50: 0.34 mg/mL) showed better activity compared to the standards (silymarine 0.52 mg/mL; gallic acid 0.51 mg/mL). In-vitro hypoglycemic activity of the extracts confirmed that acetone extract demonstrated strong and mild inhibitory potential against α-amylase and α-glucosidase respectively. The observed activity was concentration-dependent with IC50 values of 2.33 and 0.13 mg/mL. The observed hypoglycemic and anti-oxidant potentials of acetone extract A. godseffiana correlate to its high polyphenolic contents which include phenols (133.20 mg gallic acid g-1), flavonoid (350.60 mg quercetin g-1) and tannins (264.67 mg catechin g-1). The mechanisms of action exhibited by acetone extract of A. godseffiana were mixed non-competitive and uncompetitive; which can be attributed to its inhibitory properties on α-amylase and α-glucosidase respectively. This effect would cause reduction in the rate at which starch hydrolyse, boost palliated glucose levels; hence, making acetone extract of A. godseffiana a potential anti-hypoglycemic alternative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acalypha%20godeseffiana" title="Acalypha godeseffiana">Acalypha godeseffiana</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone%20extract" title=" acetone extract"> acetone extract</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-hypoglycemia" title=" anti-hypoglycemia"> anti-hypoglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a> </p> <a href="https://publications.waset.org/abstracts/61511/the-role-of-polyphenolic-compounds-in-the-alpha-amylase-and-alpha-glucosidase-inhibitory-potentials-of-extracts-from-the-leaves-of-acalypha-godseffiana-from-eastern-nigeria-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Assessing Digestive Enzymes Inhibitory Properties of Anthocyanins and Procyanidins from Apple, Red Grape, Cinnamon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinar%20Ercan">Pinar Ercan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedef%20N.%20El"> Sedef N. El</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goals of this study were to determine the total anthocyanin and procyanidin contents and their in vitro bioaccessibilities of apple, red grape and cinnamon by a static in vitro digestion method reported by the COST FA1005 Action INFOGEST, as well as in vitro inhibitory effects of these food samples on starch and lipid digestive enzymes. While the highest total anthocyanin content was found in red grape (164.76 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432.54±177.31 mg/100 g) among the selected food samples (p<0.05). The anthocyanin bioaccessibilities were found as 10.23±1 %, 8.23±0.64 %, and 8.73±0.70 % in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57±0.71 %, 14.08±0.74 % and 18.75±1.49 %, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544.27±21.94, 445.63±15.67, 1592±17.58 μg/mL, respectively), α-amylase (IC50 38.41±7.26, 56.12±3.60, 3.54±0.86 μg/mL, respectively), and lipase (IC50 52.65±2.05, 581.70±54.14, 49.63±2.72 μg/mL, respectively). Red grape sample showed the highest inhibitory activity against α-glucosidase, cinnamon showed the highest inhibitory activity against α-amylase and lipase according to IC50 (concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction) and Catechin equivalent inhibition capacity (CEIC50) values. This study reported that apple, grape and cinnamon samples can inhibit the activity of digestive enzymes in vitro. The consumption of these samples would be used in conjunction with a low-calorie diet for body weight management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amylase" title=" α-amylase"> α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase" title=" α-glucosidase"> α-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=procyanidin" title=" procyanidin"> procyanidin</a> </p> <a href="https://publications.waset.org/abstracts/81744/assessing-digestive-enzymes-inhibitory-properties-of-anthocyanins-and-procyanidins-from-apple-red-grape-cinnamon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> New Insights Into Gluten-Free Bread Staling Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mostafa">Sayed Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Siham%20Mostafa%20Mohamed%20Faheid"> Siham Mostafa Mohamed Faheid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Rizk%20Sayed%20Ahmed"> Ibrahim Rizk Sayed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Fehry%20Mohamed%20Kishk"> Yasser Fehry Mohamed Kishk</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20Hassan%20Ragab"> Gamal Hassan Ragab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gluten-free foods are still the only treatment for gluten-allergic patients. Consequently, this study is concerned with improving the quality attributes of gluten-free bread using different concentrations (0, 20, 40, 60 and 80ppm) of all maltogenic α-amylase (MA) and xylanase (XY) compared with wheat flour Balady bread and untreated gluten-free Balady bread (GFBB). Pasting properties, falling number, water activity, alkaline water retention capacity (AWRC) and sensory properties (fresh bread, after 24h, after 48h and after 72h) of gluten-free bread were evaluated. Additionally, the effect of merging different concentrations of maltogenic α-amylase and xylanase on stalling behavior (AWRC) and sensory properties of gluten-free Balady bread was investigated. The addition of MA led to a gradually decreased peak viscosity, breakdown, setback and pasting temperature of GFBB with the increasing level of MA. Maltogenic α-amylase and xylanase addition led to a reduction in the FN values compared to the untreated gluten-free sample, noting that the MA-treated samples showed a significant decrease compared to the XY-treated and untreated samples. Wheat flour Balady bread significantly showed a higher value of AWRC compared to untreated gluten-free Balady bread at different storage periods (zero time, after 24h, after 48h and after 72h). MA-treated samples showed higher water binding capacity and water activity (aw)in comparison with XY-treated samples, with significance during all storage periods. Concerning the overall acceptability during the third day, the highest score (4.6) was observed by the GFBB sample containing 40ppm MA, followed by 4.3, which was investigated by the GFBB sample containing 80ppm XY with no significance between them and with significance compared to the other samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=celiac%20disease" title="celiac disease">celiac disease</a>, <a href="https://publications.waset.org/abstracts/search?q=gluten-free%20products" title=" gluten-free products"> gluten-free products</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-stalling%20agents" title=" anti-stalling agents"> anti-stalling agents</a>, <a href="https://publications.waset.org/abstracts/search?q=maltogenic%20%CE%B1-amylase" title=" maltogenic α-amylase"> maltogenic α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/173389/new-insights-into-gluten-free-bread-staling-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Antioxidant, Hypoglycemic and Hypotensive Effects Affected by Various Molecular Weights of Cold Water Extract from Pleurotus Citrinopileatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pao-Huei%20Chen">Pao-Huei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Mei%20Lin"> Shu-Mei Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yih-Ming%20Weng"> Yih-Ming Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zer-Ran%20Yu"> Zer-Ran Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Be-Jen%20Wang"> Be-Jen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pancreatic α-amylase and intestinal α-glucosidase are the critical enzymes for the breakdown of complex carbohydrates into di- or mono-saccharide, which play an important role in modulating postprandial blood sugars. Angiotensin converting enzyme (ACE) converts inactive angiotensin-I into active angiotensin-II, which subsequently increase blood pressure through triggering vasoconstriction and aldosterone secretion. Thus, inhibition of carbohydrate-digestion enzymes and ACE will help the management of blood glucose and blood pressure, respectively. Studies showed Pleurotus citrinopileatus (PC), an edible mushroom and commonly cultured in oriental countries, exerted anticancer, immune improving, antioxidative, hypoglycemic and hypolipidemic effects. Previous studies also showed various molecular weights (MW) fractioned from extracts may affect biological activities due to varying contents of bioactive components. Thus, the objective of this study is to investigate the in vitro antioxidant, hypoglycemic and hypotenstive effects and distribution of active compounds of various MWs of cold water extract from P. citrinopileatus (CWEPC). CWEPC was fractioned into four various MW fractions, PC-I (<1 kDa), PC-II (1-3.5 kDa), PC-III (3.5-10 kDa), and PC-IV (>10 kDa), using an ultrafiltration system. The physiological activities, including antioxidant activities, the inhibition capabilities of pancreatic α-amylase, intestinal α-glucosidase, and hypertension-linked ACE, and the active components, including polysaccharides, protein, and phenolic contents, of CWEPC and four fractions were determined. The results showed that fractions with lower MW exerted a higher antioxidant activity (p<0.05), which was positively correlated to the levels of total phenols. In contrast, the inhibition effects on the activities of α-amylase, α-glucosidase, and ACE of PC-IV fraction were significantly higher than CWEPC and the other three low MW fractions (< 10 kDa), which was more related to protein contents. The inhibition capability of CWEPC and PC-IV on α-amylase activity was 1/13.4 to 1/2.7 relative to that of acarbose (positive control), respectively. However, the inhibitory ability of PC-IV on α-glucosidase (IC50 = 0.5 mg/mL) was significantly higher than acarbose (IC50 = 1.7 mg/mL). Kinetic data revealed that PC-IV fraction followed a non-competitive inhibition on α-glucosidase activity. In conclusion, the distribution of various bioactive components contribute to the functions of different MW fractions on oxidative stress prevention, and blood pressure and glucose modulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Amylase" title="α-Amylase">α-Amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=angiotensin%20converting%20enzyme" title=" angiotensin converting enzyme"> angiotensin converting enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Glucosidase" title=" α-Glucosidase"> α-Glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleurotus%20citrinopileatus" title=" Pleurotus citrinopileatus"> Pleurotus citrinopileatus</a> </p> <a href="https://publications.waset.org/abstracts/25984/antioxidant-hypoglycemic-and-hypotensive-effects-affected-by-various-molecular-weights-of-cold-water-extract-from-pleurotus-citrinopileatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Characterization and Quantification of Relatives Amounts of Phosphorylated Glucosyl Residues in C6 and C3 Position in Banana Starch Granules by 31P-NMR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renata%20Shitakubo">Renata Shitakubo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanyu%20Yangcheng"> Hanyu Yangcheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay-lin%20Jane"> Jay-lin Jane</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Peroni%20Okita"> Fernanda Peroni Okita</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Cordenunsi"> Beatriz Cordenunsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the degradation transitory starch model, the enzymatic activity of glucan/water dikinase (GWD) and phosphoglucan/water dikinase (PWD) are essential for the granule degradation. GWD and PWD phosphorylate glucose molecules in the positions C6 and C3, respectively, in the amylopectin chains. This action is essential to allow that β-amylase degrade starch granules without previous action of α-amylase. During banana starch degradation, as part of banana ripening, both α- and β-amylases activities and proteins were already detected and, it is also known that there is a GWD and PWD protein bounded to the starch granule. Therefore, the aim of this study was to quantify both Gluc-6P and Gluc-3P in order to estimate the importance of the GWD-PWD-β-amylase pathway in banana starch degradation. Starch granules were isolated as described by Peroni-Okita et al (Carbohydrate Polymers, 81:291-299, 2010), from banana fruit at different stages of ripening, green (20.7%), intermediate (18.2%) and ripe (6.2%). Total phosphorus content was determinate following the Smith and Caruso method (1964). Gluc-6P and Gluc-3P quantifications were performed as described by Lim et al (Cereal Chemistry, 71(5):488-493, 1994). Total phosphorous content in green banana starch is found as 0.009%, intermediary banana starch 0.006% and ripe banana starch 0.004%, both by the colorimetric method and 31P-NMR. The NMR analysis showed the phosphorus content in C6 and C3. The results by NMR indicate that the amylopectin is phosphorylate by GWD and PWD before the bananas become ripen. Since both the total content of phosphorus and phosphorylated glucose molecules at positions C3 and C6 decrease with the starch degradation, it can be concluded that this phosphorylation occurs only in the surface of the starch granule and before the fruit be harvested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starch" title="starch">starch</a>, <a href="https://publications.waset.org/abstracts/search?q=GWD" title=" GWD"> GWD</a>, <a href="https://publications.waset.org/abstracts/search?q=PWD" title=" PWD"> PWD</a>, <a href="https://publications.waset.org/abstracts/search?q=31P-NMR" title=" 31P-NMR"> 31P-NMR</a> </p> <a href="https://publications.waset.org/abstracts/23784/characterization-and-quantification-of-relatives-amounts-of-phosphorylated-glucosyl-residues-in-c6-and-c3-position-in-banana-starch-granules-by-31p-nmr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Restoration and Conservation of Historical Textiles Using Covalently Immobilized Enzymes on Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elbehery">Mohamed Elbehery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical textiles in the burial environment or in museums are exposed to many types of stains and dirt that are associated with historical textiles by multiple chemical bonds that cause damage to historical textiles. The cleaning process must be carried out with great care, with no irreversible damage, and sediments removed without affecting the original material of the surface being cleaned. Science and technology continue to provide innovative systems in the bio-cleaning process (using pure enzymes) of historical textiles and artistic surfaces. Lipase and α-amylase were immobilized on nanoparticles of alginate/κ-carrageenan nanoparticle complex and used in historical textiles cleaning. Preparation of nanoparticles, activation, and enzymes immobilization were characterized. Optimization of loading time and units of the two enzymes were done. It was found that, the optimum time and units of amylase were 4 hrs and 25U, respectively. While, the optimum time and units of lipase were 3 hrs and 15U, respectively. The methods used to examine the fibers using a scanning electron microscope equipped with an X-ray energy dispersal unit: SEM with EDX unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a> </p> <a href="https://publications.waset.org/abstracts/166234/restoration-and-conservation-of-historical-textiles-using-covalently-immobilized-enzymes-on-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Evaluation of the Inhibitory Activity of Natural Extracts From Spontaneous Plant on the Α-Amylase and Α–Glucosidase and Their Antioxidant Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihcen%20Khacheba">Ihcen Khacheba</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Djeridane"> Amar Djeridane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkarim%20%20Kamli"> Abdelkarim Kamli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Yousfi"> Mohamed Yousfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant materials constitute an important source of natural bioactive molecules. Thus plants have been used from antiquity as sources of medicament against various diseases. These properties are usually attributed to secondary metabolites that are the subject of a lot of research in this field. This is particularly the case of phenolic compounds plants that are widely renowned in therapeutics as anti-inflammatories, enzyme inhibitors, and antioxidants, particularly flavonoïds. With the aim of acquiring a better knowledge of the secondary metabolism of the vegetable kingdom in the region of Laghouat and of the discovering of new natural therapeutics, 10 extracts from 5 Saharan plant species were submitted to chemical screening.The analysis of the preceding biological targets led to the evaluation of the biological activity of the extracts of the species Genista Corsica. The first step, consists in extracting and quantifying phenolic compounds. The second step has been devoted to stugying the effects of phenolic compounds on the kinetics catalyzed by two enzymes belonging to the class of hydrolase (the α-amylase and α-glucosidase) responsible for the digestion of sugars and finally we evaluate the antiantioxidant potential. The analysis results of phenolic extracts show clearly a low content of phenolic compounds in investigated plants. Average total phenolics ranged from 0.0017 to 11.35 mg equivalent gallic acid/g of the crude extract. Whereas the total flavonoids content lie between 0.0015 and 10.,96 mg/g equivalent of rutin. The results of the kinetic study of enzymatic reactions show that the extracts have inhibitory effects on both enzymes, with IC50 values ranging from 95.03 µg/ml to 1033.53 µg/ml for the α-amylase and 279.99 µg/ml to 1215.43 µg/ml for α-glucosidase whose greatest inhibition was found for the acetone extract of June (IC50 = 95.03 µg/ml). The results the antioxidant activity determined by ABTS, DPPH, and phosphomolybdenum tests clearly showed a good antioxidant capacity comparatively to antioxidants taken as reference the biological potential of these plants and could find their use in medicine to replace synthetic products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenolic%20extracts" title="phenolic extracts">phenolic extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20effect" title=" inhibition effect"> inhibition effect</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amylase" title=" α-amylase"> α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase" title=" α-glucosidase"> α-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/13349/evaluation-of-the-inhibitory-activity-of-natural-extracts-from-spontaneous-plant-on-the-a-amylase-and-a-glucosidase-and-their-antioxidant-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Effects of AG1 and AG2 QTLs on Rice Seedling Growth and Physiological Processes during Germination in Flooded Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyen%20Mondal">Satyen Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederickson%20Entila"> Frederickson Entila</a>, <a href="https://publications.waset.org/abstracts/search?q=Shalabh%20Dixit"> Shalabh Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Pompe%20C.%20Sta.%20Cruz"> Pompe C. Sta. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelbagi%20M.%20Ismail"> Abdelbagi M. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anaerobic condition caused by flooding during germination in direct seeded rice systems, known as anaerobic germination (AG), severely reduces crop establishment in both rainfed and irrigated areas. Seeds germinating in flooded soils could encounter hypoxia or even anoxia in severe cases, and this hinders germination and seedling growth. This study was conducted to quantify the effects of incorporating two major QTLs, AG1 and AG2, associated with tolerance of flooding during germination and to assess their interactive effects on enhancing crop establishment. A greenhouse experiment was conducted at the International Rice Research Institute (IRRI), Los Baňos, Philippines, using elite lines incorporating AG1, AG2 and AG1+AG2 in the background of the popular varieties PSBRc82 (PSBRc82-AG1, PSBRc82-AG2, PSBRc82-AG1+AG2) and Ciherang-Sub1 (Ciherang-Sub1-AG1, Ciherang-Sub1-AG2, Ciherang-Sub1-AG1+AG2), along with the donors Kho Hlan On (for AG1) and Ma-Zhan Red (AG2) and the recipients PSBRc82 and Ciherang-Sub1. The experiment was conducted using concrete tanks in an RCBD with three replications. Dry seeds were sown in seedling trays then flooded with 10 cm water depth. Seedling survival, root and shoot growth and relative growth rate were measured. The germinating seedlings were used for assaying nonstructural carbohydrate (NSC) and ascorbate concentrations, lipid peroxidation, total phenolic concentration, reactive oxygen species and total amylase enzyme activity. Flooding reduced overall survival, though survival of AG1+AG2 introgression lines was greater than other genotypes. Soluble sugars increased, while starch concentration decreased gradually under flooding especially in the tolerant checks and AG1+AG2 introgression lines. Less lipid peroxidation and higher amylase activity, reduced-ascorbate (RAsA) and total phenolic contents (TPC) were observed in the tolerant checks and in AG1+AG2 introgression lines. Lipid peroxidation correlated negatively with ascorbate and total phenolic concentrations and with reactive oxygen species (ROS). Introgression of AG1+AG2 QTLs upregulated total amylase activity causing rapid starch degradation and increase in ascorbate and total phenolic concentrations resulting in higher germination and seedling growth in flooded soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amylase" title="amylase">amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20germination" title=" anaerobic germination"> anaerobic germination</a>, <a href="https://publications.waset.org/abstracts/search?q=ascorbate" title=" ascorbate"> ascorbate</a>, <a href="https://publications.waset.org/abstracts/search?q=direct-seeded%20rice" title=" direct-seeded rice"> direct-seeded rice</a>, <a href="https://publications.waset.org/abstracts/search?q=flooding" title=" flooding"> flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/73392/effects-of-ag1-and-ag2-qtls-on-rice-seedling-growth-and-physiological-processes-during-germination-in-flooded-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Extracellular Enzymes from Halophilic Bacteria with Potential in Agricultural Secondary Flow Recovery Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madalin%20Enache">Madalin Enache</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Neagu"> Simona Neagu</a>, <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Cojoc"> Roxana Cojoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioana%20Gomoiu"> Ioana Gomoiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Delia%20Ionela%20Dobre"> Delia Ionela Dobre</a>, <a href="https://publications.waset.org/abstracts/search?q=Ancuta%20Roxana%20Trifoi"> Ancuta Roxana Trifoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various types of halophilic and halotolerant microorganisms able to be cultivated in laboratory on culture media with a wide range of sodium chloride content are isolated from several salted environments. The extracellular enzymes of these microorganisms showed the enzymatic activity in these spectrums of salinity thus being attractive for several biotechnological processes developed at high ionic strength. In present work, a number of amylase, protease, esterase, lipase, cellulase, pectinase, xilanases and innulinase were identified for more than 50th bacterial strains isolated from water samples and sapropelic mud from four saline and hypersaline lakes located in Romanian plain. On the other hand, the cellulase and pectinase activity were also detected in some halotolerant microorganisms isolated from secondary agricultural flow of grapes processing. The preliminary data revealed that from totally tested strains seven harbor proteases activity, eight amylase activity, four for esterase and another four for lipase, three for pectinase and for one strain were identified either cellulase or pectinase activity. There were no identified enzymes able to hydrolase innulin added to culture media. Several strains isolated from sapropelic mud showed multiple extracellular enzymatic activities, namely three strains harbor three activities and another seven harbor two activities. The data revealed that amylase and protease activities were frequently detected if compare with other tested enzymes. In the case of pectinase were investigated, their ability to be used for increasing resveratrol recovery from material resulted after grapes processing. In this way, the resulted material from grapes processing was treated with microbial supernatant for several times (two, four and 24 hours) and the content of resveratrol was detected by High Performance Liquid Chromatography method (HPLC). The preliminary data revealed some positive results of this treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halophilic%20microorganisms" title="halophilic microorganisms">halophilic microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=pectinase" title=" pectinase"> pectinase</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/76741/extracellular-enzymes-from-halophilic-bacteria-with-potential-in-agricultural-secondary-flow-recovery-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amylase&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amylase&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amylase&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10