CINXE.COM
Search results for: Ductile Brittle transition temperature
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ductile Brittle transition temperature</title> <meta name="description" content="Search results for: Ductile Brittle transition temperature"> <meta name="keywords" content="Ductile Brittle transition temperature"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ductile Brittle transition temperature" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ductile Brittle transition temperature"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8581</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ductile Brittle transition temperature</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8581</span> Effect of Microstructure on Transition Temperature of Austempered Ductile Iron (ADI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ozel">A. Ozel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this study transition temperature of as-cast and austempered unalloyed ductile iron in the temperature interval from -60 to +100 degrees C have been investigated. The microstructures of samples were examined by light microscope. The impact energy values obtained from the experiments were found to depend on the austempering time and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austempered%20Ductile%20Iron%20%28ADI%29" title="Austempered Ductile Iron (ADI)">Austempered Ductile Iron (ADI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Charpy%20test" title=" Charpy test"> Charpy test</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20temperature" title=" transition temperature "> transition temperature </a> </p> <a href="https://publications.waset.org/abstracts/28406/effect-of-microstructure-on-transition-temperature-of-austempered-ductile-iron-adi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8580</span> Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergin%20Kosa">Ergin Kosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20G%C3%B6ksenli"> Ali Göksenli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosive%20wear" title="erosive wear">erosive wear</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20impact%20angle" title=" particle impact angle"> particle impact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sand" title=" silica sand"> silica sand</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile-brittle%20material" title=" ductile-brittle material"> ductile-brittle material</a> </p> <a href="https://publications.waset.org/abstracts/35312/effect-of-impact-angle-on-erosive-abrasive-wear-of-ductile-and-brittle-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8579</span> Effect of Austenitization Temperature on Wear Behavior of Carbidic Austempered Ductile Iron (CADI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Likhite">Ajay Likhite</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Parhad"> Prashant Parhad</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Peshwe"> D. R. Peshwe</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Pathak"> S. U. Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromium bearing Austempered Ductile Iron (ADI) has been recently in the news for its improved wear performance over the ADI. The work presented below was taken up to study the effect of different austenitisation temperatures on the microstructure and wear performance of the Carbidic Austempered Ductile Iron (CADI). In this investigation Cr bearing ductile iron was subjected to austempering treatment to obtain an ausferritic microstructure. Two different austenitisation temperatures were selected whereas, the austempering temperature and time was kept unchanged. Microstructure and wear performance of this alloy, austenitized at two different temperatures was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austempered%20ductile%20iron" title="austempered ductile iron">austempered ductile iron</a>, <a href="https://publications.waset.org/abstracts/search?q=carbidic%20austempered%20ductile%20iron" title=" carbidic austempered ductile iron"> carbidic austempered ductile iron</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitization%20temperature" title=" austenitization temperature"> austenitization temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20behavior" title=" wear behavior"> wear behavior</a> </p> <a href="https://publications.waset.org/abstracts/10281/effect-of-austenitization-temperature-on-wear-behavior-of-carbidic-austempered-ductile-iron-cadi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8578</span> Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjinder%20Singh">Manjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasvinder%20Singh"> Jasvinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MMAW" title="MMAW">MMAW</a>, <a href="https://publications.waset.org/abstracts/search?q=Toughness" title=" Toughness"> Toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=DBT" title=" DBT"> DBT</a>, <a href="https://publications.waset.org/abstracts/search?q=Notch" title=" Notch"> Notch</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Coalesced%20bainite" title=" Coalesced bainite"> Coalesced bainite</a> </p> <a href="https://publications.waset.org/abstracts/33994/enhancement-of-fracture-toughness-for-low-temperature-applications-in-mild-steel-weldments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8577</span> Tectonics of Out-of-Sequence Thrusting in NW Himachal Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT) are the three OOST along Jakhri-Chaura segment along the Sutlej river valley in Himachal Pradesh. CT is deciphered only by Apatite Fission Track dating. Such geochronological information is not currently accessible for the Jhakri and Sarahan thrusts. JT was additionally validated as OOST without any dating. The described rock types include ductile sheared gneisses and upper greenschist-amphibolite facies metamorphosed schists. Locally, the Munsiari (Jutogh) Thrust is referred to as the JT. Brittle shear, the JT, borders the research area's southern and ductile shear, the CT, and its northern margins. The JT has a 50° western dip and is south-westward verging. It is 15–17 km deep. A progressive rise in strain towards the JT zone based on microstructural tests was observed by previous researchers. The high-temperature ranges of the MCT root zone are cited in the current work as supportive evidence for the ductile nature of the OOST. In Himachal Pradesh, the lithological boundaries for OOST are not set. In contrast, the Sarahan thrust is NW-SE striking and 50-80 m wide. ST and CT are probably equivalent and marked by a sheared biotite-chlorite matrix with a top-to-SE kinematic indicator. It is inferred from cross-section balancing that the CT is folded with this anticlinorium. These thrust systems consist of several branches, some of which are still active. The thrust system exhibits complex internal geometry consisting of box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. Box folds are observed on the hanging wall of the Chaura thrust. The ductile signature of CT represents steepen downward of the thrust. After the STDSU stopped deformation, out-of-sequence thrust was initiated in some sections of the Higher Himalaya. A part of GHC and part of the LH is thrust southwestward along the Jutogh Thrust/Munsiari Thrust/JT as also the Jutogh Nappe. The CT is concealed beneath Jutogh Thrust sheet hence the basal part of GHC is unexposed to the surface in Sutlej River section. Fieldwork and micro-structural studies of the Greater Himalayan Crystalline (GHC) along the Sutlej section reveal (a) initial top-to-SW sense of ductile shearing (CT); (b) brittle-ductile extension (ST); and (c) uniform top-to-SW sense of brittle shearing (JT). A group of samples of schistose rock from Jutogh Group of Greater Himalayan Crystalline and Quartzite from Rampur Group of Lesser Himalayan Crystalline were analyzed. No such physiographic transition in that area is to determine a break in the landscape due to OOST. OOSTs from GHC are interpreted mainly from geochronological studies to date, but proper field evidence is missing. Apart from minimal documentation in geological mapping for OOST, there exists a lack of suitable exposure of rock to generalize the features of OOST in the field in NW Higher Himalaya. Multiple sets of thrust planes may be activated within this zone or a zone along which OOST is engaged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title="out-of-sequence thrust">out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20central%20thrust" title=" main central thrust"> main central thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20boundary%20migration" title=" grain boundary migration"> grain boundary migration</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Tibetan%20detachment%20system" title=" South Tibetan detachment system"> South Tibetan detachment system</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakhri%20Thrust" title=" Jakhri Thrust"> Jakhri Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarahan%20Thrust" title=" Sarahan Thrust"> Sarahan Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaura%20Thrust" title=" Chaura Thrust"> Chaura Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20Himalaya" title=" higher Himalaya"> higher Himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=greater%20Himalayan%20crystalline" title=" greater Himalayan crystalline"> greater Himalayan crystalline</a> </p> <a href="https://publications.waset.org/abstracts/168640/tectonics-of-out-of-sequence-thrusting-in-nw-himachal-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8576</span> Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athina%20Puype">Athina Puype</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Malerba"> Lorenzo Malerba</a>, <a href="https://publications.waset.org/abstracts/search?q=Nico%20De%20Wispelaere"> Nico De Wispelaere</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumen%20Petrov"> Roumen Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Jilt%20Sietsma"> Jilt Sietsma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile-to-brittle%20transition%20temperature%20%28DBTT%29" title="ductile-to-brittle transition temperature (DBTT)">ductile-to-brittle transition temperature (DBTT)</a>, <a href="https://publications.waset.org/abstracts/search?q=EUROFER" title=" EUROFER"> EUROFER</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20activation%20ferritic%2Fmartensitic%20%28RAFM%29%20steels" title=" reduced activation ferritic/martensitic (RAFM) steels"> reduced activation ferritic/martensitic (RAFM) steels</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatments" title=" thermal treatments"> thermal treatments</a> </p> <a href="https://publications.waset.org/abstracts/59346/effect-of-thermal-treatment-on-mechanical-properties-of-reduced-activation-ferriticmartensitic-eurofer-steel-grade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8575</span> Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Ho%20Jang">Jae-Ho Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Soo%20Kim"> Jung-Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung-Jun%20Kim"> Byung-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Geun%20Nam"> Dae-Geun Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Uoo-Chang%20Jung"> Uoo-Chang Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon-Suk%20Choi"> Yoon-Suk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20austenitizing" title="double austenitizing">double austenitizing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature" title=" Ductile Brittle transition temperature"> Ductile Brittle transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alloy%20steel" title=" low alloy steel"> low alloy steel</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20toughness" title=" low-temperature toughness"> low-temperature toughness</a> </p> <a href="https://publications.waset.org/abstracts/28998/microstructure-and-mechanical-properties-of-low-alloy-steel-with-double-austenitizing-tempering-heat-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8574</span> Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Wen">W. Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Jackson"> G. Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maskill"> S. Maskill</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20McCartney"> D. G. McCartney</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Sun"> W. Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiCoCrAlY%20coatings" title="NiCoCrAlY coatings">NiCoCrAlY coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DBTT" title=" DBTT"> DBTT</a>, <a href="https://publications.waset.org/abstracts/search?q=miniature%20specimen%20testing" title=" miniature specimen testing"> miniature specimen testing</a> </p> <a href="https://publications.waset.org/abstracts/104223/evaluating-mechanical-properties-of-conicraly-coating-from-miniature-specimen-testing-at-elevated-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8573</span> Cracking Mode and Path in Duplex Stainless Steels Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20A.%20E.%20Alhegagi">Faraj A. E. Alhegagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20F.%20A.%20Alhajaji"> Bassam F. A. Alhajaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ductile and brittle fractures are the two main modes for the failure of engineering components. Fractures are classified with respect to several characteristics, such as strain to fracture, ductile or brittle crystallographic mode, shear or cleavage, and the appearance of fracture, granular or transgranular. Cleavage is a brittle fracture involves transcrystalline fracture along specific crystallographic planes and in certain directions. Fracture of duplex stainless steels takes place transgranularly by cleavage of the ferrite phase. On the other hand, ductile fracture occurs after considerable plastic deformation prior to failure and takes place by void nucleation, growth, and coalescence to provide an easy fracture path. Twinning causes depassivation more readily than slip and appears at stress lower than the theoretical yield stress. Consequently, damage due to twinning can occur well before that due to slip. Stainless steels are clean materials with the low efficiency of second particles phases on the fracture mechanism. The ferrite cleavage and austenite tear off are the main mode by which duplex stainless steels fails. In this study, the cracking mode and path of specimens of duplex stainless steels were investigated. Zeron 100 specimens were heat treated to different times cooled down and pulled to failure. The fracture surface was investigated by scanning electron microscopy (SEM) concentrating on the cracking mechanism, path, and origin. Cracking mechanisms were studied for those grains either as ferrite or austenite grains identified according to fracture surface features. Cracks propagated through the ferrite and the austenite two phases were investigated. Cracks arrested at the grain boundary were studied as well. For specimens aged for 100h, the ferrite phase was noted to crack by cleavage along well-defined planes while austenite ridges were clearly observed within the ferrite grains. Some grains were observed to fail with topographic features that were not clearly identifiable as ferrite cleavage or austenite tearing. Transgranular cracking was observed taking place in the ferrite phase on well-defined planes. No intergranular cracks were observed for the tested material. The austenite phase was observed to serve as a crack bridge and crack arrester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite%20ductile%20tear%20off" title="austenite ductile tear off">austenite ductile tear off</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20mode" title=" cracking mode"> cracking mode</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20cleavage" title=" ferrite cleavage"> ferrite cleavage</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels%20failure" title=" stainless steels failure"> stainless steels failure</a> </p> <a href="https://publications.waset.org/abstracts/99349/cracking-mode-and-path-in-duplex-stainless-steels-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8572</span> A study on Structural analysis of Out-of-Sequence Thrust along Sutlej River Valley (Jhakri-Wangtu section) Himachal Pradesh Higher Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Sutlej River Valley in Himachal Pradesh, India, is home to four Out-of-Sequence Thrusts (OOST) in the Higher Himalaya. These OOSTs include Jhakri Thrust (JT), Sarahan Thrust (ST), Chaura Thrust (CT), and Jeori Dislocation (JD). The study focuses on the rock types of these OOSTs, including ductile sheared gneisses and upper greenschist-amphibolite facies metamorphosed schists. Microstructural tests reveal a progressive increase in strain approaching the Jakhri thrust zone, with temperatures increasing from 400 to 750°C. The Chaura Thrust is assumed to be folded with this anticlinorium, with various branches that make up the thrust system. Fieldwork and microstructural research have revealed the following: (a) initial top-to-SW sense of ductile shearing (Chaura thrust); (b) brittle-ductile extension (Jeori Dislocation); and (c) uniform top-to-SW sense of brittle shearing (Jhakri thrust). Samples of Rampur Quartzite from the Rampur Group of Lesser Himalayan Crystalline and schistose rock from the Jutogh Group of Greater Himalayan Crystalline were examined.The study emphasizes the value of microscopic research in detecting different types of crenulated schistosity and documenting mylonitized zones. The paper explains the field evidence for the OOST and comes to the conclusion that the Chaura Thrust is not a blind thrust. The paper describes the box fold and its characteristics in the Himachal Himalayan regional geology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Out-of-sequence%20thrust%20%28OOST%29" title="Out-of-sequence thrust (OOST)">Out-of-sequence thrust (OOST)</a>, <a href="https://publications.waset.org/abstracts/search?q=jakhri%20thrust%20%28JT%29" title=" jakhri thrust (JT)"> jakhri thrust (JT)</a>, <a href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29" title=" sarahan thrust (ST)"> sarahan thrust (ST)</a>, <a href="https://publications.waset.org/abstracts/search?q=chaura%20thrust%20%28CT%29" title=" chaura thrust (CT)"> chaura thrust (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=jeori%20dislocation%20%28JD%29" title=" jeori dislocation (JD)"> jeori dislocation (JD)</a> </p> <a href="https://publications.waset.org/abstracts/168729/a-study-on-structural-analysis-of-out-of-sequence-thrust-along-sutlej-river-valley-jhakri-wangtu-section-himachal-pradesh-higher-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8571</span> Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noe%20Brice%20Nkoumbou%20Kaptchouang">Noe Brice Nkoumbou Kaptchouang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre-Guy%20Vincent"> Pierre-Guy Vincent</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Monerie"> Yann Monerie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile%20failure" title="ductile failure">ductile failure</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20model" title=" cohesive model"> cohesive model</a>, <a href="https://publications.waset.org/abstracts/search?q=GTN%20model" title=" GTN model"> GTN model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/102323/micromechanical-modelling-of-ductile-damage-with-a-cohesive-volumetric-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8570</span> New Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Sabih">Amar Sabih</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Nemes"> James Nemes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a new workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20sher%20band" title="adiabatic sher band">adiabatic sher band</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20failure" title=" ductile failure"> ductile failure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20instability" title=" stress instability"> stress instability</a>, <a href="https://publications.waset.org/abstracts/search?q=workability%20criterion" title=" workability criterion"> workability criterion</a> </p> <a href="https://publications.waset.org/abstracts/165073/new-stress-instability-workability-criteria-for-internal-ductile-failure-in-steel-cold-heading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8569</span> Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoyang%20Fu">Guoyang Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li"> Chun-Qing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ductile%20metal%20pipes" title="Ductile metal pipes">Ductile metal pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20fracture%20toughness" title=" elastic fracture toughness"> elastic fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20crack" title=" longitudinal crack"> longitudinal crack</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/79581/model-of-elastic-fracture-toughness-for-ductile-metal-pipes-with-external-longitudinal-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8568</span> A Novel Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Sabih">Amar Sabih</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Nemes"> James Nemes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20shear%20band" title="adiabatic shear band">adiabatic shear band</a>, <a href="https://publications.waset.org/abstracts/search?q=workability%20criterion" title=" workability criterion"> workability criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20failure" title=" ductile failure"> ductile failure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20instability" title=" stress instability"> stress instability</a> </p> <a href="https://publications.waset.org/abstracts/165077/a-novel-stress-instability-workability-criteria-for-internal-ductile-failure-in-steel-cold-heading-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8567</span> Experimental Investigation to Find Transition Temperature of VG 30 Binder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Latha">D. Latha</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sunitha"> V. Sunitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20Mathew"> Samson Mathew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, most of the pavement is laid by bituminous road and the consumption of binder is high for pavement construction and also modified binders are used to satisfy any specific pavement requirement. Since the binders are visco-elastic material which is having the mechanical properties of binder transition from visco-elastic solid to visco-elastic fluid. In this paper, two different protocols were used to measure the viscosity property of binder using a Brookfield Viscometer and there is a need to find the appropriate mixing and compaction temperatures of various types of binders which can result in complete aggregate coating and adequate field density of HMA mixtures. The aim of this work is to find the transition temperature from Non-Newtonian behavior to Newtonian behavior of the binder by adopting a steady shear protocol and the shear rate ramp protocol. The transition from non-Newtonian to Newtonian can occur through an increase of temperature and shear of the material. The test has been conducted for unmodified binder VG 30. The transition temperature was found in the unmodified binder VG is 120oC. So the application of both modified binder and unmodified binder in the pavement construction needs to be studied properly by considering temperature and traffic loading factors of the respective project site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmodified%20and%20modified%20binders" title="unmodified and modified binders">unmodified and modified binders</a>, <a href="https://publications.waset.org/abstracts/search?q=Brookfield%20viscometer" title=" Brookfield viscometer"> Brookfield viscometer</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20temperature" title=" transition temperature"> transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20shear%20and%20shear%20rate%20protocol" title=" steady shear and shear rate protocol"> steady shear and shear rate protocol</a> </p> <a href="https://publications.waset.org/abstracts/40594/experimental-investigation-to-find-transition-temperature-of-vg-30-binder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8566</span> Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akarsh%20Verma">Akarsh Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Parashar"> Avinash Parashar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ReaxFF" title=" ReaxFF"> ReaxFF</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/84672/effect-of-hydroxyl-functionalization-on-the-mechanical-and-fracture-behaviour-of-monolayer-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8565</span> Influence of Thermal Ageing on Microstructural Features and Mechanical Properties of Reduced Activation Ferritic/Martensitic Grades </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athina%20Puype">Athina Puype</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Malerba"> Lorenzo Malerba</a>, <a href="https://publications.waset.org/abstracts/search?q=Nico%20De%20Wispelaere"> Nico De Wispelaere</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumen%20Petrov"> Roumen Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Jilt%20Sietsma"> Jilt Sietsma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced Activation Ferritic/Martensitic (FM) steels like EUROFER are of interest for first wall application in the future demonstration (DEMO) fusion reactor. Depending on the final design codes for the DEMO reactor, the first wall material will have to function in low-temperature mode or high-temperature mode, i.e. around 250-300°C of above 550°C respectively. However, the use of RAFM steels is limited up to a temperature of about 550°C. For the low-temperature application, the material suffers from irradiation embrittlement, due to a shift of ductile-to-brittle transition temperature (DBTT) towards higher temperatures upon irradiation. The high-temperature response of the material is equally insufficient for long-term use in fusion reactors, due to the instability of the matrix phase and coarsening of the precipitates at prolonged high-temperature exposure. The objective of this study is to investigate the influence of thermal ageing for 1000 hrs and 4000 hrs on microstructural features and mechanical properties of lab-cast EUROFER. Additionally, the ageing behavior of the lab-cast EUROFER is compared with the ageing behavior of standard EUROFER97-2 and T91. The microstructural features were investigated with light optical microscopy (LOM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the microstructural features and mechanical properties of four different F/M grades, i.e. T91, EUROFER97-2 and two lab-casted EUROFER grades. After ageing for 1000 hrs, the microstructures exhibit similar martensitic block sizes independent on the grain size before ageing. With respect to the initial coarser microstructures, the aged microstructures displayed a dislocation structure which is partially fragmented by polygonization. On the other hand, the initial finer microstructures tend to be more stable up to 1000hrs resulting in similar grain sizes for the four different steels. Increasing the ageing time to 4000 hrs, resulted in an increase of lath thickness and coarsening of M23C6 precipitates leading to a deterioration of tensile properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ageing%20experiments" title="ageing experiments">ageing experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=EUROFER" title=" EUROFER"> EUROFER</a>, <a href="https://publications.waset.org/abstracts/search?q=ferritic%2Fmartensitic%20steels" title=" ferritic/martensitic steels"> ferritic/martensitic steels</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=T91" title=" T91"> T91</a> </p> <a href="https://publications.waset.org/abstracts/65950/influence-of-thermal-ageing-on-microstructural-features-and-mechanical-properties-of-reduced-activation-ferriticmartensitic-grades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8564</span> Investigate the Performance of SMA-FRP Composite Bars in Seismic Regions under Corrosion Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirmozafar%20Benshams">Amirmozafar Benshams</a>, <a href="https://publications.waset.org/abstracts/search?q=Saman%20Shafeinejad"> Saman Shafeinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zaman%20Kabir"> Mohammad Zaman Kabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Hatami"> Farzad Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khedmati"> Mohammadreza Khedmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesbah%20Saybani"> Mesbah Saybani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel bars has been used in concrete structures for more than one hundred years but lack of corrosion resistance of steel reinforcement has resulted in many structural failures. Fiber Reinforced Polymer (FRP) bar is an acceptable solution to replace steel to mitigate corrosion problem. Since FRP is a brittle material its use in seismic region has been a concern. FRP RC structures can be made ductile by employing a ductile material such as Shape Memory Alloy (SMA) at the plastic hinge region and FRP at the other regions on the other hand SMA is highly resistant to corrosion. Shape Memory Alloy has the unique ability to undergo large inelastic deformation and regain its initial shape through stress removal therefore utilizing composite SMA-FRP bars not only have good corrosion resistance but also have good performance in seismic region. The result show indicate that such composite SMA-FRP bars can substantially reduce the residual drift with adequate energy dissipation capacity during earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20bar" title="steel bar">steel bar</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/47187/investigate-the-performance-of-sma-frp-composite-bars-in-seismic-regions-under-corrosion-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8563</span> Finite Element and Experimental Investigation of Ductile Crack Growth of Surface Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20A.%20Terfas">Osama A. Terfas</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhakim%20A.%20Hameda"> Abdelhakim A. Hameda</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdusalam%20A.%20Alktiwi"> Abdusalam A. Alktiwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation on ductile crack growth of shallow semi-elliptical surface cracks with a/w=0.2, a/c=0.33 under bending was carried out, where a is the crack depth, w is the plate thickness and c is the crack length at surface. Finite element analysis and experiments were modelling and the crack growth model were verified with experimental data. The results showed that the initial crack shape was no longer maintained as the crack developed under ductile tearing. The maximum growth at the deepest point at early stages was stopped when the crack depth reached half thickness and growth occurred beneath surface. Excellent agreement in the crack shape patterns was observed between the experiments and the crack growth model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20growth" title="crack growth">crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20tearing" title=" ductile tearing"> ductile tearing</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20stress" title=" mean stress"> mean stress</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20cracks" title=" surface cracks "> surface cracks </a> </p> <a href="https://publications.waset.org/abstracts/19645/finite-element-and-experimental-investigation-of-ductile-crack-growth-of-surface-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8562</span> Modeling of Ductile Fracture Using Stress-Modified Critical Strain Criterion for Typical Pressure Vessel Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Cuenca">Carlos Cuenca</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Sarzosa"> Diego Sarzosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ductile fracture occurs by the mechanism of void nucleation, void growth and coalescence. Potential sites for initiation are second phase particles or non-metallic inclusions. Modelling of ductile damage at the microscopic level is very difficult and complex task for engineers. Therefore, conservative predictions of ductile failure using simple models are necessary during the design and optimization of critical structures like pressure vessels and pipelines. Nowadays, it is well known that the initiation phase is strongly influenced by the stress triaxiality and plastic deformation at the microscopic level. Thus, a simple model used to study the ductile failure under multiaxial stress condition is the Stress Modified Critical Strain (SMCS) approach. Ductile rupture has been study for a structural steel under different stress triaxiality conditions using the SMCS method. Experimental tests are carried out to characterize the relation between stress triaxiality and equivalent plastic strain by notched round bars. After calibration of the plasticity and damage properties, predictions are made for low constraint bending specimens with and without side grooves. Stress/strain fields evolution are compared between the different geometries. Advantages and disadvantages of the SMCS methodology are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=SMSC" title=" SMSC"> SMSC</a>, <a href="https://publications.waset.org/abstracts/search?q=SEB" title=" SEB"> SEB</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a> </p> <a href="https://publications.waset.org/abstracts/83255/modeling-of-ductile-fracture-using-stress-modified-critical-strain-criterion-for-typical-pressure-vessel-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8561</span> A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Paulo%20Pascon">João Paulo Pascon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20finite%20element" title="mixed finite element">mixed finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20strains" title=" large strains"> large strains</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20damage" title=" ductile damage"> ductile damage</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoviscoplasticity" title=" thermoviscoplasticity"> thermoviscoplasticity</a> </p> <a href="https://publications.waset.org/abstracts/171100/a-mixed-3d-finite-element-for-highly-deformable-thermoviscoplastic-materials-under-ductile-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8560</span> A Large-Strain Thermoviscoplastic Damage Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Paulo%20Pascon">João Paulo Pascon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile%20damage%20model" title="ductile damage model">ductile damage model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20strains" title=" large strains"> large strains</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoviscoplasticity" title=" thermoviscoplasticity"> thermoviscoplasticity</a> </p> <a href="https://publications.waset.org/abstracts/170649/a-large-strain-thermoviscoplastic-damage-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8559</span> Crystal Structures and High-Temperature Phase Transitions of the New Ordered Double Perovskites SrCaCoTeO6 and SrCaNiTeO6</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20Zaraq">Asmaa Zaraq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work we report X-ray powder diffraction measurements of SrCaCoTeO6 and SrCaNiTeO6, at different temperatures. The crystal structures at room temperature of both compounds are determined; and results showing the existence of high-temperature phase transitions in them are presented. Both compounds have double perovskite structure with 1:1 ordered arrangement of the B site cations. At room temperature their symmetries are described with the P21/n space group, that correspond to the (a+b-b-) tilt system. The evolution with temperature of the structure of both compounds shows the presence of three phase transitions: a continuous one, at 450 and 500 K, a discontinuous one, at 700 and 775 K, and a continuous one at 900 and 950 K for SrCaCoTeO6 and SrCaNiTeO6, respectively with the following phase-transition sequence: P21/n → I2/m → I4/m → Fm-3m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20perovskites" title="double perovskites">double perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=caracterisation%20DRX" title=" caracterisation DRX"> caracterisation DRX</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20de%20phase" title=" transition de phase"> transition de phase</a> </p> <a href="https://publications.waset.org/abstracts/27673/crystal-structures-and-high-temperature-phase-transitions-of-the-new-ordered-double-perovskites-srcacoteo6-and-srcaniteo6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8558</span> Coexistence of Superconductivity and Spin Density Wave in Ferropnictide Ba₁₋ₓKₓFe₂As₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadesse%20Desta%20Gidey">Tadesse Desta Gidey</a>, <a href="https://publications.waset.org/abstracts/search?q=Gebregziabher%20Kahsay"> Gebregziabher Kahsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooran%20Singh"> Pooran Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on the theoretical investigation of the coexistence of superconductivity and Spin Density Wave (SDW)in Ferropnictide Ba₁₋ₓKₓFe₂As₂. By developing a model Hamiltonian for the system and by using quantum field theory Green’s function formalism, we have obtained mathematical expressions for superconducting transition temperature TC), spin density wave transition temperature (Tsdw), superconductivity order parameter (Sc), and spin density wave order parameter (sdw). By employing the experimental and theoretical values of the parameters in the obtained expressions, phase diagrams of superconducting transition temperature (TC) versus superconducting order parameter (Sc) and spin density wave transition temperature (Tsdw), versus spin density wave order parameter (sdw) have been plotted. By combining the two phase diagrams, we have demonstrated the possible coexistence of superconductivity and spin density wave (SDW) in ferropnictide Ba1−xKxFe2As2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Superconductivity" title="Superconductivity">Superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Spin%20density%20wave" title=" Spin density wave"> Spin density wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Coexistence" title=" Coexistence"> Coexistence</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%20function" title=" Green function"> Green function</a>, <a href="https://publications.waset.org/abstracts/search?q=Pnictides" title=" Pnictides"> Pnictides</a>, <a href="https://publications.waset.org/abstracts/search?q=Ba%E2%82%81%E2%82%8B%E2%82%93K%E2%82%93Fe%E2%82%82As%E2%82%82" title=" Ba₁₋ₓKₓFe₂As₂"> Ba₁₋ₓKₓFe₂As₂</a> </p> <a href="https://publications.waset.org/abstracts/119138/coexistence-of-superconductivity-and-spin-density-wave-in-ferropnictide-ba1kfe2as2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8557</span> Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habtamu%20Anagaw%20Muluneh">Habtamu Anagaw Muluneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gebregziabher%20Kahsay"> Gebregziabher Kahsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamiru%20Negussie"> Tamiru Negussie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spin%20triplet%20superconductivity" title="spin triplet superconductivity">spin triplet superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title=" Green’s function"> Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20energy" title=" condensation energy"> condensation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20of%20state" title=" density of state"> density of state</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat" title=" specific heat"> specific heat</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a> </p> <a href="https://publications.waset.org/abstracts/193014/thermodynamic-and-magnetic-properties-of-heavy-fermion-ute2-superconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8556</span> Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Woo%20Kim">Sang-Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Seon%20Lee"> Young-Seon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium" title="magnesium">magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ31%20alloy" title=" AZ31 alloy"> AZ31 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20fracture" title=" ductile fracture"> ductile fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20forming" title=" sheet forming"> sheet forming</a>, <a href="https://publications.waset.org/abstracts/search?q=Erichsen%20cupping%20test" title=" Erichsen cupping test"> Erichsen cupping test</a> </p> <a href="https://publications.waset.org/abstracts/9024/practical-method-for-failure-prediction-of-mg-alloy-sheets-during-warm-forming-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8555</span> Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20transition" title="glass transition">glass transition</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20motion" title=" molecular motion"> molecular motion</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20materials" title=" polymer materials"> polymer materials</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20molecule" title=" single molecule"> single molecule</a> </p> <a href="https://publications.waset.org/abstracts/90107/segmental-motion-of-polymer-chain-at-glass-transition-probed-by-single-molecule-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8554</span> Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Movahedi">Behrooz Movahedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-based%20amorphous" title="Fe-based amorphous">Fe-based amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=B%E2%82%84C%20nanoparticles" title=" B₄C nanoparticles"> B₄C nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20coating" title=" nanocomposite coating"> nanocomposite coating</a>, <a href="https://publications.waset.org/abstracts/search?q=HVOF" title=" HVOF"> HVOF</a> </p> <a href="https://publications.waset.org/abstracts/96966/mechanical-investigation-approach-to-optimize-the-high-velocity-oxygen-fuel-fe-based-amorphous-coatings-reinforced-by-b4c-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8553</span> Phenomenological Ductile Fracture Criteria Applied to the Cutting Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20%C5%A0ebek">František Šebek</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Kub%C3%ADk"> Petr Kubík</a>, <a href="https://publications.waset.org/abstracts/search?q=Jind%C5%99ich%20Petru%C5%A1ka"> Jindřich Petruška</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20H%C5%AFlka"> Jiří Hůlka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile%20fracture" title="ductile fracture">ductile fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=phenomenological%20criteria" title=" phenomenological criteria"> phenomenological criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20process" title=" cutting process"> cutting process</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit%20formulation" title=" explicit formulation"> explicit formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=AISI%201045%20steel" title=" AISI 1045 steel"> AISI 1045 steel</a> </p> <a href="https://publications.waset.org/abstracts/15076/phenomenological-ductile-fracture-criteria-applied-to-the-cutting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8552</span> Thermal Transformation and Structural on Se90Te7Cu3 Chalcogenide Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20M.%20Abdel-Rahim">Farid M. Abdel-Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Se90Te7Cu3 chalcogenide glass was prepared using the melt quenching technique. The amorphous nature of the as prepared samples was confirmed by scanning electron microscope (SEM). Result of differential scanning calorimetric (DSC) under nonisothermal condition on composition bulk materials are reported and discussed. It shows that these glasses exhibit a single-stage glass transition and a single-stage crystallization on heating rates. The glass transition temperature (Tg), the onset crystallization (Tc), the crystallization temperature (Tp), were found by dependent on the composition and heating rates. Activation energy for glass transition (Et), activation energy of the amorphous –crystalline transformation (Ec), crystallization reaction rate constant (Kp), (n) and (m) are constants related to crystallization mechanism of the bulk samples have been determined by different formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chalcogenides" title="chalcogenides">chalcogenides</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=DSC" title=" DSC"> DSC</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition" title=" glass transition"> glass transition</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/41529/thermal-transformation-and-structural-on-se90te7cu3-chalcogenide-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=286">286</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=287">287</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ductile%20Brittle%20transition%20temperature&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>