CINXE.COM

Search results for: radial basis function network

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: radial basis function network</title> <meta name="description" content="Search results for: radial basis function network"> <meta name="keywords" content="radial basis function network"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="radial basis function network" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="radial basis function network"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12556</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: radial basis function network</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12556</span> Identification of Nonlinear Systems Using Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Pislaru">C. Pislaru</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani"> A. Shebani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=K-means%20clustering%20algorithm" title=" K-means clustering algorithm "> K-means clustering algorithm </a> </p> <a href="https://publications.waset.org/abstracts/14775/identification-of-nonlinear-systems-using-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12555</span> Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ejah%20Umraeni%20Salam">A. Ejah Umraeni Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tola"> M. Tola</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Selintung"> M. Selintung</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Maricar"> F. Maricar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title="radial basis function neural network">radial basis function neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20pipeline" title=" leakage pipeline"> leakage pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=EPANET" title=" EPANET"> EPANET</a>, <a href="https://publications.waset.org/abstracts/search?q=RMSE" title=" RMSE"> RMSE</a> </p> <a href="https://publications.waset.org/abstracts/7608/water-leakage-detection-system-of-pipe-line-using-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12554</span> Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukari%20Nassim">Boukari Nassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title="epilepsy">epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signals%20classification" title=" EEG signals classification"> EEG signals classification</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20odd%20pair%20autoregressive%20coefficients" title=" combined odd pair autoregressive coefficients"> combined odd pair autoregressive coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title=" radial basis function neural network"> radial basis function neural network</a> </p> <a href="https://publications.waset.org/abstracts/47454/combined-odd-pair-autoregressive-coefficients-for-epileptic-eeg-signals-classification-by-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12553</span> Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Payal">Ashish Payal</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Rai"> C. S. Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20R.%20Reddy"> B. V. R. Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m<sup>2</sup> grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=localization" title="localization">localization</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20perceptron" title=" multi-layer perceptron"> multi-layer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=backpropagation" title=" backpropagation"> backpropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=RSSI" title=" RSSI"> RSSI</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a> </p> <a href="https://publications.waset.org/abstracts/49637/comparative-analysis-of-sigmoidal-feedforward-artificial-neural-networks-and-radial-basis-function-networks-approach-for-localization-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12552</span> A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Noman%20Qasem">Sultan Noman Qasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network" title="radial basis function network">radial basis function network</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20learning" title=" hybrid learning"> hybrid learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/15843/a-multi-objective-evolutionary-algorithm-of-neural-network-for-medical-diseases-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12551</span> The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Jin%20Kim">Kyu Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title="structural health monitoring">structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-story%20drift%20ratio" title=" inter-story drift ratio"> inter-story drift ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title=" radial basis function neural network"> radial basis function neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/52253/the-estimation-method-of-inter-story-drift-for-buildings-based-on-evolutionary-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12550</span> An Improved Mesh Deformation Method Based on Radial Basis Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Zhou">Xuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Litian%20Zhang"> Litian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuixiang%20Li"> Shuixiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesh deformation using radial basis function interpolation method has been demonstrated to produce quality meshes with relatively little computational cost using a concise algorithm. However, it still suffers from the limited deformation ability, especially in large deformation. In this paper, a pre-displacement improvement is proposed to improve the problem that illegal meshes always appear near the moving inner boundaries owing to the large relative displacement of the nodes near inner boundaries. In this improvement, nodes near the inner boundaries are first associated to the near boundary nodes, and a pre-displacement based on the displacements of associated boundary nodes is added to the nodes near boundaries in order to make the displacement closer to the boundary deformation and improve the deformation capability. Several 2D and 3D numerical simulation cases have shown that the pre-displacement improvement for radial basis function (RBF) method significantly improves the mesh quality near inner boundaries and deformation capability, with little computational burden increasement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesh%20deformation" title="mesh deformation">mesh deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20quality" title=" mesh quality"> mesh quality</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20mesh" title=" background mesh"> background mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a> </p> <a href="https://publications.waset.org/abstracts/65928/an-improved-mesh-deformation-method-based-on-radial-basis-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12549</span> Function Approximation with Radial Basis Function Neural Networks via FIR Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Chul%20Lee">Kyu Chul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyun%20Yoo"> Sung Hyun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Ki%20Ahn"> Choon Ki Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Myo%20Taeg%20Lim"> Myo Taeg Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20problem" title=" classification problem"> classification problem</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20networks%20%28RBFN%29" title=" radial basis function networks (RBFN)"> radial basis function networks (RBFN)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20impulse%20response%20%28FIR%29%20filter" title=" finite impulse response (FIR) filter"> finite impulse response (FIR) filter</a> </p> <a href="https://publications.waset.org/abstracts/13851/function-approximation-with-radial-basis-function-neural-networks-via-fir-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12548</span> A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Jin%20Kim">Kyu Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title="structural health monitoring">structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network" title=" radial basis function network"> radial basis function network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/41138/a-prediction-model-for-dynamic-responses-of-building-from-earthquake-based-on-evolutionary-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12547</span> Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyad%20Almaita">Eyad Almaita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20forecasting" title="load forecasting">load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neural%20network" title=" adaptive neural network"> adaptive neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=short-term" title=" short-term"> short-term</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20consumption" title=" electricity consumption"> electricity consumption</a> </p> <a href="https://publications.waset.org/abstracts/40294/novel-adaptive-radial-basis-function-neural-networks-based-approach-for-short-term-load-forecasting-of-jordanian-power-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12546</span> Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Heidari">Mohammad Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thick%20walled%20cylinder" title="thick walled cylinder">thick walled cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis" title=" radial basis"> radial basis</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/34495/estimation-of-residual-stresses-in-thick-walled-cylinder-by-radial-basis-artificial-neural" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12545</span> Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Memari">Abdolreza Memari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscosity" title="viscosity">viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=Iranian%20crude%20oil" title=" Iranian crude oil"> Iranian crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20based" title=" radial based"> radial based</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20ball%20method" title=" roller ball method"> roller ball method</a>, <a href="https://publications.waset.org/abstracts/search?q=KHAN%20model" title=" KHAN model "> KHAN model </a> </p> <a href="https://publications.waset.org/abstracts/29815/prediction-fluid-properties-of-iranian-oil-field-with-using-of-radial-based-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12544</span> Comparative Study Using WEKA for Red Blood Cells Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jameela%20Ali">Jameela Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20A.%20Jalab"> Hamid A. Jalab</a>, <a href="https://publications.waset.org/abstracts/search?q=Loay%20E.%20George"> Loay E. George</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahim%20Ahmad"> Abdul Rahim Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizah%20Suliman"> Azizah Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Al-Jashamy"> Karim Al-Jashamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=K-nearest%20neighbors%20algorithm" title="K-nearest neighbors algorithm">K-nearest neighbors algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title=" radial basis function neural network"> radial basis function neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cells" title=" red blood cells"> red blood cells</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/11462/comparative-study-using-weka-for-red-blood-cells-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12543</span> Breast Cancer Detection Using Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwan%20Kumar">Jiwan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja"> Pooja</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Negi"> Sandeep Negi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjum%20Rouf"> Anjum Rouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar"> Amit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Lakra"> Naveen Lakra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20network" title="Bayesian network">Bayesian network</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20learning" title=" ensemble learning"> ensemble learning</a>, <a href="https://publications.waset.org/abstracts/search?q=understandable" title=" understandable"> understandable</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20making%20better" title=" data making better"> data making better</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a> </p> <a href="https://publications.waset.org/abstracts/185470/breast-cancer-detection-using-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12542</span> Inverse Cauchy Problem of Doubly Connected Domains via Spectral Meshless Radial Point Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elyas%20Shivanian">Elyas Shivanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the Cauchy problems of two-dimensional elliptic PDEs in doubly connected domains. It is obtained the unknown data on the inner boundary of the domain while overspecified boundary data are imposed on the outer boundary of the domain by using the SMRPI. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high order convergence rate. In this way, localization in SMRPI can reduce the ill-conditioning for Cauchy problem. Furthermore, we improve previous results and it is revealed the SMRPI is more accurate and stable by adding strong perturbations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cauchy%20problem" title="cauchy problem">cauchy problem</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20connected%20domain" title=" doubly connected domain"> doubly connected domain</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20function" title=" shape function"> shape function</a> </p> <a href="https://publications.waset.org/abstracts/56408/inverse-cauchy-problem-of-doubly-connected-domains-via-spectral-meshless-radial-point-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12541</span> Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Kaya">Ceren Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Okan%20Erkaymaz"> Okan Erkaymaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Ayar"> Orhan Ayar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20%C3%96zer"> Mahmut Özer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. &#39;Diabetic Retinopathy&#39; is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20retinopathy" title="diabetic retinopathy">diabetic retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title=" discrete wavelet transform"> discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20perceptron" title=" multi-layer perceptron"> multi-layer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=video-oculography%20%28VOG%29" title=" video-oculography (VOG)"> video-oculography (VOG)</a> </p> <a href="https://publications.waset.org/abstracts/78748/multi-layer-perceptron-and-radial-basis-function-neural-network-models-for-classification-of-diabetic-retinopathy-disease-using-video-oculography-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12540</span> A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jameela%20Ali">Jameela Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20A.%20Jalab"> Hamid A. Jalab</a>, <a href="https://publications.waset.org/abstracts/search?q=Loay%20E.%20George"> Loay E. George</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahim%20Ahmad"> Abdul Rahim Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizah%20Suliman"> Azizah Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Al-Jashamy"> Karim Al-Jashamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cells" title="red blood cells">red blood cells</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20networks" title=" radial basis function neural networks"> radial basis function neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=suport%20vector%20machine" title=" suport vector machine"> suport vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=k-nearest%20neighbors%20algorithm" title=" k-nearest neighbors algorithm"> k-nearest neighbors algorithm</a> </p> <a href="https://publications.waset.org/abstracts/15631/a-comparative-study-for-various-techniques-using-weka-for-red-blood-cells-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12539</span> Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulbaset%20Saad">Abdulbaset Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Younis"> Adel Younis</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuomin%20Dong"> Zuomin Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20evolution" title="differential evolution">differential evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20design" title=" engineering design"> engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=expensive%20computations" title=" expensive computations"> expensive computations</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-modeling" title=" meta-modeling"> meta-modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/48247/radial-basis-surrogate-model-integrated-to-evolutionary-algorithm-for-solving-computation-intensive-black-box-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12538</span> Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green&#039;s Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20U.%20Rahman">F. U. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Zhang"> R. Q. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title="Green’s function">Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20atom" title=" hydrogen atom"> hydrogen atom</a>, <a href="https://publications.waset.org/abstracts/search?q=Lippmann%20Schwinger%20equation" title=" Lippmann Schwinger equation"> Lippmann Schwinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20wave" title=" radial wave"> radial wave</a> </p> <a href="https://publications.waset.org/abstracts/42682/solution-of-the-nonrelativistic-radial-wave-equation-of-hydrogen-atom-using-the-greens-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12537</span> Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philip%20Symonds">Philip Symonds</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon%20Taylor"> Jon Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Chalabi"> Zaid Chalabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Davies"> Michael Davies</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title=" radial basis functions"> radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=metamodelling" title=" metamodelling"> metamodelling</a>, <a href="https://publications.waset.org/abstracts/search?q=python%20machine%20learning%20libraries" title=" python machine learning libraries"> python machine learning libraries</a> </p> <a href="https://publications.waset.org/abstracts/36155/performance-of-neural-networks-vs-radial-basis-functions-when-forming-a-metamodel-for-residential-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12536</span> Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdi.%20M.%20Nabi">Magdi. M. Nabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding-Li%20Yu"> Ding-Li Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor" title="Chylla-Haase polymerization reactor">Chylla-Haase polymerization reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20neural%20networks" title=" RBF neural networks"> RBF neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=feed-forward" title=" feed-forward"> feed-forward</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20control" title=" feedback control"> feedback control</a> </p> <a href="https://publications.waset.org/abstracts/11204/nonlinear-adaptive-pid-control-for-a-semi-batch-reactor-based-on-an-rbf-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">702</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12535</span> RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henni%20Mansour%20Abdelwaheb">Henni Mansour Abdelwaheb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teleoperation%20manipulators%20system" title="teleoperation manipulators system">teleoperation manipulators system</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying%20delay" title=" time-varying delay"> time-varying delay</a>, <a href="https://publications.waset.org/abstracts/search?q=actuator%20saturation" title=" actuator saturation"> actuator saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20robust%20rbf%20neural%20network%20approximation" title=" adaptive robust rbf neural network approximation"> adaptive robust rbf neural network approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainties" title=" uncertainties"> uncertainties</a> </p> <a href="https://publications.waset.org/abstracts/166930/rbf-neural-network-based-adaptive-robust-control-for-bounded-positionforce-control-of-bilateral-teleoperation-arms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12534</span> Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Komeylian">Somayeh Komeylian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DoA%20estimation" title="DoA estimation">DoA estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Adaptive%20antenna%20array" title=" Adaptive antenna array"> Adaptive antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20Neural%20Network" title=" Deep Neural Network"> Deep Neural Network</a>, <a href="https://publications.waset.org/abstracts/search?q=LS-SVM%20optimization%20model" title=" LS-SVM optimization model"> LS-SVM optimization model</a>, <a href="https://publications.waset.org/abstracts/search?q=Radial%20basis%20function" title=" Radial basis function"> Radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20MSE" title=" and MSE"> and MSE</a> </p> <a href="https://publications.waset.org/abstracts/129058/optimization-modeling-of-the-hybrid-antenna-array-for-the-doa-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12533</span> Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kudzanayi%20Chiteka">Kudzanayi Chiteka</a>, <a href="https://publications.waset.org/abstracts/search?q=Wellington%20Makondo"> Wellington Makondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20horizontal%20irradiation" title=" global horizontal irradiation"> global horizontal irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a> </p> <a href="https://publications.waset.org/abstracts/65891/artificial-intelligence-based-predictive-models-for-short-term-global-horizontal-irradiation-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12532</span> MHD Equilibrium Study in Alborz Tokamak</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryamosadat%20Ghasemi">Maryamosadat Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Amrollahi"> Reza Amrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title="equilibrium">equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=grad%E2%80%93shafranov" title=" grad–shafranov"> grad–shafranov</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title=" radial basis functions"> radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Alborz%20Tokamak" title=" Alborz Tokamak"> Alborz Tokamak</a> </p> <a href="https://publications.waset.org/abstracts/30952/mhd-equilibrium-study-in-alborz-tokamak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12531</span> Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolei%20Hu">Xiaolei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Ferrera"> Enrico Ferrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Tomasi"> Riccardo Tomasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Pastrone"> Claudio Pastrone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short-term%20load%20forecasting" title="short-term load forecasting">short-term load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20micro%20grid" title=" smart micro grid"> smart micro grid</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network" title=" radial basis function network"> radial basis function network</a>, <a href="https://publications.waset.org/abstracts/search?q=gain" title=" gain"> gain</a> </p> <a href="https://publications.waset.org/abstracts/19621/evaluation-of-short-term-load-forecasting-techniques-applied-for-smart-micro-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12530</span> Orthogonal Basis Extreme Learning Algorithm and Function Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Li">Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Li"> Yan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20basis%20extreme%20learning" title=" orthogonal basis extreme learning"> orthogonal basis extreme learning</a>, <a href="https://publications.waset.org/abstracts/search?q=function%20approximation" title=" function approximation"> function approximation</a> </p> <a href="https://publications.waset.org/abstracts/15129/orthogonal-basis-extreme-learning-algorithm-and-function-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12529</span> Calculation the Left Ventricle Wall Radial Strain and Radial SR Using Tagged Magnetic Resonance Imaging Data (tMRI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alenezy">Mohammed Alenezy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The function of cardiac motion can be used as an indicator of the heart abnormality by evaluating longitudinal, circumferential, and Radial Strain of the left ventricle. In this paper, the Radial Strain and SR is studied using tagged MRI (tMRI) data during the cardiac cycle on the mid-ventricle level of the left ventricle. Materials and methods: The short-axis view of the left ventricle of five healthy human (three males and two females) and four healthy male rats were imaged using tagged magnetic resonance imaging (tMRI) technique covering the whole cardiac cycle on the mid-ventricle level. Images were processed using Image J software to calculate the left ventricle wall Radial Strain and radial SR. The left ventricle Radial Strain and radial SR were calculated at the mid-ventricular level during the cardiac cycle. The peak Radial Strain for the human and rat heart was 40.7±1.44, and 46.8±0.68 respectively, and it occurs at 40% of the cardiac cycle for both human and rat heart. The peak diastolic and systolic radial SR for human heart was -1.78 s-1 ± 0.02 s-1 and 1.10±0.08 s-1 respectively, while for rat heart it was -5.16± 0.23s-1 and 4.25±0.02 s-1 respectively. Conclusion: This results show the ability of the tMRI data to characterize the cardiac motion during the cardiac cycle including diastolic and systolic phases which can be used as an indicator of the cardiac dysfunction by estimating the left ventricle Radial Strain and radial SR at different locations of the cardiac tissue. This study approves the validity of the tagged MRI data to describe accurately the cardiac radial motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=left%20ventricle" title="left ventricle">left ventricle</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20strain" title=" radial strain"> radial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=tagged%20MRI" title=" tagged MRI"> tagged MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20cycle" title=" cardiac cycle"> cardiac cycle</a> </p> <a href="https://publications.waset.org/abstracts/21036/calculation-the-left-ventricle-wall-radial-strain-and-radial-sr-using-tagged-magnetic-resonance-imaging-data-tmri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12528</span> Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipul%20M.%20Patel">Vipul M. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemantkumar%20B.%20Mehta"> Hemantkumar B. Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of &plusmn;1.81%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANN%20models" title="ANN models">ANN models</a>, <a href="https://publications.waset.org/abstracts/search?q=CLPHP" title=" CLPHP"> CLPHP</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20ratio" title=" filling ratio"> filling ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20regression" title=" generalized regression"> generalized regression</a>, <a href="https://publications.waset.org/abstracts/search?q=spread%20constant" title=" spread constant"> spread constant</a> </p> <a href="https://publications.waset.org/abstracts/59151/artificial-neural-network-modeling-of-a-closed-loop-pulsating-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12527</span> Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Kriebel">David Kriebel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Edgar%20Mehner"> Jan Edgar Mehner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromechanical" title="electromechanical">electromechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=transducer" title=" transducer"> transducer</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element" title=" finite-element"> finite-element</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20morphing" title=" mesh morphing"> mesh morphing</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a> </p> <a href="https://publications.waset.org/abstracts/135652/strongly-coupled-finite-element-formulation-of-electromechanical-systems-with-integrated-mesh-morphing-using-radial-basis-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=418">418</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=419">419</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10