CINXE.COM
Search results for: defect characterization
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: defect characterization</title> <meta name="description" content="Search results for: defect characterization"> <meta name="keywords" content="defect characterization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="defect characterization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="defect characterization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2934</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: defect characterization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2874</span> Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarakorn%20Sukaviriya">Sarakorn Sukaviriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steam-pipe%20leakage" title="steam-pipe leakage">steam-pipe leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20leakage" title=" steam leakage"> steam leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20crack%20analysis" title=" weld crack analysis"> weld crack analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20defect" title=" weld defect"> weld defect</a> </p> <a href="https://publications.waset.org/abstracts/116436/analysis-of-weld-crack-of-main-steam-governing-valve-steam-turbine-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2873</span> Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assamen%20Ayalew%20Ejigu">Assamen Ayalew Ejigu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Chiun%20%20Chao"> Liang-Chiun Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20levels" title="defect levels">defect levels</a>, <a href="https://publications.waset.org/abstracts/search?q=nanorods" title=" nanorods"> nanorods</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20modes" title=" Raman modes"> Raman modes</a> </p> <a href="https://publications.waset.org/abstracts/58523/growth-and-characterization-of-cuprous-oxide-cu2o-nanorods-by-reactive-ion-beam-sputter-deposition-ibsd-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2872</span> Congenital Heart Defect(CHD) “The Silent Crises”; The Need for New Innovative Ways to Save the Ghanaian Child - A Retrospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priscilla%20Akua%20Agyapong">Priscilla Akua Agyapong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In a country of nearly 34 million people, Ghana suffers from rapidly growing pediatric CHD cases and not enough pediatric specialists to attend to the burgeoning needs of these children. Most of the cases are either missed or diagnosed late, resulting in increased mortality. According to the National Cardiothoracic Centre, 1 in every 100,000 births in Ghana has CHD; however, there is limited data on the clinical presentation and its management, one of the many reasons I decided to do this case study coupled with the loss my 2 month old niece to multiple Ventricular Septal Defect 3 years ago due late diagnoses. Method: A retrospective cohort study was performed at the child health clinic of one of Ghana’s public tertiary Institutions using data from their electronic health record (EHR) from February 2021 to April 2022. All suspected or provisionally diagnosed cases were included in the analysis. Results: Records of over 3000 children were reviewed with an approximate male to female ratio of 1:1.53 cases diagnosed during the period of study, most of whom were less than 5 years of age. 25 cases had complete clinical records, with acyanotic septal defects being the most diagnosed. 62.5% of the cases were ventricular septal defects, followed by Patent Ductus Arteriosus (23%) and Atrial Septal Defects (4.5%). Tetralogy of Fallot was the most predominant and complex cyanotic CHD with 10%. Conclusion: The indeterminate coronary anatomy of infants makes it difficult to use only echocardiography and other conventional clinical methods in screening for CHDs. There are rising modernizations and new innovative ways that can be employed in Ghana for early detection, hence preventing the delay of a potential surgical repair. It is, therefore, imperative to create the needed awareness about these “SILENT CRISES” and help save the Ghanaian child’s life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congenital%20heart%20defect%28CHD%29" title="congenital heart defect(CHD)">congenital heart defect(CHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=ventricular%20septal%20defect%28VSD%29" title=" ventricular septal defect(VSD)"> ventricular septal defect(VSD)</a>, <a href="https://publications.waset.org/abstracts/search?q=atrial%20septal%20defect%28ASD%29" title=" atrial septal defect(ASD)"> atrial septal defect(ASD)</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20ductus%20arteriosus%28PDA%29" title=" patent ductus arteriosus(PDA)"> patent ductus arteriosus(PDA)</a> </p> <a href="https://publications.waset.org/abstracts/169197/congenital-heart-defectchd-the-silent-crises-the-need-for-new-innovative-ways-to-save-the-ghanaian-child-a-retrospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2871</span> Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Bohre">Ashish Bohre</a>, <a href="https://publications.waset.org/abstracts/search?q=Bla%C5%BE%20Likozar"> Blaž Likozar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saikat%20Dutta"> Saikat Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Dionisios%20G.%20Vlachos"> Dionisios G. Vlachos</a>, <a href="https://publications.waset.org/abstracts/search?q=Basudeb%20Saha"> Basudeb Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methacrylic%20acid" title="methacrylic acid">methacrylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=itaconic%20acid" title=" itaconic acid"> itaconic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=monomer" title=" monomer"> monomer</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20base%20catalyst" title=" solid base catalyst"> solid base catalyst</a> </p> <a href="https://publications.waset.org/abstracts/85506/solventless-cc-coupling-of-low-carbon-furanics-to-high-carbon-fuel-precursors-using-an-improved-graphene-oxide-carbocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2870</span> Wear Diagnosis of Diesel Engine Helical Gear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra">Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gajanan%20Rane"> Gajanan Rane</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Rani"> Sushma Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents metallurgical investigation of failed helical gear of diesel engine gear box used in a car. The failure had occurred near the bottomland of the tooth spacing. The failed surface was studied under Scanning Electron Microscope (SEM) and also visually investigated. The images produced through SEM at various magnifications were studied. Detailed metallurgical study indicates that failure was due to foreign material inclusion which is a casting defect. Further study also revealed pitting, spalling and inter-granular fracture as the causes of gear failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20gear" title="helical gear">helical gear</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20defect" title=" casting defect"> casting defect</a>, <a href="https://publications.waset.org/abstracts/search?q=pitting" title=" pitting"> pitting</a> </p> <a href="https://publications.waset.org/abstracts/49719/wear-diagnosis-of-diesel-engine-helical-gear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2869</span> Process Parameter Study on Friction Push Plug Welding of AA6061 Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Li">H. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Qin"> W. Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Ye"> Ben Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Push Plug Welding (FPPW) is a solid phase welding suitable for repairing defective welds and filling self-reacting weld keyholes in Friction Stir Welds. In FPPW process, a tapered shaped plug is rotated at high speed and forced into a tapered hole in the substrate. The plug and substrate metal is softened by the increasing temperature generated by friction and material plastic deformation. This paper aims to investigate the effect of process parameters on the quality of the weld. Orthogonal design methods were employed to reduce the amount of experiment. Three values were selected for each process parameter, rotation speed (1500r/min, 2000r/min, 2500r/min), plunge depth (2mm, 3mm, 4mm) and plunge speed (60mm/min, 90mm/min, 120r/min). AA6061aluminum alloy plug and substrate plate was used in the experiment. In a trial test with the plunge depth of 1mm, a noticeable defect appeared due to the short plunge time and insufficient temperature. From the recorded temperature profiles, it was found that the peak temperature increased with the increase of the rotation speed, plunge speed and plunge depth. In the initial stage, the plunge speed was the main factor affecting heat generation, while in the steady state welding stage, the rotation speed played a more important role. The FPPW weld defect includes flash and incomplete penetration in the upper, middle and bottom interface with the substrate. To obtain defect free weld, the higher rotation speed and proper plunge depth were recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20push%20plug%20welding" title="friction push plug welding">friction push plug welding</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameter" title=" process parameter"> process parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20defect" title=" weld defect"> weld defect</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20design" title=" orthogonal design"> orthogonal design</a> </p> <a href="https://publications.waset.org/abstracts/96583/process-parameter-study-on-friction-push-plug-welding-of-aa6061-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2868</span> Theoretical Approach to Kinetic of Heat Transfer under Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavlo%20Selyshchev">Pavlo Selyshchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical approach to describe kinetic of heat transfer between an irradiated sample and environment is developed via formalism of the Complex systems and kinetic equations. The irradiated material is a metastable system with non-linear feedbacks, which can give rise to different regimes of buildup and annealing of radiation-induced defects, heating and heat transfer with environment. Irradiation with energetic particles heats the sample and produces defects of the crystal lattice of the sample. The crystal with defects accumulates extra (non-thermal) energy, which is transformed into heat during the defect annealing. Any increase of temperature leads to acceleration of defect annealing, to additional transformation of non-thermal energy into heat and to further growth of the temperature. Thus a non-linear feedback is formed. It is shown that at certain conditions of irradiation this non-linear feedback leads to self-oscillations of the defect density, the temperature of the irradiated sample and the heat transfer between the sample and environment. Simulation and analysis of these phenomena is performed. The frequency of the self-oscillations is obtained. It is determined that the period of the self-oscillations is varied from minutes to several hours depending on conditions of irradiation and properties of the sample. Obtaining results are compared with experimental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation" title="irradiation">irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20feed-back" title=" non-linear feed-back"> non-linear feed-back</a>, <a href="https://publications.waset.org/abstracts/search?q=self-oscillations" title=" self-oscillations"> self-oscillations</a> </p> <a href="https://publications.waset.org/abstracts/54969/theoretical-approach-to-kinetic-of-heat-transfer-under-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2867</span> Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Pastuszak">P. D. Pastuszak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20thermography" title="active thermography">active thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20structures" title=" curved structures"> curved structures</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a> </p> <a href="https://publications.waset.org/abstracts/39267/thermographic-tests-of-curved-gfrp-structures-with-delaminations-numerical-modelling-vs-experimental-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2866</span> Ab-Initio Study of Native Defects in SnO Under Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Albar">A. Albar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Granato"> D. B. Granato</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Schwingenschlogl"> U. Schwingenschlogl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=native%20defects" title="native defects">native defects</a>, <a href="https://publications.waset.org/abstracts/search?q=ab-initio" title=" ab-initio"> ab-initio</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defect" title=" point defect"> point defect</a>, <a href="https://publications.waset.org/abstracts/search?q=tension" title=" tension"> tension</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/1948/ab-initio-study-of-native-defects-in-sno-under-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2865</span> Preparation and Characterization of Activated Carbon from Animal Bone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getenet%20Aseged%20Zeleke">Getenet Aseged Zeleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this project was to study the synthesis of activated carbon from low-cost animal beef and the characterization of the product obtained. The bone was carbonized in an inert atmosphere at three different temperatures (500°C, 700oC and 900°C) in an electric furnace, followed by activation with hydrochloric acid. The activated animal bone charcoals obtained were characterized by using scanning electron microscopy (SEM)to observe the effect of activation compared to the unactivated bone charcoal. The following parameters were also determined: ash content, moisture content, volatile content, fixed carbon, pH, pore volume and bulk (apparent) density. The characterization result showed that the activated bone charcoal has good properties and is compared favorably with other reference activated carbons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bones" title="bones">bones</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=activation" title=" activation"> activation</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/166891/preparation-and-characterization-of-activated-carbon-from-animal-bone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2864</span> Defect Profile Simulation of Oxygen Implantation into Si and GaAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Dahbi">N. Dahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Taleb"> R. B. Taleb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study concerns the ion implantation of oxygen in two semiconductors Si and GaAs realized by a simulation using the SRIM tool. The goal of this study is to compare the effect of implantation energy on the distribution of implant ions in the two targets and to examine the different processes resulting from the interaction between the ions of oxygen and the target atoms (Si, GaAs). SRIM simulation results indicate that the implanted ions have a profile as a function of Gaussian-type; oxygen produced more vacancies and implanted deeper in Si compared to GaAs. Also, most of the energy loss is due to ionization and phonon production, where vacancy production amounts to few percent of the total energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20profile" title="defect profile">defect profile</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20implantation" title=" ion implantation"> ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=SRIM" title=" SRIM"> SRIM</a>, <a href="https://publications.waset.org/abstracts/search?q=phonon%20production" title=" phonon production"> phonon production</a>, <a href="https://publications.waset.org/abstracts/search?q=vacancies" title=" vacancies"> vacancies</a> </p> <a href="https://publications.waset.org/abstracts/97753/defect-profile-simulation-of-oxygen-implantation-into-si-and-gaas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2863</span> Ballistic Transport in One-Dimensional Random Dimer Photonic Crystals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Cherid">Samira Cherid</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Bentata"> Samir Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zahira%20Meghoufel"> F. Zahira Meghoufel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabria%20Terkhi"> Sabria Terkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamina%20Sefir"> Yamina Sefir</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Bendahma"> Fatima Bendahma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouabdellah%20Bouadjemi"> Bouabdellah Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Z.%20Itouni"> Ali Z. Itouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we examined the propagation of light in one-dimensional systems is examined by means of the random dimer model. The introduction of defect elements, randomly in the studied system, breaks down the Anderson localization and provides a set of propagating delocalized modes at the corresponding conventional dimer resonances. However, tuning suitably the defect dimer resonance on the host ones (or vice versa), the transmission magnitudes can be enhanced providing the optimized ballistic transmission regime as an average response. Hence, ballistic optical filters can be conceived at desired wavelengths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystals" title="photonic crystals">photonic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dimer%20model" title=" random dimer model"> random dimer model</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20resonance" title=" ballistic resonance"> ballistic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=localization%20and%20transmission" title=" localization and transmission "> localization and transmission </a> </p> <a href="https://publications.waset.org/abstracts/33452/ballistic-transport-in-one-dimensional-random-dimer-photonic-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2862</span> Effects of the Ambient Temperature and the Defect Density on the Performance the Solar Cell (HIT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouzaki%20Mohammed%20Moustafa">Bouzaki Mohammed Moustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benyoucef%20Boumediene"> Benyoucef Boumediene</a>, <a href="https://publications.waset.org/abstracts/search?q=Benouaz%20Tayeb"> Benouaz Tayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Benhamou%20Amina"> Benhamou Amina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ambient temperature and the defects density in the Hetero-junction with Intrinsic Thin layers solar cells (HIT) strongly influence their performances. In first part, we presented the bands diagram on the front/back simulated solar cell based on a-Si: H / c-Si (p)/a-Si:h. In another part, we modeled the following layers structure: ZnO/a-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(p)/Ag where we studied the effect of the ambient temperature and the defects density in the gap of the crystalline silicon layer on the performance of the heterojunction solar cell with intrinsic layer (HIT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterojunction%20solar%20cell" title="heterojunction solar cell">heterojunction solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance" title=" solar cell performance"> solar cell performance</a>, <a href="https://publications.waset.org/abstracts/search?q=bands%20diagram" title=" bands diagram"> bands diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title=" ambient temperature"> ambient temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20density" title=" defect density "> defect density </a> </p> <a href="https://publications.waset.org/abstracts/21496/effects-of-the-ambient-temperature-and-the-defect-density-on-the-performance-the-solar-cell-hit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2861</span> Analysis of Scattering Behavior in the Cavity of Phononic Crystals with Archimedean Tilings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Hua%20Chen">Yi-Hua Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiang-Wen%20Tang"> Hsiang-Wen Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ling%20Chang"> I-Ling Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lien-Wen%20Chen"> Lien-Wen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20mode" title="defect mode">defect mode</a>, <a href="https://publications.waset.org/abstracts/search?q=Archimedean%20tilings" title=" Archimedean tilings"> Archimedean tilings</a>, <a href="https://publications.waset.org/abstracts/search?q=phononic%20crystals" title=" phononic crystals"> phononic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=whispering-gallery%20modes" title=" whispering-gallery modes"> whispering-gallery modes</a> </p> <a href="https://publications.waset.org/abstracts/47506/analysis-of-scattering-behavior-in-the-cavity-of-phononic-crystals-with-archimedean-tilings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2860</span> Application of Fuzzy Approach to the Vibration Fault Diagnosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Khelil">Jalel Khelil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title="fault diagnosis">fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20classification%20k-nearest%20neighbor" title=" fuzzy classification k-nearest neighbor"> fuzzy classification k-nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration "> vibration </a> </p> <a href="https://publications.waset.org/abstracts/3115/application-of-fuzzy-approach-to-the-vibration-fault-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2859</span> Comparison of Visual Field Tests in Glaucoma Patients with a Central Visual Field Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye-Young%20Shin">Hye-Young Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae-Young%20Lopilly%20Park"> Hae-Young Lopilly Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Kee%20Park"> Chan Kee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We compared the 24-2 and 10-2 visual fields (VFs) and investigate the degree of discrepancy between the two tests in glaucomatous eyes with central VF defects. In all, 99 eyes of 99 glaucoma patients who underwent both the 24-2 VF and 10-2 VF tests within 6 months were enrolled retrospectively. Glaucomatous eyes involving a central VF defect were divided into three groups based on the average total deviation (TD) of 12 central points in the 24-2 VF test (N = 33, in each group): group 1 (tercile with the highest TD), group 2 (intermediate TD), and group 3 (lowest TD). The TD difference was calculated by subtracting the average TD of the 10-2 VF test from the average TD of 12 central points in the 24-2 VF test. The absolute central TD difference in each quadrant was defined as the absolute value of the TD value obtained by subtracting the average TD of four central points in the 10-2 VF test from the innermost TD in the 24-2 VF test in each quadrant. The TD differences differed significantly between group 3 and groups 1 and 2 (P < 0.001). In the superonasal quadrant, the absolute central TD difference was significantly greater in group 2 than in group 1 (P < 0.05). In the superotemporal quadrant, the absolute central TD difference was significantly greater in group 3 than in groups 1 and 2 (P < 0.001). Our results indicate that the results of VF tests for different VFs can be inconsistent, depending on the degree of central defects and the VF quadrant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20visual%20field%20defect" title="central visual field defect">central visual field defect</a>, <a href="https://publications.waset.org/abstracts/search?q=glaucoma" title=" glaucoma"> glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=10-2%20visual%20field" title=" 10-2 visual field"> 10-2 visual field</a>, <a href="https://publications.waset.org/abstracts/search?q=24-2%20visual%20field" title=" 24-2 visual field"> 24-2 visual field</a> </p> <a href="https://publications.waset.org/abstracts/97801/comparison-of-visual-field-tests-in-glaucoma-patients-with-a-central-visual-field-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2858</span> Characterization Techniques for Studying Properties of Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nandini%20Sharma">Nandini Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a>, <a href="https://publications.waset.org/abstracts/search?q=optical" title=" optical"> optical</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterial" title=" nanomaterial"> nanomaterial</a> </p> <a href="https://publications.waset.org/abstracts/133270/characterization-techniques-for-studying-properties-of-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2857</span> Sampling and Characterization of Fines Created during the Shredding of Non Hazardous Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soukaina%20Oujana">Soukaina Oujana</a>, <a href="https://publications.waset.org/abstracts/search?q=Peggy%20Zwolinski"> Peggy Zwolinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fines are heterogeneous residues created during the shredding of non-hazardous waste. They are one of the most challenging issues faced by recyclers, because they are at the present time considered as non-sortable and non-reusable mixtures destined to landfill. However, fines contain a large amount of recoverable materials that could be recycled or reused for the production of solid recovered fuel. This research is conducted in relation to a project named ValoRABES. The aim is to characterize fines and establish a suitable sorting process in order to extract the materials contained in the mixture and define their suitable recovery paths. This paper will highlight the importance of a good sampling and will propose a sampling methodology for fines characterization. First results about the characterization will be also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fines" title="fines">fines</a>, <a href="https://publications.waset.org/abstracts/search?q=non-hazardous%20waste" title=" non-hazardous waste"> non-hazardous waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=shredding%20residues" title=" shredding residues"> shredding residues</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20characterization" title=" waste characterization"> waste characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20sampling" title=" waste sampling"> waste sampling</a> </p> <a href="https://publications.waset.org/abstracts/77680/sampling-and-characterization-of-fines-created-during-the-shredding-of-non-hazardous-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2856</span> Oil Palm Leaf and Corn Stalk, Mechanical Properties and Surface Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zawawi%20Daud">Zawawi Daud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agro waste can be defined as waste from agricultural plant. Oil palm leaf and corn stalk can be categorized as ago waste material. At first, the comparison between oil palm leaf and corn stalk by mechanical properties from soda pulping process. After that, focusing on surface characterization by Scanning Electron Microscopy (SEM). Both material have a potential due to mechanical properties (tensile, tear, burst and fold) and surface characterization but corn stalk shows more in strength and compactness due to fiber characterization compared to oil palm leaf. This study promoting the green technology in develop a friendly product and suitable to be used as an alternative pulp in paper making industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber" title="fiber">fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20leaf" title=" oil palm leaf"> oil palm leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20stalk" title=" corn stalk"> corn stalk</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a> </p> <a href="https://publications.waset.org/abstracts/21503/oil-palm-leaf-and-corn-stalk-mechanical-properties-and-surface-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2855</span> Study of 'Rolled in Scale' and 'Rolled in Scum' in Automotive Grade Cold-Rolled Annealed Steel Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumendu%20Monia">Soumendu Monia</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Jain"> Vaibhav Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrishikesh%20Jugade"> Hrishikesh Jugade</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashi%20Adhikary"> Manashi Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Mukhopadhyay"> Goutam Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 'Rolled in scale' (RIS) and 'Rolled in Scum' (RISc) are two superficial surface defects on cold rolled and annealed steel sheets which affect the aesthetics of surface and thereby that of the end-product. Both the defects are believed to be originating from distinctly different sources having different mechanisms of formation. However, due to their similar physical appearance, RIS and RISc are generally confused with each other and hence attaining the exact root cause for elimination of the defect becomes difficult. RIS appears irregular in shape, sometimes scattered, and always oriented in rolling direction. RISc is generally oval shaped, having identifiable pointed edges and mostly oriented in rolling direction. Visually, RIS appears to be greyish in colour whereas RISc is whitish in colour. Both the defects have quite random occurrence and do not leave any imprints on the reverse-side of the sheet. In the current study, an attempt has been made to differentiate these two similar looking surface defects using various metallographic and characterization techniques. Systematic experiments have been carried out to identify possible mechanisms of formation of these defects. Detailed characterization revealed basic differences between RIS and RISc with respect to their surface morphology. To summarize, RIS was observed as a residue of an otherwise under-pickled scale patch on surface, after it has been subjected to cold rolling and annealing in a batch/continuous furnace. Whereas RISc was found to be a localized rubbing of the surface, at the time of cold rolling itself, resulting in a rough surface texture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annealing" title="annealing">annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=rolled%20in%20scale" title=" rolled in scale"> rolled in scale</a>, <a href="https://publications.waset.org/abstracts/search?q=rolled%20in%20scum" title=" rolled in scum"> rolled in scum</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20panel" title=" skin panel "> skin panel </a> </p> <a href="https://publications.waset.org/abstracts/107183/study-of-rolled-in-scale-and-rolled-in-scum-in-automotive-grade-cold-rolled-annealed-steel-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2854</span> Clinicoradiographic Evaluation of Polymer of Injectable Platelet-Rich Fibrin (i-PRF) and Hydroxyapatite as Bone Graft Substitute in Maxillomandibular Bony Defects: A Double-Blinded Randomized Control Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naqoosh%20Haidry">Naqoosh Haidry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective & Goal: Enucleation of the maxillomandibular cysts will lead to the creation of post-surgical bone defects which may take more than a year for complete bone healing. The use of bone grafts is common to aid bone regeneration in large defects. The study aimed to evaluate the healing and bone formation capabilities of polymer of injectable platelet fibrin (i-PRF) and hydroxyapatite (HA) as bone graft substitute in maxilla-mandibular postsurgical defects compared to hydroxyapatite alone. The primary objective was to find out the clinical and radiological assessment of healing postoperatively and compare the outcome of both groups. Material and Methods: After surgical enucleation of 19 maxillomandibular cysts/tumors, either HA or HA+ i-PRF graft was adapted to the defect. Clinical outcome variables such as pain (VAS score), edema, and mucosal color were evaluated on postoperative days 01, 03, and 07 while radiological outcome variables such as volume of defect (cc), density of new bone (HU) on computed tomography were evaluated at 2nd and 4th month. The results obtained were tabulated and compared with the inferential analysis. Results: Clinical parameters seem to be better in the HA + i-PRF group, but the result was non-significant. Radiologically, the mean healing ratios were significantly greater in the HA + i-PRF group (63.5 ± 2.34 at 2nd month, 90.3 ± 7.32 at 4th month) compared to the HA group (57.2 ± 5.21at 2nd month, 80.8 ± 5.33 at 4th month). When comparing the mean density of new bone, there was a statistically significant difference with a mean difference of 95.2 HU more in the HA + i-PRF (623 HU ± 42.9) compared to the HA group (528 HU ± 96.5) in 2nd month. Conclusion: The polymer of i-PRF and HA prepared as the sticky bone yields faster and better bone healing in post-enucleation maxillomandibular bony defects as compared to hydroxyapatite alone based on radiological findings till four months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20defect" title="bone defect">bone defect</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20of%20new%20bone" title=" density of new bone"> density of new bone</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=injectable%20platelet%20rich%20fibrin" title=" injectable platelet rich fibrin"> injectable platelet rich fibrin</a>, <a href="https://publications.waset.org/abstracts/search?q=maxillomandibular%20cysts" title=" maxillomandibular cysts"> maxillomandibular cysts</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20defect" title=" surgical defect"> surgical defect</a> </p> <a href="https://publications.waset.org/abstracts/184467/clinicoradiographic-evaluation-of-polymer-of-injectable-platelet-rich-fibrin-i-prf-and-hydroxyapatite-as-bone-graft-substitute-in-maxillomandibular-bony-defects-a-double-blinded-randomized-control-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2853</span> In Vivo Response of Scaffolds of Bioactive Glass-Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Claudia%20Muniz%20Renn%C3%B3">Ana Claudia Muniz Rennó</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Nogueira"> Karina Nogueira </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate the in vivo tissue response of the introduction of the bioactive mesh (BM) scaffolds using a model of tibial bone defect implants in rats. Although a previous in vivo study demonstrated a highly positive response of particulate bioactive materials in the morphological and biomechanical properties of the bone callus, the effects of material with superior bioactivity, present in form of meshes have not been studied yet. Eighty male Wistar rats with 3 mm tibial defects were used. Animals were divided into four groups: intact group (IG) – tibia without any injury; bone defect day zero (0dD) – bone defects, sacrificed immediately after injury; bone defect control group (CG) – bone defects without any filler and bone defect filled with BM scaffold. The animals of BM and CG groups were sacrificed 15, 30 and 45 days post-injury to compare the temporal-special effects of the scaffolds on bone healing. The histological analysis revealed an organized newly formed bone at 30 and 45 days post-surgery in the BM. Also, this group presented an increased COX-2 expression on days 15 and 30 post-surgery. Furthermore, the immunohistochemistry analysis revealed that, BM presented a positive immunoexpression of RUNX-2 during all periods evaluated. The biomechanical analysis revealed that at 15 day after surgery, no significant statistically difference was observed between BM and CG and both groups had significantly higher values of maximal load compared to 0dG and significantly lower values than IG. On days 30 and 45 post-surgery, BM presented statistically lower values of maximal load compared to the CG. Nevertheless, at the same periods, BM did not show statistically significant difference compared to the IG maximal load values (p > 0, 05). Our results revealed that the implantation of the BM scaffolds was effective in stimulating newly bone formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone" title="bone">bone</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolds" title=" scaffolds"> scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=cartilage" title=" cartilage"> cartilage</a> </p> <a href="https://publications.waset.org/abstracts/5461/in-vivo-response-of-scaffolds-of-bioactive-glass-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2852</span> Software Defect Analysis- Eclipse Dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrane%20Meriem">Amrane Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Oukid%20Salyha"> Oukid Salyha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title="software engineering">software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=bugs%20detection" title=" bugs detection"> bugs detection</a>, <a href="https://publications.waset.org/abstracts/search?q=effort%20estimation" title=" effort estimation"> effort estimation</a> </p> <a href="https://publications.waset.org/abstracts/172928/software-defect-analysis-eclipse-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2851</span> Central Palmar Necrosis Following Steroid Injections for the Treatment of Carpal Tunnel Syndrome: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ridwanul%20Hassan">M. Ridwanul Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20George"> Samuel George</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Steroid injections are commonly used as a diagnostic tool or an alternative to surgical management of carpal tunnel syndrome (CTS) and are generally safe. Ischaemia is a rare complication with very few cases reported in the literature. Methods: We report a case of a 50-year-old female that presented with a necrotic wound to her left palm one month after a steroid injection into the carpal tunnel. She had a 2-year history of CTS in her left hand that was treated with six previous steroid injections in primary care during this period. The wound evolved from a blister to a necrotic ulcer which led to a painful, hollow defect in the centre of her palm. She did not report any history of trauma, nor did she have any co-morbidities. Clinical photographs were taken. Results: On examination, she had a 0.5 cmx1 cm defect in the palm of her left hand down to aponeurosis. There was purulent discharge in the wound with surrounding erythema but no spreading cellulitis. She had full function of her fingers but was very tender on movements and at rest. She was admitted for intravenous antibiotics and underwent a debridement, washout, and carpal tunnel release the next day. The defect was packed to heal by secondary intention and has now fully healed one month following her operation. Conclusions: This is an extremely rare complication of steroid injections to the carpal tunnel and may have been avoided by earlier referral for surgery rather than treatment using multiple steroid injections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand%20surgery" title="hand surgery">hand surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=complication" title=" complication"> complication</a>, <a href="https://publications.waset.org/abstracts/search?q=rare" title=" rare"> rare</a>, <a href="https://publications.waset.org/abstracts/search?q=carpal%20tunnel%20syndrome" title=" carpal tunnel syndrome"> carpal tunnel syndrome</a> </p> <a href="https://publications.waset.org/abstracts/152984/central-palmar-necrosis-following-steroid-injections-for-the-treatment-of-carpal-tunnel-syndrome-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2850</span> Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyahia">A. Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amir"> M. Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fodil"> M. Fodil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DT" title="DT">DT</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20eddy%20current" title=" pulsed eddy current"> pulsed eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title=" continuous wavelet transform"> continuous wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexican%20hat%20wavelet%20mother" title=" Mexican hat wavelet mother"> Mexican hat wavelet mother</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectral%20density." title=" power spectral density."> power spectral density.</a> </p> <a href="https://publications.waset.org/abstracts/88425/enhancement-of-pulsed-eddy-current-response-based-on-power-spectral-density-after-continuous-wavelet-transform-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2849</span> Effect of the Nature of Silica Precursor in Zeolite ZSM-22 Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nyiko%20M.%20Chauke">Nyiko M. Chauke</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ramontja"> James Ramontja</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20M.%20Moutloali"> Richard M. Moutloali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The zeolite ZSM-22 material demonstrated effective hydrophilic character as a nanoadditive filler in the preparation of nanocomposite membranes. In this study, nanorods ZSM-22 zeolite materials were hydrothermally synthesised from a homogenous gel mixture prepared using different silica precursors: colloidal silica, fumed silica, tetraethylorthosilicate (TEOS), and aluminium precursor: aluminium sulphate octadecahydrate (Al₂(SO₄)₃.18H₂O to Si/Al of 60. This was focused on developing a defect-free zeolite framework for effective use in applications such as membrane separation process, adsorption, and catalysis. The obtained ZSM-22 zeolite materials with 60 Si/Al ratio exhibits high crystallinity, hydrophilicity, and needle-like morphologies, suggesting successful synthesis as shown by X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) physicochemical analysis. It was revealed that the use of different nature of silica precursors significantly influenced the properties of the final product and contributed to the development of defect-free zeolite material. As such, the crystalline nanorods of Theta-1 (TON) ZSM-22 obtained from TEOS silica showed high phase purity, defect-free, and narrow particle size distribution. Morphological analysis exhibited that the use of TEOS as silica precursor was effective than its counterparts and produced high crystalline need-like agglomerated particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20precursor" title="silica precursor">silica precursor</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title=" hydrothermal synthesis"> hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite%20material" title=" zeolite material"> zeolite material</a>, <a href="https://publications.waset.org/abstracts/search?q=ZSM-22" title=" ZSM-22"> ZSM-22</a> </p> <a href="https://publications.waset.org/abstracts/121139/effect-of-the-nature-of-silica-precursor-in-zeolite-zsm-22-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2848</span> Operational Advantages of Tungsten Inert Gas over Metal Inert Gas Welding Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Ogundimu">Emmanuel Ogundimu</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Akinlabi"> Esther Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiu%20Erinosho"> Mutiu Erinosho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, studies were done on the material characterization of type 304 austenitic stainless steel weld produced by TIG (Tungsten Inert Gas) and MIG (Metal Inert Gas) welding processes. This research is aimed to establish optimized process parameters that will result in a defect-free weld joint, homogenous distribution of the iron (Fe), chromium (Cr) and nickel (Ni) was observed at the welded joint of all the six samples. The welded sample produced at the current of 170 A by TIG welding process had the highest ultimate tensile strength (UTS) value of 621 MPa at the welds zone, and the welded sample produced by MIG process at the welding current of 150 A had the lowest UTS value of 568 MPa. However, it was established that TIG welding process is more appropriate for the welding of type 304 austenitic stainless steel compared to the MIG welding process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microhardness" title="microhardness">microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=MIG%20welding" title=" MIG welding"> MIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress%20TIG%20welding" title=" shear stress TIG welding"> shear stress TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG-MIG%20welding" title=" TIG-MIG welding"> TIG-MIG welding</a> </p> <a href="https://publications.waset.org/abstracts/104565/operational-advantages-of-tungsten-inert-gas-over-metal-inert-gas-welding-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2847</span> Effect of Interference and Form Defect on the Cohesion of the Shrink-Fit Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allal%20Bedlaoui">Allal Bedlaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Boutoutaou"> Hamid Boutoutaou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to its superior economics, shrink-fit assembly is one of the best mechanical assembly methods. There are simply two components, the axis and hub. It is used in many different industries, including the production of trains, cars, and airplanes. The outer radius of the inner cylinder must be greater than the inner radius of the outer cylinder for this operation; this difference is referred to as the "interference" between the two cylinders. There are three ways to accomplish this: heating the outer cylinder to cause it to expand; cooling the cylinder's inside to cause it to contract; and third, finishing the fitting under a press. At the intersection of the two matched parts, a contact pressure and friction force are generated. We consider interference and form defects in this article because they prevent the connection between the axis and the hub from having a perfect form surface and because we will be looking at how they affect the assembly. Numerical simulation is used to ascertain if interference and form defects have a beneficial or negative influence in the distribution of stresses, assembly resistance, and plasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shrink-fit" title="shrink-fit">shrink-fit</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=form%20defect" title=" form defect"> form defect</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20force" title=" extraction force"> extraction force</a> </p> <a href="https://publications.waset.org/abstracts/167735/effect-of-interference-and-form-defect-on-the-cohesion-of-the-shrink-fit-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2846</span> Neglected Omphalocele Presented as Ventral Hernia in 56-Year-Old Ugandan Female: Case Report and Review of Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ssembatya%20Joseph%20Mary">Ssembatya Joseph Mary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Omphalocele, an abdominal wall defect, occurs in 1 out of 4,000 to 6,000 live births. It is characterized by visceral herniation of small and large intestines, liver, and sometimes spleen and gonads are involved. The viscera is always covered by a three-layered sac. The defect in the mesoderm is mainly due to the failure of lateral abdominal wall folds to unite. About 350,000 ventral hernia repairs are done annually in the united states of America. Surgical repair with a mesh is the gold standard surgical method. With conservative management of Omphalocele, children are eventually closed between the age of 1 and 5 years. Herein, we present a late manifestation of ventral hernia following Omphalocele in a female Ugandan. Case presentation: A 56-year-old female with no known chronic illnesses and normal perinatal history presented with an umbilical swelling since birth with no associated symptoms. She is a married woman to one husband and has five children, and all of them are in good general condition with no such symptoms. She had normal vitals with an umbilical defect measuring about 20cm from the xiphoid process and 10 cm from the symphysis pubis. Surgery was done (component separation) on the second inpatient day, and it was uneventful. The patient was discharged on the 4th postoperative day in good general condition with a dry and clean surgical site. Conclusion: Despite adequate literature about Omphalocele and clear management guidelines, there have been reported cases of adult presentation of ventral hernias secondary to Omphalocele. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=omphalocele" title="omphalocele">omphalocele</a>, <a href="https://publications.waset.org/abstracts/search?q=ventral%20hernia" title=" ventral hernia"> ventral hernia</a>, <a href="https://publications.waset.org/abstracts/search?q=uganda" title=" uganda"> uganda</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20presentation" title=" late presentation"> late presentation</a> </p> <a href="https://publications.waset.org/abstracts/161894/neglected-omphalocele-presented-as-ventral-hernia-in-56-year-old-ugandan-female-case-report-and-review-of-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2845</span> Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongju%20Kim">Dongju Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngjoo%20Suh"> Youngjoo Suh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyojin%20Kim"> Hyojin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyeongyeong%20Kim"> Gyeongyeong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission%20testing" title="acoustic emission testing">acoustic emission testing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20composite" title=" carbon fiber reinforced polymer composite"> carbon fiber reinforced polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=one-dimensional%20convolutional%20neural%20network" title=" one-dimensional convolutional neural network"> one-dimensional convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=smote%20data%20augmentation" title=" smote data augmentation"> smote data augmentation</a> </p> <a href="https://publications.waset.org/abstracts/150903/defect-classification-of-hydrogen-fuel-pressure-vessels-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=2" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=97">97</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=98">98</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20characterization&page=4" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>