CINXE.COM

Search results for: tree

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tree</title> <meta name="description" content="Search results for: tree"> <meta name="keywords" content="tree"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tree" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tree"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 903</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tree</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">903</span> An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicodemus%20M.%20J.%20Mbwambo">Nicodemus M. J. Mbwambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Sun"> Yu-Shan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Murali%20Sitaraman"> Murali Sitaraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Joan%20Krone"> Joan Krone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20abstraction" title=" data abstraction"> data abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=maps" title=" maps"> maps</a>, <a href="https://publications.waset.org/abstracts/search?q=specification" title=" specification"> specification</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a> </p> <a href="https://publications.waset.org/abstracts/131080/an-encapsulation-of-a-navigable-tree-position-theory-specification-and-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doyin%20Afolabi">Doyin Afolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Adewole"> Phillip Adewole</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladipupo%20Sennaike"> Oladipupo Sennaike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalance%20dataset" title=" imbalance dataset"> imbalance dataset</a> </p> <a href="https://publications.waset.org/abstracts/157609/a-ratio-weighted-decision-tree-algorithm-for-imbalance-dataset-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> A Kruskal Based Heuxistic for the Application of Spanning Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjan%20Naidu">Anjan Naidu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minimum%20Spanning%20tree" title="Minimum Spanning tree">Minimum Spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Heuxistic" title=" Heuxistic"> Heuxistic</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20of%20Sub%2097K90" title=" classification of Sub 97K90"> classification of Sub 97K90</a> </p> <a href="https://publications.waset.org/abstracts/30559/a-kruskal-based-heuxistic-for-the-application-of-spanning-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> Nearest Neighbor Investigate Using R+ Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rutuja%20Desai">Rutuja Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Search engine is fundamentally a framework used to search the data which is pertinent to the client via WWW. Looking close-by spot identified with the keywords is an imperative concept in developing web advances. For such kind of searching, extent pursuit or closest neighbor is utilized. In range search the forecast is made whether the objects meet to query object. Nearest neighbor is the forecast of the focuses close to the query set by the client. Here, the nearest neighbor methodology is utilized where Data recovery R+ tree is utilized rather than IR2 tree. The disadvantages of IR2 tree is: The false hit number can surpass the limit and the mark in Information Retrieval R-tree must have Voice over IP bit for each one of a kind word in W set is recouped by Data recovery R+ tree. The inquiry is fundamentally subordinate upon the key words and the geometric directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title="information retrieval">information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbor%20search" title=" nearest neighbor search"> nearest neighbor search</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20search" title=" keyword search"> keyword search</a>, <a href="https://publications.waset.org/abstracts/search?q=R%2B%20tree" title=" R+ tree"> R+ tree</a> </p> <a href="https://publications.waset.org/abstracts/33680/nearest-neighbor-investigate-using-r-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> A Novel PSO Based Decision Tree Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Farzan">Ali Farzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20criteria" title=" splitting criteria"> splitting criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a> </p> <a href="https://publications.waset.org/abstracts/32425/a-novel-pso-based-decision-tree-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">898</span> Monitoring Three-Dimensional Models of Tree and Forest by Using Digital Close-Range Photogrammetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Cicekli">S. Y. Cicekli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, tree-dimensional model of tree was created by using terrestrial close range photogrammetry. For this close range photos were taken. Photomodeler Pro 5 software was used for camera calibration and create three-dimensional model of trees. In first test, three-dimensional model of a tree was created, in the second test three-dimensional model of three trees were created. This study aim is creating three-dimensional model of trees and indicate the use of close-range photogrammetry in forestry. At the end of the study, three-dimensional model of tree and three trees were created. This study showed that usability of close-range photogrammetry for monitoring tree and forests three-dimensional model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=close-%20range%20photogrammetry" title="close- range photogrammetry">close- range photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20model" title=" three-dimensional model"> three-dimensional model</a> </p> <a href="https://publications.waset.org/abstracts/39825/monitoring-three-dimensional-models-of-tree-and-forest-by-using-digital-close-range-photogrammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">897</span> A Dynamic Round Robin Routing for Z-Fat Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Adda">M. O. Adda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a topology called Zoned fat tree (Z-Fat tree) which is a further extension to the classical fat trees. The extension relates to the provision of extra degree of connectivity to maximize the number of deployed ports per routing nodes, and hence increases the bisection bandwidth especially for slimmed fat trees. The extra links, when classical routing is used, tend, in deterministic environment, to be under-utilized for some traffic patterns, hence achieving poor performance. We suggest two versions of a dynamic round robin scheme that outperforms the classical D-mod-k and S-mod-K routing and show by simulation that our proposal utilize all the extra added links to the classical fat tree, and achieve better performance for general applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterministic%20routing" title="deterministic routing">deterministic routing</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20tree" title=" fat tree"> fat tree</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnection" title=" interconnection"> interconnection</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20pattern" title=" traffic pattern"> traffic pattern</a> </p> <a href="https://publications.waset.org/abstracts/40045/a-dynamic-round-robin-routing-for-z-fat-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">896</span> Historical Landscape Affects Present Tree Density in Paddy Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ha%20T.%20Pham">Ha T. Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuichi%20Miyagawa"> Shuichi Miyagawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ongoing landscape transformation is one of the major causes behind disappearance of traditional landscapes, and lead to species and resource loss. Tree in paddy fields in the northeast of Thailand is one of those traditional landscapes. Using three different historical time layers, we acknowledged the severe deforestation and rapid urbanization happened in the region. Despite the general thinking of decline in tree density as consequences, the heterogeneous trend of changes in total tree density in three studied landscapes denied the hypothesis that number of trees in paddy field depend on the length of land use practice. On the other hand, due to selection of planting new trees on levees, existence of trees in paddy field are now rely on their values for human use. Besides, changes in land use and landscape structure had a significant impact on decision of which tree density level is considered as suitable for the landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20photographs" title="aerial photographs">aerial photographs</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20change" title=" land use change"> land use change</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20landscape" title=" traditional landscape"> traditional landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20in%20paddy%20fields" title=" tree in paddy fields"> tree in paddy fields</a> </p> <a href="https://publications.waset.org/abstracts/15536/historical-landscape-affects-present-tree-density-in-paddy-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">895</span> Unconventional Dating of Old Peepal Tree of Chandigarh (India) Using Optically Stimulated Luminescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Rani">Rita Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Kumar"> Ramesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intend of the current study is to date an old grand Peepal tree that is still alive. The tree is situated in Kalibard village, Sector 9, Chandigarh (India). Due to its huge structure, it has got the status of ‘Heritage tree.’ Optically Stimulated Luminescence of sediments beneath the roots is used to determine the age of the tree. Optical dating is preferred over conventional dating methods due to more precession. The methodology includes OSL of quartz grain using SAR protocol for accumulated dose measurement. The age determination of an alive tree using sedimentary quartz is in close agreement with the approximated age provided by the related agency. This is the first attempt at using optically stimulated luminescence in the age determination of alive trees in this region. The study concludes that the Luminescence dating of alive trees is the nondestructive and more precise method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=luminescence" title="luminescence">luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20rate" title=" dose rate"> dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20dating" title=" optical dating"> optical dating</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/140440/unconventional-dating-of-old-peepal-tree-of-chandigarh-india-using-optically-stimulated-luminescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">894</span> Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ahzam%20Tariq">Syed Ahzam Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Atharva%20Modi"> Atharva Modi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tree%20analysis%20water%20tube%20boiler" title="fault tree analysis water tube boiler">fault tree analysis water tube boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20probability%20score" title=" fuzzy probability score"> fuzzy probability score</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20probability" title=" failure probability"> failure probability</a> </p> <a href="https://publications.waset.org/abstracts/140431/fuzzy-approach-for-fault-tree-analysis-of-water-tube-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> Handshake Algorithm for Minimum Spanning Tree Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassiri%20Khalid">Nassiri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Hibaoui%20Abdelaaziz%20et%20Hajar%20Moha"> El Hibaoui Abdelaaziz et Hajar Moha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spanning%20tree" title="Spanning tree">Spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=Distributed%20Algorithm" title=" Distributed Algorithm"> Distributed Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Handshake%20Algorithm" title=" Handshake Algorithm"> Handshake Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Matching" title=" Matching"> Matching</a>, <a href="https://publications.waset.org/abstracts/search?q=Probabilistic%20Analysis" title=" Probabilistic Analysis"> Probabilistic Analysis</a> </p> <a href="https://publications.waset.org/abstracts/17743/handshake-algorithm-for-minimum-spanning-tree-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">892</span> Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.-H.%20Doh">H.-H. Doh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-M.%20Yu"> J.-M. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.-J.%20Kwon"> Y.-J. Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-H.%20Shin"> J.-H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.-W.%20Kim"> H.-W. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-H.%20Nam"> S.-H. Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=D.-H.%20Lee"> D.-H. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i. e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20job%20shop%20scheduling" title="flexible job shop scheduling">flexible job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20rules" title=" priority rules"> priority rules</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a> </p> <a href="https://publications.waset.org/abstracts/6996/decision-tree-based-scheduling-for-flexible-job-shops-with-multiple-process-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">891</span> Semi-Supervised Hierarchical Clustering Given a Reference Tree of Labeled Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhao">Ying Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingyan%20Bin"> Xingyan Bin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semi-supervised clustering algorithms have been shown effective to improve clustering process with even limited supervision. However, semi-supervised hierarchical clustering remains challenging due to the complexities of expressing constraints for agglomerative clustering algorithms. This paper proposes novel semi-supervised agglomerative clustering algorithms to build a hierarchy based on a known reference tree. We prove that by enforcing distance constraints defined by a reference tree during the process of hierarchical clustering, the resultant tree is guaranteed to be consistent with the reference tree. We also propose a framework that allows the hierarchical tree generation be aware of levels of levels of the agglomerative tree under creation, so that metric weights can be learned and adopted at each level in a recursive fashion. The experimental evaluation shows that the additional cost of our contraint-based semi-supervised hierarchical clustering algorithm (HAC) is negligible, and our combined semi-supervised HAC algorithm outperforms the state-of-the-art algorithms on real-world datasets. The experiments also show that our proposed methods can improve clustering performance even with a small number of unevenly distributed labeled data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-supervised%20clustering" title="semi-supervised clustering">semi-supervised clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%0D%0Aagglomerative%20clustering" title=" hierarchical agglomerative clustering"> hierarchical agglomerative clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20trees" title=" reference trees"> reference trees</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20constraints" title=" distance constraints "> distance constraints </a> </p> <a href="https://publications.waset.org/abstracts/19478/semi-supervised-hierarchical-clustering-given-a-reference-tree-of-labeled-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Using Data Mining Technique for Scholarship Disbursement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Alhassan">J. K. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Lawal"> S. A. Lawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=scholarship" title=" scholarship"> scholarship</a> </p> <a href="https://publications.waset.org/abstracts/30987/using-data-mining-technique-for-scholarship-disbursement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> Dynamic Fault Tree Analysis of Dynamic Positioning System through Monte Carlo Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Cheliyan">A. S. Cheliyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Bhattacharyya"> S. K. Bhattacharyya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic Positioning System (DPS) is employed in marine vessels of the offshore oil and gas industry. It is a computer controlled system to automatically maintain a ship’s position and heading by using its own thrusters. Reliability assessment of the same can be analyzed through conventional fault tree. However, the complex behaviour like sequence failure, redundancy management and priority of failing of events cannot be analyzed by the conventional fault trees. The Dynamic Fault Tree (DFT) addresses these shortcomings of conventional Fault Tree by defining additional gates called dynamic gates. Monte Carlo based simulation approach has been adopted for the dynamic gates. This method of realistic modeling of DPS gives meaningful insight into the system reliability and the ability to improve the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20positioning%20system" title="dynamic positioning system">dynamic positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20fault%20tree" title=" dynamic fault tree"> dynamic fault tree</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title=" reliability assessment "> reliability assessment </a> </p> <a href="https://publications.waset.org/abstracts/58683/dynamic-fault-tree-analysis-of-dynamic-positioning-system-through-monte-carlo-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">774</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> CanVis: Towards a Web Platform for Cancer Progression Tree Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Aupetit">Michael Aupetit</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Al-ismail"> Mahmoud Al-ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Mohamed"> Khaled Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is a major public health problem all over the world. Breast cancer has the highest incidence rate over all cancers for women in Qatar making its study a top priority of the country. Human cancer is a dynamic disease that develops over an extended period through the accumulation of a series of genetic alterations. A Darwinian process drives the tumor cells toward higher malignancy growing the branches of a progression tree in the space of genes expression. Although it is not possible to track these genetic alterations dynamically for one patient, it is possible to reconstruct the progression tree from the aggregation of thousands of tumor cells’ genetic profiles from thousands of different patients at different stages of the disease. Analyzing the progression tree is a way to detect pivotal molecular events that drive the malignant evolution and to provide a guide for the development of cancer diagnostics, prognostics and targeted therapeutics. In this work we present the development of a Visual Analytic web platform CanVis enabling users to upload gene-expression data and analyze their progression tree. The server computes the progression tree based on state-of-the-art techniques and allows an interactive visual exploration of this tree and the gene-expression data along its branching structure helping to discover potential driver genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=progression%20tree" title=" progression tree"> progression tree</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20analytics" title=" visual analytics"> visual analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20platform" title=" web platform"> web platform</a> </p> <a href="https://publications.waset.org/abstracts/39156/canvis-towards-a-web-platform-for-cancer-progression-tree-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Brain Tumor Segmentation Based on Minimum Spanning Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simeon%20Mayala">Simeon Mayala</a>, <a href="https://publications.waset.org/abstracts/search?q=Ida%20Herdlev%C3%A6r"> Ida Herdlevær</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Bull%20Haugs%C3%B8en"> Jonas Bull Haugsøen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamundeeswari%20Anandan"> Shamundeeswari Anandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Gavasso"> Sonia Gavasso</a>, <a href="https://publications.waset.org/abstracts/search?q=Morten%20Brun"> Morten Brun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor" title="brain tumor">brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor%20segmentation" title=" brain tumor segmentation"> brain tumor segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20spanning%20tree" title=" minimum spanning tree"> minimum spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/148591/brain-tumor-segmentation-based-on-minimum-spanning-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Pressure Losses on Realistic Geometry of Tracheobronchial Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michaela%20Chovancova">Michaela Chovancova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elcner"> Jakub Elcner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculating the pressure losses in the real lungs is due to its complexity and diversity lengthy and inefficient process. For these calculations is necessary the lungs to slightly simplify (same cross-section over the length of individual generation) or use one of the models of lungs. The simplification could cause deviations from real values. The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli equation and continuity equation. Then, evaluate the desirability of using this formula to determine the pressure loss across the bronchial tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20gradient" title="pressure gradient">pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=airways%20resistance" title=" airways resistance"> airways resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20geometry%20of%20bronchial%20tree" title=" real geometry of bronchial tree"> real geometry of bronchial tree</a>, <a href="https://publications.waset.org/abstracts/search?q=breathing" title=" breathing"> breathing</a> </p> <a href="https://publications.waset.org/abstracts/27498/pressure-losses-on-realistic-geometry-of-tracheobronchial-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Yang">Jian Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Yagi"> Atsushi Yagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=population-structured%20models" title="population-structured models">population-structured models</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilities%20of%20ecosystems" title=" stabilities of ecosystems"> stabilities of ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20competitions" title=" thermal competitions"> thermal competitions</a>, <a href="https://publications.waset.org/abstracts/search?q=tree-grass%20coexistence%20systems" title=" tree-grass coexistence systems"> tree-grass coexistence systems</a> </p> <a href="https://publications.waset.org/abstracts/102872/segregation-patterns-of-trees-and-grass-based-on-a-modified-age-structured-continuous-space-forest-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Complex Decision Rules in the Form of Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avinash%20S.%20Jagtap">Avinash S. Jagtap</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharad%20D.%20Gore"> Sharad D. Gore</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20G.%20Gurao"> Rajendra G. Gurao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decision rules become more and more complex as the number of conditions increase. As a consequence, the complexity of the decision rule also influences the time complexity of computer implementation of such a rule. Consider, for example, a decision that depends on four conditions A, B, C and D. For simplicity, suppose each of these four conditions is binary. Even then the decision rule will consist of 16 lines, where each line will be of the form: If A and B and C and D, then action 1. If A and B and C but not D, then action 2 and so on. While executing this decision rule, each of the four conditions will be checked every time until all the four conditions in a line are satisfied. The minimum number of logical comparisons is 4 whereas the maximum number is 64. This paper proposes to present a complex decision rule in the form of a decision tree. A decision tree divides the cases into branches every time a condition is checked. In the form of a decision tree, every branching eliminates half of the cases that do not satisfy the related conditions. As a result, every branch of the decision tree involves only four logical comparisons and hence is significantly simpler than the corresponding complex decision rule. The conclusion of this paper is that every complex decision rule can be represented as a decision tree and the decision tree is mathematically equivalent but computationally much simpler than the original complex decision rule <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strategic" title="strategic">strategic</a>, <a href="https://publications.waset.org/abstracts/search?q=tactical" title=" tactical"> tactical</a>, <a href="https://publications.waset.org/abstracts/search?q=operational" title=" operational"> operational</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive" title=" adaptive"> adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative" title=" innovative"> innovative</a> </p> <a href="https://publications.waset.org/abstracts/77189/complex-decision-rules-in-the-form-of-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Challenges of Landscape Design with Tree Species Diversity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henry%20Kuppen">Henry Kuppen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, tree managers have faced many threats of pests and diseases and the effects of climate change. Managers will recognize that they have to put more energy and more money into tree management. By recognizing the cause behind this, the opportunity will arise to build sustainable tree populations for the future. More and more, unwanted larvae are sprayed, ash dieback infected trees are pruned or felled, and emerald ash borer is knocking at the door of West Europe. A lot of specific knowledge is needed to produce management plans and best practices. If pest and disease have a large impact, society loses complete tree species and need to start all over again building urban forest. But looking at the cause behind it, landscape design, and tree species selection, the sustainable solution does not present itself in managing these threats. Every pest or disease needs two important basic ingredients to be successful: climate and food. The changing climate is helping several invasive pathogens to survive. Food is often designed by the landscapers and managers of the urban forest. Monocultures promote the success of pathogens. By looking more closely at the basics, tree managers will realise very soon that the solution will not be the management of pathogens. The long-term solution for sustainable tree populations is a different design of our urban landscape. The use of tree species diversity can help to reduce the impact of climate change and pathogens. Therefore landscapers need to be supported. They are the specialists in designing the landscape using design values like canopy volume, ecosystem services, and seasonal experience. It’s up to the species specialist to show what the opportunities are for different species that meet the desired interpretation of the landscape. Based on landscapers' criteria, selections can be made, including tree species related requirements. Through this collaboration and formation of integral teams, sustainable plant design will be possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20design" title=" landscape design"> landscape design</a>, <a href="https://publications.waset.org/abstracts/search?q=resilient%20landscape" title=" resilient landscape"> resilient landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20species%20selection" title=" tree species selection"> tree species selection</a> </p> <a href="https://publications.waset.org/abstracts/136929/challenges-of-landscape-design-with-tree-species-diversity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghorbani">S. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Polushin"> N. I. Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi&rsquo;s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree%20forest" title="decision tree forest">decision tree forest</a>, <a href="https://publications.waset.org/abstracts/search?q=GMDH" title=" GMDH"> GMDH</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20process" title=" turning process"> turning process</a> </p> <a href="https://publications.waset.org/abstracts/66804/a-comparison-of-single-of-decision-tree-decision-tree-forest-and-group-method-of-data-handling-to-evaluate-the-surface-roughness-in-machining-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghorbani">S. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Polushin"> N. I. Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title="cutting condition">cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART%20algorithm" title=" CART algorithm"> CART algorithm</a> </p> <a href="https://publications.waset.org/abstracts/70715/an-alternative-approach-for-assessing-the-impact-of-cutting-conditions-on-surface-roughness-using-single-decision-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Tree Dress and the Internet of Living Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vibeke%20Sorensen">Vibeke Sorensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagaraju%20Thummanapalli"> Nagaraju Thummanapalli</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Stephen%20Lansing"> J. Stephen Lansing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the indigenous people of Borneo, Indonesia and their traditional bark cloth, artist and professor Vibeke Sorensen executed a “digital unwrapping” of several trees in Southeast Asia using a digital panorama camera and digitally “stitched” them together for printing onto sustainable silk and fashioning into the “Tree Dress”. This dress is a symbolic “un-wrapping” and “re-wrapping” of the tree’s bark onto a person as a second skin. The “digital bark” is directly responsive to the real tree through embedded and networked electronics that connect in real-time to sensors at the physical site of the living tree. LEDs and circuits inserted into the dress display the continuous measurement of the O2 / CO2, temperature, humidity, and light conditions at the tree. It is an “Internet of Living Things” (IOLT) textile that can be worn to track and interact with it. The computer system connecting the dress and the tree converts the gas emission data at the site of the real tree into sound and music as sonification. This communicates not only the scientific data but also translates it into a poetic representation. The wearer of the garment can symbolically identify with the tree, or “become one” with it by adorning its “skin.” In this way, the wearer also becomes a human agent for the tree, bringing its actual condition to direct perception of the wearer and others who may engage it. This project is an attempt to bring greater awareness to issues of deforestation by providing a direct access to living things separated by physical distance, and hopefully, to increase empathy for them by providing a way to sense individual trees and their daily existential condition through remote monitoring of data. Further extensions to this project and related issues of sustainability include the use of recycled and alternative plant materials such as bamboo and air plants, among others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IOLT" title="IOLT">IOLT</a>, <a href="https://publications.waset.org/abstracts/search?q=sonification" title=" sonification"> sonification</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20technology" title=" wearable technology"> wearable technology</a> </p> <a href="https://publications.waset.org/abstracts/129346/tree-dress-and-the-internet-of-living-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Evaluation of Pheromone and Tree Trap Efficiency in Orthotomicus erosus (Col: Curculionidae: Scolytinae) Monitoring in Pine Forests of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudabe%20Amini">Sudabe Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamasb%20Nozari"> Jamasb Nozari</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Rahimi"> Somaye Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bark beetles are one of the most destructive groups of pests in the forest and green space. Mediterranean pine Engraver Orthotomicus erosus (Wollston) is the dominant species in the pine forests of Iran. Pine forests are considered a crucial region in the world and need high protection. Although there is no effective control method, mass trapping is the most common method to suppress the bark beetle population. Due to this, from 2018-to 2020, a survey was conducted on bark beetles mass trapping by using two kinds of traps, including pheromone and tree trap. These traps were evaluated in 10 different sites of pine forests. The statistical results proved that significant differences between the pheromone trap and tree trap were observed. It confirmed that the pheromone trap attracted more beetles than the tree trap. The results of this study suggest that the most effective and applicable method in bark beetle’s management of pines forest is using a pheromone trap that suppresses and maintains bark beetle’s population at an economic level, although tree traps attract bark beetles too. In the future, using tree-pheromone traps, which would synergist attraction of more bark beetles, is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bark%20beetle" title="bark beetle">bark beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=pines%20forest" title=" pines forest"> pines forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Orthotomicus%20erosus" title=" Orthotomicus erosus"> Orthotomicus erosus</a>, <a href="https://publications.waset.org/abstracts/search?q=pheromone%20trap" title=" pheromone trap"> pheromone trap</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20trap" title=" tree trap"> tree trap</a> </p> <a href="https://publications.waset.org/abstracts/149156/evaluation-of-pheromone-and-tree-trap-efficiency-in-orthotomicus-erosus-col-curculionidae-scolytinae-monitoring-in-pine-forests-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Enunciation on Complexities of Selected Tree Searching Algorithms </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parag%20Bhalchandra">Parag Bhalchandra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Khamitkar"> S. D. Khamitkar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Searching trees is a most interesting application of Artificial Intelligence. Over the period of time, many innovative methods have been evolved to better search trees with respect to computational complexities. Tree searches are difficult to understand due to the exponential growth of possibilities when increasing the number of nodes or levels in the tree. Usually it is understood when we traverse down in the tree, traverse down to greater depth, in the search of a solution or a goal. However, this does not happen in reality as explicit enumeration is not a very efficient method and there are many algorithmic speedups that will find the optimal solution without the burden of evaluating all possible trees. It was a common question before all researchers where they often wonder what algorithms will yield the best and fastest result The intention of this paper is two folds, one to review selected tree search algorithms and search strategies that can be applied to a problem space and the second objective is to stimulate to implement recent developments in the complexity behavior of search strategies. The algorithms discussed here apply in general to both brute force and heuristic searches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trees%20search" title="trees search">trees search</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20complexity" title=" asymptotic complexity"> asymptotic complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=brute%20force" title=" brute force"> brute force</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics%20algorithms" title=" heuristics algorithms"> heuristics algorithms</a> </p> <a href="https://publications.waset.org/abstracts/13407/enunciation-on-complexities-of-selected-tree-searching-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Effect of Xylophagous On The Productivity Of The Trees Of The Fruit-bearing Pistachio Tree In Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebouti-meziou%20Nadjiba1">Chebouti-meziou Nadjiba1</a>, <a href="https://publications.waset.org/abstracts/search?q=And%20Chebouti%20Yahia2%3A"> And Chebouti Yahia2:</a> </p> <p class="card-text"><strong>Abstract:</strong></p> the cultivation of Pistachios Pistacia vera of rare plants in Algeria and this point to see the lack of knowledge of techniques, which resulted in the proliferation of the tree to obtain a limited benefit does not exceed 0.75 tons / hectare, in addition to the enemy that lead to poor product on the one hand, one of which buds into wood and fruit Chaetoptelius vestitus. Since the tree is the raw sound production, while 25 kg of infected tree produces about 15 kg of any shortage of fact that this insect Chaetoptelius vestitus spend the amount of trouble going in the summer the young twigs of the trees into a sound the product by20% and due to the composition by the problem of spending in the newly formed branches, which lead to this loss in yield <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaetoptelius%20vestitus" title="chaetoptelius vestitus">chaetoptelius vestitus</a>, <a href="https://publications.waset.org/abstracts/search?q=pistacia%20vera" title=" pistacia vera"> pistacia vera</a>, <a href="https://publications.waset.org/abstracts/search?q=spending" title=" spending"> spending</a>, <a href="https://publications.waset.org/abstracts/search?q=return" title=" return"> return</a>, <a href="https://publications.waset.org/abstracts/search?q=poor%20product." title=" poor product."> poor product.</a> </p> <a href="https://publications.waset.org/abstracts/168081/effect-of-xylophagous-on-the-productivity-of-the-trees-of-the-fruit-bearing-pistachio-tree-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Mapping of Arenga Pinnata Tree Using Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulkiflee%20Abd%20Latif">Zulkiflee Abd Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Sitinor%20Atikah%20Nordin"> Sitinor Atikah Nordin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alawi%20Sulaiman"> Alawi Sulaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different tree species possess different and various benefits. Arenga Pinnata tree species own several potential uses that is valuable for the economy and the country. Mapping vegetation using remote sensing technique involves various process, techniques and consideration. Using satellite imagery, this method enables the access of inaccessible area and with the availability of near infra-red band; it is useful in vegetation analysis, especially in identifying tree species. Pixel-based and object-based classification technique is used as a method in this study. Pixel-based classification technique used in this study divided into unsupervised and supervised classification. Object based classification technique becomes more popular another alternative method in classification process. Using spectral, texture, color and other information, to classify the target make object-based classification is a promising technique for classification. Classification of Arenga Pinnata trees is overlaid with elevation, slope and aspect, soil and river data and several other data to give information regarding the tree character and living environment. This paper will present the utilization of remote sensing technique in order to map Arenga Pinnata tree species <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arenga%20Pinnata" title="Arenga Pinnata">Arenga Pinnata</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel-based%20classification" title=" pixel-based classification"> pixel-based classification</a>, <a href="https://publications.waset.org/abstracts/search?q=object-based%20classification" title=" object-based classification"> object-based classification</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/13681/mapping-of-arenga-pinnata-tree-using-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Experimental Evaluation of Succinct Ternary Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitriy%20Kuptsov">Dmitriy Kuptsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20structures" title="data structures">data structures</a>, <a href="https://publications.waset.org/abstracts/search?q=succinct%20ternary%20tree" title="succinct ternary tree">succinct ternary tree</a>, <a href="https://publications.waset.org/abstracts/search?q=per-%20formance%20evaluation" title="per- formance evaluation">per- formance evaluation</a> </p> <a href="https://publications.waset.org/abstracts/144336/experimental-evaluation-of-succinct-ternary-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komol%20Phaisarn">Komol Phaisarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuphan%20Suttimarn"> Anuphan Suttimarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitchanan%20Keawtong"> Vitchanan Keawtong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittisak%20Thongyoun"> Kittisak Thongyoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiyos%20Jamsawang"> Chaiyos Jamsawang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=customers" title=" customers"> customers</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20insurance%20pay%20package" title=" life insurance pay package"> life insurance pay package</a> </p> <a href="https://publications.waset.org/abstracts/11724/model-for-introducing-products-to-new-customers-through-decision-tree-using-algorithm-c45-j-48" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tree&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10