CINXE.COM

<!doctype html><html lang="en"><head><title data-rh="true">Leading Design and Development of the Advertising Recommender System at Tencent: Interview with Xiangting Kong | NVIDIA Merlin</title><meta data-rh="true" charset="utf-8"/><meta data-rh="true" name="viewport" content="width=device-width,minimum-scale=1,initial-scale=1,maximum-scale=1"/><meta data-rh="true" name="theme-color" content="#000000"/><meta data-rh="true" name="twitter:app:name:iphone" content="Medium"/><meta data-rh="true" name="twitter:app:id:iphone" content="828256236"/><meta data-rh="true" property="al:ios:app_name" content="Medium"/><meta data-rh="true" property="al:ios:app_store_id" content="828256236"/><meta data-rh="true" property="al:android:package" content="com.medium.reader"/><meta data-rh="true" property="fb:app_id" content="542599432471018"/><meta data-rh="true" property="og:site_name" content="Medium"/><meta data-rh="true" property="og:type" content="article"/><meta data-rh="true" property="article:published_time" content="2021-09-09T05:40:41.969Z"/><meta data-rh="true" name="title" content="Leading Design and Development of the Advertising Recommender System at Tencent: Interview with Xiangting Kong | NVIDIA Merlin"/><meta data-rh="true" property="og:title" content="Leading Design and Development of the Advertising Recommender System at Tencent: An Interview with…"/><meta data-rh="true" property="al:android:url" content="medium://p/37f1eed898a7"/><meta data-rh="true" property="al:ios:url" content="medium://p/37f1eed898a7"/><meta data-rh="true" property="al:android:app_name" content="Medium"/><meta data-rh="true" name="description" content="Xiangting Kong, Lead of Tencent Advertising and Deep Learning Platform, provides insight and best practices for deploying and optimizing recommender systems."/><meta data-rh="true" property="og:description" content="Introduction: Sharing Insights and Best Practices"/><meta data-rh="true" property="og:url" content="https://medium.com/nvidia-merlin/leading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7"/><meta data-rh="true" property="al:web:url" content="https://medium.com/nvidia-merlin/leading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7"/><meta data-rh="true" property="og:image" content="https://miro.medium.com/v2/resize:fit:695/1*amaIijWUqSqpELilnvKO5g.png"/><meta data-rh="true" property="article:author" content="https://medium.com/@akspencer"/><meta data-rh="true" name="author" content="Ann Spencer US"/><meta data-rh="true" name="robots" content="index,noarchive,follow,max-image-preview:large"/><meta data-rh="true" name="referrer" content="unsafe-url"/><meta data-rh="true" property="twitter:title" content="Leading Design and Development of the Advertising Recommender System at Tencent: An Interview with…"/><meta data-rh="true" name="twitter:site" content="@Even_Oldridge"/><meta data-rh="true" name="twitter:app:url:iphone" content="medium://p/37f1eed898a7"/><meta data-rh="true" property="twitter:description" content="Introduction: Sharing Insights and Best Practices"/><meta data-rh="true" name="twitter:image:src" content="https://miro.medium.com/v2/resize:fit:695/1*amaIijWUqSqpELilnvKO5g.png"/><meta data-rh="true" name="twitter:card" content="summary_large_image"/><meta data-rh="true" name="twitter:label1" content="Reading time"/><meta data-rh="true" name="twitter:data1" content="5 min read"/><link data-rh="true" rel="icon" href="https://miro.medium.com/v2/5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19"/><link data-rh="true" rel="search" type="application/opensearchdescription+xml" title="Medium" href="/osd.xml"/><link data-rh="true" rel="apple-touch-icon" sizes="152x152" href="https://miro.medium.com/v2/resize:fill:304:304/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="120x120" href="https://miro.medium.com/v2/resize:fill:240:240/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="76x76" href="https://miro.medium.com/v2/resize:fill:152:152/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="60x60" href="https://miro.medium.com/v2/resize:fill:120:120/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="mask-icon" href="https://miro.medium.com/v2/resize:fill:1000:1000/7*GAOKVe--MXbEJmV9230oOQ.png" color="#171717"/><link data-rh="true" rel="preconnect" href="https://glyph.medium.com" crossOrigin=""/><link data-rh="true" id="glyph_preload_link" rel="preload" as="style" type="text/css" href="https://glyph.medium.com/css/unbound.css"/><link data-rh="true" id="glyph_link" rel="stylesheet" type="text/css" href="https://glyph.medium.com/css/unbound.css"/><link data-rh="true" rel="author" href="https://medium.com/@akspencer"/><link data-rh="true" rel="canonical" href="https://medium.com/nvidia-merlin/leading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7"/><link data-rh="true" rel="alternate" href="android-app://com.medium.reader/https/medium.com/p/37f1eed898a7"/><script data-rh="true" type="application/ld+json">{"@context":"http:\u002F\u002Fschema.org","@type":"NewsArticle","image":["https:\u002F\u002Fmiro.medium.com\u002Fv2\u002Fresize:fit:1200\u002F1*amaIijWUqSqpELilnvKO5g.png"],"url":"https:\u002F\u002Fmedium.com\u002Fnvidia-merlin\u002Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7","dateCreated":"2021-09-01T17:38:58.644Z","datePublished":"2021-09-01T17:38:58.644Z","dateModified":"2022-01-05T16:24:17.958Z","headline":"Leading Design and Development of the Advertising Recommender System at Tencent: Interview with Xiangting Kong | NVIDIA Merlin","name":"Leading Design and Development of the Advertising Recommender System at Tencent: Interview with Xiangting Kong | NVIDIA Merlin","description":"Xiangting Kong, Lead of Tencent Advertising and Deep Learning Platform, provides insight and best practices for deploying and optimizing recommender systems.","identifier":"37f1eed898a7","author":{"@type":"Person","name":"Ann Spencer US","url":"https:\u002F\u002Fmedium.com\u002F@akspencer"},"creator":["Ann Spencer US"],"publisher":{"@type":"Organization","name":"NVIDIA Merlin","url":"https:\u002F\u002Fmedium.com\u002Fnvidia-merlin","logo":{"@type":"ImageObject","width":272,"height":60,"url":"https:\u002F\u002Fmiro.medium.com\u002Fv2\u002Fresize:fit:544\u002F7*V1_7XP4snlmqrc_0Njontw.png"}},"mainEntityOfPage":"https:\u002F\u002Fmedium.com\u002Fnvidia-merlin\u002Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7"}</script><style type="text/css" data-fela-rehydration="539" data-fela-type="STATIC">html{box-sizing:border-box;-webkit-text-size-adjust:100%}*, *:before, *:after{box-sizing:inherit}body{margin:0;padding:0;text-rendering:optimizeLegibility;-webkit-font-smoothing:antialiased;color:rgba(0,0,0,0.8);position:relative;min-height:100vh}h1, h2, h3, h4, h5, h6, dl, dd, ol, ul, menu, figure, blockquote, p, pre, form{margin:0}menu, ol, ul{padding:0;list-style:none;list-style-image:none}main{display:block}a{color:inherit;text-decoration:none}a, button, input{-webkit-tap-highlight-color:transparent}img, svg{vertical-align:middle}button{background:transparent;overflow:visible}button, input, optgroup, select, textarea{margin:0}:root{--reach-tabs:1;--reach-menu-button:1}#speechify-root{font-family:Sohne, sans-serif}div[data-popper-reference-hidden="true"]{visibility:hidden;pointer-events:none}.grecaptcha-badge{visibility:hidden} /*XCode style (c) Angel Garcia <angelgarcia.mail@gmail.com>*/.hljs {background: #fff;color: black; }/* Gray DOCTYPE selectors like WebKit */ .xml .hljs-meta {color: #c0c0c0; }.hljs-comment, .hljs-quote {color: #007400; }.hljs-tag, .hljs-attribute, .hljs-keyword, .hljs-selector-tag, .hljs-literal, .hljs-name {color: #aa0d91; }.hljs-variable, .hljs-template-variable {color: #3F6E74; }.hljs-code, .hljs-string, .hljs-meta .hljs-string {color: #c41a16; }.hljs-regexp, .hljs-link {color: #0E0EFF; }.hljs-title, .hljs-symbol, .hljs-bullet, .hljs-number {color: #1c00cf; }.hljs-section, .hljs-meta {color: #643820; }.hljs-title.class_, .hljs-class .hljs-title, .hljs-type, .hljs-built_in, .hljs-params {color: #5c2699; }.hljs-attr {color: #836C28; }.hljs-subst {color: #000; }.hljs-formula {background-color: #eee;font-style: italic; }.hljs-addition {background-color: #baeeba; }.hljs-deletion {background-color: #ffc8bd; }.hljs-selector-id, .hljs-selector-class {color: #9b703f; }.hljs-doctag, .hljs-strong {font-weight: bold; }.hljs-emphasis {font-style: italic; } </style><style type="text/css" data-fela-rehydration="539" data-fela-type="KEYFRAME">@-webkit-keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}@-moz-keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}@keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE">.a{font-family:medium-content-sans-serif-font, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Open Sans", "Helvetica Neue", sans-serif}.b{font-weight:400}.c{background-color:rgba(255, 255, 255, 1)}.l{display:block}.m{position:sticky}.n{top:0}.o{z-index:500}.p{padding:0 24px}.q{align-items:center}.r{border-bottom:solid 1px #F2F2F2}.y{height:41px}.z{line-height:20px}.ab{display:flex}.ac{height:57px}.ae{flex:1 0 auto}.af{color:inherit}.ag{fill:inherit}.ah{font-size:inherit}.ai{border:inherit}.aj{font-family:inherit}.ak{letter-spacing:inherit}.al{font-weight:inherit}.am{padding:0}.an{margin:0}.ao{cursor:pointer}.ap:disabled{cursor:not-allowed}.aq:disabled{color:#6B6B6B}.ar:disabled{fill:#6B6B6B}.au{width:auto}.av path{fill:#242424}.aw{height:25px}.ax{margin-left:16px}.ay{border:none}.az{border-radius:20px}.ba{width:240px}.bb{background:#F9F9F9}.bc path{fill:#6B6B6B}.be{outline:none}.bf{font-family:sohne, "Helvetica Neue", Helvetica, Arial, sans-serif}.bg{font-size:14px}.bh{width:100%}.bi{padding:10px 20px 10px 0}.bj{background-color:transparent}.bk{color:#242424}.bl::placeholder{color:#6B6B6B}.bm{display:inline-block}.bn{margin-left:12px}.bo{margin-right:12px}.bp{border-radius:4px}.bq{margin-left:24px}.br{height:24px}.bx{background-color:#F9F9F9}.by{border-radius:50%}.bz{height:32px}.ca{width:32px}.cb{justify-content:center}.ch{max-width:680px}.ci{min-width:0}.cj{animation:k1 1.2s ease-in-out infinite}.ck{height:100vh}.cl{margin-bottom:16px}.cm{margin-top:48px}.cn{align-items:flex-start}.co{flex-direction:column}.cp{justify-content:space-between}.cq{margin-bottom:24px}.cw{width:80%}.cx{background-color:#F2F2F2}.dd{height:44px}.de{width:44px}.df{margin:auto 0}.dg{margin-bottom:4px}.dh{height:16px}.di{width:120px}.dj{width:80px}.dp{margin-bottom:8px}.dq{width:96%}.dr{width:98%}.ds{width:81%}.dt{margin-left:8px}.du{color:#6B6B6B}.dv{font-size:13px}.dw{height:100%}.ep{color:#FFFFFF}.eq{fill:#FFFFFF}.er{background:rgba(26, 137, 23, 1)}.es{border-color:rgba(26, 137, 23, 1)}.ew:disabled{cursor:inherit !important}.ex:disabled{opacity:0.3}.ey:disabled:hover{background:rgba(26, 137, 23, 1)}.ez:disabled:hover{border-color:rgba(26, 137, 23, 1)}.fa{border-radius:99em}.fb{border-width:1px}.fc{border-style:solid}.fd{box-sizing:border-box}.fe{text-decoration:none}.ff{text-align:center}.fi{margin-right:32px}.fj{position:relative}.fk{fill:#6B6B6B}.fn{background:transparent}.fo svg{margin-left:4px}.fp svg{fill:#6B6B6B}.fr{box-shadow:inset 0 0 0 1px rgba(0, 0, 0, 0.05)}.fs{position:absolute}.fz{margin:0 24px}.gd{background:rgba(255, 255, 255, 1)}.ge{border:1px solid #F2F2F2}.gf{box-shadow:0 1px 4px #F2F2F2}.gg{max-height:100vh}.gh{overflow-y:auto}.gi{left:0}.gj{top:calc(100vh + 100px)}.gk{bottom:calc(100vh + 100px)}.gl{width:10px}.gm{pointer-events:none}.gn{word-break:break-word}.go{word-wrap:break-word}.gp:after{display:block}.gq:after{content:""}.gr:after{clear:both}.gs{line-height:1.23}.gt{letter-spacing:0}.gu{font-style:normal}.gv{font-weight:700}.ia{align-items:baseline}.ib{width:48px}.ic{height:48px}.id{border:2px solid rgba(255, 255, 255, 1)}.ie{z-index:0}.if{box-shadow:none}.ig{border:1px solid rgba(0, 0, 0, 0.05)}.ih{margin-left:-12px}.ii{width:28px}.ij{height:28px}.ik{z-index:1}.il{width:24px}.im{margin-bottom:2px}.in{flex-wrap:nowrap}.io{font-size:16px}.ip{line-height:24px}.ir{margin:0 8px}.is{display:inline}.it{color:rgba(26, 137, 23, 1)}.iu{fill:rgba(26, 137, 23, 1)}.ix{flex:0 0 auto}.ja{flex-wrap:wrap}.jb{white-space:pre-wrap}.jc{margin-right:4px}.jd{overflow:hidden}.je{max-height:20px}.jf{text-overflow:ellipsis}.jg{display:-webkit-box}.jh{-webkit-line-clamp:1}.ji{-webkit-box-orient:vertical}.jj{word-break:break-all}.jl{padding-left:8px}.jm{padding-right:8px}.kn> *{flex-shrink:0}.ko{overflow-x:scroll}.kp::-webkit-scrollbar{display:none}.kq{scrollbar-width:none}.kr{-ms-overflow-style:none}.ks{width:74px}.kt{flex-direction:row}.ku{z-index:2}.kx{-webkit-user-select:none}.ky{border:0}.kz{fill:rgba(117, 117, 117, 1)}.lc{outline:0}.ld{user-select:none}.le> svg{pointer-events:none}.ln{cursor:progress}.lo{opacity:1}.lp{padding:4px 0}.ls{margin-top:0px}.lt{width:16px}.lv{display:inline-flex}.mb{max-width:100%}.mc{padding:8px 2px}.md svg{color:#6B6B6B}.mu{margin-left:auto}.mv{margin-right:auto}.mw{max-width:695px}.nc{clear:both}.nd{height:auto}.ne{line-height:1.12}.nf{letter-spacing:-0.022em}.ng{font-weight:600}.ob{margin-bottom:-0.28em}.oc{line-height:1.58}.od{letter-spacing:-0.004em}.oe{font-family:source-serif-pro, Georgia, Cambria, "Times New Roman", Times, serif}.oz{margin-bottom:-0.46em}.pa{text-decoration:underline}.pg{font-style:italic}.ph{max-width:1147px}.po{cursor:zoom-in}.pp{z-index:auto}.pr{margin-top:10px}.ps{max-width:728px}.pv{font-style:inherit}.pw{max-width:999px}.px{list-style-type:disc}.py{margin-left:30px}.pz{padding-left:0px}.qf{margin-bottom:26px}.qg{margin-top:6px}.qh{margin-top:8px}.qi{margin-right:8px}.qj{padding:8px 16px}.qk{border-radius:100px}.ql{transition:background 300ms ease}.qn{white-space:nowrap}.qo{border-top:none}.qp{margin-bottom:50px}.qq{height:52px}.qr{max-height:52px}.qs{box-sizing:content-box}.qt{position:static}.qv{max-width:155px}.rb{margin-right:20px}.rc{margin-bottom:64px}.rd{margin-bottom:48px}.rr{border-radius:2px}.rt{height:64px}.ru{width:64px}.rv{align-self:flex-end}.rw{flex:1 1 auto}.sc{padding-right:4px}.sd{font-weight:500}.sq{margin-top:16px}.sr{color:rgba(255, 255, 255, 1)}.ss{fill:rgba(255, 255, 255, 1)}.st{background:rgba(25, 25, 25, 1)}.su{border-color:rgba(25, 25, 25, 1)}.sx:disabled{opacity:0.1}.sy:disabled:hover{background:rgba(25, 25, 25, 1)}.sz:disabled:hover{border-color:rgba(25, 25, 25, 1)}.ta{margin-bottom:54px}.tb{height:0px}.tc{gap:18px}.td{fill:rgba(61, 61, 61, 1)}.tp{border-bottom:solid 1px #E5E5E5}.tq{margin-top:72px}.tr{padding:24px 0}.ts{margin-bottom:0px}.tt{margin-right:16px}.as:hover:not(:disabled){color:rgba(25, 25, 25, 1)}.at:hover:not(:disabled){fill:rgba(25, 25, 25, 1)}.et:hover{background:rgba(15, 115, 12, 1)}.eu:hover{border-color:rgba(15, 115, 12, 1)}.ev:hover{cursor:pointer}.fl:hover{color:#242424}.fm:hover{fill:#242424}.fq:hover svg{fill:#242424}.ft:hover{background-color:rgba(0, 0, 0, 0.1)}.iq:hover{text-decoration:underline}.iv:hover:not(:disabled){color:rgba(15, 115, 12, 1)}.iw:hover:not(:disabled){fill:rgba(15, 115, 12, 1)}.lb:hover{fill:rgba(8, 8, 8, 1)}.lq:hover{fill:#000000}.lr:hover p{color:#000000}.lu:hover{color:#000000}.me:hover svg{color:#000000}.qm:hover{background-color:#F2F2F2}.rs:hover{background-color:none}.sv:hover{background:#000000}.sw:hover{border-color:#242424}.te:hover{fill:rgba(25, 25, 25, 1)}.bd:focus-within path{fill:#242424}.la:focus{fill:rgba(8, 8, 8, 1)}.mf:focus svg{color:#000000}.pq:focus{transform:scale(1.01)}.lf:active{border-style:none}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="all and (min-width: 1080px)">.d{display:none}.bw{width:64px}.cg{margin:0 64px}.cv{height:48px}.dc{margin-bottom:52px}.do{margin-bottom:48px}.ef{font-size:14px}.eg{line-height:20px}.em{font-size:13px}.eo{padding:5px 12px}.fh{display:flex}.fy{margin-bottom:50px}.gc{max-width:680px}.hq{font-size:42px}.hr{margin-top:1.19em}.hs{margin-bottom:32px}.ht{line-height:52px}.hu{letter-spacing:-0.011em}.hz{align-items:center}.jz{border-top:solid 1px #F2F2F2}.ka{border-bottom:solid 1px #F2F2F2}.kb{margin:32px 0 0}.kc{padding:3px 8px}.kl> *{margin-right:24px}.km> :last-child{margin-right:0}.lm{margin-top:0px}.ma{margin:0}.nb{margin-top:40px}.nx{font-size:24px}.ny{margin-top:1.95em}.nz{line-height:30px}.oa{letter-spacing:-0.016em}.ov{font-size:20px}.ow{margin-top:0.94em}.ox{line-height:32px}.oy{letter-spacing:-0.003em}.pf{margin-top:2.14em}.pm{margin-top:56px}.qe{margin-top:1.14em}.ra{display:inline-block}.re{flex-direction:row}.rh{margin-bottom:0}.ri{margin-right:20px}.rx{max-width:500px}.so{line-height:24px}.sp{letter-spacing:0}.tj{margin:40px 0 0}.to{padding-top:72px}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="all and (max-width: 1079.98px)">.e{display:none}.ll{margin-top:0px}.pt{margin-left:auto}.pu{text-align:center}.qz{display:inline-block}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="all and (max-width: 903.98px)">.f{display:none}.lk{margin-top:0px}.qy{display:inline-block}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="all and (max-width: 727.98px)">.g{display:none}.li{margin-top:0px}.lj{margin-right:0px}.qx{display:inline-block}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="all and (max-width: 551.98px)">.h{display:none}.s{display:flex}.t{justify-content:space-between}.bs{width:24px}.cc{margin:0 24px}.cr{height:40px}.cy{margin-bottom:44px}.dk{margin-bottom:32px}.dx{font-size:13px}.dy{line-height:20px}.eh{padding:0px 8px 1px}.fu{margin-bottom:2px}.gw{font-size:32px}.gx{margin-top:1.01em}.gy{margin-bottom:24px}.gz{line-height:38px}.ha{letter-spacing:-0.014em}.hv{align-items:flex-start}.iy{flex-direction:column}.jn{margin:24px -24px 0}.jo{padding:0}.kd> *{margin-right:8px}.ke> :last-child{margin-right:24px}.kv{margin-left:0px}.lg{margin-top:0px}.lh{margin-right:0px}.lw{margin:0}.mg{border:1px solid #F2F2F2}.mh{border-radius:99em}.mi{padding:0px 16px 0px 12px}.mj{height:38px}.mk{align-items:center}.mm svg{margin-right:8px}.mx{margin-top:32px}.nh{font-size:20px}.ni{margin-top:1.2em}.nj{line-height:24px}.nk{letter-spacing:0}.of{font-size:18px}.og{margin-top:0.67em}.oh{line-height:28px}.oi{letter-spacing:-0.003em}.pb{margin-top:1.56em}.pi{margin-top:40px}.qa{margin-top:1.34em}.qw{display:inline-block}.rp{margin-bottom:20px}.rq{margin-right:0}.sb{max-width:100%}.se{font-size:24px}.sf{line-height:30px}.sg{letter-spacing:-0.016em}.tf{margin:32px 0 0}.tk{padding-top:48px}.ml:hover{border-color:#E5E5E5}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="all and (min-width: 904px) and (max-width: 1079.98px)">.i{display:none}.bv{width:64px}.cf{margin:0 64px}.cu{height:48px}.db{margin-bottom:52px}.dn{margin-bottom:48px}.ed{font-size:14px}.ee{line-height:20px}.ek{font-size:13px}.el{padding:5px 12px}.fg{display:flex}.fx{margin-bottom:50px}.gb{max-width:680px}.hl{font-size:42px}.hm{margin-top:1.19em}.hn{margin-bottom:32px}.ho{line-height:52px}.hp{letter-spacing:-0.011em}.hy{align-items:center}.jv{border-top:solid 1px #F2F2F2}.jw{border-bottom:solid 1px #F2F2F2}.jx{margin:32px 0 0}.jy{padding:3px 8px}.kj> *{margin-right:24px}.kk> :last-child{margin-right:0}.lz{margin:0}.na{margin-top:40px}.nt{font-size:24px}.nu{margin-top:1.95em}.nv{line-height:30px}.nw{letter-spacing:-0.016em}.or{font-size:20px}.os{margin-top:0.94em}.ot{line-height:32px}.ou{letter-spacing:-0.003em}.pe{margin-top:2.14em}.pl{margin-top:56px}.qd{margin-top:1.14em}.rf{flex-direction:row}.rj{margin-bottom:0}.rk{margin-right:20px}.ry{max-width:500px}.sm{line-height:24px}.sn{letter-spacing:0}.ti{margin:40px 0 0}.tn{padding-top:72px}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="all and (min-width: 728px) and (max-width: 903.98px)">.j{display:none}.w{display:flex}.x{justify-content:space-between}.bu{width:64px}.ce{margin:0 48px}.ct{height:48px}.da{margin-bottom:52px}.dm{margin-bottom:48px}.eb{font-size:13px}.ec{line-height:20px}.ej{padding:0px 8px 1px}.fw{margin-bottom:50px}.ga{max-width:680px}.hg{font-size:42px}.hh{margin-top:1.19em}.hi{margin-bottom:32px}.hj{line-height:52px}.hk{letter-spacing:-0.011em}.hx{align-items:center}.jr{border-top:solid 1px #F2F2F2}.js{border-bottom:solid 1px #F2F2F2}.jt{margin:32px 0 0}.ju{padding:3px 8px}.kh> *{margin-right:24px}.ki> :last-child{margin-right:0}.ly{margin:0}.mz{margin-top:40px}.np{font-size:24px}.nq{margin-top:1.95em}.nr{line-height:30px}.ns{letter-spacing:-0.016em}.on{font-size:20px}.oo{margin-top:0.94em}.op{line-height:32px}.oq{letter-spacing:-0.003em}.pd{margin-top:2.14em}.pk{margin-top:56px}.qc{margin-top:1.14em}.rg{flex-direction:row}.rl{margin-bottom:0}.rm{margin-right:20px}.rz{max-width:500px}.sk{line-height:24px}.sl{letter-spacing:0}.th{margin:40px 0 0}.tm{padding-top:72px}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="all and (min-width: 552px) and (max-width: 727.98px)">.k{display:none}.u{display:flex}.v{justify-content:space-between}.bt{width:24px}.cd{margin:0 24px}.cs{height:40px}.cz{margin-bottom:44px}.dl{margin-bottom:32px}.dz{font-size:13px}.ea{line-height:20px}.ei{padding:0px 8px 1px}.fv{margin-bottom:2px}.hb{font-size:32px}.hc{margin-top:1.01em}.hd{margin-bottom:24px}.he{line-height:38px}.hf{letter-spacing:-0.014em}.hw{align-items:flex-start}.iz{flex-direction:column}.jp{margin:24px 0 0}.jq{padding:0}.kf> *{margin-right:8px}.kg> :last-child{margin-right:8px}.kw{margin-left:0px}.lx{margin:0}.mn{border:1px solid #F2F2F2}.mo{border-radius:99em}.mp{padding:0px 16px 0px 12px}.mq{height:38px}.mr{align-items:center}.mt svg{margin-right:8px}.my{margin-top:32px}.nl{font-size:20px}.nm{margin-top:1.2em}.nn{line-height:24px}.no{letter-spacing:0}.oj{font-size:18px}.ok{margin-top:0.67em}.ol{line-height:28px}.om{letter-spacing:-0.003em}.pc{margin-top:1.56em}.pj{margin-top:40px}.qb{margin-top:1.34em}.rn{margin-bottom:20px}.ro{margin-right:0}.sa{max-width:100%}.sh{font-size:24px}.si{line-height:30px}.sj{letter-spacing:-0.016em}.tg{margin:32px 0 0}.tl{padding-top:48px}.ms:hover{border-color:#E5E5E5}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="print">.qu{display:none}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="(orientation: landscape) and (max-width: 903.98px)">.jk{max-height:none}</style><style type="text/css" data-fela-rehydration="539" data-fela-type="RULE" media="(prefers-reduced-motion: no-preference)">.pn{transition:transform 300ms cubic-bezier(0.2, 0, 0.2, 1)}</style></head><body><div id="root"><div class="a b c"><div class="d e f g h i j k"></div><script>document.domain = document.domain;</script><div class="l c"><div class="l m n o c"><div class="p q r s t u v w x i d y z"><a class="du ag dv bf ak b am an ao ap aq ar as at s u w i d q dw z" href="https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F37f1eed898a7&amp;%7Efeature=LoOpenInAppButton&amp;%7Echannel=ShowPostUnderCollection&amp;source=---top_nav_layout_nav-----------------------------------------" rel="noopener follow">Open in app<svg xmlns="http://www.w3.org/2000/svg" width="10" height="10" fill="none" viewBox="0 0 10 10" class="dt"><path fill="currentColor" d="M.985 8.485a.375.375 0 1 0 .53.53zM8.75 1.25h.375A.375.375 0 0 0 8.75.875zM8.375 6.5a.375.375 0 1 0 .75 0zM3.5.875a.375.375 0 1 0 0 .75zm-1.985 8.14 7.5-7.5-.53-.53-7.5 7.5zm6.86-7.765V6.5h.75V1.25zM3.5 1.625h5.25v-.75H3.5z"></path></svg></a><div class="ab q"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><button class="bf b dx dy eh dz ea ei eb ec ej ek ee el em eg eo ep eq er es et eu ev ew ex ey ez fa fb fc fd bm fe ff" data-testid="headerSignUpButton">Sign up</button></span></p><div class="ax l"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSignInButton" rel="noopener follow" href="/m/signin?operation=login&amp;redirect=https%3A%2F%2Fmedium.com%2Fnvidia-merlin%2Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7&amp;source=post_page---top_nav_layout_nav-----------------------global_nav------------------">Sign in</a></span></p></div></div></div><div class="p q r ab ac"><div class="ab q ae"><a class="af ag ah ai aj ak al am an ao ap aq ar as at ab" aria-label="Homepage" data-testid="headerMediumLogo" rel="noopener follow" href="/?source=---top_nav_layout_nav-----------------------------------------"><svg xmlns="http://www.w3.org/2000/svg" width="719" height="160" fill="none" viewBox="0 0 719 160" class="au av aw"><path fill="#242424" d="m174.104 9.734.215-.047V8.02H130.39L89.6 103.89 48.81 8.021H1.472v1.666l.212.047c8.018 1.81 12.09 4.509 12.09 14.242V137.93c0 9.734-4.087 12.433-12.106 14.243l-.212.047v1.671h32.118v-1.665l-.213-.048c-8.018-1.809-12.089-4.509-12.089-14.242V30.586l52.399 123.305h2.972l53.925-126.743V140.75c-.687 7.688-4.721 10.062-11.982 11.701l-.215.05v1.652h55.948v-1.652l-.215-.05c-7.269-1.639-11.4-4.013-12.087-11.701l-.037-116.774h.037c0-9.733 4.071-12.432 12.087-14.242m25.555 75.488c.915-20.474 8.268-35.252 20.606-35.507 3.806.063 6.998 1.312 9.479 3.714 5.272 5.118 7.751 15.812 7.368 31.793zm-.553 5.77h65.573v-.275c-.186-15.656-4.721-27.834-13.466-36.196-7.559-7.227-18.751-11.203-30.507-11.203h-.263c-6.101 0-13.584 1.48-18.909 4.16-6.061 2.807-11.407 7.003-15.855 12.511-7.161 8.874-11.499 20.866-12.554 34.343q-.05.606-.092 1.212a50 50 0 0 0-.065 1.151 85.807 85.807 0 0 0-.094 5.689c.71 30.524 17.198 54.917 46.483 54.917 25.705 0 40.675-18.791 44.407-44.013l-1.886-.664c-6.557 13.556-18.334 21.771-31.738 20.769-18.297-1.369-32.314-19.922-31.042-42.395m139.722 41.359c-2.151 5.101-6.639 7.908-12.653 7.908s-11.513-4.129-15.418-11.63c-4.197-8.053-6.405-19.436-6.405-32.92 0-28.067 8.729-46.22 22.24-46.22 5.657 0 10.111 2.807 12.236 7.704zm43.499 20.008c-8.019-1.897-12.089-4.722-12.089-14.951V1.309l-48.716 14.353v1.757l.299-.024c6.72-.543 11.278.386 13.925 2.83 2.072 1.915 3.082 4.853 3.082 8.987v18.66c-4.803-3.067-10.516-4.56-17.448-4.56-14.059 0-26.909 5.92-36.176 16.672-9.66 11.205-14.767 26.518-14.767 44.278-.003 31.72 15.612 53.039 38.851 53.039 13.595 0 24.533-7.449 29.54-20.013v16.865h43.711v-1.746zM424.1 19.819c0-9.904-7.468-17.374-17.375-17.374-9.859 0-17.573 7.632-17.573 17.374s7.721 17.374 17.573 17.374c9.907 0 17.375-7.47 17.375-17.374m11.499 132.546c-8.019-1.897-12.089-4.722-12.089-14.951h-.035V43.635l-43.714 12.551v1.705l.263.024c9.458.842 12.047 4.1 12.047 15.152v81.086h43.751v-1.746zm112.013 0c-8.018-1.897-12.089-4.722-12.089-14.951V43.635l-41.621 12.137v1.71l.246.026c7.733.813 9.967 4.257 9.967 15.36v59.279c-2.578 5.102-7.415 8.131-13.274 8.336-9.503 0-14.736-6.419-14.736-18.073V43.638l-43.714 12.55v1.703l.262.024c9.459.84 12.05 4.097 12.05 15.152v50.17a56.3 56.3 0 0 0 .91 10.444l.787 3.423c3.701 13.262 13.398 20.197 28.59 20.197 12.868 0 24.147-7.966 29.115-20.43v17.311h43.714v-1.747zm169.818 1.788v-1.749l-.213-.05c-8.7-2.006-12.089-5.789-12.089-13.49v-63.79c0-19.89-11.171-31.761-29.883-31.761-13.64 0-25.141 7.882-29.569 20.16-3.517-13.01-13.639-20.16-28.606-20.16-13.146 0-23.449 6.938-27.869 18.657V43.643L545.487 55.68v1.715l.263.024c9.345.829 12.047 4.181 12.047 14.95v81.784h40.787v-1.746l-.215-.053c-6.941-1.631-9.181-4.606-9.181-12.239V66.998c1.836-4.289 5.537-9.37 12.853-9.37 9.086 0 13.692 6.296 13.692 18.697v77.828h40.797v-1.746l-.215-.053c-6.94-1.631-9.18-4.606-9.18-12.239V75.066a42 42 0 0 0-.578-7.26c1.947-4.661 5.86-10.177 13.475-10.177 9.214 0 13.691 6.114 13.691 18.696v77.828z"></path></svg></a><div class="ax h"><div class="ab ay az ba bb q bc bd"><div class="bm" aria-hidden="false" aria-describedby="searchResults" aria-labelledby="searchResults"></div><div class="bn bo ab"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M4.092 11.06a6.95 6.95 0 1 1 13.9 0 6.95 6.95 0 0 1-13.9 0m6.95-8.05a8.05 8.05 0 1 0 5.13 14.26l3.75 3.75a.56.56 0 1 0 .79-.79l-3.73-3.73A8.05 8.05 0 0 0 11.042 3z" clip-rule="evenodd"></path></svg></div><input role="combobox" aria-controls="searchResults" aria-expanded="false" aria-label="search" data-testid="headerSearchInput" tabindex="0" class="ay be bf bg z bh bi bj bk bl" placeholder="Search" value=""/></div></div></div><div class="h k w fg fh"><div class="fi ab"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerWriteButton" rel="noopener follow" href="/m/signin?operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnew-story&amp;source=---top_nav_layout_nav-----------------------new_post_topnav------------------"><div class="bf b bg z du fj fk ab q fl fm"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24" aria-label="Write"><path fill="currentColor" d="M14 4a.5.5 0 0 0 0-1zm7 6a.5.5 0 0 0-1 0zm-7-7H4v1h10zM3 4v16h1V4zm1 17h16v-1H4zm17-1V10h-1v10zm-1 1a1 1 0 0 0 1-1h-1zM3 20a1 1 0 0 0 1 1v-1zM4 3a1 1 0 0 0-1 1h1z"></path><path stroke="currentColor" d="m17.5 4.5-8.458 8.458a.25.25 0 0 0-.06.098l-.824 2.47a.25.25 0 0 0 .316.316l2.47-.823a.25.25 0 0 0 .098-.06L19.5 6.5m-2-2 2.323-2.323a.25.25 0 0 1 .354 0l1.646 1.646a.25.25 0 0 1 0 .354L19.5 6.5m-2-2 2 2"></path></svg><div class="dt l">Write</div></div></a></span></div></div><div class="k j i d"><div class="fi ab"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSearchButton" rel="noopener follow" href="/search?source=---top_nav_layout_nav-----------------------------------------"><div class="bf b bg z du fj fk ab q fl fm"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24" aria-label="Search"><path fill="currentColor" fill-rule="evenodd" d="M4.092 11.06a6.95 6.95 0 1 1 13.9 0 6.95 6.95 0 0 1-13.9 0m6.95-8.05a8.05 8.05 0 1 0 5.13 14.26l3.75 3.75a.56.56 0 1 0 .79-.79l-3.73-3.73A8.05 8.05 0 0 0 11.042 3z" clip-rule="evenodd"></path></svg></div></a></div></div><div class="fi h k j"><div class="ab q"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><button class="bf b dx dy eh dz ea ei eb ec ej ek ee el em eg eo ep eq er es et eu ev ew ex ey ez fa fb fc fd bm fe ff" data-testid="headerSignUpButton">Sign up</button></span></p><div class="ax l"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSignInButton" rel="noopener follow" href="/m/signin?operation=login&amp;redirect=https%3A%2F%2Fmedium.com%2Fnvidia-merlin%2Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7&amp;source=post_page---top_nav_layout_nav-----------------------global_nav------------------">Sign in</a></span></p></div></div></div><div class="l" aria-hidden="false"><button class="ay fn am ab q ao fo fp fq" aria-label="user options menu" data-testid="headerUserIcon"><div class="l fj"><img alt="" class="l fd by bz ca cx" src="https://miro.medium.com/v2/resize:fill:64:64/1*dmbNkD5D-u45r44go_cf0g.png" width="32" height="32" loading="lazy" role="presentation"/><div class="fr by l bz ca fs n ay ft"></div></div></button></div></div></div><div class="l"><div class="fu fv fw fx fy l"><div class="ab cb"><div class="ci bh fz ga gb gc"></div></div><article><div class="l"><div class="l"><span class="l"></span><section><div><div class="fs gi gj gk gl gm"></div><div class="gn go gp gq gr"><div class="ab cb"><div class="ci bh fz ga gb gc"><div><h1 id="37e4" class="pw-post-title gs gt gu bf gv gw gx gy gz ha hb hc hd he hf hg hh hi hj hk hl hm hn ho hp hq hr hs ht hu bk" data-testid="storyTitle">Leading Design and Development of the Advertising Recommender System at Tencent: An Interview with Xiangting Kong</h1><div><div class="speechify-ignore ab cp"><div class="speechify-ignore bh l"><div class="hv hw hx hy hz ab"><div><div class="ab ia"><div><div class="bm" aria-hidden="false"><a rel="noopener follow" href="/@akspencer?source=post_page---byline--37f1eed898a7---------------------------------------"><div class="l ib ic by id ie"><div class="l fj"><img alt="Ann Spencer US" class="l fd by dd de cx" src="https://miro.medium.com/v2/da:true/resize:fill:88:88/0*G0jWR0oPBrtDpqmG" width="44" height="44" loading="lazy" data-testid="authorPhoto"/><div class="if by l dd de fs n ig ft"></div></div></div></a></div></div><div class="ih ab fj"><div><div class="bm" aria-hidden="false"><a href="https://medium.com/nvidia-merlin?source=post_page---byline--37f1eed898a7---------------------------------------" rel="noopener follow"><div class="l ii ij by id ik"><div class="l fj"><img alt="NVIDIA Merlin" class="l fd by br il cx" src="https://miro.medium.com/v2/resize:fill:48:48/1*7yEoueC3H-VMYsTCWBk74A.png" width="24" height="24" loading="lazy" data-testid="publicationPhoto"/><div class="if by l br il fs n ig ft"></div></div></div></a></div></div></div></div></div><div class="bn bh l"><div class="ab"><div style="flex:1"><span class="bf b bg z bk"><div class="im ab q"><div class="ab q in"><div class="ab q"><div><div class="bm" aria-hidden="false"><p class="bf b io ip bk"><a class="af ag ah ai aj ak al am an ao ap aq ar iq" data-testid="authorName" rel="noopener follow" href="/@akspencer?source=post_page---byline--37f1eed898a7---------------------------------------">Ann Spencer US</a></p></div></div></div><span class="ir is" aria-hidden="true"><span class="bf b bg z du">·</span></span><p class="bf b io ip du"><span><a class="it iu ah ai aj ak al am an ao ap aq ar ex iv iw" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2Fd69c9bb3c3b8&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnvidia-merlin%2Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7&amp;user=Ann+Spencer+US&amp;userId=d69c9bb3c3b8&amp;source=post_page-d69c9bb3c3b8--byline--37f1eed898a7---------------------post_header------------------">Follow</a></span></p></div></div></span></div></div><div class="l ix"><span class="bf b bg z du"><div class="ab cn iy iz ja"><div class="fu fv ab"><div class="bf b bg z du ab jb"><span class="jc l ix">Published in</span><div><div class="l" aria-hidden="false"><a class="af ag ah ai aj ak al am an ao ap aq ar iq ab q" data-testid="publicationName" href="https://medium.com/nvidia-merlin?source=post_page---byline--37f1eed898a7---------------------------------------" rel="noopener follow"><p class="bf b bg z jd je jf jg jh ji jj jk bk">NVIDIA Merlin</p></a></div></div></div><div class="h k"><span class="ir is" aria-hidden="true"><span class="bf b bg z du">·</span></span></div></div><span class="bf b bg z du"><div class="ab ae"><span data-testid="storyReadTime">5 min read</span><div class="jl jm l" aria-hidden="true"><span class="l" aria-hidden="true"><span class="bf b bg z du">·</span></span></div><span data-testid="storyPublishDate">Sep 1, 2021</span></div></span></div></span></div></div></div><div class="ab cp jn jo jp jq jr js jt ju jv jw jx jy jz ka kb kc"><div class="h k w fg fh q"><div class="ks l"><div class="ab q kt ku"><div class="pw-multi-vote-icon fj jc kv kw kx"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fnvidia-merlin%2F37f1eed898a7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnvidia-merlin%2Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7&amp;user=Ann+Spencer+US&amp;userId=d69c9bb3c3b8&amp;source=---header_actions--37f1eed898a7---------------------clap_footer------------------"><div><div class="bm" aria-hidden="false"><div class="ky ao kz la lb lc am ld le lf kx"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l lg lh li lj lk ll lm"><p class="bf b dv z du"><span class="ln">--</span></p></div></div></div><div><div class="bm" aria-hidden="false"><button class="ao ky lo lp ab q fk lq lr" aria-label="responses"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" class="ls"><path d="M18.006 16.803c1.533-1.456 2.234-3.325 2.234-5.321C20.24 7.357 16.709 4 12.191 4S4 7.357 4 11.482c0 4.126 3.674 7.482 8.191 7.482.817 0 1.622-.111 2.393-.327.231.2.48.391.744.559 1.06.693 2.203 1.044 3.399 1.044.224-.008.4-.112.486-.287a.49.49 0 0 0-.042-.518c-.495-.67-.845-1.364-1.04-2.057a4 4 0 0 1-.125-.598zm-3.122 1.055-.067-.223-.315.096a8 8 0 0 1-2.311.338c-4.023 0-7.292-2.955-7.292-6.587 0-3.633 3.269-6.588 7.292-6.588 4.014 0 7.112 2.958 7.112 6.593 0 1.794-.608 3.469-2.027 4.72l-.195.168v.255c0 .056 0 .151.016.295.025.231.081.478.154.733.154.558.398 1.117.722 1.659a5.3 5.3 0 0 1-2.165-.845c-.276-.176-.714-.383-.941-.59z"></path></svg></button></div></div></div><div class="ab q kd ke kf kg kh ki kj kk kl km kn ko kp kq kr"><div class="lt k j i d"></div><div class="h k"><div><div class="bm" aria-hidden="false"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerBookmarkButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F37f1eed898a7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnvidia-merlin%2Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7&amp;source=---header_actions--37f1eed898a7---------------------bookmark_footer------------------"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" fill="none" viewBox="0 0 25 25" class="du lu" aria-label="Add to list bookmark button"><path fill="currentColor" d="M18 2.5a.5.5 0 0 1 1 0V5h2.5a.5.5 0 0 1 0 1H19v2.5a.5.5 0 1 1-1 0V6h-2.5a.5.5 0 0 1 0-1H18zM7 7a1 1 0 0 1 1-1h3.5a.5.5 0 0 0 0-1H8a2 2 0 0 0-2 2v14a.5.5 0 0 0 .805.396L12.5 17l5.695 4.396A.5.5 0 0 0 19 21v-8.5a.5.5 0 0 0-1 0v7.485l-5.195-4.012a.5.5 0 0 0-.61 0L7 19.985z"></path></svg></a></span></div></div></div><div class="fd lv cn"><div class="l ae"><div class="ab cb"><div class="lw lx ly lz ma mb ci bh"><div class="ab"><div class="bm" aria-hidden="false"><div><div class="bm" aria-hidden="false"><button aria-label="Listen" data-testid="audioPlayButton" class="af fk ah ai aj ak al mc an ao ap ex md me lr mf mg mh mi mj s mk ml mm mn mo mp mq u mr ms mt"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M3 12a9 9 0 1 1 18 0 9 9 0 0 1-18 0m9-10C6.477 2 2 6.477 2 12s4.477 10 10 10 10-4.477 10-10S17.523 2 12 2m3.376 10.416-4.599 3.066a.5.5 0 0 1-.777-.416V8.934a.5.5 0 0 1 .777-.416l4.599 3.066a.5.5 0 0 1 0 .832" clip-rule="evenodd"></path></svg><div class="j i d"><p class="bf b bg z du">Listen</p></div></button></div></div></div></div></div></div></div></div><div class="bm" aria-hidden="false" aria-describedby="postFooterSocialMenu" aria-labelledby="postFooterSocialMenu"><div><div class="bm" aria-hidden="false"><button aria-controls="postFooterSocialMenu" aria-expanded="false" aria-label="Share Post" data-testid="headerSocialShareButton" class="af fk ah ai aj ak al mc an ao ap ex md me lr mf mg mh mi mj s mk ml mm mn mo mp mq u mr ms mt"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M15.218 4.931a.4.4 0 0 1-.118.132l.012.006a.45.45 0 0 1-.292.074.5.5 0 0 1-.3-.13l-2.02-2.02v7.07c0 .28-.23.5-.5.5s-.5-.22-.5-.5v-7.04l-2 2a.45.45 0 0 1-.57.04h-.02a.4.4 0 0 1-.16-.3.4.4 0 0 1 .1-.32l2.8-2.8a.5.5 0 0 1 .7 0l2.8 2.79a.42.42 0 0 1 .068.498m-.106.138.008.004v-.01zM16 7.063h1.5a2 2 0 0 1 2 2v10a2 2 0 0 1-2 2h-11c-1.1 0-2-.9-2-2v-10a2 2 0 0 1 2-2H8a.5.5 0 0 1 .35.15.5.5 0 0 1 .15.35.5.5 0 0 1-.15.35.5.5 0 0 1-.35.15H6.4c-.5 0-.9.4-.9.9v10.2a.9.9 0 0 0 .9.9h11.2c.5 0 .9-.4.9-.9v-10.2c0-.5-.4-.9-.9-.9H16a.5.5 0 0 1 0-1" clip-rule="evenodd"></path></svg><div class="j i d"><p class="bf b bg z du">Share</p></div></button></div></div></div></div></div></div></div></div></div><figure class="mx my mz na nb nc mu mv paragraph-image"><div class="mu mv mw"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/1*amaIijWUqSqpELilnvKO5g.png 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/1*amaIijWUqSqpELilnvKO5g.png 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/1*amaIijWUqSqpELilnvKO5g.png 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/1*amaIijWUqSqpELilnvKO5g.png 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/1*amaIijWUqSqpELilnvKO5g.png 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/1*amaIijWUqSqpELilnvKO5g.png 1100w, https://miro.medium.com/v2/resize:fit:1390/format:webp/1*amaIijWUqSqpELilnvKO5g.png 1390w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 695px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/1*amaIijWUqSqpELilnvKO5g.png 640w, https://miro.medium.com/v2/resize:fit:720/1*amaIijWUqSqpELilnvKO5g.png 720w, https://miro.medium.com/v2/resize:fit:750/1*amaIijWUqSqpELilnvKO5g.png 750w, https://miro.medium.com/v2/resize:fit:786/1*amaIijWUqSqpELilnvKO5g.png 786w, https://miro.medium.com/v2/resize:fit:828/1*amaIijWUqSqpELilnvKO5g.png 828w, https://miro.medium.com/v2/resize:fit:1100/1*amaIijWUqSqpELilnvKO5g.png 1100w, https://miro.medium.com/v2/resize:fit:1390/1*amaIijWUqSqpELilnvKO5g.png 1390w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 695px"/><img alt="" class="bh mb nd c" width="695" height="876" loading="eager" role="presentation"/></picture></div></figure><h1 id="c568" class="ne nf gu bf ng nh ni nj nk nl nm nn no np nq nr ns nt nu nv nw nx ny nz oa ob bk">Introduction: Sharing Insights and Best Practices</h1><p id="6420" class="pw-post-body-paragraph oc od gu oe b of og oh oi oj ok ol om on oo op oq or os ot ou ov ow ox oy oz gn bk">Working closely with the broader recommender community, including innovative global leaders like <a class="af pa" href="https://www.tencent.com/en-us/about.html" rel="noopener ugc nofollow" target="_blank">Tencent</a>, enables NVIDIA to incorporate best practices, insights, and learnings back into our<a class="af pa" href="https://nvda.ws/3zGP4wI" rel="noopener ugc nofollow" target="_blank"> recommender framework</a>. At NVIDIA, we are committed to streamlining the building, deploying, and optimizing of recommender systems. Our engineering teams participate in <a class="af pa" href="https://nvda.ws/3kDEvEp" rel="noopener ugc nofollow" target="_blank">industry challenges</a>, <a class="af pa" href="https://nvda.ws/2WAioqs" rel="noopener ugc nofollow" target="_blank">host community events</a>, and work closely with early adopters like Tencent. Xiangting Kong, Expert Engineer, leads the design and development of Tencent’s Advertising and Deep Learning Platform. While Kong presented at<a class="af pa" href="https://nvda.ws/2WCRtdv" rel="noopener ugc nofollow" target="_blank"> GTC Spring</a>, we asked him to share some additional insights on building recommender systems in this interview.</p><h1 id="35f3" class="ne nf gu bf ng nh ni nj nk nl nm nn no np nq nr ns nt nu nv nw nx ny nz oa ob bk">Interview with Xiangting Kong, Expert Engineer, Tencent</h1><p id="8be6" class="pw-post-body-paragraph oc od gu oe b of og oh oi oj ok ol om on oo op oq or os ot ou ov ow ox oy oz gn bk"><strong class="oe gv">Question: What is your role at Tencent?</strong></p><p id="111c" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong: </em></strong><em class="pg">I am an expert engineer at Tencent and am responsible for the design and development of the advertising recommendation system. I am also the lead of the Tencent Advertising and Deep Learning Platform. Our platform supports the machine learning model optimization, training, and inference in a variety of business scenarios from advertising and fintech to networking data mining.</em></p><p id="4147" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Questions: What does your team at Tencent work on?</strong></p><p id="0930" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong: </em></strong><em class="pg">Our team mainly develops machine learning platforms and we are responsible for feature engineering, model training and online inference. We are working on implementing a new generation of high-performance distributed training system for advertising recommendation based on GPU from 0 to 1.</em></p><p id="e5ad" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: How does your work and your team’s work on recommenders relate to Tencent’s overall business?</strong></p><p id="c7e2" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong: </em></strong><em class="pg">Our advertising recommendation training platform covers the entire Tencent traffic business. Tencent advertising recommendations are widely used in services such as WeChat, Moments, QQ, Tencent Games, Tencent Video, Tencent News and so on. Tencent advertising revenue is in the hundreds of millions. The accuracy of our advertising recommendation helps increase advertising revenue.</em></p><figure class="pi pj pk pl pm nc mu mv paragraph-image"><div role="button" tabindex="0" class="pn po fj pp bh pq"><div class="mu mv ph"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/0*DspuOfOv0e_it3BB 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/0*DspuOfOv0e_it3BB 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/0*DspuOfOv0e_it3BB 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/0*DspuOfOv0e_it3BB 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/0*DspuOfOv0e_it3BB 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/0*DspuOfOv0e_it3BB 1100w, https://miro.medium.com/v2/resize:fit:1400/format:webp/0*DspuOfOv0e_it3BB 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/0*DspuOfOv0e_it3BB 640w, https://miro.medium.com/v2/resize:fit:720/0*DspuOfOv0e_it3BB 720w, https://miro.medium.com/v2/resize:fit:750/0*DspuOfOv0e_it3BB 750w, https://miro.medium.com/v2/resize:fit:786/0*DspuOfOv0e_it3BB 786w, https://miro.medium.com/v2/resize:fit:828/0*DspuOfOv0e_it3BB 828w, https://miro.medium.com/v2/resize:fit:1100/0*DspuOfOv0e_it3BB 1100w, https://miro.medium.com/v2/resize:fit:1400/0*DspuOfOv0e_it3BB 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px"/><img alt="Our advertising recommendation training platform covers the entire Tencent traffic business. Tencent advertising recommendations are widely used in services such as WeChat, Moments, QQ, Tencent Games, Tencent Video, Tencent News and so on. Tencent advertising revenue is in the hundreds of millions. The accuracy of our advertising recommendation helps increase advertising revenue." class="bh mb nd c" width="700" height="392" loading="lazy"/></picture></div></div><figcaption class="pr ff ps mu mv pt pu bf b bg z du"><em class="pv">From Xiangting Kong’s GTC Spring 2021 Presentation</em></figcaption></figure><p id="d456" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: Is your team a relatively new team? Why did Tencent decide to invest in recommenders?</strong></p><p id="96d4" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong: </em></strong><em class="pg">Our team has been established for years. The advertising business is a relatively important business inside Tencent and the recommendation system is used to increase the overall advertising revenue.</em></p><p id="2400" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: What kind of recommender systems does your team focus on?</strong></p><p id="42b3" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong: </em></strong><em class="pg">The main focus of our team is the advertising recommendation system, responsible for the optimization of the advertising training platform. Tencent advertising recommendations system consists of parts including offline feature engineering, training platform, online inference system, online feature engineering and play platform. Advertising recommendations is a process of gradual filtering. Sorting stages include recall, pre-ranking, and ranking. Each stage has different requirements. The rapid investigation and iteration of the model puts forth higher requirements for training performance.</em></p><figure class="pi pj pk pl pm nc mu mv paragraph-image"><div role="button" tabindex="0" class="pn po fj pp bh pq"><div class="mu mv pw"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/0*cagsGZ-N39ox908d 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/0*cagsGZ-N39ox908d 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/0*cagsGZ-N39ox908d 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/0*cagsGZ-N39ox908d 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/0*cagsGZ-N39ox908d 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/0*cagsGZ-N39ox908d 1100w, https://miro.medium.com/v2/resize:fit:1400/format:webp/0*cagsGZ-N39ox908d 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/0*cagsGZ-N39ox908d 640w, https://miro.medium.com/v2/resize:fit:720/0*cagsGZ-N39ox908d 720w, https://miro.medium.com/v2/resize:fit:750/0*cagsGZ-N39ox908d 750w, https://miro.medium.com/v2/resize:fit:786/0*cagsGZ-N39ox908d 786w, https://miro.medium.com/v2/resize:fit:828/0*cagsGZ-N39ox908d 828w, https://miro.medium.com/v2/resize:fit:1100/0*cagsGZ-N39ox908d 1100w, https://miro.medium.com/v2/resize:fit:1400/0*cagsGZ-N39ox908d 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px"/><img alt="The main focus of our team is the advertising recommendation system, responsible for the optimization of the advertising training platform. Tencent advertising recommendations system consists of parts including offline feature engineering, training platform, online inference system, online feature engineering and play platform. Advertising recommendations is a process of gradual filtering. Sorting stages include recall, pre-ranking, and ranking. Each stage has different requirements. The rapid i" class="bh mb nd c" width="700" height="451" loading="lazy"/></picture></div></div><figcaption class="pr ff ps mu mv pt pu bf b bg z du"><em class="pv">From Xiangting Kong’s GTC Spring 2021 Presentation</em></figcaption></figure><p id="80c0" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: How does your team conduct training?</strong></p><p id="c46f" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong:</em></strong><em class="pg"> We organize some technology sharing every one or two weeks.</em></p><p id="15ed" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: How does your team evaluate your recommender systems? fine tune?</strong></p><p id="1ae3" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong: </em></strong><em class="pg">Through our recommendation system, we optimize the algorithm strategy, add more samples and features, and assess whether it can drive the increase of income. The accuracy of the advertisement recommendation can be improved by training more sample data, by adding more sample features. But this leads to longer training time and effects the update frequency of the model. In order to ensure that the model updates will not be derailed, the training performance of the model needs to be continuously improved. After the training model performance is improved, more data can be trained to improve the accuracy of the model, thereby increasing the advertising revenue.</em></p><p id="1b10" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: How do you optimize your recommender systems? For example, it is our understanding that Tencent uses HugeCTR for embeddings optimization. How has this helped you optimize your workflow?</strong></p><p id="9344" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong: </em></strong><em class="pg">HugeCTR, as a recommendation training framework, is integrated into the advertising recommendation training system to make the update frequency of model training faster, and more samples can be trained to improve online effects.</em></p><p id="f60b" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: How do you choose the appropriate technique, package, method, or frameworks to support your work?</strong></p><p id="7dfb" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong:</em></strong><em class="pg"> The technology or framework we choose must be compatible with the community ecosystem, so that we can do better follow-up upgrades.</em></p><p id="8b8d" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: How do you address scaling your models?</strong></p><p id="0a90" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong:</em></strong><em class="pg"> Using a larger model is conducive to learning more features, thereby improving the accuracy of the model.</em></p><p id="d16b" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: What is a recent success for the team?</strong></p><p id="c4aa" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong:</em></strong><em class="pg"> In our training framework, a data-parallel distributed solution has been developed.</em></p><p id="1d53" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: Have you recently integrated specific methods into your recommender workflow?</strong></p><p id="b6ea" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong:</em></strong><em class="pg"> We recently integrated the CSR [Compressed Sparse Row] pipeline into our ad recommendation training system. CSR type training data is generated so that the data can be directly read on the GPU for training. Through our optimization of the data processing pipeline, the CPU load is greatly reduced and the GPU utilization is greatly improved.</em></p><p id="422f" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv">Question: If a team lead was just starting out and currently evaluating building, deploying, and optimizing recommenders for their company….what advice would you relay to help them accelerate or streamline their recommender workflows?</strong></p><p id="4fae" class="pw-post-body-paragraph oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz gn bk"><strong class="oe gv"><em class="pg">Xiangting Kong:</em></strong><em class="pg"> Choose a mature technical framework and be compatible with the community ecosystem to facilitate subsequent system upgrades.</em></p><h1 id="8781" class="ne nf gu bf ng nh ni nj nk nl nm nn no np nq nr ns nt nu nv nw nx ny nz oa ob bk">Additional Community Resources to Consider</h1><p id="1f88" class="pw-post-body-paragraph oc od gu oe b of og oh oi oj ok ol om on oo op oq or os ot ou ov ow ox oy oz gn bk">As NVIDIA is committed to streamlining recommender workflows, we incorporate best practices, insights, and learnings from the broader industry, including innovative early adopters like Tencent. Additional resources and events to consider if you are looking for additional best practices to help accelerate recommender workflows:</p><ul class=""><li id="7b57" class="oc od gu oe b of pb oh oi oj pc ol om on pd op oq or pe ot ou ov pf ox oy oz px py pz bk"><a class="af pa" href="https://des.cloud.tencent.com/2021/" rel="noopener ugc nofollow" target="_blank">Tencent Global Digital Conference</a></li><li id="1de0" class="oc od gu oe b of qa oh oi oj qb ol om on qc op oq or qd ot ou ov qe ox oy oz px py pz bk"><a class="af pa" href="https://nvda.ws/2WCRtdv" rel="noopener ugc nofollow" target="_blank">GTC Spring 2021 Session: Learn How Tencent Deployed An Advertising System on Merlin</a></li><li id="08dd" class="oc od gu oe b of qa oh oi oj qb ol om on qc op oq or qd ot ou ov qe ox oy oz px py pz bk"><a class="af pa" href="https://youtu.be/XiwVziNh_3s?t=136" rel="noopener ugc nofollow" target="_blank">GTC Fall Keynote Featuring Tencent in Production with NVIDIA Merlin</a></li><li id="3cc1" class="oc od gu oe b of qa oh oi oj qb ol om on qc op oq or qd ot ou ov qe ox oy oz px py pz bk"><a class="af pa" href="https://nvda.ws/2WAioqs" rel="noopener ugc nofollow" target="_blank">Deep Learning Recommender Systems Summit</a></li></ul></div></div></div></div></section></div></div></article></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="qf qg ab ja"><div class="qh ab"><a class="qi ay am ao" rel="noopener follow" href="/tag/deep-learning?source=post_page-----37f1eed898a7---------------------------------------"><div class="qj fj cx qk ge ql qm bf b bg z bk qn">Deep Learning</div></a></div><div class="qh ab"><a class="qi ay am ao" rel="noopener follow" href="/tag/recommender-systems?source=post_page-----37f1eed898a7---------------------------------------"><div class="qj fj cx qk ge ql qm bf b bg z bk qn">Recommender Systems</div></a></div><div class="qh ab"><a class="qi ay am ao" rel="noopener follow" href="/tag/personalization?source=post_page-----37f1eed898a7---------------------------------------"><div class="qj fj cx qk ge ql qm bf b bg z bk qn">Personalization</div></a></div><div class="qh ab"><a class="qi ay am ao" rel="noopener follow" href="/tag/machine-learning?source=post_page-----37f1eed898a7---------------------------------------"><div class="qj fj cx qk ge ql qm bf b bg z bk qn">Machine Learning</div></a></div><div class="qh ab"><a class="qi ay am ao" rel="noopener follow" href="/tag/data-science?source=post_page-----37f1eed898a7---------------------------------------"><div class="qj fj cx qk ge ql qm bf b bg z bk qn">Data Science</div></a></div></div></div></div><div class="l"></div><footer class="qo qp qq qr qs ab q qt ik c"><div class="l ae"><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ab cp qu"><div class="ab q kt"><div class="qv l"><span class="l qw qx qy e d"><div class="ab q kt ku"><div class="pw-multi-vote-icon fj jc kv kw kx"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fnvidia-merlin%2F37f1eed898a7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnvidia-merlin%2Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7&amp;user=Ann+Spencer+US&amp;userId=d69c9bb3c3b8&amp;source=---footer_actions--37f1eed898a7---------------------clap_footer------------------"><div><div class="bm" aria-hidden="false"><div class="ky ao kz la lb lc am ld le lf kx"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l lg lh li lj lk ll lm"><p class="bf b dv z du"><span class="ln">--</span></p></div></div></span><span class="l h g f qz ra"><div class="ab q kt ku"><div class="pw-multi-vote-icon fj jc kv kw kx"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fnvidia-merlin%2F37f1eed898a7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnvidia-merlin%2Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7&amp;user=Ann+Spencer+US&amp;userId=d69c9bb3c3b8&amp;source=---footer_actions--37f1eed898a7---------------------clap_footer------------------"><div><div class="bm" aria-hidden="false"><div class="ky ao kz la lb lc am ld le lf kx"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l lg lh li lj lk ll lm"><p class="bf b dv z du"><span class="ln">--</span></p></div></div></span></div><div class="bq ab"><div><div class="bm" aria-hidden="false"><button class="ao ky lo lp ab q fk lq lr" aria-label="responses"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" class="ls"><path d="M18.006 16.803c1.533-1.456 2.234-3.325 2.234-5.321C20.24 7.357 16.709 4 12.191 4S4 7.357 4 11.482c0 4.126 3.674 7.482 8.191 7.482.817 0 1.622-.111 2.393-.327.231.2.48.391.744.559 1.06.693 2.203 1.044 3.399 1.044.224-.008.4-.112.486-.287a.49.49 0 0 0-.042-.518c-.495-.67-.845-1.364-1.04-2.057a4 4 0 0 1-.125-.598zm-3.122 1.055-.067-.223-.315.096a8 8 0 0 1-2.311.338c-4.023 0-7.292-2.955-7.292-6.587 0-3.633 3.269-6.588 7.292-6.588 4.014 0 7.112 2.958 7.112 6.593 0 1.794-.608 3.469-2.027 4.72l-.195.168v.255c0 .056 0 .151.016.295.025.231.081.478.154.733.154.558.398 1.117.722 1.659a5.3 5.3 0 0 1-2.165-.845c-.276-.176-.714-.383-.941-.59z"></path></svg></button></div></div></div></div><div class="ab q"><div class="rb l ix"><div><div class="bm" aria-hidden="false"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerBookmarkButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F37f1eed898a7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnvidia-merlin%2Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7&amp;source=---footer_actions--37f1eed898a7---------------------bookmark_footer------------------"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" fill="none" viewBox="0 0 25 25" class="du lu" aria-label="Add to list bookmark button"><path fill="currentColor" d="M18 2.5a.5.5 0 0 1 1 0V5h2.5a.5.5 0 0 1 0 1H19v2.5a.5.5 0 1 1-1 0V6h-2.5a.5.5 0 0 1 0-1H18zM7 7a1 1 0 0 1 1-1h3.5a.5.5 0 0 0 0-1H8a2 2 0 0 0-2 2v14a.5.5 0 0 0 .805.396L12.5 17l5.695 4.396A.5.5 0 0 0 19 21v-8.5a.5.5 0 0 0-1 0v7.485l-5.195-4.012a.5.5 0 0 0-.61 0L7 19.985z"></path></svg></a></span></div></div></div><div class="rb l ix"><div class="bm" aria-hidden="false" aria-describedby="postFooterSocialMenu" aria-labelledby="postFooterSocialMenu"><div><div class="bm" aria-hidden="false"><button aria-controls="postFooterSocialMenu" aria-expanded="false" aria-label="Share Post" data-testid="footerSocialShareButton" class="af fk ah ai aj ak al mc an ao ap ex md me lr mf"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M15.218 4.931a.4.4 0 0 1-.118.132l.012.006a.45.45 0 0 1-.292.074.5.5 0 0 1-.3-.13l-2.02-2.02v7.07c0 .28-.23.5-.5.5s-.5-.22-.5-.5v-7.04l-2 2a.45.45 0 0 1-.57.04h-.02a.4.4 0 0 1-.16-.3.4.4 0 0 1 .1-.32l2.8-2.8a.5.5 0 0 1 .7 0l2.8 2.79a.42.42 0 0 1 .068.498m-.106.138.008.004v-.01zM16 7.063h1.5a2 2 0 0 1 2 2v10a2 2 0 0 1-2 2h-11c-1.1 0-2-.9-2-2v-10a2 2 0 0 1 2-2H8a.5.5 0 0 1 .35.15.5.5 0 0 1 .15.35.5.5 0 0 1-.15.35.5.5 0 0 1-.35.15H6.4c-.5 0-.9.4-.9.9v10.2a.9.9 0 0 0 .9.9h11.2c.5 0 .9-.4.9-.9v-10.2c0-.5-.4-.9-.9-.9H16a.5.5 0 0 1 0-1" clip-rule="evenodd"></path></svg></button></div></div></div></div></div></div></div></div></div></footer><div class="rc l"><div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="rd l"><div class="ab re rf rg iz iy"><div class="rh ri rj rk rl rm rn ro rp rq ab cp"><div class="h k"><a href="https://medium.com/nvidia-merlin?source=post_page---post_publication_info--37f1eed898a7---------------------------------------" rel="noopener follow"><div class="fj ab"><img alt="NVIDIA Merlin" class="rr ib ic cx" src="https://miro.medium.com/v2/resize:fill:96:96/1*7yEoueC3H-VMYsTCWBk74A.png" width="48" height="48" loading="lazy"/><div class="rr l ic ib fs n fr rs"></div></div></a></div><div class="j i d"><a href="https://medium.com/nvidia-merlin?source=post_page---post_publication_info--37f1eed898a7---------------------------------------" rel="noopener follow"><div class="fj ab"><img alt="NVIDIA Merlin" class="rr ru rt cx" src="https://miro.medium.com/v2/resize:fill:128:128/1*7yEoueC3H-VMYsTCWBk74A.png" width="64" height="64" loading="lazy"/><div class="rr l rt ru fs n fr rs"></div></div></a></div><div class="j i d rv ix"><div class="ab"></div></div></div><div class="ab co rw"><div class="rx ry rz sa sb l"><a class="af ag ah aj ak al am an ao ap aq ar as at ab q" href="https://medium.com/nvidia-merlin?source=post_page---post_publication_info--37f1eed898a7---------------------------------------" rel="noopener follow"><h2 class="pw-author-name bf sd se sf sg sh si sj on sk sl or sm sn ov so sp bk"><span class="gn sc">Published in <!-- -->NVIDIA Merlin</span></h2></a><div class="qh ab ia"><div class="l ix"><span class="pw-follower-count bf b bg z du"><a class="af ag ah ai aj ak al am an ao ap aq ar iq" rel="noopener follow" href="/nvidia-merlin/followers?source=post_page---post_publication_info--37f1eed898a7---------------------------------------">562 Followers</a></span></div><div class="bf b bg z du ab jb"><span class="ir l" aria-hidden="true"><span class="bf b bg z du">·</span></span><a class="af ag ah ai aj ak al am an ao ap aq ar iq" rel="noopener follow" href="/nvidia-merlin/insights-from-netflix-an-interview-with-ding-tong-senior-research-scientist-adb75c10e47e?source=post_page---post_publication_info--37f1eed898a7---------------------------------------">Last published <span>Jun 13, 2024</span></a></div></div><div class="sq l"><p class="bf b bg z bk"><span class="gn">NVIDIA Merlin is a series of open source tools for accelerating ETL, training and deployment of recommender systems entirely on GPU.</span></p></div></div></div><div class="h k"><div class="ab"></div></div></div></div><div class="ab re rf rg iz iy"><div class="rh ri rj rk rl rm rn ro rp rq ab cp"><div class="h k"><a tabindex="0" rel="noopener follow" href="/@akspencer?source=post_page---post_author_info--37f1eed898a7---------------------------------------"><div class="l fj"><img alt="Ann Spencer US" class="l fd by ic ib cx" src="https://miro.medium.com/v2/resize:fill:96:96/0*G0jWR0oPBrtDpqmG" width="48" height="48" loading="lazy"/><div class="fr by l ic ib fs n ay rs"></div></div></a></div><div class="j i d"><a tabindex="0" rel="noopener follow" href="/@akspencer?source=post_page---post_author_info--37f1eed898a7---------------------------------------"><div class="l fj"><img alt="Ann Spencer US" class="l fd by rt ru cx" src="https://miro.medium.com/v2/resize:fill:128:128/0*G0jWR0oPBrtDpqmG" width="64" height="64" loading="lazy"/><div class="fr by l rt ru fs n ay rs"></div></div></a></div><div class="j i d rv ix"><div class="ab"><span><button class="bf b bg z sr qj ss st su sv sw ev ew sx sy sz fa fb fc fd bm fe ff">Follow</button></span></div></div></div><div class="ab co rw"><div class="rx ry rz sa sb l"><a class="af ag ah aj ak al am an ao ap aq ar as at ab q" rel="noopener follow" href="/@akspencer?source=post_page---post_author_info--37f1eed898a7---------------------------------------"><h2 class="pw-author-name bf sd se sf sg sh si sj on sk sl or sm sn ov so sp bk"><span class="gn sc">Written by <!-- -->Ann Spencer US</span></h2></a><div class="qh ab ia"><div class="l ix"><span class="pw-follower-count bf b bg z du"><a class="af ag ah ai aj ak al am an ao ap aq ar iq" rel="noopener follow" href="/@akspencer/followers?source=post_page---post_author_info--37f1eed898a7---------------------------------------">18 Followers</a></span></div><div class="bf b bg z du ab jb"><span class="ir l" aria-hidden="true"><span class="bf b bg z du">·</span></span><a class="af ag ah ai aj ak al am an ao ap aq ar iq" rel="noopener follow" href="/@akspencer/following?source=post_page---post_author_info--37f1eed898a7---------------------------------------">6 Following</a></div></div><div class="sq l"><p class="bf b bg z bk"><span class="gn">Ann Spencer is a senior PMM for Merlin. Prior to NVIDIA, she was the Data Editor at O’Reilly Media focused on data engineering and data science from 2012–2014.</span></p></div></div></div><div class="h k"><div class="ab"><span><button class="bf b bg z sr qj ss st su sv sw ev ew sx sy sz fa fb fc fd bm fe ff">Follow</button></span></div></div></div></div></div></div></div><div class="ta l"><div class="tb bh r rc"></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ab q cp"><h2 class="bf sd nh nj nk nl nn no np nr ns nt nv nw nx nz oa bk">No responses yet</h2><div class="ab tc"><div><div class="bm" aria-hidden="false"><a class="td te" href="https://policy.medium.com/medium-rules-30e5502c4eb4?source=post_page---post_responses--37f1eed898a7---------------------------------------" rel="noopener follow" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" viewBox="0 0 25 25"><path fill-rule="evenodd" d="M11.987 5.036a.754.754 0 0 1 .914-.01c.972.721 1.767 1.218 2.6 1.543.828.322 1.719.485 2.887.505a.755.755 0 0 1 .741.757c-.018 3.623-.43 6.256-1.449 8.21-1.034 1.984-2.662 3.209-4.966 4.083a.75.75 0 0 1-.537-.003c-2.243-.874-3.858-2.095-4.897-4.074-1.024-1.951-1.457-4.583-1.476-8.216a.755.755 0 0 1 .741-.757c1.195-.02 2.1-.182 2.923-.503.827-.322 1.6-.815 2.519-1.535m.468.903c-.897.69-1.717 1.21-2.623 1.564-.898.35-1.856.527-3.026.565.037 3.45.469 5.817 1.36 7.515.884 1.684 2.25 2.762 4.284 3.571 2.092-.81 3.465-1.89 4.344-3.575.886-1.698 1.299-4.065 1.334-7.512-1.149-.039-2.091-.217-2.99-.567-.906-.353-1.745-.873-2.683-1.561m-.009 9.155a2.672 2.672 0 1 0 0-5.344 2.672 2.672 0 0 0 0 5.344m0 1a3.672 3.672 0 1 0 0-7.344 3.672 3.672 0 0 0 0 7.344m-1.813-3.777.525-.526.916.917 1.623-1.625.526.526-2.149 2.152z" clip-rule="evenodd"></path></svg></a></div></div></div></div><div class="tf tg th ti tj l"></div></div></div></div><div class="tk tl tm tn to l bx"><div class="h k j"><div class="tb bh tp tq"></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="tr ab kt ja"><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://help.medium.com/hc/en-us?source=post_page-----37f1eed898a7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Help</p></a></div><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://medium.statuspage.io/?source=post_page-----37f1eed898a7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Status</p></a></div><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/about?autoplay=1&amp;source=post_page-----37f1eed898a7---------------------------------------"><p class="bf b dv z du">About</p></a></div><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/jobs-at-medium/work-at-medium-959d1a85284e?source=post_page-----37f1eed898a7---------------------------------------"><p class="bf b dv z du">Careers</p></a></div><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="mailto:pressinquiries@medium.com" rel="noopener follow"><p class="bf b dv z du">Press</p></a></div><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://blog.medium.com/?source=post_page-----37f1eed898a7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Blog</p></a></div><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://policy.medium.com/medium-privacy-policy-f03bf92035c9?source=post_page-----37f1eed898a7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Privacy</p></a></div><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----37f1eed898a7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Terms</p></a></div><div class="ts tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://speechify.com/medium?source=post_page-----37f1eed898a7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Text to speech</p></a></div><div class="ts l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/business?source=post_page-----37f1eed898a7---------------------------------------"><p class="bf b dv z du">Teams</p></a></div></div></div></div></div></div></div></div></div></div><script>window.__BUILD_ID__="main-20250219-233547-38957b0a57"</script><script>window.__GRAPHQL_URI__ = "https://medium.com/_/graphql"</script><script>window.__PRELOADED_STATE__ = {"algolia":{"queries":{}},"cache":{"experimentGroupSet":true,"reason":"","group":"enabled","tags":["group-edgeCachePosts","post-37f1eed898a7","user-d69c9bb3c3b8","collection-3a729cdb8d77"],"serverVariantState":"44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a","middlewareEnabled":true,"cacheStatus":"DYNAMIC","shouldUseCache":true,"vary":[],"pubFeaturingPostPageLabelEnabled":false,"pubHierarchyEnabled":false},"client":{"hydrated":false,"isUs":false,"isNativeMedium":false,"isSafariMobile":false,"isSafari":false,"isFirefox":false,"routingEntity":{"type":"DEFAULT","explicit":false},"viewerIsBot":false},"debug":{"requestId":"a36fd19b-91a0-469a-80a8-855d679881f1","requestTag":"","hybridDevServices":[],"originalSpanCarrier":{"traceparent":"00-12eb3bb77ea6af620a9d93b7d16895df-7acbf8644070963a-01"}},"multiVote":{"clapsPerPost":{}},"navigation":{"branch":{"show":null,"hasRendered":null,"blockedByCTA":false},"hideGoogleOneTap":false,"hasRenderedAlternateUserBanner":null,"currentLocation":"https:\u002F\u002Fmedium.com\u002Fnvidia-merlin\u002Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7","host":"medium.com","hostname":"medium.com","referrer":"","hasSetReferrer":false,"susiModal":{"step":null,"operation":"register"},"postRead":false,"partnerProgram":{"selectedCountryCode":null},"queryString":"","currentHash":""},"config":{"nodeEnv":"production","version":"main-20250219-233547-38957b0a57","target":"production","productName":"Medium","publicUrl":"https:\u002F\u002Fcdn-client.medium.com\u002Flite","authDomain":"medium.com","authGoogleClientId":"216296035834-k1k6qe060s2tp2a2jam4ljdcms00sttg.apps.googleusercontent.com","favicon":"production","glyphUrl":"https:\u002F\u002Fglyph.medium.com","branchKey":"key_live_ofxXr2qTrrU9NqURK8ZwEhknBxiI6KBm","algolia":{"appId":"MQ57UUUQZ2","apiKeySearch":"394474ced050e3911ae2249ecc774921","indexPrefix":"medium_","host":"-dsn.algolia.net"},"recaptchaKey":"6Lfc37IUAAAAAKGGtC6rLS13R1Hrw_BqADfS1LRk","recaptcha3Key":"6Lf8R9wUAAAAABMI_85Wb8melS7Zj6ziuf99Yot5","recaptchaEnterpriseKeyId":"6Le-uGgpAAAAAPprRaokM8AKthQ9KNGdoxaGUvVp","datadog":{"applicationId":"6702d87d-a7e0-42fe-bbcb-95b469547ea0","clientToken":"pub853ea8d17ad6821d9f8f11861d23dfed","rumToken":"pubf9cc52896502b9413b68ba36fc0c7162","context":{"deployment":{"target":"production","tag":"main-20250219-233547-38957b0a57","commit":"38957b0a5720532a4159230745564223d5e3658d"}},"datacenter":"us"},"googleAnalyticsCode":"G-7JY7T788PK","googlePay":{"apiVersion":"2","apiVersionMinor":"0","merchantId":"BCR2DN6TV7EMTGBM","merchantName":"Medium","instanceMerchantId":"13685562959212738550"},"applePay":{"version":3},"signInWallCustomDomainCollectionIds":["3a8144eabfe3","336d898217ee","61061eb0c96b","138adf9c44c","819cc2aaeee0"],"mediumMastodonDomainName":"me.dm","mediumOwnedAndOperatedCollectionIds":["8a9336e5bb4","b7e45b22fec3","193b68bd4fba","8d6b8a439e32","54c98c43354d","3f6ecf56618","d944778ce714","92d2092dc598","ae2a65f35510","1285ba81cada","544c7006046e","fc8964313712","40187e704f1c","88d9857e584e","7b6769f2748b","bcc38c8f6edf","cef6983b292","cb8577c9149e","444d13b52878","713d7dbc99b0","ef8e90590e66","191186aaafa0","55760f21cdc5","9dc80918cc93","bdc4052bbdba","8ccfed20cbb2"],"tierOneDomains":["medium.com","thebolditalic.com","arcdigital.media","towardsdatascience.com","uxdesign.cc","codeburst.io","psiloveyou.xyz","writingcooperative.com","entrepreneurshandbook.co","prototypr.io","betterhumans.coach.me","theascent.pub"],"topicsToFollow":["d61cf867d93f","8a146bc21b28","1eca0103fff3","4d562ee63426","aef1078a3ef5","e15e46793f8d","6158eb913466","55f1c20aba7a","3d18b94f6858","4861fee224fd","63c6f1f93ee","1d98b3a9a871","decb52b64abf","ae5d4995e225","830cded25262"],"topicToTagMappings":{"accessibility":"accessibility","addiction":"addiction","android-development":"android-development","art":"art","artificial-intelligence":"artificial-intelligence","astrology":"astrology","basic-income":"basic-income","beauty":"beauty","biotech":"biotech","blockchain":"blockchain","books":"books","business":"business","cannabis":"cannabis","cities":"cities","climate-change":"climate-change","comics":"comics","coronavirus":"coronavirus","creativity":"creativity","cryptocurrency":"cryptocurrency","culture":"culture","cybersecurity":"cybersecurity","data-science":"data-science","design":"design","digital-life":"digital-life","disability":"disability","economy":"economy","education":"education","equality":"equality","family":"family","feminism":"feminism","fiction":"fiction","film":"film","fitness":"fitness","food":"food","freelancing":"freelancing","future":"future","gadgets":"gadgets","gaming":"gaming","gun-control":"gun-control","health":"health","history":"history","humor":"humor","immigration":"immigration","ios-development":"ios-development","javascript":"javascript","justice":"justice","language":"language","leadership":"leadership","lgbtqia":"lgbtqia","lifestyle":"lifestyle","machine-learning":"machine-learning","makers":"makers","marketing":"marketing","math":"math","media":"media","mental-health":"mental-health","mindfulness":"mindfulness","money":"money","music":"music","neuroscience":"neuroscience","nonfiction":"nonfiction","outdoors":"outdoors","parenting":"parenting","pets":"pets","philosophy":"philosophy","photography":"photography","podcasts":"podcast","poetry":"poetry","politics":"politics","privacy":"privacy","product-management":"product-management","productivity":"productivity","programming":"programming","psychedelics":"psychedelics","psychology":"psychology","race":"race","relationships":"relationships","religion":"religion","remote-work":"remote-work","san-francisco":"san-francisco","science":"science","self":"self","self-driving-cars":"self-driving-cars","sexuality":"sexuality","social-media":"social-media","society":"society","software-engineering":"software-engineering","space":"space","spirituality":"spirituality","sports":"sports","startups":"startup","style":"style","technology":"technology","transportation":"transportation","travel":"travel","true-crime":"true-crime","tv":"tv","ux":"ux","venture-capital":"venture-capital","visual-design":"visual-design","work":"work","world":"world","writing":"writing"},"defaultImages":{"avatar":{"imageId":"1*dmbNkD5D-u45r44go_cf0g.png","height":150,"width":150},"orgLogo":{"imageId":"7*V1_7XP4snlmqrc_0Njontw.png","height":110,"width":500},"postLogo":{"imageId":"bd978bb536350a710e8efb012513429cabdc4c28700604261aeda246d0f980b7","height":810,"width":1440},"postPreviewImage":{"imageId":"1*hn4v1tCaJy7cWMyb0bpNpQ.png","height":386,"width":579}},"collectionStructuredData":{"8d6b8a439e32":{"name":"Elemental","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F980\u002F1*9ygdqoKprhwuTVKUM0DLPA@2x.png","width":980,"height":159}}},"3f6ecf56618":{"name":"Forge","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F596\u002F1*uULpIlImcO5TDuBZ6lm7Lg@2x.png","width":596,"height":183}}},"ae2a65f35510":{"name":"GEN","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F264\u002F1*RdVZMdvfV3YiZTw6mX7yWA.png","width":264,"height":140}}},"88d9857e584e":{"name":"LEVEL","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*JqYMhNX6KNNb2UlqGqO2WQ.png","width":540,"height":108}}},"7b6769f2748b":{"name":"Marker","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F383\u002F1*haCUs0wF6TgOOvfoY-jEoQ@2x.png","width":383,"height":92}}},"444d13b52878":{"name":"OneZero","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*cw32fIqCbRWzwJaoQw6BUg.png","width":540,"height":123}}},"8ccfed20cbb2":{"name":"Zora","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*tZUQqRcCCZDXjjiZ4bDvgQ.png","width":540,"height":106}}}},"embeddedPostIds":{"coronavirus":"cd3010f9d81f"},"sharedCdcMessaging":{"COVID_APPLICABLE_TAG_SLUGS":[],"COVID_APPLICABLE_TOPIC_NAMES":[],"COVID_APPLICABLE_TOPIC_NAMES_FOR_TOPIC_PAGE":[],"COVID_MESSAGES":{"tierA":{"text":"For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":66,"end":73,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"tierB":{"text":"Anyone can publish on Medium per our Policies, but we don’t fact-check every story. For more info about the coronavirus, see cdc.gov.","markups":[{"start":37,"end":45,"href":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Fcategories\u002F201931128-Policies-Safety"},{"start":125,"end":132,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"paywall":{"text":"This article has been made free for everyone, thanks to Medium Members. For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":56,"end":70,"href":"https:\u002F\u002Fmedium.com\u002Fmembership"},{"start":138,"end":145,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"unbound":{"text":"This article is free for everyone, thanks to Medium Members. For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":45,"end":59,"href":"https:\u002F\u002Fmedium.com\u002Fmembership"},{"start":127,"end":134,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]}},"COVID_BANNER_POST_ID_OVERRIDE_WHITELIST":["3b31a67bff4a"]},"sharedVoteMessaging":{"TAGS":["politics","election-2020","government","us-politics","election","2020-presidential-race","trump","donald-trump","democrats","republicans","congress","republican-party","democratic-party","biden","joe-biden","maga"],"TOPICS":["politics","election"],"MESSAGE":{"text":"Find out more about the U.S. election results here.","markups":[{"start":46,"end":50,"href":"https:\u002F\u002Fcookpolitical.com\u002F2020-national-popular-vote-tracker"}]},"EXCLUDE_POSTS":["397ef29e3ca5"]},"embedPostRules":[],"recircOptions":{"v1":{"limit":3},"v2":{"limit":8}},"braintreeClientKey":"production_zjkj96jm_m56f8fqpf7ngnrd4","braintree":{"enabled":true,"merchantId":"m56f8fqpf7ngnrd4","merchantAccountId":{"usd":"AMediumCorporation_instant","eur":"amediumcorporation_EUR","cad":"amediumcorporation_CAD"},"publicKey":"ds2nn34bg2z7j5gd","braintreeEnvironment":"production","dashboardUrl":"https:\u002F\u002Fwww.braintreegateway.com\u002Fmerchants","gracePeriodDurationInDays":14,"mediumMembershipPlanId":{"monthly":"ce105f8c57a3","monthlyV2":"e8a5e126-792b-4ee6-8fba-d574c1b02fc5","monthlyWithTrial":"d5ee3dbe3db8","monthlyPremium":"fa741a9b47a2","yearly":"a40ad4a43185","yearlyV2":"3815d7d6-b8ca-4224-9b8c-182f9047866e","yearlyStaff":"d74fb811198a","yearlyWithTrial":"b3bc7350e5c7","yearlyPremium":"e21bd2c12166","monthlyOneYearFree":"e6c0637a-2bad-4171-ab4f-3c268633d83c","monthly25PercentOffFirstYear":"235ecc62-0cdb-49ae-9378-726cd21c504b","monthly20PercentOffFirstYear":"ba518864-9c13-4a99-91ca-411bf0cac756","monthly15PercentOffFirstYear":"594c029b-9f89-43d5-88f8-8173af4e070e","monthly10PercentOffFirstYear":"c6c7bc9a-40f2-4b51-8126-e28511d5bdb0","monthlyForStudents":"629ebe51-da7d-41fd-8293-34cd2f2030a8","yearlyOneYearFree":"78ba7be9-0d9f-4ece-aa3e-b54b826f2bf1","yearly25PercentOffFirstYear":"2dbb010d-bb8f-4eeb-ad5c-a08509f42d34","yearly20PercentOffFirstYear":"47565488-435b-47f8-bf93-40d5fbe0ebc8","yearly15PercentOffFirstYear":"8259809b-0881-47d9-acf7-6c001c7f720f","yearly10PercentOffFirstYear":"9dd694fb-96e1-472c-8d9e-3c868d5c1506","yearlyForStudents":"e29345ef-ab1c-4234-95c5-70e50fe6bc23","monthlyCad":"p52orjkaceei","yearlyCad":"h4q9g2up9ktt"},"braintreeDiscountId":{"oneMonthFree":"MONTHS_FREE_01","threeMonthsFree":"MONTHS_FREE_03","sixMonthsFree":"MONTHS_FREE_06","fiftyPercentOffOneYear":"FIFTY_PERCENT_OFF_ONE_YEAR"},"3DSecureVersion":"2","defaultCurrency":"usd","providerPlanIdCurrency":{"4ycw":"usd","rz3b":"usd","3kqm":"usd","jzw6":"usd","c2q2":"usd","nnsw":"usd","q8qw":"usd","d9y6":"usd","fx7w":"cad","nwf2":"cad"}},"paypalClientId":"AXj1G4fotC2GE8KzWX9mSxCH1wmPE3nJglf4Z2ig_amnhvlMVX87otaq58niAg9iuLktVNF_1WCMnN7v","paypal":{"host":"https:\u002F\u002Fapi.paypal.com:443","clientMode":"production","serverMode":"live","webhookId":"4G466076A0294510S","monthlyPlan":{"planId":"P-9WR0658853113943TMU5FDQA","name":"Medium Membership (Monthly) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"yearlyPlan":{"planId":"P-7N8963881P8875835MU5JOPQ","name":"Medium Membership (Annual) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"oneYearGift":{"name":"Medium Membership (1 Year, Digital Gift Code)","description":"Unlimited access to the best and brightest stories on Medium. Gift codes can be redeemed at medium.com\u002Fredeem.","price":"50.00","currency":"USD","sku":"membership-gift-1-yr"},"oldMonthlyPlan":{"planId":"P-96U02458LM656772MJZUVH2Y","name":"Medium Membership (Monthly)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"oldYearlyPlan":{"planId":"P-59P80963JF186412JJZU3SMI","name":"Medium Membership (Annual)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"monthlyPlanWithTrial":{"planId":"P-66C21969LR178604GJPVKUKY","name":"Medium Membership (Monthly) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"yearlyPlanWithTrial":{"planId":"P-6XW32684EX226940VKCT2MFA","name":"Medium Membership (Annual) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"oldMonthlyPlanNoSetupFee":{"planId":"P-4N046520HR188054PCJC7LJI","name":"Medium Membership (Monthly)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"oldYearlyPlanNoSetupFee":{"planId":"P-7A4913502Y5181304CJEJMXQ","name":"Medium Membership (Annual)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"sdkUrl":"https:\u002F\u002Fwww.paypal.com\u002Fsdk\u002Fjs"},"stripePublishableKey":"pk_live_7FReX44VnNIInZwrIIx6ghjl","log":{"json":true,"level":"info"},"imageUploadMaxSizeMb":25,"staffPicks":{"title":"Staff Picks","catalogId":"c7bc6e1ee00f"}},"session":{"xsrf":""}}</script><script>window.__APOLLO_STATE__ = {"ROOT_QUERY":{"__typename":"Query","viewer":null,"collectionByDomainOrSlug({\"domainOrSlug\":\"nvidia-merlin\"})":{"__ref":"Collection:3a729cdb8d77"},"postResult({\"id\":\"37f1eed898a7\"})":{"__ref":"Post:37f1eed898a7"}},"ImageMetadata:":{"__typename":"ImageMetadata","id":"","originalWidth":0,"originalHeight":0},"Collection:3a729cdb8d77":{"__typename":"Collection","id":"3a729cdb8d77","favicon":{"__ref":"ImageMetadata:"},"customStyleSheet":null,"colorPalette":{"__typename":"ColorPalette","highlightSpectrum":{"__typename":"ColorSpectrum","backgroundColor":"#FFFFFFFF","colorPoints":[{"__typename":"ColorPoint","color":"#FFFFFFFF","point":0},{"__typename":"ColorPoint","color":"#FFE8F3E8","point":0.1},{"__typename":"ColorPoint","color":"#FFE8F3E8","point":0.2},{"__typename":"ColorPoint","color":"#FFD1E7D1","point":0.6},{"__typename":"ColorPoint","color":"#FFA3D0A2","point":1}]},"defaultBackgroundSpectrum":{"__typename":"ColorSpectrum","backgroundColor":"#FFFFFFFF","colorPoints":[{"__typename":"ColorPoint","color":"#FF1A8917","point":0},{"__typename":"ColorPoint","color":"#FF11800E","point":0.1},{"__typename":"ColorPoint","color":"#FF0F730C","point":0.2},{"__typename":"ColorPoint","color":"#FF095407","point":1}]},"tintBackgroundSpectrum":null},"domain":null,"slug":"nvidia-merlin","googleAnalyticsId":null,"name":"NVIDIA Merlin","avatar":{"__ref":"ImageMetadata:1*7yEoueC3H-VMYsTCWBk74A.png"},"description":"NVIDIA Merlin is a series of open source tools for accelerating ETL, training and deployment of recommender systems entirely on GPU.","subscriberCount":562,"latestPostsConnection({\"paging\":{\"limit\":1}})":{"__typename":"PostConnection","posts":[{"__ref":"Post:adb75c10e47e"}]},"isAuroraVisible":false,"tintColor":null,"newsletterV3":null,"viewerEdge":{"__ref":"CollectionViewerEdge:collectionId:3a729cdb8d77-viewerId:lo_ee1c53db083e"},"twitterUsername":"Even_Oldridge","facebookPageId":null,"logo":{"__ref":"ImageMetadata:"}},"ImageMetadata:1*7yEoueC3H-VMYsTCWBk74A.png":{"__typename":"ImageMetadata","id":"1*7yEoueC3H-VMYsTCWBk74A.png"},"User:d69c9bb3c3b8":{"__typename":"User","id":"d69c9bb3c3b8","customDomainState":null,"hasSubdomain":false,"username":"akspencer","linkedAccounts":{"__ref":"LinkedAccounts:d69c9bb3c3b8"},"isSuspended":false,"name":"Ann Spencer US","imageId":"0*G0jWR0oPBrtDpqmG","verifications":{"__typename":"VerifiedInfo","isBookAuthor":false},"socialStats":{"__typename":"SocialStats","followerCount":18,"followingCount":5,"collectionFollowingCount":1},"bio":"Ann Spencer is a senior PMM for Merlin. Prior to NVIDIA, she was the Data Editor at O’Reilly Media focused on data engineering and data science from 2012–2014.","membership":null,"allowNotes":true,"viewerEdge":{"__ref":"UserViewerEdge:userId:d69c9bb3c3b8-viewerId:lo_ee1c53db083e"},"twitterScreenName":""},"Post:adb75c10e47e":{"__typename":"Post","id":"adb75c10e47e","firstPublishedAt":1718275778536,"creator":{"__ref":"User:d69c9bb3c3b8"},"collection":{"__ref":"Collection:3a729cdb8d77"},"isSeries":false,"mediumUrl":"https:\u002F\u002Fmedium.com\u002Fnvidia-merlin\u002Finsights-from-netflix-an-interview-with-ding-tong-senior-research-scientist-adb75c10e47e","sequence":null,"uniqueSlug":"insights-from-netflix-an-interview-with-ding-tong-senior-research-scientist-adb75c10e47e"},"LinkedAccounts:d69c9bb3c3b8":{"__typename":"LinkedAccounts","mastodon":null,"id":"d69c9bb3c3b8"},"Paragraph:8a641d19e810_0":{"__typename":"Paragraph","id":"8a641d19e810_0","name":"37e4","type":"H3","href":null,"layout":null,"metadata":null,"text":"Leading Design and Development of the Advertising Recommender System at Tencent: An Interview with Xiangting Kong","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:1*amaIijWUqSqpELilnvKO5g.png":{"__typename":"ImageMetadata","id":"1*amaIijWUqSqpELilnvKO5g.png","originalHeight":876,"originalWidth":695,"focusPercentX":null,"focusPercentY":null,"alt":null},"Paragraph:8a641d19e810_1":{"__typename":"Paragraph","id":"8a641d19e810_1","name":"830b","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:1*amaIijWUqSqpELilnvKO5g.png"},"text":"","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_2":{"__typename":"Paragraph","id":"8a641d19e810_2","name":"c568","type":"H3","href":null,"layout":null,"metadata":null,"text":"Introduction: Sharing Insights and Best Practices","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_3":{"__typename":"Paragraph","id":"8a641d19e810_3","name":"6420","type":"P","href":null,"layout":null,"metadata":null,"text":"Working closely with the broader recommender community, including innovative global leaders like Tencent, enables NVIDIA to incorporate best practices, insights, and learnings back into our recommender framework. At NVIDIA, we are committed to streamlining the building, deploying, and optimizing of recommender systems. Our engineering teams participate in industry challenges, host community events, and work closely with early adopters like Tencent. Xiangting Kong, Expert Engineer, leads the design and development of Tencent’s Advertising and Deep Learning Platform. While Kong presented at GTC Spring, we asked him to share some additional insights on building recommender systems in this interview.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":97,"end":104,"href":"https:\u002F\u002Fwww.tencent.com\u002Fen-us\u002Fabout.html","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":189,"end":211,"href":"https:\u002F\u002Fnvda.ws\u002F3zGP4wI","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":358,"end":377,"href":"https:\u002F\u002Fnvda.ws\u002F3kDEvEp","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":379,"end":400,"href":"https:\u002F\u002Fnvda.ws\u002F2WAioqs","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":595,"end":606,"href":"https:\u002F\u002Fnvda.ws\u002F2WCRtdv","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_4":{"__typename":"Paragraph","id":"8a641d19e810_4","name":"35f3","type":"H3","href":null,"layout":null,"metadata":null,"text":"Interview with Xiangting Kong, Expert Engineer, Tencent","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_5":{"__typename":"Paragraph","id":"8a641d19e810_5","name":"8be6","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: What is your role at Tencent?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":39,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_6":{"__typename":"Paragraph","id":"8a641d19e810_6","name":"111c","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: I am an expert engineer at Tencent and am responsible for the design and development of the advertising recommendation system. I am also the lead of the Tencent Advertising and Deep Learning Platform. Our platform supports the machine learning model optimization, training, and inference in a variety of business scenarios from advertising and fintech to networking data mining.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":16,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":394,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_7":{"__typename":"Paragraph","id":"8a641d19e810_7","name":"4147","type":"P","href":null,"layout":null,"metadata":null,"text":"Questions: What does your team at Tencent work on?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":50,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_8":{"__typename":"Paragraph","id":"8a641d19e810_8","name":"0930","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: Our team mainly develops machine learning platforms and we are responsible for feature engineering, model training and online inference. We are working on implementing a new generation of high-performance distributed training system for advertising recommendation based on GPU from 0 to 1.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":16,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":305,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_9":{"__typename":"Paragraph","id":"8a641d19e810_9","name":"e5ad","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: How does your work and your team’s work on recommenders relate to Tencent’s overall business?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":103,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_10":{"__typename":"Paragraph","id":"8a641d19e810_10","name":"c7e2","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: Our advertising recommendation training platform covers the entire Tencent traffic business. Tencent advertising recommendations are widely used in services such as WeChat, Moments, QQ, Tencent Games, Tencent Video, Tencent News and so on. Tencent advertising revenue is in the hundreds of millions. The accuracy of our advertising recommendation helps increase advertising revenue.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":16,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":398,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:0*DspuOfOv0e_it3BB":{"__typename":"ImageMetadata","id":"0*DspuOfOv0e_it3BB","originalHeight":642,"originalWidth":1147,"focusPercentX":null,"focusPercentY":null,"alt":"Our advertising recommendation training platform covers the entire Tencent traffic business. Tencent advertising recommendations are widely used in services such as WeChat, Moments, QQ, Tencent Games, Tencent Video, Tencent News and so on. Tencent advertising revenue is in the hundreds of millions. The accuracy of our advertising recommendation helps increase advertising revenue."},"Paragraph:8a641d19e810_11":{"__typename":"Paragraph","id":"8a641d19e810_11","name":"4b1c","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:0*DspuOfOv0e_it3BB"},"text":"From Xiangting Kong’s GTC Spring 2021 Presentation","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"EM","start":0,"end":50,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_12":{"__typename":"Paragraph","id":"8a641d19e810_12","name":"d456","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: Is your team a relatively new team? Why did Tencent decide to invest in recommenders?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":95,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_13":{"__typename":"Paragraph","id":"8a641d19e810_13","name":"96d4","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: Our team has been established for years. The advertising business is a relatively important business inside Tencent and the recommendation system is used to increase the overall advertising revenue.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":16,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":214,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_14":{"__typename":"Paragraph","id":"8a641d19e810_14","name":"2400","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: What kind of recommender systems does your team focus on?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":67,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_15":{"__typename":"Paragraph","id":"8a641d19e810_15","name":"42b3","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: The main focus of our team is the advertising recommendation system, responsible for the optimization of the advertising training platform. Tencent advertising recommendations system consists of parts including offline feature engineering, training platform, online inference system, online feature engineering and play platform. Advertising recommendations is a process of gradual filtering. Sorting stages include recall, pre-ranking, and ranking. Each stage has different requirements. The rapid investigation and iteration of the model puts forth higher requirements for training performance.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":16,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":612,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:0*cagsGZ-N39ox908d":{"__typename":"ImageMetadata","id":"0*cagsGZ-N39ox908d","originalHeight":643,"originalWidth":999,"focusPercentX":null,"focusPercentY":null,"alt":"The main focus of our team is the advertising recommendation system, responsible for the optimization of the advertising training platform. Tencent advertising recommendations system consists of parts including offline feature engineering, training platform, online inference system, online feature engineering and play platform. Advertising recommendations is a process of gradual filtering. Sorting stages include recall, pre-ranking, and ranking. Each stage has different requirements. The rapid i"},"Paragraph:8a641d19e810_16":{"__typename":"Paragraph","id":"8a641d19e810_16","name":"2a95","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:0*cagsGZ-N39ox908d"},"text":"From Xiangting Kong’s GTC Spring 2021 Presentation","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"EM","start":0,"end":50,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_17":{"__typename":"Paragraph","id":"8a641d19e810_17","name":"80c0","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: How does your team conduct training?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":46,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_18":{"__typename":"Paragraph","id":"8a641d19e810_18","name":"c46f","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: We organize some technology sharing every one or two weeks.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":15,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":75,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_19":{"__typename":"Paragraph","id":"8a641d19e810_19","name":"15ed","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: How does your team evaluate your recommender systems? fine tune?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":74,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_20":{"__typename":"Paragraph","id":"8a641d19e810_20","name":"1ae3","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: Through our recommendation system, we optimize the algorithm strategy, add more samples and features, and assess whether it can drive the increase of income. The accuracy of the advertisement recommendation can be improved by training more sample data, by adding more sample features. But this leads to longer training time and effects the update frequency of the model. In order to ensure that the model updates will not be derailed, the training performance of the model needs to be continuously improved. After the training model performance is improved, more data can be trained to improve the accuracy of the model, thereby increasing the advertising revenue.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":16,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":680,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_21":{"__typename":"Paragraph","id":"8a641d19e810_21","name":"1b10","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: How do you optimize your recommender systems? For example, it is our understanding that Tencent uses HugeCTR for embeddings optimization. How has this helped you optimize your workflow?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":195,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_22":{"__typename":"Paragraph","id":"8a641d19e810_22","name":"9344","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: HugeCTR, as a recommendation training framework, is integrated into the advertising recommendation training system to make the update frequency of model training faster, and more samples can be trained to improve online effects.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":16,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":244,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_23":{"__typename":"Paragraph","id":"8a641d19e810_23","name":"f60b","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: How do you choose the appropriate technique, package, method, or frameworks to support your work?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":107,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_24":{"__typename":"Paragraph","id":"8a641d19e810_24","name":"7dfb","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: The technology or framework we choose must be compatible with the community ecosystem, so that we can do better follow-up upgrades.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":15,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":147,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_25":{"__typename":"Paragraph","id":"8a641d19e810_25","name":"8b8d","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: How do you address scaling your models?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":49,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_26":{"__typename":"Paragraph","id":"8a641d19e810_26","name":"0a90","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: Using a larger model is conducive to learning more features, thereby improving the accuracy of the model.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":15,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":121,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_27":{"__typename":"Paragraph","id":"8a641d19e810_27","name":"d16b","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: What is a recent success for the team?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":48,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_28":{"__typename":"Paragraph","id":"8a641d19e810_28","name":"c4aa","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: In our training framework, a data-parallel distributed solution has been developed.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":15,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":99,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_29":{"__typename":"Paragraph","id":"8a641d19e810_29","name":"1d53","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: Have you recently integrated specific methods into your recommender workflow?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":87,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_30":{"__typename":"Paragraph","id":"8a641d19e810_30","name":"b6ea","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: We recently integrated the CSR [Compressed Sparse Row] pipeline into our ad recommendation training system. CSR type training data is generated so that the data can be directly read on the GPU for training. Through our optimization of the data processing pipeline, the CPU load is greatly reduced and the GPU utilization is greatly improved.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":15,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":357,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_31":{"__typename":"Paragraph","id":"8a641d19e810_31","name":"422f","type":"P","href":null,"layout":null,"metadata":null,"text":"Question: If a team lead was just starting out and currently evaluating building, deploying, and optimizing recommenders for their company….what advice would you relay to help them accelerate or streamline their recommender workflows?","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":234,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_32":{"__typename":"Paragraph","id":"8a641d19e810_32","name":"4fae","type":"P","href":null,"layout":null,"metadata":null,"text":"Xiangting Kong: Choose a mature technical framework and be compatible with the community ecosystem to facilitate subsequent system upgrades.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":15,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":140,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_33":{"__typename":"Paragraph","id":"8a641d19e810_33","name":"8781","type":"H3","href":null,"layout":null,"metadata":null,"text":"Additional Community Resources to Consider","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_34":{"__typename":"Paragraph","id":"8a641d19e810_34","name":"1f88","type":"P","href":null,"layout":null,"metadata":null,"text":"As NVIDIA is committed to streamlining recommender workflows, we incorporate best practices, insights, and learnings from the broader industry, including innovative early adopters like Tencent. Additional resources and events to consider if you are looking for additional best practices to help accelerate recommender workflows:","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_35":{"__typename":"Paragraph","id":"8a641d19e810_35","name":"7b57","type":"ULI","href":null,"layout":null,"metadata":null,"text":"Tencent Global Digital Conference","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":0,"end":33,"href":"https:\u002F\u002Fdes.cloud.tencent.com\u002F2021\u002F","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_36":{"__typename":"Paragraph","id":"8a641d19e810_36","name":"1de0","type":"ULI","href":null,"layout":null,"metadata":null,"text":"GTC Spring 2021 Session: Learn How Tencent Deployed An Advertising System on Merlin","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":0,"end":83,"href":"https:\u002F\u002Fnvda.ws\u002F2WCRtdv","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_37":{"__typename":"Paragraph","id":"8a641d19e810_37","name":"08dd","type":"ULI","href":null,"layout":null,"metadata":null,"text":"GTC Fall Keynote Featuring Tencent in Production with NVIDIA Merlin","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":0,"end":67,"href":"https:\u002F\u002Fyoutu.be\u002FXiwVziNh_3s?t=136","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:8a641d19e810_38":{"__typename":"Paragraph","id":"8a641d19e810_38","name":"3cc1","type":"ULI","href":null,"layout":null,"metadata":null,"text":"Deep Learning Recommender Systems Summit","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":0,"end":40,"href":"https:\u002F\u002Fnvda.ws\u002F2WAioqs","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"CollectionViewerEdge:collectionId:3a729cdb8d77-viewerId:lo_ee1c53db083e":{"__typename":"CollectionViewerEdge","id":"collectionId:3a729cdb8d77-viewerId:lo_ee1c53db083e","isEditor":false,"isMuting":false},"UserViewerEdge:userId:d69c9bb3c3b8-viewerId:lo_ee1c53db083e":{"__typename":"UserViewerEdge","id":"userId:d69c9bb3c3b8-viewerId:lo_ee1c53db083e","isMuting":false},"PostViewerEdge:postId:37f1eed898a7-viewerId:lo_ee1c53db083e":{"__typename":"PostViewerEdge","shouldIndexPostForExternalSearch":true,"id":"postId:37f1eed898a7-viewerId:lo_ee1c53db083e"},"Tag:deep-learning":{"__typename":"Tag","id":"deep-learning","displayTitle":"Deep Learning","normalizedTagSlug":"deep-learning"},"Tag:recommender-systems":{"__typename":"Tag","id":"recommender-systems","displayTitle":"Recommender Systems","normalizedTagSlug":"recommender-systems"},"Tag:personalization":{"__typename":"Tag","id":"personalization","displayTitle":"Personalization","normalizedTagSlug":"personalization"},"Tag:machine-learning":{"__typename":"Tag","id":"machine-learning","displayTitle":"Machine Learning","normalizedTagSlug":"machine-learning"},"Tag:data-science":{"__typename":"Tag","id":"data-science","displayTitle":"Data Science","normalizedTagSlug":"data-science"},"Post:37f1eed898a7":{"__typename":"Post","id":"37f1eed898a7","collection":{"__ref":"Collection:3a729cdb8d77"},"content({\"postMeteringOptions\":{\"referrer\":\"\"}})":{"__typename":"PostContent","isLockedPreviewOnly":false,"bodyModel":{"__typename":"RichText","sections":[{"__typename":"Section","name":"854a","startIndex":0,"textLayout":null,"imageLayout":null,"backgroundImage":null,"videoLayout":null,"backgroundVideo":null}],"paragraphs":[{"__ref":"Paragraph:8a641d19e810_0"},{"__ref":"Paragraph:8a641d19e810_1"},{"__ref":"Paragraph:8a641d19e810_2"},{"__ref":"Paragraph:8a641d19e810_3"},{"__ref":"Paragraph:8a641d19e810_4"},{"__ref":"Paragraph:8a641d19e810_5"},{"__ref":"Paragraph:8a641d19e810_6"},{"__ref":"Paragraph:8a641d19e810_7"},{"__ref":"Paragraph:8a641d19e810_8"},{"__ref":"Paragraph:8a641d19e810_9"},{"__ref":"Paragraph:8a641d19e810_10"},{"__ref":"Paragraph:8a641d19e810_11"},{"__ref":"Paragraph:8a641d19e810_12"},{"__ref":"Paragraph:8a641d19e810_13"},{"__ref":"Paragraph:8a641d19e810_14"},{"__ref":"Paragraph:8a641d19e810_15"},{"__ref":"Paragraph:8a641d19e810_16"},{"__ref":"Paragraph:8a641d19e810_17"},{"__ref":"Paragraph:8a641d19e810_18"},{"__ref":"Paragraph:8a641d19e810_19"},{"__ref":"Paragraph:8a641d19e810_20"},{"__ref":"Paragraph:8a641d19e810_21"},{"__ref":"Paragraph:8a641d19e810_22"},{"__ref":"Paragraph:8a641d19e810_23"},{"__ref":"Paragraph:8a641d19e810_24"},{"__ref":"Paragraph:8a641d19e810_25"},{"__ref":"Paragraph:8a641d19e810_26"},{"__ref":"Paragraph:8a641d19e810_27"},{"__ref":"Paragraph:8a641d19e810_28"},{"__ref":"Paragraph:8a641d19e810_29"},{"__ref":"Paragraph:8a641d19e810_30"},{"__ref":"Paragraph:8a641d19e810_31"},{"__ref":"Paragraph:8a641d19e810_32"},{"__ref":"Paragraph:8a641d19e810_33"},{"__ref":"Paragraph:8a641d19e810_34"},{"__ref":"Paragraph:8a641d19e810_35"},{"__ref":"Paragraph:8a641d19e810_36"},{"__ref":"Paragraph:8a641d19e810_37"},{"__ref":"Paragraph:8a641d19e810_38"}]},"validatedShareKey":"","shareKeyCreator":null},"creator":{"__ref":"User:d69c9bb3c3b8"},"inResponseToEntityType":null,"isLocked":false,"isMarkedPaywallOnly":false,"lockedSource":"LOCKED_POST_SOURCE_NONE","mediumUrl":"https:\u002F\u002Fmedium.com\u002Fnvidia-merlin\u002Fleading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7","primaryTopic":null,"topics":[{"__typename":"Topic","slug":"machine-learning"},{"__typename":"Topic","slug":"data-science"}],"isLimitedState":false,"isPublished":true,"allowResponses":true,"latestPublishedVersion":"8a641d19e810","visibility":"PUBLIC","responsesLocked":false,"postResponses":{"__typename":"PostResponses","count":0},"responseDistribution":"NOT_DISTRIBUTED","clapCount":12,"title":"Leading Design and Development of the Advertising Recommender System at Tencent: An Interview with…","isSeries":false,"sequence":null,"uniqueSlug":"leading-design-and-development-of-the-advertising-recommender-system-at-tencent-an-interview-with-37f1eed898a7","socialTitle":"","socialDek":"","canonicalUrl":"","metaDescription":"","latestPublishedAt":1631166041969,"readingTime":4.123584905660377,"previewContent":{"__typename":"PreviewContent","subtitle":"Introduction: Sharing Insights and Best Practices"},"previewImage":{"__ref":"ImageMetadata:1*amaIijWUqSqpELilnvKO5g.png"},"isShortform":false,"seoTitle":"Leading Design and Development of the Advertising Recommender System at Tencent: Interview with Xiangting Kong","firstPublishedAt":1630517938644,"updatedAt":1641399857958,"shortformType":"SHORTFORM_TYPE_LINK","seoDescription":"Xiangting Kong, Lead of Tencent Advertising and Deep Learning Platform, provides insight and best practices for deploying and optimizing recommender systems. ","viewerEdge":{"__ref":"PostViewerEdge:postId:37f1eed898a7-viewerId:lo_ee1c53db083e"},"isSuspended":false,"license":"ALL_RIGHTS_RESERVED","tags":[{"__ref":"Tag:deep-learning"},{"__ref":"Tag:recommender-systems"},{"__ref":"Tag:personalization"},{"__ref":"Tag:machine-learning"},{"__ref":"Tag:data-science"}],"isFeaturedInPublishedPublication":false,"isNewsletter":false,"statusForCollection":"APPROVED","pendingCollection":null,"detectedLanguage":"en","wordCount":947,"layerCake":0}}</script><script>window.__MIDDLEWARE_STATE__={"session":{"xsrf":""},"cache":{"cacheStatus":"EXPIRED"}}</script><script src="https://cdn-client.medium.com/lite/static/js/manifest.e819c3d8.js"></script><script src="https://cdn-client.medium.com/lite/static/js/9865.1496d74a.js"></script><script src="https://cdn-client.medium.com/lite/static/js/main.eabfc7a6.js"></script><script src="https://cdn-client.medium.com/lite/static/js/instrumentation.5bef8967.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/reporting.ff22a7a5.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/9120.5df29668.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5049.d1ead72d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/4505.6dfaf853.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6618.db187378.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/9380.fb176dee.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2707.4313e528.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/9977.933c1c9a.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8599.68bc318b.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/3045.1cc3d8cb.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6349.3329b100.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2648.26563adf.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8393.67b7130d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6428.7d30b23c.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6199.c727247b.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5642.7d9f7f3d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6546.e46b7f66.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6834.8aa8d357.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/4492.0c3e1a1d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2571.6814b962.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/839.1c286b32.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6128.f8800a13.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2135.780af2f8.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/7975.60bcefe8.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/144.7485bbe6.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5240.6281357f.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8819.c627c2bf.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8204.d0637ed0.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/PostPage.MainContent.ffcb26bb.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8414.0d800846.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/3974.8d3e0217.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2527.18a8996d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/PostResponsesContent.e1e580cb.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/responses.editor.e89462cb.chunk.js"></script><script>window.main();</script><script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'914c7d42fb1b4c9b',t:'MTc0MDAzMzQ2MC4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10