CINXE.COM

Search results for: recovery and use

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: recovery and use</title> <meta name="description" content="Search results for: recovery and use"> <meta name="keywords" content="recovery and use"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="recovery and use" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="recovery and use"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1800</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: recovery and use</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1710</span> Heroic Villains: An Exploration of the Use of Narrative Plotlines and Emerging Identities within Recovery Stories of Former Substance Abusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tria%20Moore%20Aimee%20Walker-Clarke">Tria Moore Aimee Walker-Clarke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study was to develop a deeper understanding of how self-identity is negotiated and reconstructed by people in recovery from substance abuse. The approach draws on the notion that self-identity is constructed through stories. Specifically, dominant narratives of substance abuse involve the 'addict identity' in which the meaning of being an addict is constructed though social interaction and informed by broader social meanings of substance misuse, which are considered deviant. The addict is typically understood as out of control, weak and feckless. Users may unconsciously embody this addict identity which makes recovery less likely. Typical approaches to treatment employ the notion that recovery is much more likely when users change the way they think and feel about themselves by assembling a new identity. Recovery, therefore, involves a reconstruction of the self in a new light, which may mean rejecting a part of the self (the addict identity). One limitation is that previous research on this topic has been quantitative which, while useful, tells us little about how this process is best managed. Should one, for example, reject the past addict identity completely and move on to the new identity, or, is it more effective to accept the past identity and use this in the formation of the new non-user identity? The purpose of this research, then, is to explore how addicts in recovery have managed the transition between their past and current selves and whether this may inform therapeutic practice. Using a narrative approach, data were analyzed from five in-depth interviews with former addicts who had been abstinent for at least a year, and who were in some form of volunteering role at substance treatment services in the UK. Although participants' identified with a previous ‘addict identity,’ and made efforts to disassociate themselves from this, they also recognized that acceptance was an important part of reconstructing their new identity. The participants' narratives used familiar plot lines to structure their stories, in which they positioned themselves as the heroes in their own stories, rather than as victim of circumstance. Instead of rejecting their former addict identity, which would mean rejecting a part of the self, participants used their experience in a reconstructive and restorative way. The findings suggest that encouraging people to tell their story and accept their addict identity are important factors in successful recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addiction" title="addiction">addiction</a>, <a href="https://publications.waset.org/abstracts/search?q=identity" title=" identity"> identity</a>, <a href="https://publications.waset.org/abstracts/search?q=narrative" title=" narrative"> narrative</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=substance%20abuse" title=" substance abuse"> substance abuse</a> </p> <a href="https://publications.waset.org/abstracts/66448/heroic-villains-an-exploration-of-the-use-of-narrative-plotlines-and-emerging-identities-within-recovery-stories-of-former-substance-abusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1709</span> Phosphorus Recovery Optimization in Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Almatouq">Abdullah Almatouq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=struvite" title=" struvite"> struvite</a> </p> <a href="https://publications.waset.org/abstracts/82315/phosphorus-recovery-optimization-in-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1708</span> Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Parthiban">S. R. Parthiban</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Elajchet%20Senni"> C. Elajchet Senni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spiral%20heat%20exchanger" title="spiral heat exchanger">spiral heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20based%20materials" title=" polymer based materials"> polymer based materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20factor" title=" fouling factor"> fouling factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20load" title=" heat load"> heat load</a> </p> <a href="https://publications.waset.org/abstracts/26811/polymer-spiral-film-gas-liquid-heat-exchanger-for-waste-heat-recovery-in-exhaust-gases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1707</span> Numerical Modelling of Immiscible Fluids Flow in Oil Reservoir Rocks during Enhanced Oil Recovery Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahreddine%20Hafsi">Zahreddine Hafsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoranjan%20Mishra"> Manoranjan Mishra </a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Elaoud">Sami Elaoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ensuring the maximum recovery rate of oil from reservoir rocks is a challenging task that requires preliminary numerical analysis of different techniques used to enhance the recovery process. After conventional oil recovery processes and in order to retrieve oil left behind after the primary recovery phase, water flooding in one of several techniques used for enhanced oil recovery (EOR). In this research work, EOR via water flooding is numerically modeled, and hydrodynamic instabilities resulted from immiscible oil-water flow in reservoir rocks are investigated. An oil reservoir is a porous medium consisted of many fractures of tiny dimensions. For modeling purposes, the oil reservoir is considered as a collection of capillary tubes which provides useful insights into how fluids behave in the reservoir pore spaces. Equations governing oil-water flow in oil reservoir rocks are developed and numerically solved following a finite element scheme. Numerical results are obtained using Comsol Multiphysics software. The two phase Darcy module of COMSOL Multiphysics allows modelling the imbibition process by the injection of water (as wetting phase) into an oil reservoir. Van Genuchten, Brooks Corey and Levrett models were considered as retention models and obtained flow configurations are compared, and the governing parameters are discussed. For the considered retention models it was found that onset of instabilities viz. fingering phenomenon is highly dependent on the capillary pressure as well as the boundary conditions, i.e., the inlet pressure and the injection velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20pressure" title="capillary pressure">capillary pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR%20process" title=" EOR process"> EOR process</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20flow" title=" immiscible flow"> immiscible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a> </p> <a href="https://publications.waset.org/abstracts/102040/numerical-modelling-of-immiscible-fluids-flow-in-oil-reservoir-rocks-during-enhanced-oil-recovery-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1706</span> Application of a Modified Crank-Nicolson Method in Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kobamelo%20Mashaba">Kobamelo Mashaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delayed%20partial%20differential%20equation" title="delayed partial differential equation">delayed partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Crank-Nicolson%20Method" title=" modified Crank-Nicolson Method"> modified Crank-Nicolson Method</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20slag" title=" molten slag"> molten slag</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery" title=" heat recovery"> heat recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20equation" title=" parabolic equation"> parabolic equation</a> </p> <a href="https://publications.waset.org/abstracts/152073/application-of-a-modified-crank-nicolson-method-in-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1705</span> Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dyah%20Ayu%20Yuli">M. Dyah Ayu Yuli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Faisal%20Dhio"> S. Faisal Dhio</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Johandi"> P. Johandi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Muhammad%20Sofyan"> P. Muhammad Sofyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20combustion" title=" fluidized bed combustion"> fluidized bed combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20and%20paper%20mills" title=" pulp and paper mills"> pulp and paper mills</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/19407/energy-conversion-from-waste-paper-industry-using-fluidized-bed-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1704</span> Analyzing the Potential of Job Creation by Taking the First Step Towards Circular Economy: Case Study of Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Conde">R. Conde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Brazilian economic projections and social indicators show a future of crisis for the country. Solutions to avoid this crisis scenario are necessary. Several developed countries implement initiatives linked to sustainability, mainly related to the circular economy, to solve their crises quickly - green recovery. This article aims to assess social gains if Brazil followed the same recovery strategy. Furthermore, with the use of data presented and recognized in the international academic society, the number of jobs that can be created, if Brazil took the first steps towards a more circular economy, was found. Moreover, in addition to the gross value in the number of jobs created, this article also detailed the number of these jobs by type of activity (collection, processing, and manufacturing) and by type of material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title="circular economy">circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20recovery" title=" green recovery"> green recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20creation" title=" job creation"> job creation</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20gains" title=" social gains"> social gains</a> </p> <a href="https://publications.waset.org/abstracts/134915/analyzing-the-potential-of-job-creation-by-taking-the-first-step-towards-circular-economy-case-study-of-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1703</span> Prediction of Oil Recovery Factor Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Oladipo">O. P. Oladipo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Falode"> O. A. Falode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recovery%20factor" title="recovery factor">recovery factor</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=reserves" title=" reserves"> reserves</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title=" hydrocarbon"> hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=API" title=" API"> API</a>, <a href="https://publications.waset.org/abstracts/search?q=Guthrie" title=" Guthrie"> Guthrie</a>, <a href="https://publications.waset.org/abstracts/search?q=Greenberger" title=" Greenberger"> Greenberger</a> </p> <a href="https://publications.waset.org/abstracts/18896/prediction-of-oil-recovery-factor-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1702</span> Recovery of Damages by General Cargo Interest under Bill of Lading Carriage Contract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eunice%20Chiamaka%20Allen-Ngbale">Eunice Chiamaka Allen-Ngbale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cargo claims are brought by cargo interests against carriers when the goods are not delivered or delivered short or mis-delivered or delivered damaged. The objective of the cargo claimant is to seek recovery for the loss suffered through the award of damages against the carrier by a court of competent jurisdiction. Moreover, whether the vessel on which the goods were carried is or is not under charter, the bill of lading plays a central role in the cargo claim. Since the bill of lading is an important international transport document, this paper examines, by chronicling the progress of a cargo claim as governed by the English law of contract. It finds that other than by contract, there are other modes of recovery available to a consignee or endorsee of a bill of lading to obtain a remedy under the sui generis contract of carriage contained in or evidenced by a bill of lading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bill%20of%20lading" title="bill of lading">bill of lading</a>, <a href="https://publications.waset.org/abstracts/search?q=cargo%20interests" title=" cargo interests"> cargo interests</a>, <a href="https://publications.waset.org/abstracts/search?q=carriage%20contract" title=" carriage contract"> carriage contract</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20of%20right%20of%20suit" title=" transfer of right of suit"> transfer of right of suit</a> </p> <a href="https://publications.waset.org/abstracts/137752/recovery-of-damages-by-general-cargo-interest-under-bill-of-lading-carriage-contract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1701</span> Practical Experiences in the Development of a Lab-Scale Process for the Production and Recovery of Fucoxanthin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alma%20G%C3%B3mez-Loredo">Alma Gómez-Loredo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Gonz%C3%A1lez-Valdez"> José González-Valdez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Benavides"> Jorge Benavides</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Rito-Palomares"> Marco Rito-Palomares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fucoxanthin is a carotenoid that exerts multiple beneficial effects on human health, including antioxidant, anti-cancer, antidiabetic and anti-obesity activity; making the development of a whole process for its production and recovery an important contribution. In this work, the lab-scale production and purification of fucoxanthin in Isocrhysis galbana have been studied. In batch cultures, low light intensities (13.5 μmol/m2s) and bubble agitation were the best conditions for production of the carotenoid with product yields of up to 0.143 mg/g. After fucoxanthin ethanolic extraction from biomass and hexane partition, further recovery and purification of the carotenoid has been accomplished by means of alcohol – salt Aqueous Two-Phase System (ATPS) extraction followed by an ultrafiltration (UF) step. An ATPS comprised of ethanol and potassium phosphate (Volume Ratio (VR) =3; Tie-line Length (TLL) 60% w/w) presented a fucoxanthin recovery yield of 76.24 ± 1.60% among the studied systems and was able to remove 64.89 ± 2.64% of the carotenoid and chlorophyll pollutants. For UF, the addition of ethanol to the original recovered ethanolic ATPS stream to a final relation of 74.15% (w/w) resulted in a reduction of approximately 16% of the protein contents, increasing product purity with a recovery yield of about 63% of the compound in the permeate stream. Considering the production, extraction and primary recovery (ATPS and UF) steps, around a 45% global fucoxanthin recovery should be expected. Although other purification technologies, such as Centrifugal Partition Chromatography are able to obtain fucoxanthin recoveries of up to 83%, the process developed in the present work does not require large volumes of solvents or expensive equipment. Moreover, it has a potential for scale up to commercial scale and represents a cost-effective strategy when compared to traditional separation techniques like chromatography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20two-phase%20systems" title="aqueous two-phase systems">aqueous two-phase systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fucoxanthin" title=" fucoxanthin"> fucoxanthin</a>, <a href="https://publications.waset.org/abstracts/search?q=Isochrysis%20galbana" title=" Isochrysis galbana"> Isochrysis galbana</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/15256/practical-experiences-in-the-development-of-a-lab-scale-process-for-the-production-and-recovery-of-fucoxanthin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1700</span> A Case Study at Lara&#039;s Landfill: Solid Waste Management and Energy Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelly%20Danielly%20Da%20Silva%20Alcantara">Kelly Danielly Da Silva Alcantara</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Fernando%20Molina%20Junqueira"> Daniel Fernando Molina Junqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Graziella%20Colato%20Antonio"> Graziella Colato Antonio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Law No. 12,305/10, established by the National Solid Waste Policy (PNRS), provides major changes in the management and managing scenario of solid waste in Brazil. The PNRS established since changes from population behavior as environmental and the consciousness and commitment of the companies with the waste produced. The objective of this project is to conduct a benchmarking study of the management models of Waste Management Municipal Solid (MSW) in national and international levels emphasizing especially in the European Union (Portugal, France and Germany), which are reference countries in energy development, sustainability and consequently recovery of waste generated. The management that encompasses all stages that are included in this sector will be analyzed by benchmarking, as the collection, transportation, processing/treatment and final disposal of waste. Considering the needs to produce clean energy in Brazil, this study will allow the determination to the best treatment of the waste in order to reduce the amount of waste and increase the lifetime of the landfill. Finally, it intends to identify the energy recovery potential through a study analysis of economic viability, energy and sustainable based on a holistic approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benchmarking" title="benchmarking">benchmarking</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20recovery" title=" energy recovery"> energy recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a> </p> <a href="https://publications.waset.org/abstracts/30758/a-case-study-at-laras-landfill-solid-waste-management-and-energy-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1699</span> Pre-Exsisting Attitude, Service Failure, and Recovery: Effect, Attributes, and Process in an Islamic Country</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Mobasem">Niloofar Mobasem</a>, <a href="https://publications.waset.org/abstracts/search?q=Kambiz%20Heidarzadeh%20Hanzaee"> Kambiz Heidarzadeh Hanzaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The study aimed to measure the customer satisfaction with service recovery through the conflict management framework, especially assessing the role of pre-existing attitudes for measuring the customer response to the service failure. Design/ methodology/ approach: The study is based on the experimental research method. The factorial designs are used in the research that measures the variables in two separate studies. In the first study, the factorial design is 3 conflict management style: cooperative, competitive, avoiding; - 3 service performance: exceed expectation, meet expectation, fail to meet expectation; and in the second study includes: - 3 conflict management style: cooperative, competitive, avoiding; - 2 service performance: exceed expectation, fail to meet expectation; - 2 pre-existing attitude: positive, negative. Finding: The results of study based on a scenario indicate that the conflict management style affected on customer satisfaction by service recovery efforts as well as the pre-existing attitudes affected the customer interpretation for service providers (conflict management style) and those who have positive pre-existing attitudes are interested to response to the cooperative approach in dealing with service failure. Research limitation/ implication: According to all researches, the study has several limitations. The nature of scenario in this study may cause to hit the reality of life. Although, the similar scenario approaches commonly are used for such researches, but the approaches are not without criticism. Practical implications: Given the importance of service recovery, companies can understand the importance of creating customer satisfaction achieved by the positive results due to the service recovery during the shortness or service failure by the mentioned companies. Originality/ value: The study highlights the importance of service failure and providing the education in relation to the service recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=service%20recovery" title="service recovery">service recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-existing%20attitude" title=" pre-existing attitude"> pre-existing attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20failure" title=" service failure"> service failure</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20satisfaction" title=" customer satisfaction"> customer satisfaction</a> </p> <a href="https://publications.waset.org/abstracts/24614/pre-exsisting-attitude-service-failure-and-recovery-effect-attributes-and-process-in-an-islamic-country" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1698</span> Estimation of Eucalyptus Wood Calorific Potential for Energy Recovering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouslimani">N. Ouslimani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hakimi"> N. Hakimi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aksas"> H. Aksas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of oil reserves in the world makes that many countries are directed towards the study and the use of local and renewable energies. For this purpose, wood energy represents the material of choice. The energy production is primarily thermal and corresponds to a heating of comfort, auxiliary or principal. Wood is generally conditioned in the form of logs, of pellets, even of plates. In Algeria, this way of energy saving could contribute to the safeguarding of the environment, as to the recovery of under wood products (branches, barks and various wastes on the various transformation steps). This work is placed within the framework general of the search for new sources of energy starting from the recovery of the lignocellulosic matter. In this direction, we proposed various sources of products (biomass, under product and by-products) relating to the ‘Eucalyptus species’ being able to be developed, of which we carried out a preliminary physicochemical study, necessary to the development of the densified products with high calorific value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=calorific%20value" title=" calorific value"> calorific value</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20recovery" title=" energy recovery"> energy recovery</a> </p> <a href="https://publications.waset.org/abstracts/74394/estimation-of-eucalyptus-wood-calorific-potential-for-energy-recovering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1697</span> Recovery of Polymers from Electronic Waste - An Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20A.%20Ansari">Anis A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Javed%20Arif"> Syed Javed Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the last two-three decades, all countries are continuously generating huge quantities of electronic waste in the form of obsolete computers, gadgets and other discarded electronic instruments mainly due to evolution of newer technologies as a result of constant efforts in research and development in this area. This is the primary reason why waste from the electronic industry is increasing exponentially day by day. Thermoset and thermoplastic polymers, which are the major constituents in every electronic waste, may create a new business opportunity if these are recovered and recycled properly. This may reduce our directly dependency on petroleum and petro-products for polymer materials and also create a potential market for recycled polymers to improve economy. The main theme of this paper is to evolve the potential of recovery and recycling of polymers from the waste being generated globally in the form of discarded electronic products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20recovery" title="polymer recovery">polymer recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20waste" title=" electronic waste"> electronic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastics" title=" thermoplastics"> thermoplastics</a> </p> <a href="https://publications.waset.org/abstracts/42470/recovery-of-polymers-from-electronic-waste-an-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1696</span> Athlete Coping: Personality Dimensions of Recovery from Injury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Randall%20E.%20Osborne">Randall E. Osborne</a>, <a href="https://publications.waset.org/abstracts/search?q=Seth%20A.%20Doty"> Seth A. Doty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As participation in organized sports increases, so does the risk of sustaining an athletic injury. These unfortunate injuries result in missed time from practice and, inevitably, the field of competition. Recovery time plays a pivotal role in the overall rehabilitation of the athlete. With time and rehabilitation, an athlete’s physical injury can be properly treated. However, there seem to be few measures assessing psychological recovery from injury. Although an athlete has been cleared to return to play, there may still be lingering doubt about their injury. Overall, there is a vast difference between being physically cleared to play and being psychologically ready to return to play. Certain personality traits might serve as predictors of an individual’s rate of psychological recovery from an injury. The purpose of this research study is to explore the correlations between athletes’ personality and their recovery from an athletic injury, specifically, examining how locus of control has been utilized through other studies and can be beneficial to the current study. Additionally, this section will examine the link between hardiness and coping strategies. In the current study, mental toughness is being tested, but it is important to determine the link between these two concepts. Hardiness and coping strategies are closely related and can play a major role in an athlete’s mental toughness. It is important to examine competitive trait anxiety to illustrate perceived anxiety during athletic competition. The Big 5 and Social Support will also be examined in conjunction with recovery from athletic injury. Athletic injury is a devastating and common occurrence that can happen in any sport. Injured athletes often require resources and treatment to be able to return to the field of play. Athletes become more involved with physical and mental treatment as the length of recovery time increases. It is very reasonable to assume that personality traits would be predictive of athlete recovery from injury. The current study investigated the potential relationship between personality traits and recovery time; more specifically, the personality traits of locus of control, hardiness, social support, competitive trait anxiety, and the “Big 5” personality traits. Results indicated that athletes with a higher internal locus of control tend to report being physically ready to return to play and “ready” to return to play faster than those with an external locus of control. Additionally, Openness to Experience (among the Big 5 personality dimensions) was also related to the speed of return to play. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=athlete" title="athlete">athlete</a>, <a href="https://publications.waset.org/abstracts/search?q=injury" title=" injury"> injury</a>, <a href="https://publications.waset.org/abstracts/search?q=personality" title=" personality"> personality</a>, <a href="https://publications.waset.org/abstracts/search?q=readiness%20to%20play" title=" readiness to play"> readiness to play</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/152698/athlete-coping-personality-dimensions-of-recovery-from-injury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1695</span> Technical and Economic Analysis Effects of Various Parameters on the Performance of Heat Recovery System on Gas Complex Turbo Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hefzollah%20Mohammadian">Hefzollah Mohammadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bagher%20Heidari"> Mohammad Bagher Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the technical and economic effects of various parameters on the performance of heat recovery system on gas complex turbo generator. Given the importance of this issue, that is the main goal of economic efficiency and reduces costs; this project has been implemented similar plans in which the target is the implementation of specific patterns. The project will also help us in the process of gas refineries and the actual efficiency of the process after adding a system to analyze the turbine and predict potential problems and fix them and take appropriate measures according to the results of simulation analysis and results of the process gain. The results of modeling and the effect of different parameters on this line, have been done using Thermo Flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbo%20compressor" title="turbo compressor">turbo compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=turbo%20generator" title=" turbo generator"> turbo generator</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery%20boiler" title=" heat recovery boiler"> heat recovery boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbines" title=" gas turbines"> gas turbines</a> </p> <a href="https://publications.waset.org/abstracts/52967/technical-and-economic-analysis-effects-of-various-parameters-on-the-performance-of-heat-recovery-system-on-gas-complex-turbo-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1694</span> Cockpit Integration and Piloted Assessment of an Upset Detection and Recovery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafid%20Smaili">Hafid Smaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfred%20Rouwhorst"> Wilfred Rouwhorst</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Frost"> Paul Frost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trend of recent accident and incident cases worldwide show that the state-of-the-art automation and operations, for current and future demanding operational environments, does not provide the desired level of operational safety under crew peak workload conditions, specifically in complex situations such as loss-of-control in-flight (LOC-I). Today, the short term focus is on preparing crews to recognise and handle LOC-I situations through upset recovery training. This paper describes the cockpit integration aspects and piloted assessment of both a manually assisted and automatic upset detection and recovery system that has been developed and demonstrated within the European Advanced Cockpit for Reduction Of StreSs and workload (ACROSS) programme. The proposed system is a function that continuously monitors and intervenes when the aircraft enters an upset and provides either manually pilot-assisted guidance or takes over full control of the aircraft to recover from an upset. In order to mitigate the highly physical and psychological impact during aircraft upset events, the system provides new cockpit functionalities to support the pilot in recovering from any upset both manually assisted and automatically. A piloted simulator assessment was made in Oct-Nov 2015 using ten pilots in a representative civil large transport fly-by-wire aircraft in terms of the preference of the tested upset detection and recovery system configurations to reduce pilot workload, increase situational awareness and safe interaction with the manually assisted or automated modes. The piloted simulator evaluation of the upset detection and recovery system showed that the functionalities of the system are able to support pilots during an upset. The experiment showed that pilots are willing to rely on the guidance provided by the system during an upset. Thereby, it is important for pilots to see and understand what the aircraft is doing and trying to do especially in automatic modes. Comparing the manually assisted and the automatic recovery modes, the pilot’s opinion was that an automatic recovery reduces the workload so that they could perform a proper screening of the primary flight display. The results further show that the manually assisted recoveries, with recovery guidance cues on the cockpit primary flight display, reduced workload for severe upsets compared to today’s situation. The level of situation awareness was improved for automatic upset recoveries where the pilot could monitor what the system was trying to accomplish compared to automatic recovery modes without any guidance. An improvement in situation awareness was also noticeable with the manually assisted upset recovery functionalities as compared to the current non-assisted recovery procedures. This study shows that automatic upset detection and recovery functionalities are likely to positively impact the operational safety by means of reduced workload, improved situation awareness and crew stress reduction. It is thus believed that future developments for upset recovery guidance and loss-of-control prevention should focus on automatic recovery solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20accidents" title="aircraft accidents">aircraft accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20flight%20control" title=" automatic flight control"> automatic flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=loss-of-control" title=" loss-of-control"> loss-of-control</a>, <a href="https://publications.waset.org/abstracts/search?q=upset%20recovery" title=" upset recovery "> upset recovery </a> </p> <a href="https://publications.waset.org/abstracts/54992/cockpit-integration-and-piloted-assessment-of-an-upset-detection-and-recovery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1693</span> Improving Enhanced Oil Recovery by Using Alkaline-Surfactant-Polymer Injection and Nanotechnology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Gerayeli">Amir Gerayeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Moradi"> Babak Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuously declining oil reservoirs and reservoirs aging have created a huge demand for utilization of Enhanced Oil Recovery (EOR) methods recently. Primary and secondary oil recovery methods have various limitations and are not practical for all reservoirs. Therefore, it is necessary to use chemical methods to improve oil recovery efficiency by reducing oil and water surface tension, increasing sweeping efficiency, and reducing displacer phase viscosity. One of the well-known methods of oil recovery is Alkaline-Surfactant-Polymer (ASP) flooding that shown to have significant impact on enhancing oil recovery. As some of the biggest oil reservoirs including those of Iran’s are fractional reservoirs with substantial amount of trapped oil in their fractures, the use of Alkaline-Surfactant-Polymer (ASP) flooding method is increasingly growing, the method in which the impact of several parameters including type and concentration of the Alkaline, Surfactant, and polymer are particularly important. This study investigated the use of Nano particles to improve Enhanced Oil Recovery (EOR). The study methodology included performing several laboratory tests on drill cores extracted from Karanj Oil field Asmary Formation in Khuzestan, Iran. In the experiments performed, Sodium dodecyl benzenesulfonate (SDBS) and 1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) were used as surfactant, hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer, Sodium hydroxide (NaOH) as alkaline, and Silicon dioxide (SiO2) and Magnesium oxide (MgO) were used as Nano particles. The experiment findings suggest that water viscosity increased from 1 centipoise to 5 centipoise when hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer. The surface tension between oil and water was initially measured as 25.808 (mN/m). The optimum surfactant concentration was found to be 500 p, at which the oil and water tension surface was measured to be 2.90 (mN/m) when [C12mim] [Cl] was used, and 3.28 (mN/m) when SDBS was used. The Nano particles concentration ranged from 100 ppm to 1500 ppm in this study. The optimum Nano particle concentration was found to be 1000 ppm for MgO and 500 ppm for SiO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline-surfactant-polymer" title="alkaline-surfactant-polymer">alkaline-surfactant-polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20surface%20tension" title=" reduced surface tension"> reduced surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20enhanced%20oil%20recovery" title=" tertiary enhanced oil recovery"> tertiary enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability%20change" title=" wettability change"> wettability change</a> </p> <a href="https://publications.waset.org/abstracts/81297/improving-enhanced-oil-recovery-by-using-alkaline-surfactant-polymer-injection-and-nanotechnology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1692</span> Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Jain">Madhu Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar%20Meena"> Rakesh Kumar Meena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant" title="fault tolerant">fault tolerant</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20repair" title=" machine repair"> machine repair</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20recovery%20policy" title=" threshold recovery policy"> threshold recovery policy</a>, <a href="https://publications.waset.org/abstracts/search?q=imperfect%20%20coverage" title=" imperfect coverage"> imperfect coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20variable%20technique" title=" supplementary variable technique"> supplementary variable technique</a> </p> <a href="https://publications.waset.org/abstracts/65696/queueing-modeling-of-mg1-fault-tolerant-system-with-threshold-recovery-and-imperfect-coverage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1691</span> A Systematic Review on the Whole-Body Cryotherapy versus Control Interventions for Recovery of Muscle Function and Perceptions of Muscle Soreness Following Exercise-Induced Muscle Damage in Runners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Nolte">Michael Nolte</a>, <a href="https://publications.waset.org/abstracts/search?q=Iwona%20Kasior"> Iwona Kasior</a>, <a href="https://publications.waset.org/abstracts/search?q=Kala%20Flagg"> Kala Flagg</a>, <a href="https://publications.waset.org/abstracts/search?q=Spiro%20Karavatas"> Spiro Karavatas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cryotherapy has been used as a post-exercise recovery modality for decades. Whole-body cryotherapy (WBC) is an intervention which involves brief exposures to extremely cold air in order to induce therapeutic effects. It is currently being investigated for its effectiveness in treating certain exercise-induced impairments. Purpose: The purpose of this systematic review was to determine whether WBC as a recovery intervention is more, less, or equally as effective as other interventions at reducing perceived levels of muscle soreness and promoting recovery of muscle function after exercise-induced muscle damage (EIMD) from running. Methods: A systematic review of the current literature was performed utilizing the following MeSH terms: cryotherapy, whole-body cryotherapy, exercise-induced muscle damage, muscle soreness, muscle recovery, and running. The databases utilized were PubMed, CINAHL, EBSCO Host, and Google Scholar. Articles were included if they were published within the last ten years, had a CEBM level of evidence of IIb or higher, had a PEDro scale score of 5 or higher, studied runners as primary subjects, and utilized both perceived levels of muscle soreness and recovery of muscle function as dependent variables. Articles were excluded if subjects did not include runners, if the interventions included PBC instead of WBC, and if both muscle performance and perceived muscle soreness were not assessed within the study. Results: Two of the four articles revealed that WBC was significantly more effective than treatment interventions such as far-infrared radiation and passive recovery at reducing perceived levels of muscle soreness and restoring muscle power and endurance following simulated trail runs and high-intensity interval running, respectively. One of the four articles revealed no significant difference between WBC and passive recovery in terms of reducing perceived muscle soreness and restoring muscle power following sprint intervals. One of the four articles revealed that WBC had a harmful effect compared to CWI and passive recovery on both perceived muscle soreness and recovery of muscle strength and power following a marathon. Discussion/Conclusion: Though there was no consensus in terms of WBC’s effectiveness at treating exercise-induced muscle damage following running compared to other interventions, it seems as though WBC may at least have a time-dependent positive effect on muscle soreness and recovery following high-intensity interval runs and endurance running, marathons excluded. More research needs to be conducted in order to determine the most effective way to implement WBC as a recovery method for exercise-induced muscle damage, including the optimal temperature, timing, duration, and frequency of treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryotherapy" title="cryotherapy">cryotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20therapy%20intervention" title=" physical therapy intervention"> physical therapy intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20therapy" title=" physical therapy"> physical therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=whole%20body%20cryotherapy" title=" whole body cryotherapy"> whole body cryotherapy</a> </p> <a href="https://publications.waset.org/abstracts/138126/a-systematic-review-on-the-whole-body-cryotherapy-versus-control-interventions-for-recovery-of-muscle-function-and-perceptions-of-muscle-soreness-following-exercise-induced-muscle-damage-in-runners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1690</span> A Performance Model for Designing Network in Reverse Logistic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Dhib">S. Dhib</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Addouche"> S. A. Addouche</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Loukil"> T. Loukil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elmhamedi"> A. Elmhamedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20design" title=" network design"> network design</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20model" title=" performance model"> performance model</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop%20configuration" title=" open loop configuration"> open loop configuration</a> </p> <a href="https://publications.waset.org/abstracts/40989/a-performance-model-for-designing-network-in-reverse-logistic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1689</span> The Impact of Enhanced Recovery after Surgery (ERAS) Protocols on Anesthesia Management in High-Risk Surgical Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebar%20Mohammed%20Hussein">Rebar Mohammed Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enhanced Recovery After Surgery (ERAS) protocols have transformed perioperative care, aiming to reduce surgical stress, optimize pain management, and accelerate recovery. This study evaluates the impact of ERAS on anesthesia management in high-risk surgical patients, focusing on opioid-sparing techniques and multimodal analgesia. A retrospective analysis was conducted on patients undergoing major surgeries within an ERAS program, comparing outcomes with a historical cohort receiving standard care. Key metrics included postoperative pain scores, opioid consumption, length of hospital stay, and complication rates. Results indicated that the implementation of ERAS protocols significantly reduced postoperative opioid use by 40% and improved pain management outcomes, with 70% of patients reporting satisfactory pain control on postoperative day one. Additionally, patients in the ERAS group experienced a 30% reduction in length of stay and a 20% decrease in complication rates. These findings underscore the importance of integrating ERAS principles into anesthesia practice, particularly for high-risk patients, to enhance recovery, improve patient satisfaction, and reduce healthcare costs. Future directions include prospective studies to further refine anesthesia techniques within ERAS frameworks and explore their applicability across various surgical specialties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERAS%20protocols" title="ERAS protocols">ERAS protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=high-risk%20surgical%20patients" title=" high-risk surgical patients"> high-risk surgical patients</a>, <a href="https://publications.waset.org/abstracts/search?q=anesthesia%20management" title=" anesthesia management"> anesthesia management</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/191856/the-impact-of-enhanced-recovery-after-surgery-eras-protocols-on-anesthesia-management-in-high-risk-surgical-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1688</span> A Simulation Study for Potential Natural Gas Liquids Recovery Processes under Various Upstream Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Getu%20Woldetensay">Mesfin Getu Woldetensay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Representatives and commercially viable natural gas liquids (NGLs) recovery processes were studied under various feed conditions that are classified as lean and rich. The conventional turbo- expander process scheme (ISS) was taken as a base case. The performance of this scheme was compared against with the gas sub-cooled process (GSP), cold residue-gas (CRR) and recycle split-vapor (RSV), enhanced NGL recovery process (IPSI-1) and enhanced NGL recovery process with internal refrigeration (IPSI-2). The development made for the GSP, CRR and RSV are at the top section of the demethanizer column whereas the IPSI-1 and IPSI-2 improvement focus in the lower section. HYSYS process flowsheet was initially developed for all the processes including the ISS under a common criteria that could help to demonstrate the performance comparison. Accordingly, a number of simulation runs were made for the selected eight types of feed. Results show that the reboiler duty requirement using rich feeds for GSP, CRR and RSV is quite high compared to IPSI-1 and IPSI-2. The latter shows relatively lower duty due to the presence of self-refrigeration system that allows the inlet feed to be used for achieving cooling without the need to use propane refrigerant. The energy consumption for lean feed is much lower than that of the rich feed in all process schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composition" title="composition">composition</a>, <a href="https://publications.waset.org/abstracts/search?q=lean" title=" lean"> lean</a>, <a href="https://publications.waset.org/abstracts/search?q=rich" title=" rich"> rich</a>, <a href="https://publications.waset.org/abstracts/search?q=duty" title=" duty"> duty</a> </p> <a href="https://publications.waset.org/abstracts/73013/a-simulation-study-for-potential-natural-gas-liquids-recovery-processes-under-various-upstream-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1687</span> Combustion Chamber Sizing for Energy Recovery from Furnace Process Gas: Waste to Energy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balram%20Panjwani">Balram Panjwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Wittgens"> Bernd Wittgens</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Erik%20Olsen"> Jan Erik Olsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Stein%20Tore%20Johansen"> Stein Tore Johansen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Norwegian ferroalloy industry is a world leader in sustainable production of ferrosilicon, silicon and manganese alloys with the lowest global specific energy consumption. One of the byproducts during the metal reduction process is energy rich off-gas and usually this energy is not harnessed. A novel concept for sustainable energy recovery from ferroalloy off-gas is discussed. The concept is founded on the idea of introducing a combustion chamber in the off-gas section in which energy rich off-gas mainly consisting of CO will be combusted. This will provide an additional degree of freedom for optimizing energy recovery. A well-controlled and high off-gas temperature will assure a significant increase in energy recovery and reduction of emissions to the atmosphere. Design and operation of the combustion chamber depend on many parameters, including the total power capacity of the combustion chamber, sufficient residence time for combusting the complex Poly Aromatic Hydrocarbon (PAH), NOx, as well as converting other potential pollutants. The design criteria for the combustion chamber have been identified and discussed and sizing of the combustion chamber has been carried out considering these design criteria. Computational Fluid Dynamics (CFD) has been utilized extensively for sizing the combustion chamber. The results from our CFD simulations of the flow in the combustion chamber and exploring different off-gas fuel composition are presented. In brief, the paper covers all aspect which impacts the sizing of the combustion chamber, including insulation thickness, choice of insulating material, heat transfer through extended surfaces, multi-staging and secondary air injection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title=" combustion chamber"> combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=arc%20furnace" title=" arc furnace"> arc furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20recovery" title=" energy recovery"> energy recovery</a> </p> <a href="https://publications.waset.org/abstracts/33818/combustion-chamber-sizing-for-energy-recovery-from-furnace-process-gas-waste-to-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1686</span> Does Mirror Therapy Improve Motor Recovery After Stroke? A Meta-Analysis of Randomized Controlled Trials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Abo%20Salem">Hassan Abo Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Guo%20Feng"> Guo Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Huang"> Xiaolin Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to determine the effectiveness of mirror therapy on motor recovery and functional abilities after stroke. The following databases were searched from inception to May 2014: Cochrane Stroke, Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, AMED, PsycINFO, and PEDro. Two reviewers independently screened and selected all randomized controlled trials that evaluate the effect of mirror therapy in stroke rehabilitation.12 randomized controlled trials studies met the inclusion criteria; 10 studies utilized the effect of mirror therapy for the upper limb and 2 studies for the lower limb. Mirror therapy had a positive effect on motor recover and function; however, we found no consistent influence on activity of daily living, Spasticity and balance. This meta-analysis suggests that, Mirror therapy has additional effect on motor recovery but has a small positive effect on functional abilities after stroke. Further high-quality studies with greater statistical power are required in order to accurately determine the effectiveness of mirror therapy following stroke. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mirror%20therapy" title="mirror therapy">mirror therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20recovery" title=" motor recovery"> motor recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=balance" title=" balance"> balance</a> </p> <a href="https://publications.waset.org/abstracts/25110/does-mirror-therapy-improve-motor-recovery-after-stroke-a-meta-analysis-of-randomized-controlled-trials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1685</span> Ultrafast Ground State Recovery Dynamics of a Cyanine Dye Molecule in Heterogeneous Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Goswami">Tapas Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Goswami"> Debabrata Goswami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the changes in ground state recovery dynamics of IR 144 dye using degenerate transient absorption spectroscopy technique when going from homogeneous solution phase to heterogeneous partially miscible liquid/liquid interface. Towards this aim, we set up a partially miscible liquid/liquid interface in which dye is insoluble in one solvent carbon tetrachloride (CCl₄) layer and soluble in other solvent dimethyl sulphoxide (DMSO). A gradual increase in ground state recovery time of the dye molecule is observed from homogenous bulk solution to more heterogeneous environment interface layer. In the bulk solution charge distribution of dye molecule is in equilibrium with polar DMSO solvent molecule. Near the interface micro transportation of non-polar solvent, CCl₄ disturbs the solvent equilibrium in DMSO layer and it relaxes to a new equilibrium state corresponding to a new charge distribution of dye with a heterogeneous mixture of polar and non-polar solvent. In this experiment, we have measured the time required for the dye molecule to relax to the new equilibrium state in different heterogeneous environment. As a result, dye remains longer time in the excited state such that even it can populate more triplet state. The present study of ground state recovery dynamics of a cyanine dye molecule in different solvent environment provides the important characteristics of effect of solvation on excited life time of a dye molecule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excited%20state" title="excited state">excited state</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20state%20recovery" title=" ground state recovery"> ground state recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=solvation" title=" solvation"> solvation</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20absorption" title=" transient absorption"> transient absorption</a> </p> <a href="https://publications.waset.org/abstracts/63240/ultrafast-ground-state-recovery-dynamics-of-a-cyanine-dye-molecule-in-heterogeneous-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1684</span> Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lou%20J.%20Pino">Lou J. Pino</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Campbell"> Mark Campbell</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20J.%20Kennedy"> Matthew J. Kennedy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashleigh%20C.%20Kennedy"> Ashleigh C. Kennedy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20activity" title="cognitive activity">cognitive activity</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20recovery" title=" personalized recovery"> personalized recovery</a> </p> <a href="https://publications.waset.org/abstracts/134908/algorithm-for-predicting-cognitive-exertion-and-cognitive-fatigue-using-a-portable-eeg-headset-for-concussion-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1683</span> Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Smolinski">Tomasz Smolinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Irena%20Herdzik-Koniecko"> Irena Herdzik-Koniecko</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Pyszynska"> Marta Pyszynska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rogowski"> M. Rogowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20waste" title="electronic waste">electronic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometallurgy" title=" hydrometallurgy"> hydrometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery"> metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/98691/recovery-of-au-and-other-metals-from-old-electronic-components-by-leaching-and-liquid-extraction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1682</span> Introduction of PMMA-Tag to VHH for Improving Recovery and Immobilization Rate of VHHS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bongmun%20Kang">Bongmun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kagnari%20Yamakawa"> Kagnari Yamakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshihisa%20Hagihara"> Yoshihisa Hagihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Ito"> Yuji Ito</a>, <a href="https://publications.waset.org/abstracts/search?q=Michimasa%20Kishimoto"> Michimasa Kishimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoichi%20Kumada"> Yoichi Kumada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The PMMA-tag was genetically fused with the C-terminal region of VHH molecules. This antibody, VHH, is known as a single-chain domain, which is devoid of light chains. The PMMA-tag, which could affect the isoelectric point (pI) changeable with a charge of amino acid in VHHs were closely related to the solubility of VHH molecules during refolding. The genetic fusion of PMMA-tag to C-terminal region of VHHs significantly affects the recovery of their soluble protein during refolding by 50 mM TAPS at pH 8.5. It could be refolded with a recovery of more than 95% by dialysis at pH 8.5. A marked difference in the antigen-binding activities in the adsorption state was significantly high in VHH-PM compared to the wild type of VHH. There are approximately 8-fold differences in the antigen-binding activities in the adsorption state between VHH-PM and VHH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VHH" title="VHH">VHH</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA-tag" title=" PMMA-tag"> PMMA-tag</a>, <a href="https://publications.waset.org/abstracts/search?q=isoelectric%20point" title=" isoelectric point"> isoelectric point</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=Solubility" title=" Solubility"> Solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=refolding" title=" refolding"> refolding</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a> </p> <a href="https://publications.waset.org/abstracts/19089/introduction-of-pmma-tag-to-vhh-for-improving-recovery-and-immobilization-rate-of-vhhs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1681</span> Gas Injection Transport Mechanism for Shale Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinedu%20Ejike">Chinedu Ejike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. As a result, optimizing recuperation offers a significant benefit. Huff and puff gas flooding and cyclic gas injection have all been demonstrated to be more successful than tapping the remaining oil in place. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research assesses the parameters that influence the gas injection transport mechanism. Understanding the process causing these factors could accelerate recovery by two to three times, according to peer-reviewed studies and effective field testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title="enhanced oil recovery">enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection" title=" gas injection"> gas injection</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20oil" title=" shale oil"> shale oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20mechanism" title=" transport mechanism"> transport mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20reserve" title=" unconventional reserve"> unconventional reserve</a> </p> <a href="https://publications.waset.org/abstracts/141626/gas-injection-transport-mechanism-for-shale-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=3" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use&amp;page=5" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10