CINXE.COM

Kepler's laws of planetary motion - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Kepler's laws of planetary motion - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"54bb0423-a0e2-4bce-b171-5ebb3595af59","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Kepler's_laws_of_planetary_motion","wgTitle":"Kepler's laws of planetary motion","wgCurRevisionId":1257373043,"wgRevisionId":1257373043,"wgArticleId":17553,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 Latin-language sources (la)","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from March 2024","Articles with hatnote templates targeting a nonexistent page","Commons category link is on Wikidata","Webarchive template wayback links","1609 in science","1619 in science","Copernican Revolution","Eponymous laws of physics", "Equations of astronomy","Johannes Kepler","Orbits"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Kepler's_laws_of_planetary_motion","wgRelevantArticleId":17553,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q83219","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","ext.categoryTree.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements", "ext.categoryTree","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.categoryTree.styles%7Cext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kepler_laws_diagram.svg/1200px-Kepler_laws_diagram.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1287"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kepler_laws_diagram.svg/800px-Kepler_laws_diagram.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="858"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kepler_laws_diagram.svg/640px-Kepler_laws_diagram.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="686"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Kepler&#039;s laws of planetary motion - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Kepler_s_laws_of_planetary_motion rootpage-Kepler_s_laws_of_planetary_motion skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Kepler%27s+laws+of+planetary+motion" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Kepler%27s+laws+of+planetary+motion" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Kepler%27s+laws+of+planetary+motion" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Kepler%27s+laws+of+planetary+motion" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Comparison_to_Copernicus" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Comparison_to_Copernicus"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Comparison to Copernicus</span> </div> </a> <ul id="toc-Comparison_to_Copernicus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nomenclature" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Nomenclature"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Nomenclature</span> </div> </a> <ul id="toc-Nomenclature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formulary" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formulary"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Formulary</span> </div> </a> <button aria-controls="toc-Formulary-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Formulary subsection</span> </button> <ul id="toc-Formulary-sublist" class="vector-toc-list"> <li id="toc-First_law" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#First_law"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>First law</span> </div> </a> <ul id="toc-First_law-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Second_law" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Second_law"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Second law</span> </div> </a> <ul id="toc-Second_law-sublist" class="vector-toc-list"> <li id="toc-History_and_proofs" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#History_and_proofs"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.1</span> <span>History and proofs</span> </div> </a> <ul id="toc-History_and_proofs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_terms_of_elliptical_parameters" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#In_terms_of_elliptical_parameters"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.2</span> <span>In terms of elliptical parameters</span> </div> </a> <ul id="toc-In_terms_of_elliptical_parameters-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Third_law" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Third_law"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Third law</span> </div> </a> <ul id="toc-Third_law-sublist" class="vector-toc-list"> <li id="toc-Table" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Table"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.1</span> <span>Table</span> </div> </a> <ul id="toc-Table-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Planetary_acceleration" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Planetary_acceleration"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Planetary acceleration</span> </div> </a> <button aria-controls="toc-Planetary_acceleration-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Planetary acceleration subsection</span> </button> <ul id="toc-Planetary_acceleration-sublist" class="vector-toc-list"> <li id="toc-Acceleration_vector" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Acceleration_vector"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Acceleration vector</span> </div> </a> <ul id="toc-Acceleration_vector-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inverse_square_law" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inverse_square_law"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Inverse square law</span> </div> </a> <ul id="toc-Inverse_square_law-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Newton&#039;s_law_of_gravitation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Newton&#039;s_law_of_gravitation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Newton's law of gravitation</span> </div> </a> <ul id="toc-Newton&#039;s_law_of_gravitation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Position_as_a_function_of_time" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Position_as_a_function_of_time"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Position as a function of time</span> </div> </a> <button aria-controls="toc-Position_as_a_function_of_time-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Position as a function of time subsection</span> </button> <ul id="toc-Position_as_a_function_of_time-sublist" class="vector-toc-list"> <li id="toc-Mean_anomaly,_M" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mean_anomaly,_M"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Mean anomaly, <i>M</i></span> </div> </a> <ul id="toc-Mean_anomaly,_M-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eccentric_anomaly,_E" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eccentric_anomaly,_E"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Eccentric anomaly, <i>E</i></span> </div> </a> <ul id="toc-Eccentric_anomaly,_E-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-True_anomaly,_θ" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#True_anomaly,_θ"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>True anomaly, <i>θ</i></span> </div> </a> <ul id="toc-True_anomaly,_θ-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distance,_r" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distance,_r"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Distance, <i>r</i></span> </div> </a> <ul id="toc-Distance,_r-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Explanatory_notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Explanatory_notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Explanatory notes</span> </div> </a> <ul id="toc-Explanatory_notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-General_bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#General_bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>General bibliography</span> </div> </a> <ul id="toc-General_bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Kepler's laws of planetary motion</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 83 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-83" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">83 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Kepler_se_wette" title="Kepler se wette – Afrikaans" lang="af" hreflang="af" data-title="Kepler se wette" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Keplersche_Gesetze" title="Keplersche Gesetze – Alemannic" lang="gsw" hreflang="gsw" data-title="Keplersche Gesetze" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D9%88%D8%A7%D9%86%D9%8A%D9%86_%D9%83%D8%A8%D9%84%D8%B1_%D9%84%D9%84%D8%AD%D8%B1%D9%83%D8%A9_%D8%A7%D9%84%D9%83%D9%88%D9%83%D8%A8%D9%8A%D8%A9" title="قوانين كبلر للحركة الكوكبية – Arabic" lang="ar" hreflang="ar" data-title="قوانين كبلر للحركة الكوكبية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Lleis_de_Kepler" title="Lleis de Kepler – Asturian" lang="ast" hreflang="ast" data-title="Lleis de Kepler" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Kepler_qanunlar%C4%B1" title="Kepler qanunları – Azerbaijani" lang="az" hreflang="az" data-title="Kepler qanunları" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%95%E0%A7%87%E0%A6%AA%E0%A6%B2%E0%A6%BE%E0%A6%B0%E0%A7%87%E0%A6%B0_%E0%A6%97%E0%A7%8D%E0%A6%B0%E0%A6%B9%E0%A7%80%E0%A6%AF%E0%A6%BC_%E0%A6%97%E0%A6%A4%E0%A6%BF%E0%A6%B8%E0%A7%82%E0%A6%A4%E0%A7%8D%E0%A6%B0" title="কেপলারের গ্রহীয় গতিসূত্র – Bangla" lang="bn" hreflang="bn" data-title="কেপলারের গ্রহীয় গতিসূত্র" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D0%B0" title="Законы Кеплера – Belarusian" lang="be" hreflang="be" data-title="Законы Кеплера" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D0%B0" title="Законы Кеплера – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Законы Кеплера" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8_%D0%BD%D0%B0_%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80" title="Закони на Кеплер – Bulgarian" lang="bg" hreflang="bg" data-title="Закони на Кеплер" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Keplerovi_zakoni" title="Keplerovi zakoni – Bosnian" lang="bs" hreflang="bs" data-title="Keplerovi zakoni" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Lleis_de_Kepler" title="Lleis de Kepler – Catalan" lang="ca" hreflang="ca" data-title="Lleis de Kepler" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80_%D1%81%D0%B0%D0%BA%D0%BA%D1%83%D0%BD%C4%95%D1%81%D0%B5%D0%BC" title="Кеплер саккунĕсем – Chuvash" lang="cv" hreflang="cv" data-title="Кеплер саккунĕсем" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Keplerovy_z%C3%A1kony" title="Keplerovy zákony – Czech" lang="cs" hreflang="cs" data-title="Keplerovy zákony" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Deddfau_mudiant_planedau_Kepler" title="Deddfau mudiant planedau Kepler – Welsh" lang="cy" hreflang="cy" data-title="Deddfau mudiant planedau Kepler" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da badge-Q17559452 badge-recommendedarticle mw-list-item" title="recommended article"><a href="https://da.wikipedia.org/wiki/Keplers_love" title="Keplers love – Danish" lang="da" hreflang="da" data-title="Keplers love" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Keplersche_Gesetze" title="Keplersche Gesetze – German" lang="de" hreflang="de" data-title="Keplersche Gesetze" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kepleri_seadused" title="Kepleri seadused – Estonian" lang="et" hreflang="et" data-title="Kepleri seadused" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9D%CF%8C%CE%BC%CE%BF%CF%82_%CE%B1%CF%83%CF%84%CF%81%CE%B9%CE%BA%CF%8E%CE%BD_%CF%80%CE%B5%CF%81%CE%B9%CF%86%CE%BF%CF%81%CF%8E%CE%BD" title="Νόμος αστρικών περιφορών – Greek" lang="el" hreflang="el" data-title="Νόμος αστρικών περιφορών" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Leyes_de_Kepler" title="Leyes de Kepler – Spanish" lang="es" hreflang="es" data-title="Leyes de Kepler" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Le%C4%9Doj_de_Kepler" title="Leĝoj de Kepler – Esperanto" lang="eo" hreflang="eo" data-title="Leĝoj de Kepler" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Keplerren_legeak" title="Keplerren legeak – Basque" lang="eu" hreflang="eu" data-title="Keplerren legeak" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%D9%88%D8%A7%D9%86%DB%8C%D9%86_%DA%A9%D9%BE%D9%84%D8%B1" title="قوانین کپلر – Persian" lang="fa" hreflang="fa" data-title="قوانین کپلر" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Lois_de_Kepler" title="Lois de Kepler – French" lang="fr" hreflang="fr" data-title="Lois de Kepler" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Dl%C3%ADthe_Kepler" title="Dlíthe Kepler – Irish" lang="ga" hreflang="ga" data-title="Dlíthe Kepler" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Leis_de_Kepler" title="Leis de Kepler – Galician" lang="gl" hreflang="gl" data-title="Leis de Kepler" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%BC%80%ED%94%8C%EB%9F%AC%EC%9D%98_%ED%96%89%EC%84%B1%EC%9A%B4%EB%8F%99%EB%B2%95%EC%B9%99" title="케플러의 행성운동법칙 – Korean" lang="ko" hreflang="ko" data-title="케플러의 행성운동법칙" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%A5%D5%BA%D5%AC%D5%A5%D6%80%D5%AB_%D6%85%D6%80%D5%A5%D5%B6%D6%84%D5%B6%D5%A5%D6%80" title="Կեպլերի օրենքներ – Armenian" lang="hy" hreflang="hy" data-title="Կեպլերի օրենքներ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A5%87%E0%A4%AA%E0%A5%8D%E0%A4%B2%E0%A4%B0_%E0%A4%95%E0%A5%87_%E0%A4%97%E0%A5%8D%E0%A4%B0%E0%A4%B9%E0%A5%80%E0%A4%AF_%E0%A4%97%E0%A4%A4%E0%A4%BF_%E0%A4%95%E0%A5%87_%E0%A4%A8%E0%A4%BF%E0%A4%AF%E0%A4%AE" title="केप्लर के ग्रहीय गति के नियम – Hindi" lang="hi" hreflang="hi" data-title="केप्लर के ग्रहीय गति के नियम" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Keplerovi_zakoni" title="Keplerovi zakoni – Croatian" lang="hr" hreflang="hr" data-title="Keplerovi zakoni" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Hukum_Gerakan_Planet_Kepler" title="Hukum Gerakan Planet Kepler – Indonesian" lang="id" hreflang="id" data-title="Hukum Gerakan Planet Kepler" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D1%8B_%D0%B7%D0%B0%D0%BA%D1%8A%C3%A6%D1%82%D1%82%C3%A6" title="Кеплеры закъæттæ – Ossetic" lang="os" hreflang="os" data-title="Кеплеры закъæттæ" data-language-autonym="Ирон" data-language-local-name="Ossetic" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/L%C3%B6gm%C3%A1l_Keplers" title="Lögmál Keplers – Icelandic" lang="is" hreflang="is" data-title="Lögmál Keplers" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Leggi_di_Keplero" title="Leggi di Keplero – Italian" lang="it" hreflang="it" data-title="Leggi di Keplero" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%95%D7%A7%D7%99_%D7%A7%D7%A4%D7%9C%D7%A8" title="חוקי קפלר – Hebrew" lang="he" hreflang="he" data-title="חוקי קפלר" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%99%E1%83%94%E1%83%9E%E1%83%9A%E1%83%94%E1%83%A0%E1%83%98%E1%83%A1_%E1%83%99%E1%83%90%E1%83%9C%E1%83%9D%E1%83%9C%E1%83%94%E1%83%91%E1%83%98" title="კეპლერის კანონები – Georgian" lang="ka" hreflang="ka" data-title="კეპლერის კანონები" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80_%D0%B7%D0%B0%D2%A3%D0%B4%D0%B0%D1%80%D1%8B" title="Кеплер заңдары – Kazakh" lang="kk" hreflang="kk" data-title="Кеплер заңдары" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80_%D0%BC%D1%8B%D0%B9%D0%B7%D0%B0%D0%BC%D0%B4%D0%B0%D1%80%D1%8B" title="Кеплер мыйзамдары – Kyrgyz" lang="ky" hreflang="ky" data-title="Кеплер мыйзамдары" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Leges_Keplerianae" title="Leges Keplerianae – Latin" lang="la" hreflang="la" data-title="Leges Keplerianae" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Keplera_likumi" title="Keplera likumi – Latvian" lang="lv" hreflang="lv" data-title="Keplera likumi" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Gesetzer_vum_Kepler" title="Gesetzer vum Kepler – Luxembourgish" lang="lb" hreflang="lb" data-title="Gesetzer vum Kepler" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Keplerio_d%C4%97sniai" title="Keplerio dėsniai – Lithuanian" lang="lt" hreflang="lt" data-title="Keplerio dėsniai" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Kepler-t%C3%B6rv%C3%A9nyek" title="Kepler-törvények – Hungarian" lang="hu" hreflang="hu" data-title="Kepler-törvények" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8" title="Кеплерови закони – Macedonian" lang="mk" hreflang="mk" data-title="Кеплерови закони" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%97%E0%B5%8D%E0%B4%B0%E0%B4%B9%E0%B4%9A%E0%B4%B2%E0%B4%A8%E0%B4%A8%E0%B4%BF%E0%B4%AF%E0%B4%AE%E0%B4%99%E0%B5%8D%E0%B4%99%E0%B5%BE" title="ഗ്രഹചലനനിയമങ്ങൾ – Malayalam" lang="ml" hreflang="ml" data-title="ഗ്രഹചലനനിയമങ്ങൾ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mnw mw-list-item"><a href="https://mnw.wikipedia.org/wiki/%E1%80%9E%E1%81%9E%E1%80%B1%E1%80%AC%E1%80%9D%E1%80%BA%E1%80%80%E1%80%B1%E1%80%95%E1%80%BA%E1%80%9C%E1%80%B1%E1%80%9B%E1%80%BA_%E1%80%99%E1%80%86%E1%80%B1%E1%80%84%E1%80%BA%E1%80%80%E1%80%B5%E1%80%AF_%E1%80%82%E1%80%BC%E1%80%AD%E1%80%AF%E1%80%9F%E1%80%BA%E1%80%90%E1%80%AC%E1%80%9B%E1%80%AC%E1%80%9A%E1%80%90%E1%80%B9%E1%80%90" title="သၞောဝ်ကေပ်လေရ် မဆေင်ကဵု ဂြိုဟ်တာရာယတ္တ – Mon" lang="mnw" hreflang="mnw" data-title="သၞောဝ်ကေပ်လေရ် မဆေင်ကဵု ဂြိုဟ်တာရာယတ္တ" data-language-autonym="ဘာသာမန်" data-language-local-name="Mon" class="interlanguage-link-target"><span>ဘာသာမန်</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Hukum_gerakan_planet_Kepler" title="Hukum gerakan planet Kepler – Malay" lang="ms" hreflang="ms" data-title="Hukum gerakan planet Kepler" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Wetten_van_Kepler" title="Wetten van Kepler – Dutch" lang="nl" hreflang="nl" data-title="Wetten van Kepler" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%B1%E3%83%97%E3%83%A9%E3%83%BC%E3%81%AE%E6%B3%95%E5%89%87" title="ケプラーの法則 – Japanese" lang="ja" hreflang="ja" data-title="ケプラーの法則" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Keplers_lover" title="Keplers lover – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Keplers lover" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Kepler-lovene" title="Kepler-lovene – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Kepler-lovene" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Leis_de_Kepler" title="Leis de Kepler – Occitan" lang="oc" hreflang="oc" data-title="Leis de Kepler" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Kepler_qonunlari" title="Kepler qonunlari – Uzbek" lang="uz" hreflang="uz" data-title="Kepler qonunlari" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%97%E0%A9%8D%E0%A8%B0%E0%A8%B9%E0%A8%BF_%E0%A8%AE%E0%A9%8B%E0%A8%B8%E0%A8%BC%E0%A8%A8_%E0%A8%A6%E0%A9%87_%E0%A8%95%E0%A9%88%E0%A8%AA%E0%A8%B2%E0%A8%B0_%E0%A8%A6%E0%A9%87_%E0%A8%95%E0%A8%BE%E0%A8%A8%E0%A9%82%E0%A9%B0%E0%A8%A8" title="ਗ੍ਰਹਿ ਮੋਸ਼ਨ ਦੇ ਕੈਪਲਰ ਦੇ ਕਾਨੂੰਨ – Punjabi" lang="pa" hreflang="pa" data-title="ਗ੍ਰਹਿ ਮੋਸ਼ਨ ਦੇ ਕੈਪਲਰ ਦੇ ਕਾਨੂੰਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Lej_%C3%ABd_Kepler" title="Lej ëd Kepler – Piedmontese" lang="pms" hreflang="pms" data-title="Lej ëd Kepler" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Prawa_Keplera" title="Prawa Keplera – Polish" lang="pl" hreflang="pl" data-title="Prawa Keplera" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Leis_de_Kepler" title="Leis de Kepler – Portuguese" lang="pt" hreflang="pt" data-title="Leis de Kepler" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Legile_lui_Kepler" title="Legile lui Kepler – Romanian" lang="ro" hreflang="ro" data-title="Legile lui Kepler" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D1%8B_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B" title="Кеплеровы законы – Rusyn" lang="rue" hreflang="rue" data-title="Кеплеровы законы" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D0%B0" title="Законы Кеплера – Russian" lang="ru" hreflang="ru" data-title="Законы Кеплера" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-szy mw-list-item"><a href="https://szy.wikipedia.org/wiki/Ke%E2%80%99pu-le%E2%80%99_tinli" title="Ke’pu-le’ tinli – Sakizaya" lang="szy" hreflang="szy" data-title="Ke’pu-le’ tinli" data-language-autonym="Sakizaya" data-language-local-name="Sakizaya" class="interlanguage-link-target"><span>Sakizaya</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Ligjet_e_Keplerit" title="Ligjet e Keplerit – Albanian" lang="sq" hreflang="sq" data-title="Ligjet e Keplerit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Liggi_di_Kepleru" title="Liggi di Kepleru – Sicilian" lang="scn" hreflang="scn" data-title="Liggi di Kepleru" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Kepler%27s_laws" title="Kepler&#039;s laws – Simple English" lang="en-simple" hreflang="en-simple" data-title="Kepler&#039;s laws" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Keplerove_z%C3%A1kony" title="Keplerove zákony – Slovak" lang="sk" hreflang="sk" data-title="Keplerove zákony" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Keplerjevi_zakoni" title="Keplerjevi zakoni – Slovenian" lang="sl" hreflang="sl" data-title="Keplerjevi zakoni" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8" title="Кеплерови закони – Serbian" lang="sr" hreflang="sr" data-title="Кеплерови закони" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Keplerovi_zakoni_planetarnog_kretanja" title="Keplerovi zakoni planetarnog kretanja – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Keplerovi zakoni planetarnog kretanja" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Keplerin_lait" title="Keplerin lait – Finnish" lang="fi" hreflang="fi" data-title="Keplerin lait" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Keplers_lagar" title="Keplers lagar – Swedish" lang="sv" hreflang="sv" data-title="Keplers lagar" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Mga_batas_mosyon_ng_mga_planeta_ni_Kepler" title="Mga batas mosyon ng mga planeta ni Kepler – Tagalog" lang="tl" hreflang="tl" data-title="Mga batas mosyon ng mga planeta ni Kepler" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AF%86%E0%AE%AA%E0%AF%8D%E0%AE%B2%E0%AE%B0%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%95%E0%AF%8B%E0%AE%B3%E0%AF%8D_%E0%AE%87%E0%AE%AF%E0%AE%95%E0%AF%8D%E0%AE%95_%E0%AE%B5%E0%AE%BF%E0%AE%A4%E0%AE%BF%E0%AE%95%E0%AE%B3%E0%AF%8D" title="கெப்லரின் கோள் இயக்க விதிகள் – Tamil" lang="ta" hreflang="ta" data-title="கெப்லரின் கோள் இயக்க விதிகள்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80_%D0%BA%D0%B0%D0%BD%D1%83%D0%BD%D0%BD%D0%B0%D1%80%D1%8B" title="Кеплер кануннары – Tatar" lang="tt" hreflang="tt" data-title="Кеплер кануннары" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%95%E0%B1%86%E0%B0%AA%E0%B1%8D%E0%B0%B2%E0%B0%B0%E0%B1%8D_%E0%B0%97%E0%B1%8D%E0%B0%B0%E0%B0%B9_%E0%B0%97%E0%B0%AE%E0%B0%A8_%E0%B0%A8%E0%B0%BF%E0%B0%AF%E0%B0%AE%E0%B0%BE%E0%B0%B2%E0%B1%81" title="కెప్లర్ గ్రహ గమన నియమాలు – Telugu" lang="te" hreflang="te" data-title="కెప్లర్ గ్రహ గమన నియమాలు" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%8E%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%88%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B8%94%E0%B8%B2%E0%B8%A7%E0%B9%80%E0%B8%84%E0%B8%A3%E0%B8%B2%E0%B8%B0%E0%B8%AB%E0%B9%8C%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%84%E0%B9%87%E0%B8%9E%E0%B9%80%E0%B8%9E%E0%B8%A5%E0%B8%AD%E0%B8%A3%E0%B9%8C" title="กฎการเคลื่อนที่ของดาวเคราะห์ของเค็พเพลอร์ – Thai" lang="th" hreflang="th" data-title="กฎการเคลื่อนที่ของดาวเคราะห์ของเค็พเพลอร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Kepler%27in_gezegensel_hareket_yasalar%C4%B1" title="Kepler&#039;in gezegensel hareket yasaları – Turkish" lang="tr" hreflang="tr" data-title="Kepler&#039;in gezegensel hareket yasaları" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8_%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D0%B0" title="Закони Кеплера – Ukrainian" lang="uk" hreflang="uk" data-title="Закони Кеплера" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DA%A9%DB%8C%D9%BE%D9%84%D8%B1_%D9%82%D9%88%D8%A7%D9%86%DB%8C%D9%86_%D8%A8%D8%B1%D8%A7%D8%A6%DB%92_%D8%B3%DB%8C%D8%A7%D8%B1%D9%88%DB%8C_%D8%AD%D8%B1%DA%A9%D8%AA" title="کیپلر قوانین برائے سیاروی حرکت – Urdu" lang="ur" hreflang="ur" data-title="کیپلر قوانین برائے سیاروی حرکت" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%C3%A1c_%C4%91%E1%BB%8Bnh_lu%E1%BA%ADt_Kepler_v%E1%BB%81_chuy%E1%BB%83n_%C4%91%E1%BB%99ng_thi%C3%AAn_th%E1%BB%83" title="Các định luật Kepler về chuyển động thiên thể – Vietnamese" lang="vi" hreflang="vi" data-title="Các định luật Kepler về chuyển động thiên thể" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Balaod_nga_mosyon_mga_planeta_ha_Kepler" title="Balaod nga mosyon mga planeta ha Kepler – Waray" lang="war" hreflang="war" data-title="Balaod nga mosyon mga planeta ha Kepler" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%BC%80%E6%99%AE%E5%8B%92%E5%AE%9A%E5%BE%8B" title="开普勒定律 – Wu" lang="wuu" hreflang="wuu" data-title="开普勒定律" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A7%D7%A2%D7%A4%D7%9C%D7%A2%D7%A8%27%D7%A1_%D7%92%D7%A2%D7%96%D7%A2%D7%A6%D7%9F" title="קעפלער&#039;ס געזעצן – Yiddish" lang="yi" hreflang="yi" data-title="קעפלער&#039;ס געזעצן" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%96%8B%E6%99%AE%E5%8B%92%E5%AE%9A%E5%BE%8B" title="開普勒定律 – Cantonese" lang="yue" hreflang="yue" data-title="開普勒定律" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BC%80%E6%99%AE%E5%8B%92%E5%AE%9A%E5%BE%8B" title="开普勒定律 – Chinese" lang="zh" hreflang="zh" data-title="开普勒定律" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q83219#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Kepler%27s_laws_of_planetary_motion" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Kepler%27s_laws_of_planetary_motion" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Kepler%27s_laws_of_planetary_motion"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Kepler%27s_laws_of_planetary_motion"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Kepler%27s_laws_of_planetary_motion" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Kepler%27s_laws_of_planetary_motion" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;oldid=1257373043" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Kepler%27s_laws_of_planetary_motion&amp;id=1257373043&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKepler%2527s_laws_of_planetary_motion"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKepler%2527s_laws_of_planetary_motion"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Kepler%27s_laws_of_planetary_motion&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Kepler_motions" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q83219" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Kepler_laws_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kepler_laws_diagram.svg/220px-Kepler_laws_diagram.svg.png" decoding="async" width="220" height="236" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kepler_laws_diagram.svg/330px-Kepler_laws_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kepler_laws_diagram.svg/440px-Kepler_laws_diagram.svg.png 2x" data-file-width="400" data-file-height="429" /></a><figcaption>Illustration of Kepler's laws with two planetary orbits.<div><ol style="margin-left:0; list-style-position:inside;"><li style="margin-top:0.3em;">The orbits are ellipses, with foci <i>F</i><sub>1</sub> and <i>F</i><sub>2</sub> for Planet 1, and <i>F</i><sub>1</sub> and <i>F</i><sub>3</sub> for Planet 2. The Sun is at <i>F</i><sub>1</sub>.</li><li style="margin-top:0.3em;">The shaded areas <i>A</i><sub>1</sub> and <i>A</i><sub>2</sub> are equal, and are swept out in equal times by Planet 1's orbit.</li><li style="margin-top:0.3em;">The ratio of Planet 1's orbit time to Planet 2's is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ({a_{1}}/{a_{2}})^{3/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ({a_{1}}/{a_{2}})^{3/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86720d9b4e6c0731cec218367bb4e3ee055f1320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.238ex; height:3.176ex;" alt="{\textstyle ({a_{1}}/{a_{2}})^{3/2}}"></span>.</li></ol></div></figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle">Astrodynamics</th></tr><tr><td class="sidebar-image" style="padding-bottom:0.85em;"><span typeof="mw:File"><a href="/wiki/File:Orbit_mechanics_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/60px-Orbit_mechanics_icon.svg.png" decoding="async" width="60" height="60" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/90px-Orbit_mechanics_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/120px-Orbit_mechanics_icon.svg.png 2x" data-file-width="48" data-file-height="48" /></a></span></td></tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Orbital_mechanics" title="Orbital mechanics"><span style="font-size:110%;">Orbital mechanics</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Orbital_elements" title="Orbital elements">Orbital elements</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Apsis" title="Apsis">Apsis</a></li> <li><a href="/wiki/Argument_of_periapsis" title="Argument of periapsis">Argument of periapsis</a></li> <li><a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">Eccentricity</a></li> <li><a href="/wiki/Orbital_inclination" title="Orbital inclination">Inclination</a></li> <li><a href="/wiki/Mean_anomaly" title="Mean anomaly">Mean anomaly</a></li> <li><a href="/wiki/Orbital_node" title="Orbital node">Orbital nodes</a></li> <li><a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">Semi-major axis</a></li> <li><a href="/wiki/True_anomaly" title="True anomaly">True anomaly</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Types of <a href="/wiki/Two-body_problem" title="Two-body problem">two-body orbits</a> by <br />eccentricity</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Circular_orbit" title="Circular orbit">Circular orbit</a></li> <li><a href="/wiki/Elliptic_orbit" title="Elliptic orbit">Elliptic orbit</a></li></ul> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Transfer_orbit" title="Transfer orbit">Transfer orbit</a> <div class="hlist" style="font-size:90%"><ul><li>(<a href="/wiki/Hohmann_transfer_orbit" title="Hohmann transfer orbit">Hohmann transfer orbit</a></li><li><a href="/wiki/Bi-elliptic_transfer" title="Bi-elliptic transfer">Bi-elliptic transfer orbit</a>)</li></ul></div></div> <ul><li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Parabolic orbit</a></li> <li><a href="/wiki/Hyperbolic_trajectory" title="Hyperbolic trajectory">Hyperbolic orbit</a></li> <li><a href="/wiki/Radial_trajectory" title="Radial trajectory">Radial orbit</a></li> <li><a href="/wiki/Orbital_decay" title="Orbital decay">Decaying orbit</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Equations</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Dynamical_friction" title="Dynamical friction">Dynamical friction</a></li> <li><a href="/wiki/Escape_velocity" title="Escape velocity">Escape velocity</a></li> <li><a href="/wiki/Kepler%27s_equation" title="Kepler&#39;s equation">Kepler's equation</a></li> <li><a class="mw-selflink selflink">Kepler's laws of planetary motion</a></li> <li><a href="/wiki/Orbital_period" title="Orbital period">Orbital period</a></li> <li><a href="/wiki/Orbital_speed" title="Orbital speed">Orbital velocity</a></li> <li><a href="/wiki/Surface_gravity" title="Surface gravity">Surface gravity</a></li> <li><a href="/wiki/Specific_orbital_energy" title="Specific orbital energy">Specific orbital energy</a></li> <li><a href="/wiki/Vis-viva_equation" title="Vis-viva equation">Vis-viva equation</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Celestial_mechanics" title="Celestial mechanics"><span style="font-size:110%;">Celestial mechanics</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Gravitational influences</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Barycenter" class="mw-redirect" title="Barycenter">Barycenter</a></li> <li><a href="/wiki/Hill_sphere" title="Hill sphere">Hill sphere</a></li> <li><a href="/wiki/Perturbation_(astronomy)" title="Perturbation (astronomy)">Perturbations</a></li> <li><a href="/wiki/Sphere_of_influence_(astrodynamics)" title="Sphere of influence (astrodynamics)">Sphere of influence</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/N-body_problem" title="N-body problem">N-body orbits</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Lagrange_point" title="Lagrange point">Lagrangian points</a> <div class="hlist" style="font-size:90%"><ul><li>(<a href="/wiki/Halo_orbit" title="Halo orbit">Halo orbits</a>)</li></ul></div></div> <ul><li><a href="/wiki/Lissajous_orbit" title="Lissajous orbit">Lissajous orbits</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov orbits</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Aerospace_engineering" title="Aerospace engineering"><span style="font-size:110%;">Engineering and efficiency</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Preflight engineering</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Mass_ratio" title="Mass ratio">Mass ratio</a></li> <li><a href="/wiki/Payload_fraction" title="Payload fraction">Payload fraction</a></li> <li><a href="/wiki/Propellant_mass_fraction" title="Propellant mass fraction">Propellant mass fraction</a></li> <li><a href="/wiki/Tsiolkovsky_rocket_equation" title="Tsiolkovsky rocket equation">Tsiolkovsky rocket equation</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Efficiency measures</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Gravity_assist" title="Gravity assist">Gravity assist</a></li> <li><a href="/wiki/Oberth_effect" title="Oberth effect">Oberth effect</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Propulsive maneuvers</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Orbital_maneuver" title="Orbital maneuver">Orbital maneuver</a></li> <li><a href="/wiki/Orbit_insertion" title="Orbit insertion">Orbit insertion</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Astrodynamics" title="Template:Astrodynamics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Astrodynamics" title="Template talk:Astrodynamics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Astrodynamics" title="Special:EditPage/Template:Astrodynamics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Astronomy" title="Astronomy">astronomy</a>, <b>Kepler's laws of planetary motion</b>, published by <a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Johannes Kepler</a> in 1609 (except the third law, and was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced <a href="/wiki/Circular_orbit" title="Circular orbit">circular orbits</a> and <a href="/wiki/Deferent_and_epicycle" title="Deferent and epicycle">epicycles</a> in the <a href="/wiki/Copernican_heliocentrism" title="Copernican heliocentrism">heliocentric theory</a> of <a href="/wiki/Nicolaus_Copernicus" title="Nicolaus Copernicus">Nicolaus Copernicus</a> with <a href="/wiki/Elliptical_orbit" class="mw-redirect" title="Elliptical orbit">elliptical orbits</a> and explained how planetary velocities vary. The three laws state that:<sup id="cite_ref-:0_1-0" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:1_2-0" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>The orbit of a planet is an <a href="/wiki/Ellipse" title="Ellipse">ellipse</a> with the Sun at one of the two <a href="/wiki/Focus_(geometry)" title="Focus (geometry)">foci</a>.</li> <li>A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.</li> <li>The square of a planet's <a href="/wiki/Orbital_period" title="Orbital period">orbital period</a> is proportional to the cube of the length of the <a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">semi-major axis</a> of its orbit.</li></ol> <p>The elliptical orbits of planets were indicated by calculations of the orbit of <a href="/wiki/Mars" title="Mars">Mars</a>. From this, Kepler inferred that other bodies in the <a href="/wiki/Solar_System" title="Solar System">Solar System</a>, including those farther away from the Sun, also have elliptical orbits. The second law establishes that when a planet is closer to the Sun, it travels faster. The third law expresses that the farther a planet is from the Sun, the longer its orbital period. </p><p><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> showed in 1687 that relationships like Kepler's would apply in the Solar System as a consequence of his own <a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">laws of motion</a> and <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton&#39;s law of universal gravitation">law of universal gravitation</a>. </p><p>A more precise historical approach is found in <i><a href="/wiki/Astronomia_nova" title="Astronomia nova">Astronomia nova</a></i> and <i><a href="/wiki/Epitome_Astronomiae_Copernicanae" title="Epitome Astronomiae Copernicanae">Epitome Astronomiae Copernicanae</a></i>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Comparison_to_Copernicus">Comparison to Copernicus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=1" title="Edit section: Comparison to Copernicus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Johannes Kepler</a>'s laws improved the model of <a href="/wiki/Copernicus" class="mw-redirect" title="Copernicus">Copernicus</a>. According to Copernicus:<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>The planetary orbit is a circle with epicycles.</li> <li>The Sun is approximately at the center of the orbit.</li> <li>The speed of the planet in the main orbit is constant.</li></ol> <p>Despite being correct in saying that the planets revolved around the Sun, Copernicus was incorrect in defining their orbits. Introducing physical explanations for movement in space beyond just geometry, Kepler correctly defined the orbit of planets as follows:<sup id="cite_ref-:0_1-1" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:1_2-1" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Gingerich_5-0" class="reference"><a href="#cite_note-Gingerich-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 53–54">&#58;&#8202;53–54&#8202;</span></sup> </p> <ol><li>The planetary orbit is <i>not</i> a circle with epicycles, but an <i><a href="/wiki/Ellipse" title="Ellipse">ellipse</a></i>.</li> <li>The Sun is <i>not</i> at the center but at a <i><a href="/wiki/Focus_(geometry)" title="Focus (geometry)">focal point</a></i> of the elliptical orbit.</li> <li>Neither the linear speed nor the angular speed of the planet in the orbit is constant, but the <i><a href="/wiki/Areal_velocity" title="Areal velocity">area speed</a></i> (closely linked historically with the concept of <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a>) is constant.</li></ol> <p>The <a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">eccentricity</a> of the <a href="/wiki/Orbit_of_the_Earth" class="mw-redirect" title="Orbit of the Earth">orbit of the Earth</a> makes the time from the <a href="/wiki/March_equinox" title="March equinox">March equinox</a> to the <a href="/wiki/September_equinox" title="September equinox">September equinox</a>, around 186 days, unequal to the time from the September equinox to the March equinox, around 179 days. A diameter would cut the orbit into equal parts, but the plane through the Sun parallel to the <a href="/wiki/Equator" title="Equator">equator</a> of the Earth cuts the orbit into two parts with areas in a 186 to 179 ratio, so the eccentricity of the orbit of the Earth is approximately </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e\approx {\frac {\pi }{4}}{\frac {186-179}{186+179}}\approx 0.015,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>186</mn> <mo>&#x2212;<!-- − --></mo> <mn>179</mn> </mrow> <mrow> <mn>186</mn> <mo>+</mo> <mn>179</mn> </mrow> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.015</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e\approx {\frac {\pi }{4}}{\frac {186-179}{186+179}}\approx 0.015,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3cb73559d0a22bb3118a2ffc0c537f20b996905" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.043ex; height:5.343ex;" alt="{\displaystyle e\approx {\frac {\pi }{4}}{\frac {186-179}{186+179}}\approx 0.015,}"></span></dd></dl> <p>which is close to the correct value (0.016710218). The accuracy of this calculation requires that the two dates chosen be along the elliptical orbit's minor axis and that the midpoints of each half be along the major axis. As the two dates chosen here are equinoxes, this will be correct when <a href="/wiki/Perihelion" class="mw-redirect" title="Perihelion">perihelion</a>, the date the Earth is closest to the Sun, falls on a <a href="/wiki/Solstice" title="Solstice">solstice</a>. The current perihelion, near January 4, is fairly close to the solstice of December 21 or 22. </p> <div class="mw-heading mw-heading2"><h2 id="Nomenclature">Nomenclature</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=2" title="Edit section: Nomenclature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It took nearly two centuries for the current formulation of Kepler's work to take on its settled form. <a href="/wiki/Voltaire" title="Voltaire">Voltaire</a>'s <i>Eléments de la philosophie de Newton</i> (<i>Elements of Newton's Philosophy</i>) of 1738 was the first publication to use the terminology of "laws".<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Wilson_1994_7-0" class="reference"><a href="#cite_note-Wilson_1994-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> The <i><a href="/wiki/Biographical_Encyclopedia_of_Astronomers" title="Biographical Encyclopedia of Astronomers">Biographical Encyclopedia of Astronomers</a></i> in its article on Kepler (p.&#160;620) states that the terminology of scientific laws for these discoveries was current at least from the time of <a href="/wiki/Joseph_de_Lalande" class="mw-redirect" title="Joseph de Lalande">Joseph de Lalande</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> It was the exposition of <a href="/wiki/Robert_Small_(minister)" title="Robert Small (minister)">Robert Small</a>, in <i>An account of the astronomical discoveries of Kepler</i> (1814) that made up the set of three laws, by adding in the third.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Small also claimed, against the history, that these were <a href="/wiki/Empirical_law" class="mw-redirect" title="Empirical law">empirical laws</a>, based on <a href="/wiki/Inductive_reasoning" title="Inductive reasoning">inductive reasoning</a>.<sup id="cite_ref-Wilson_1994_7-1" class="reference"><a href="#cite_note-Wilson_1994-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>Further, the current usage of "Kepler's Second Law" is something of a misnomer. Kepler had two versions, related in a qualitative sense: the "distance law" and the "area law". The "area law" is what became the Second Law in the set of three; but Kepler did himself not privilege it in that way.<sup id="cite_ref-Stephenson1994_11-0" class="reference"><a href="#cite_note-Stephenson1994-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=3" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kepler published his first two laws about planetary motion in 1609,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> having found them by analyzing the astronomical observations of <a href="/wiki/Tycho_Brahe" title="Tycho Brahe">Tycho Brahe</a>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Holton_14-0" class="reference"><a href="#cite_note-Holton-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Gingerich_5-1" class="reference"><a href="#cite_note-Gingerich-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 53">&#58;&#8202;53&#8202;</span></sup> Kepler's third law was published in 1619.<sup id="cite_ref-Kepler_1619_16-0" class="reference"><a href="#cite_note-Kepler_1619-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Holton_14-1" class="reference"><a href="#cite_note-Holton-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Kepler had believed in the <a href="/wiki/Copernican_heliocentrism" title="Copernican heliocentrism">Copernican model</a> of the Solar System, which called for circular orbits, but he could not reconcile Brahe's highly precise observations with a circular fit to Mars' orbit – Mars coincidentally having the highest <a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">eccentricity</a> of all planets except Mercury.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> His first law reflected this discovery. </p><p>In 1621, Kepler noted that his third law applies to the <a href="/wiki/Galilean_moons" title="Galilean moons">four brightest moons</a> of <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>Nb 1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Godefroy_Wendelin" class="mw-redirect" title="Godefroy Wendelin">Godefroy Wendelin</a> also made this observation in 1643.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>Nb 2<span class="cite-bracket">&#93;</span></a></sup> The second law, in the "area law" form, was contested by <a href="/wiki/Nicolaus_Mercator" class="mw-redirect" title="Nicolaus Mercator">Nicolaus Mercator</a> in a book from 1664, but by 1670 his <i><a href="/wiki/Philosophical_Transactions" class="mw-redirect" title="Philosophical Transactions">Philosophical Transactions</a></i> were in its favour.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> As the century proceeded it became more widely accepted.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> The reception in Germany changed noticeably between 1688, the year in which Newton's <i><a href="/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica" title="Philosophiæ Naturalis Principia Mathematica">Principia</a></i> was published and was taken to be basically Copernican, and 1690, by which time work of <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a> on Kepler had been published.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>Newton was credited with understanding that the second law is not special to the inverse square law of gravitation, being a consequence just of the radial nature of that law, whereas the other laws do depend on the inverse square form of the attraction. <a href="/wiki/Carl_Runge" title="Carl Runge">Carl Runge</a> and <a href="/wiki/Wilhelm_Lenz" title="Wilhelm Lenz">Wilhelm Lenz</a> much later identified a symmetry principle in the <a href="/wiki/Phase_space" title="Phase space">phase space</a> of planetary motion (the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a> O(4) acting) which accounts for the first and third laws in the case of Newtonian gravitation, as <a href="/wiki/Conservation_of_angular_momentum" class="mw-redirect" title="Conservation of angular momentum">conservation of angular momentum</a> does via rotational symmetry for the second law.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Formulary">Formulary</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=4" title="Edit section: Formulary"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The mathematical model of the kinematics of a planet subject to the laws allows a large range of further calculations. </p> <div class="mw-heading mw-heading3"><h3 id="First_law">First law</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=5" title="Edit section: First law"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kepler's first law states that: </p> <blockquote><p>The orbit of every planet is an ellipse with the sun at one of the two <a href="/wiki/Focus_(geometry)" title="Focus (geometry)">foci</a>.</p></blockquote> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Kepler-first-law.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Kepler-first-law.svg/220px-Kepler-first-law.svg.png" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Kepler-first-law.svg/330px-Kepler-first-law.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Kepler-first-law.svg/440px-Kepler-first-law.svg.png 2x" data-file-width="350" data-file-height="250" /></a><figcaption>Kepler's first law placing the Sun at one of the foci of an elliptical orbit</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ellipse_latus_rectum.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Ellipse_latus_rectum.svg/220px-Ellipse_latus_rectum.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Ellipse_latus_rectum.svg/330px-Ellipse_latus_rectum.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Ellipse_latus_rectum.svg/440px-Ellipse_latus_rectum.svg.png 2x" data-file-width="300" data-file-height="300" /></a><figcaption>Heliocentric coordinate system (<i>r</i>,<span class="nowrap">&#160;</span><i>θ</i>) for ellipse. Also shown are: semi-major axis <i>a</i>, semi-minor axis <i>b</i> and semi-latus rectum <i>p</i>; center of ellipse and its two <a href="/wiki/Focus_(geometry)" title="Focus (geometry)">foci</a> marked by large dots. For <span class="nowrap">θ = 0°</span>, <span class="nowrap"><i>r</i> = <i>r</i><sub>min</sub></span> and for <span class="nowrap">θ = 180°</span>, <span class="nowrap"><i>r</i> = <i>r</i><sub>max</sub></span>.</figcaption></figure> <p>Mathematically, an ellipse can be represented by the formula: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r={\frac {p}{1+\varepsilon \,\cos \theta }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mspace width="thinmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r={\frac {p}{1+\varepsilon \,\cos \theta }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2607beca148191eeb03bfbff7c383622c182a0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:16.079ex; height:5.176ex;" alt="{\displaystyle r={\frac {p}{1+\varepsilon \,\cos \theta }},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is the <a href="/wiki/Semi-latus_rectum" class="mw-redirect" title="Semi-latus rectum">semi-latus rectum</a>, <i>ε</i> is the <a href="/wiki/Eccentricity_(mathematics)" title="Eccentricity (mathematics)">eccentricity</a> of the ellipse, <i>r</i> is the distance from the Sun to the planet, and <i>θ</i> is the angle to the planet's current position from its closest approach, as seen from the Sun. So (<i>r</i>,&#160;<i>θ</i>) are <a href="/wiki/Polar_coordinates" class="mw-redirect" title="Polar coordinates">polar coordinates</a>. </p><p>For an ellipse 0&#160;&lt;&#160;<i>ε</i>&#160;&lt;&#160;1&#160;; in the limiting case <i>ε</i> = 0, the orbit is a circle with the Sun at the centre (i.e. where there is zero eccentricity). </p><p>At <i>θ</i> = 0°, <a href="/wiki/Perihelion" class="mw-redirect" title="Perihelion">perihelion</a>, the distance is minimum </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{\min }={\frac {p}{1+\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{\min }={\frac {p}{1+\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1586308d30d8d74172f80d60a5a84bd53b4a934d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.042ex; height:5.009ex;" alt="{\displaystyle r_{\min }={\frac {p}{1+\varepsilon }}}"></span></dd></dl> <p>At <i>θ</i> = 90° and at <i>θ</i> = 270° the distance is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>. </p><p>At <i>θ</i> = 180°, <a href="/wiki/Aphelion" class="mw-redirect" title="Aphelion">aphelion</a>, the distance is maximum (by definition, aphelion is – invariably – perihelion plus 180°) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{\max }={\frac {p}{1-\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{\max }={\frac {p}{1-\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9b86ccc6b7d918c2cc0cfbccd097b6bcce7a34f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.361ex; height:5.009ex;" alt="{\displaystyle r_{\max }={\frac {p}{1-\varepsilon }}}"></span></dd></dl> <p>The <a href="/wiki/Semi-major_axis" class="mw-redirect" title="Semi-major axis">semi-major axis</a> <i>a</i> is the <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic mean</a> between <i>r</i><sub>min</sub> and <i>r</i><sub>max</sub>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}a&amp;={\frac {r_{\max }+r_{\min }}{2}}\\[3pt]a&amp;={\frac {p}{1-\varepsilon ^{2}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.6em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}a&amp;={\frac {r_{\max }+r_{\min }}{2}}\\[3pt]a&amp;={\frac {p}{1-\varepsilon ^{2}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82847fc5b12e705011877c295e4ed5b439a1ed30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:17.117ex; height:11.176ex;" alt="{\displaystyle {\begin{aligned}a&amp;={\frac {r_{\max }+r_{\min }}{2}}\\[3pt]a&amp;={\frac {p}{1-\varepsilon ^{2}}}\end{aligned}}}"></span></dd></dl> <p>The <a href="/wiki/Semi-minor_axis" class="mw-redirect" title="Semi-minor axis">semi-minor axis</a> <i>b</i> is the <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a> between <i>r</i><sub>min</sub> and <i>r</i><sub>max</sub>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}b&amp;={\sqrt {r_{\max }r_{\min }}}\\[3pt]b&amp;={\frac {p}{\sqrt {1-\varepsilon ^{2}}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.6em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}b&amp;={\sqrt {r_{\max }r_{\min }}}\\[3pt]b&amp;={\frac {p}{\sqrt {1-\varepsilon ^{2}}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03d3ca95934b7178477b3e16f3364de18f5fe6a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:15.144ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}b&amp;={\sqrt {r_{\max }r_{\min }}}\\[3pt]b&amp;={\frac {p}{\sqrt {1-\varepsilon ^{2}}}}\end{aligned}}}"></span></dd></dl> <p>The semi-latus rectum <i>p</i> is the <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a> between <i>r</i><sub>min</sub> and <i>r</i><sub>max</sub>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}p&amp;=\left({\frac {r_{\max }^{-1}+r_{\min }^{-1}}{2}}\right)^{-1}\\pa&amp;=r_{\max }r_{\min }=b^{2}\,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> <mi>a</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}p&amp;=\left({\frac {r_{\max }^{-1}+r_{\min }^{-1}}{2}}\right)^{-1}\\pa&amp;=r_{\max }r_{\min }=b^{2}\,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/247bcd0acd91afa6ed909b7c09c5a85366383f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:24.301ex; height:11.176ex;" alt="{\displaystyle {\begin{aligned}p&amp;=\left({\frac {r_{\max }^{-1}+r_{\min }^{-1}}{2}}\right)^{-1}\\pa&amp;=r_{\max }r_{\min }=b^{2}\,\end{aligned}}}"></span></dd></dl> <p>The eccentricity <i>ε</i> is the <a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">coefficient of variation</a> between <i>r</i><sub>min</sub> and <i>r</i><sub>max</sub>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon ={\frac {r_{\max }-r_{\min }}{r_{\max }+r_{\min }}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> </mrow> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon ={\frac {r_{\max }-r_{\min }}{r_{\max }+r_{\min }}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5b140da6773ac4d1a47859c43c40637950ed3b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:16.866ex; height:5.343ex;" alt="{\displaystyle \varepsilon ={\frac {r_{\max }-r_{\min }}{r_{\max }+r_{\min }}}.}"></span></dd></dl> <p>The <a href="/wiki/Area" title="Area">area</a> of the ellipse is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\pi ab\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\pi ab\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8df8914e25f15cff874cfbc928bceb3338817dc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.435ex; height:2.176ex;" alt="{\displaystyle A=\pi ab\,.}"></span></dd></dl> <p>The special case of a circle is <i>ε</i> = 0, resulting in <i>r</i> = <i>p</i> = <i>r</i><sub>min</sub> = <i>r</i><sub>max</sub> = <i>a</i> = <i>b</i> and <i>A</i> = <i>πr</i><sup>2</sup>. </p> <div class="mw-heading mw-heading3"><h3 id="Second_law">Second law</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=6" title="Edit section: Second law"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kepler's second law states that: </p> <blockquote><p>A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.<sup id="cite_ref-Wolfram2nd_25-0" class="reference"><a href="#cite_note-Wolfram2nd-25"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Kepler-second-law.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Kepler-second-law.gif/220px-Kepler-second-law.gif" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Kepler-second-law.gif/330px-Kepler-second-law.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/6/69/Kepler-second-law.gif 2x" data-file-width="360" data-file-height="240" /></a><figcaption>The same (blue) area is swept out in a fixed time period. The green arrow is velocity. The purple arrow directed towards the Sun is the acceleration. The other two purple arrows are acceleration components parallel and perpendicular to the velocity.</figcaption></figure> <p>The orbital radius and angular velocity of the planet in the elliptical orbit will vary. This is shown in the animation: the planet travels faster when closer to the Sun, then slower when farther from the Sun. Kepler's second law states that the blue sector has constant area. </p> <div class="mw-heading mw-heading4"><h4 id="History_and_proofs">History and proofs</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=7" title="Edit section: History and proofs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kepler notably arrived at this law through assumptions that were either only approximately true or outright false and can be outlined as follows: </p> <ol><li>Planets are pushed around the Sun by a force from the Sun. This false assumption relies on incorrect <a href="/wiki/Physics_(Aristotle)" title="Physics (Aristotle)">Aristotelian physics</a> that an object needs to be pushed to maintain motion.</li> <li>The propelling force from the Sun is inversely proportional to the distance from the Sun. Kepler reasoned this, believing that gravity spreading in three dimensions would be a waste, since the planets inhabited a plane. Thus, an inverse instead of the [correct] inverse square law.</li> <li>Because Kepler believed that force would be proportional to velocity, it followed from statements #1 and #2 that velocity would be inverse to the distance from the sun. This is also an incorrect tenet of Aristotelian physics.</li> <li>Since velocity is inverse to time, the distance from the sun would be proportional to the time to cover a small piece of the orbit. This is approximately true for elliptical orbits.</li> <li>The area swept out is proportional to the overall time. This is also approximately true.</li> <li>The orbits of a planet are circular (Kepler discovered his Second Law before his First Law, which contradicts this).</li></ol> <p>Nevertheless, the result of the Second Law is exactly true, as it is logically equivalent to the conservation of angular momentum, which is true for any body experiencing a radially symmetric force.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> A correct proof can be shown through this. Since the cross product of two vectors gives the area of a parallelogram possessing sides of those vectors, the triangular area dA swept out in a short period of time is given by half the cross product of the <i>r</i> and <i>dx</i> vectors, for some short piece of the orbit, <i>dx</i>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dA={\frac {1}{2}}({\vec {r}}\times {\vec {dx}})={\frac {1}{2}}({\vec {r}}\times {\vec {v}}dt)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dA={\frac {1}{2}}({\vec {r}}\times {\vec {dx}})={\frac {1}{2}}({\vec {r}}\times {\vec {v}}dt)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656d38602eed851afa3305132a0458ffd98d4653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.675ex; height:5.176ex;" alt="{\displaystyle dA={\frac {1}{2}}({\vec {r}}\times {\vec {dx}})={\frac {1}{2}}({\vec {r}}\times {\vec {v}}dt)}"></span> for a small piece of the orbit <i>dx</i> and time to cover it <i>dt</i>. </p><p>Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dA}{dt}}={\frac {1}{2}}({\vec {r}}\times {\vec {v}}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>A</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dA}{dt}}={\frac {1}{2}}({\vec {r}}\times {\vec {v}}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fa5648fbad27e879b69aa8fd8d8a3eb7b2e03c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.587ex; height:5.509ex;" alt="{\displaystyle {\frac {dA}{dt}}={\frac {1}{2}}({\vec {r}}\times {\vec {v}}).}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dA}{dt}}={\frac {1}{m}}{\frac {1}{2}}({\vec {r}}\times {\vec {p}}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>A</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dA}{dt}}={\frac {1}{m}}{\frac {1}{2}}({\vec {r}}\times {\vec {p}}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/040666d3ef4619d29734a1f03f5257a46264dd4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.613ex; height:5.509ex;" alt="{\displaystyle {\frac {dA}{dt}}={\frac {1}{m}}{\frac {1}{2}}({\vec {r}}\times {\vec {p}}).}"></span> </p><p>Since the final expression is proportional to the total angular momentum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {r}}\times {\vec {p}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\vec {r}}\times {\vec {p}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/617890b1829c0e0e651e827a71504c13d63c176f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.198ex; height:2.843ex;" alt="{\displaystyle ({\vec {r}}\times {\vec {p}})}"></span>, Kepler's equal area law will hold for any system that conserves angular momentum. Since any radial force will produce no torque on the planet's motion, angular momentum will be conserved. </p> <div class="mw-heading mw-heading4"><h4 id="In_terms_of_elliptical_parameters">In terms of elliptical parameters</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=8" title="Edit section: In terms of elliptical parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a small time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebee76a835701fd1f26047a09855f2ea36bb08fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.055ex; height:2.176ex;" alt="{\displaystyle dt}"></span> the planet sweeps out a small triangle having base line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> and height <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\,d\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\,d\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41ac015450a482c05860effa2c1a4fd6c88ea0d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.742ex; height:2.176ex;" alt="{\displaystyle r\,d\theta }"></span> and area <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle dA={\frac {1}{2}}\cdot r\cdot r\,d\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>d</mi> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>r</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>r</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle dA={\frac {1}{2}}\cdot r\cdot r\,d\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81bf21d9922840be512de2b89973266d17a997b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.864ex; height:3.509ex;" alt="{\textstyle dA={\frac {1}{2}}\cdot r\cdot r\,d\theta }"></span>, so the constant <a href="/wiki/Areal_velocity" title="Areal velocity">areal velocity</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dA}{dt}}={\frac {r^{2}}{2}}{\frac {d\theta }{dt}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>A</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dA}{dt}}={\frac {r^{2}}{2}}{\frac {d\theta }{dt}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b679fa97323287ae6bae83c64b6540c586ab21d9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.622ex; height:5.843ex;" alt="{\displaystyle {\frac {dA}{dt}}={\frac {r^{2}}{2}}{\frac {d\theta }{dt}}.}"></span> </p><p>The area enclosed by the elliptical orbit is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e49e097530aa054f7782fc7de33b0a60418ff964" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.559ex; height:2.176ex;" alt="{\displaystyle \pi ab}"></span>. So the period <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> satisfies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\cdot {\frac {r^{2}}{2}}{\frac {d\theta }{dt}}=\pi ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\cdot {\frac {r^{2}}{2}}{\frac {d\theta }{dt}}=\pi ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65c7441402e6af17e0c8d6b476f3b9334e4fa53e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.055ex; height:5.843ex;" alt="{\displaystyle T\cdot {\frac {r^{2}}{2}}{\frac {d\theta }{dt}}=\pi ab}"></span></dd></dl> <p>and the <a href="/wiki/Mean_motion" title="Mean motion">mean motion</a> of the planet around the Sun </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n={\frac {2\pi }{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mi>T</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n={\frac {2\pi }{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb1f2ba873078a0023318363a65e3a94c7f082f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.824ex; height:5.176ex;" alt="{\displaystyle n={\frac {2\pi }{T}}}"></span></dd></dl> <p>satisfies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}\,d\theta =abn\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>a</mi> <mi>b</mi> <mi>n</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}\,d\theta =abn\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cf8e12b767fe06745ef2623fc646a350e908c7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.606ex; height:2.676ex;" alt="{\displaystyle r^{2}\,d\theta =abn\,dt.}"></span></dd></dl> <p>And so, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dA}{dt}}={\frac {abn}{2}}={\frac {\pi ab}{T}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>A</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>b</mi> <mi>n</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>b</mi> </mrow> <mi>T</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dA}{dt}}={\frac {abn}{2}}={\frac {\pi ab}{T}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/090e1b73451d3ef6b7b8d4580d78a3352b7886ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.493ex; height:5.509ex;" alt="{\displaystyle {\frac {dA}{dt}}={\frac {abn}{2}}={\frac {\pi ab}{T}}.}"></span> </p> <table class="wikitable" style="width:500px"> <caption>Orbits of planets with varying eccentricities. </caption> <tbody><tr> <th>Low</th> <th>High </th></tr> <tr> <td><figure class="mw-default-size mw-halign-center" typeof="mw:File/Frameless"><a href="/wiki/File:Circular_orbit_of_planet_with_(eccentricty_of_0.0).gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Circular_orbit_of_planet_with_%28eccentricty_of_0.0%29.gif/260px-Circular_orbit_of_planet_with_%28eccentricty_of_0.0%29.gif" decoding="async" width="260" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Circular_orbit_of_planet_with_%28eccentricty_of_0.0%29.gif/390px-Circular_orbit_of_planet_with_%28eccentricty_of_0.0%29.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Circular_orbit_of_planet_with_%28eccentricty_of_0.0%29.gif/520px-Circular_orbit_of_planet_with_%28eccentricty_of_0.0%29.gif 2x" data-file-width="900" data-file-height="675" /></a><figcaption></figcaption></figure> Planet orbiting the Sun in a circular orbit (e=0.0) </td> <td><figure class="mw-default-size mw-halign-center" typeof="mw:File/Frameless"><a href="/wiki/File:Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.5.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.5.gif/260px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.5.gif" decoding="async" width="260" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.5.gif/390px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.5.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/97/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.5.gif/520px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.5.gif 2x" data-file-width="900" data-file-height="675" /></a><figcaption></figcaption></figure> Planet orbiting the Sun in an orbit with e=0.5 </td></tr> <tr> <td><figure class="mw-default-size mw-halign-center" typeof="mw:File/Frameless"><a href="/wiki/File:Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.2.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.2.gif/260px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.2.gif" decoding="async" width="260" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.2.gif/390px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.2.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.2.gif/520px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.2.gif 2x" data-file-width="900" data-file-height="675" /></a><figcaption></figcaption></figure> Planet orbiting the Sun in an orbit with e=0.2 </td> <td><figure class="mw-default-size mw-halign-center" typeof="mw:File/Frameless"><a href="/wiki/File:Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.8.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.8.gif/260px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.8.gif" decoding="async" width="260" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.8.gif/390px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.8.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.8.gif/520px-Ellipitical_orbit_of_planet_with_an_eccentricty_of_0.8.gif 2x" data-file-width="900" data-file-height="675" /></a><figcaption></figcaption></figure> Planet orbiting the Sun in an orbit with e=0.8 </td></tr> <tr> <td colspan="2">The red ray rotates at a constant angular velocity and with the same orbital time period as the planet, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6664a95bcd54fdd09a9178e106bd05b1c849856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.897ex; height:2.176ex;" alt="{\displaystyle T=1}"></span>. <p>S: Sun at the primary focus, C: Centre of ellipse, S': The secondary focus. In each case, the area of all sectors depicted is identical. </p> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Third_law">Third law</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=9" title="Edit section: Third law"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kepler's third law states that: </p> <blockquote><p>The ratio of the square of an object's <a href="/wiki/Orbital_period" title="Orbital period">orbital period</a> with the cube of the semi-major axis of its orbit is the same for all objects orbiting the same primary.</p></blockquote> <p>This captures the relationship between the distance of planets from the Sun, and their orbital periods. </p><p>Kepler enunciated in 1619<sup id="cite_ref-Kepler_1619_16-1" class="reference"><a href="#cite_note-Kepler_1619-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> this third law in a laborious attempt to determine what he viewed as the "<a href="/wiki/Musica_universalis" title="Musica universalis">music of the spheres</a>" according to precise laws, and express it in terms of musical notation.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> It was therefore known as the <i>harmonic law</i>.<sup id="cite_ref-Holton3_28-0" class="reference"><a href="#cite_note-Holton3-28"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> The original form of this law (referring to not the semi-major axis, but rather a "mean distance") holds true only for planets with small eccentricities near zero.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p><p>Using Newton's law of gravitation (published 1687), this relation can be found in the case of a circular orbit by setting the <a href="/wiki/Centripetal_force" title="Centripetal force">centripetal force</a> equal to the gravitational force: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mr\omega ^{2}=G{\frac {mM}{r^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>r</mi> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>M</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mr\omega ^{2}=G{\frac {mM}{r^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/074ae4e61f0177c5e3f5f714c0aef0aedf6dd228" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.833ex; height:5.509ex;" alt="{\displaystyle mr\omega ^{2}=G{\frac {mM}{r^{2}}}}"></span></dd></dl> <p>Then, expressing the angular velocity ω in terms of the orbital period <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9ffc98a039ed280ea6420a0f53758bddef8d9a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle {T}}"></span> and then rearranging, results in Kepler's Third Law: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mr\left({\frac {2\pi }{T}}\right)^{2}=G{\frac {mM}{r^{2}}}\implies T^{2}=\left({\frac {4\pi ^{2}}{GM}}\right)r^{3}\implies T^{2}\propto r^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>r</mi> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mi>T</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>M</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>G</mi> <mi>M</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x221D;<!-- ∝ --></mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mr\left({\frac {2\pi }{T}}\right)^{2}=G{\frac {mM}{r^{2}}}\implies T^{2}=\left({\frac {4\pi ^{2}}{GM}}\right)r^{3}\implies T^{2}\propto r^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/277cb29797411423da45731c9a431eea5333ff34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:58.776ex; height:6.509ex;" alt="{\displaystyle mr\left({\frac {2\pi }{T}}\right)^{2}=G{\frac {mM}{r^{2}}}\implies T^{2}=\left({\frac {4\pi ^{2}}{GM}}\right)r^{3}\implies T^{2}\propto r^{3}}"></span></dd></dl> <p>A more detailed derivation can be done with general elliptical orbits, instead of circles, as well as orbiting the center of mass, instead of just the large mass. This results in replacing a circular radius, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, with the semi-major axis, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, of the elliptical relative motion of one mass relative to the other, as well as replacing the large mass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M+m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>+</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M+m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af820258afa74dafb69f8551e365ffe5d3577c43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.323ex; height:2.343ex;" alt="{\displaystyle M+m}"></span>. However, with planet masses being so much smaller than the Sun, this correction is often ignored. The full corresponding formula is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a^{3}}{T^{2}}}={\frac {G(M+m)}{4\pi ^{2}}}\approx {\frac {GM}{4\pi ^{2}}}\approx 7.496\times 10^{-6}{\frac {{\text{AU}}^{3}}{{\text{days}}^{2}}}{\text{ is constant}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mi>M</mi> </mrow> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>7.496</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>AU</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>days</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is constant</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a^{3}}{T^{2}}}={\frac {G(M+m)}{4\pi ^{2}}}\approx {\frac {GM}{4\pi ^{2}}}\approx 7.496\times 10^{-6}{\frac {{\text{AU}}^{3}}{{\text{days}}^{2}}}{\text{ is constant}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5be7d70752ed13fa1b6ba7f6fa5a0210e6b04486" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:60.482ex; height:6.843ex;" alt="{\displaystyle {\frac {a^{3}}{T^{2}}}={\frac {G(M+m)}{4\pi ^{2}}}\approx {\frac {GM}{4\pi ^{2}}}\approx 7.496\times 10^{-6}{\frac {{\text{AU}}^{3}}{{\text{days}}^{2}}}{\text{ is constant}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is the <a href="/wiki/Solar_mass" title="Solar mass">mass of the Sun</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is the mass of the planet, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is the orbital period and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is the elliptical semi-major axis, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{AU}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>AU</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{AU}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb03216995e17d94cadd0e00c661e3f88a213c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.486ex; height:2.176ex;" alt="{\displaystyle {\text{AU}}}"></span> is the <a href="/wiki/Astronomical_unit" title="Astronomical unit">astronomical unit</a>, the average distance from earth to the sun. </p> <div class="mw-heading mw-heading4"><h4 id="Table">Table</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=10" title="Edit section: Table"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following table shows the data used by Kepler to empirically derive his law: </p> <table class="wikitable"> <caption>Data used by Kepler (1618) </caption> <tbody><tr> <th>Planet </th> <th>Mean distance <br />to sun (AU) </th> <th>Period <br />(days) </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {R^{3}}{T^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {R^{3}}{T^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2eafb271b3b51c79eca62b2e90aff24cfa0e997" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:2.915ex; height:4.509ex;" alt="{\textstyle {\frac {R^{3}}{T^{2}}}}"></span><span class="nowrap">&#160;</span>(10<sup>-6</sup><span class="nowrap">&#160;</span>AU<sup>3</sup>/day<sup>2</sup>) </th></tr> <tr> <td>Mercury </td> <td>0.389 </td> <td>87.77 </td> <td>7.64 </td></tr> <tr> <td>Venus </td> <td>0.724 </td> <td>224.70 </td> <td>7.52 </td></tr> <tr> <td>Earth </td> <td>1 </td> <td>365.25 </td> <td>7.50 </td></tr> <tr> <td>Mars </td> <td>1.524 </td> <td>686.95 </td> <td>7.50 </td></tr> <tr> <td>Jupiter </td> <td>5.20 </td> <td>4332.62 </td> <td>7.49 </td></tr> <tr> <td>Saturn </td> <td>9.510 </td> <td>10759.2 </td> <td>7.43 </td></tr></tbody></table> <p>Kepler became aware of <a href="/wiki/John_Napier" title="John Napier">John Napier</a>'s recent invention of logarithms and log-log graphs before he discovered the pattern.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>Upon finding this pattern Kepler wrote:<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>I first believed I was dreaming... But it is absolutely certain and exact that the ratio which exists between the period times of any two planets is precisely the ratio of the 3/2th power of the mean distance. </p><div class="templatequotecite">—&#8202;<cite>translated from <i>Harmonies of the World</i> by Kepler (1619)</cite></div></blockquote> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Solar_system_orbital_period_vs_semimajor_axis.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/be/Solar_system_orbital_period_vs_semimajor_axis.svg/280px-Solar_system_orbital_period_vs_semimajor_axis.svg.png" decoding="async" width="280" height="280" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/be/Solar_system_orbital_period_vs_semimajor_axis.svg/420px-Solar_system_orbital_period_vs_semimajor_axis.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/be/Solar_system_orbital_period_vs_semimajor_axis.svg/560px-Solar_system_orbital_period_vs_semimajor_axis.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Log-log plot of period <i>T</i> vs semi-major axis <i>a</i> (average of aphelion and perihelion) of some Solar System orbits (crosses denoting Kepler's values) showing that <i>a</i>&#179;/<i>T</i>&#178; is constant (green line)</figcaption></figure> <p><br /> For comparison, here are modern estimates:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2024)">citation needed</span></a></i>&#93;</sup> </p> <table class="wikitable"> <caption>Modern data </caption> <tbody><tr> <th>Planet </th> <th>Semi-major axis (AU) </th> <th>Period (days) </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {a^{3}}{T^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {a^{3}}{T^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5f643c398b43d7a39b2979247ba50e03ba3ea9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:2.884ex; height:4.509ex;" alt="{\textstyle {\frac {a^{3}}{T^{2}}}}"></span><span class="nowrap">&#160;</span>(10<sup>-6</sup><span class="nowrap">&#160;</span>AU<sup>3</sup>/day<sup>2</sup>) </th></tr> <tr> <td>Mercury </td> <td>0.38710 </td> <td>87.9693 </td> <td>7.496 </td></tr> <tr> <td>Venus </td> <td>0.72333 </td> <td>224.7008 </td> <td>7.496 </td></tr> <tr> <td>Earth </td> <td>1 </td> <td>365.2564 </td> <td>7.496 </td></tr> <tr> <td>Mars </td> <td>1.52366 </td> <td>686.9796 </td> <td>7.495 </td></tr> <tr> <td>Jupiter </td> <td>5.20336 </td> <td>4332.8201 </td> <td>7.504 </td></tr> <tr> <td>Saturn </td> <td>9.53707 </td> <td>10775.599 </td> <td>7.498 </td></tr> <tr> <td>Uranus </td> <td>19.1913 </td> <td>30687.153 </td> <td>7.506 </td></tr> <tr> <td>Neptune </td> <td>30.0690 </td> <td>60190.03 </td> <td>7.504 </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Planetary_acceleration">Planetary acceleration</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=11" title="Edit section: Planetary acceleration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> computed in his <i><a href="/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica" title="Philosophiæ Naturalis Principia Mathematica">Philosophiæ Naturalis Principia Mathematica</a></i> the <a href="/wiki/Acceleration" title="Acceleration">acceleration</a> of a planet moving according to Kepler's first and second laws. </p> <ol><li>The <i>direction</i> of the acceleration is towards the Sun.</li> <li>The <i>magnitude</i> of the acceleration is inversely proportional to the square of the planet's distance from the Sun (the <i>inverse square law</i>).</li></ol> <p>This implies that the Sun may be the physical cause of the acceleration of planets. However, Newton states in his <i>Principia</i> that he considers forces from a mathematical point of view, not a physical, thereby taking an instrumentalist view.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> Moreover, he does not assign a cause to gravity.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Newton defined the <a href="/wiki/Force" title="Force">force</a> acting on a planet to be the product of its <a href="/wiki/Mass" title="Mass">mass</a> and the acceleration (see <a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newton's laws of motion</a>). So: </p> <ol><li>Every planet is attracted towards the Sun.</li> <li>The force acting on a planet is directly proportional to the mass of the planet and is inversely proportional to the square of its distance from the Sun.</li></ol> <p>The Sun plays an unsymmetrical part, which is unjustified. So he assumed, in <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton&#39;s law of universal gravitation">Newton's law of universal gravitation</a>: </p> <ol><li>All bodies in the Solar System attract one another.</li> <li>The force between two bodies is in direct proportion to the product of their masses and in inverse proportion to the square of the distance between them.</li></ol> <p>As the planets have small masses compared to that of the Sun, the orbits conform approximately to Kepler's laws. Newton's model improves upon Kepler's model, and fits actual observations more accurately. (See <a href="/wiki/Two-body_problem" title="Two-body problem">two-body problem</a>.) </p><p>Below comes the detailed calculation of the acceleration of a planet moving according to Kepler's first and second laws. </p> <div class="mw-heading mw-heading3"><h3 id="Acceleration_vector">Acceleration vector</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=12" title="Edit section: Acceleration vector"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Polar_coordinate#Vector_calculus" class="mw-redirect" title="Polar coordinate">Polar coordinate §&#160;Vector calculus</a>, and <a href="/w/index.php?title=Mechanics_of_planar_particle_motion&amp;action=edit&amp;redlink=1" class="new" title="Mechanics of planar particle motion (page does not exist)">Mechanics of planar particle motion</a></div> <p>From the <a href="/wiki/Heliocentric" class="mw-redirect" title="Heliocentric">heliocentric</a> point of view consider the vector to the planet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} =r{\hat {\mathbf {r} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} =r{\hat {\mathbf {r} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/176a26a6b258c7b8eba91c67303e748f6705ec4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.412ex; height:2.343ex;" alt="{\displaystyle \mathbf {r} =r{\hat {\mathbf {r} }}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> is the distance to the planet and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {r} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {r} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9740464b71653e12932278ee944540be8caa5b96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.343ex;" alt="{\displaystyle {\hat {\mathbf {r} }}}"></span> is a <a href="/wiki/Unit_vector" title="Unit vector">unit vector</a> pointing towards the planet. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d{\hat {\mathbf {r} }}}{dt}}={\dot {\hat {\mathbf {r} }}}={\dot {\theta }}{\hat {\boldsymbol {\theta }}},\qquad {\frac {d{\hat {\boldsymbol {\theta }}}}{dt}}={\dot {\hat {\boldsymbol {\theta }}}}=-{\dot {\theta }}{\hat {\mathbf {r} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d{\hat {\mathbf {r} }}}{dt}}={\dot {\hat {\mathbf {r} }}}={\dot {\theta }}{\hat {\boldsymbol {\theta }}},\qquad {\frac {d{\hat {\boldsymbol {\theta }}}}{dt}}={\dot {\hat {\boldsymbol {\theta }}}}=-{\dot {\theta }}{\hat {\mathbf {r} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67868cd7b29b9b314709e3f7c5cd08aeec2a95ad" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:34.555ex; height:6.176ex;" alt="{\displaystyle {\frac {d{\hat {\mathbf {r} }}}{dt}}={\dot {\hat {\mathbf {r} }}}={\dot {\theta }}{\hat {\boldsymbol {\theta }}},\qquad {\frac {d{\hat {\boldsymbol {\theta }}}}{dt}}={\dot {\hat {\boldsymbol {\theta }}}}=-{\dot {\theta }}{\hat {\mathbf {r} }}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\boldsymbol {\theta }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\boldsymbol {\theta }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca32f6d693b0a183a7728b875f7e2042bb1dbca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.457ex; height:2.843ex;" alt="{\displaystyle {\hat {\boldsymbol {\theta }}}}"></span> is the unit vector whose direction is 90 degrees counterclockwise of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {r} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {r} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9740464b71653e12932278ee944540be8caa5b96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.343ex;" alt="{\displaystyle {\hat {\mathbf {r} }}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> is the polar angle, and where a <a href="/wiki/Notation_for_differentiation#Newton&#39;s_notation" title="Notation for differentiation">dot</a> on top of the variable signifies differentiation with respect to time. </p><p>Differentiate the position vector twice to obtain the velocity vector and the acceleration vector: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\dot {\mathbf {r} }}&amp;={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\hat {\mathbf {r} }}}={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\theta }}{\hat {\boldsymbol {\theta }}},\\{\ddot {\mathbf {r} }}&amp;=\left({\ddot {r}}{\hat {\mathbf {r} }}+{\dot {r}}{\dot {\hat {\mathbf {r} }}}\right)+\left({\dot {r}}{\dot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\ddot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\dot {\theta }}{\dot {\hat {\boldsymbol {\theta }}}}\right)=\left({\ddot {r}}-r{\dot {\theta }}^{2}\right){\hat {\mathbf {r} }}+\left(r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}\right){\hat {\boldsymbol {\theta }}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\dot {\mathbf {r} }}&amp;={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\hat {\mathbf {r} }}}={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\theta }}{\hat {\boldsymbol {\theta }}},\\{\ddot {\mathbf {r} }}&amp;=\left({\ddot {r}}{\hat {\mathbf {r} }}+{\dot {r}}{\dot {\hat {\mathbf {r} }}}\right)+\left({\dot {r}}{\dot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\ddot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\dot {\theta }}{\dot {\hat {\boldsymbol {\theta }}}}\right)=\left({\ddot {r}}-r{\dot {\theta }}^{2}\right){\hat {\mathbf {r} }}+\left(r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}\right){\hat {\boldsymbol {\theta }}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c83779a3828b9f486b574e30ec4ee78fcdbfa580" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:70.837ex; height:8.176ex;" alt="{\displaystyle {\begin{aligned}{\dot {\mathbf {r} }}&amp;={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\hat {\mathbf {r} }}}={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\theta }}{\hat {\boldsymbol {\theta }}},\\{\ddot {\mathbf {r} }}&amp;=\left({\ddot {r}}{\hat {\mathbf {r} }}+{\dot {r}}{\dot {\hat {\mathbf {r} }}}\right)+\left({\dot {r}}{\dot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\ddot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\dot {\theta }}{\dot {\hat {\boldsymbol {\theta }}}}\right)=\left({\ddot {r}}-r{\dot {\theta }}^{2}\right){\hat {\mathbf {r} }}+\left(r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}\right){\hat {\boldsymbol {\theta }}}.\end{aligned}}}"></span> </p><p>So <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\mathbf {r} }}=a_{r}{\hat {\boldsymbol {r}}}+a_{\theta }{\hat {\boldsymbol {\theta }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">r</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03B8;<!-- θ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\mathbf {r} }}=a_{r}{\hat {\boldsymbol {r}}}+a_{\theta }{\hat {\boldsymbol {\theta }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4dd7c3cbed04fd47d452a1e22f39f33b4062359" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.34ex; height:3.176ex;" alt="{\displaystyle {\ddot {\mathbf {r} }}=a_{r}{\hat {\boldsymbol {r}}}+a_{\theta }{\hat {\boldsymbol {\theta }}}}"></span> where the <b>radial acceleration</b> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{r}={\ddot {r}}-r{\dot {\theta }}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{r}={\ddot {r}}-r{\dot {\theta }}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c916d20cee7ce3516d3187312c22c433928423b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.893ex; height:3.509ex;" alt="{\displaystyle a_{r}={\ddot {r}}-r{\dot {\theta }}^{2}}"></span> and the <b>transversal acceleration</b> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\theta }=r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo>=</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\theta }=r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d6c4be6bf5a5b784950733d02d54af62f02a7b0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.033ex; height:3.176ex;" alt="{\displaystyle a_{\theta }=r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Inverse_square_law">Inverse square law</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=13" title="Edit section: Inverse square law"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kepler's second law says that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}{\dot {\theta }}=nab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>n</mi> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}{\dot {\theta }}=nab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a220360005ad5e040b55e48f7014b4a2c46757b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.179ex; height:2.843ex;" alt="{\displaystyle r^{2}{\dot {\theta }}=nab}"></span> is constant. </p><p>The transversal acceleration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e75d02a8103bdaddecca46e413d56145afa71a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.233ex; height:2.009ex;" alt="{\displaystyle a_{\theta }}"></span> is zero: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\left(r^{2}{\dot {\theta }}\right)}{dt}}=r\left(2{\dot {r}}{\dot {\theta }}+r{\ddot {\theta }}\right)=ra_{\theta }=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>r</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\left(r^{2}{\dot {\theta }}\right)}{dt}}=r\left(2{\dot {r}}{\dot {\theta }}+r{\ddot {\theta }}\right)=ra_{\theta }=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2efedc0c432f296d233579966051193348ac84bd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:36.326ex; height:7.676ex;" alt="{\displaystyle {\frac {d\left(r^{2}{\dot {\theta }}\right)}{dt}}=r\left(2{\dot {r}}{\dot {\theta }}+r{\ddot {\theta }}\right)=ra_{\theta }=0.}"></span> </p><p>So the acceleration of a planet obeying Kepler's second law is directed towards the Sun. </p><p>The radial acceleration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\text{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>r</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\text{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de75944f94af01412ec55eed418a74d5140f7b0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.107ex; height:2.009ex;" alt="{\displaystyle a_{\text{r}}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\text{r}}={\ddot {r}}-r{\dot {\theta }}^{2}={\ddot {r}}-r\left({\frac {nab}{r^{2}}}\right)^{2}={\ddot {r}}-{\frac {n^{2}a^{2}b^{2}}{r^{3}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>r</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mi>a</mi> <mi>b</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\text{r}}={\ddot {r}}-r{\dot {\theta }}^{2}={\ddot {r}}-r\left({\frac {nab}{r^{2}}}\right)^{2}={\ddot {r}}-{\frac {n^{2}a^{2}b^{2}}{r^{3}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/019a30ec48272bf474e27603322ffffd61453099" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.507ex; height:6.509ex;" alt="{\displaystyle a_{\text{r}}={\ddot {r}}-r{\dot {\theta }}^{2}={\ddot {r}}-r\left({\frac {nab}{r^{2}}}\right)^{2}={\ddot {r}}-{\frac {n^{2}a^{2}b^{2}}{r^{3}}}.}"></span> </p><p>Kepler's first law states that the orbit is described by the equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {p}{r}}=1+\varepsilon \cos(\theta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mi>r</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {p}{r}}=1+\varepsilon \cos(\theta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e44be31760705e22cc4c91fe410b539d03f88bea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.235ex; height:4.843ex;" alt="{\displaystyle {\frac {p}{r}}=1+\varepsilon \cos(\theta ).}"></span> </p><p>Differentiating with respect to time <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {p{\dot {r}}}{r^{2}}}=-\varepsilon \sin(\theta )\,{\dot {\theta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {p{\dot {r}}}{r^{2}}}=-\varepsilon \sin(\theta )\,{\dot {\theta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6eba70714a37ab2e5a3caea8e963d683ec5b14a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:18.981ex; height:5.676ex;" alt="{\displaystyle -{\frac {p{\dot {r}}}{r^{2}}}=-\varepsilon \sin(\theta )\,{\dot {\theta }}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p{\dot {r}}=nab\,\varepsilon \sin(\theta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>n</mi> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace" /> <mi>&#x03B5;<!-- ε --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p{\dot {r}}=nab\,\varepsilon \sin(\theta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8ff720369f1b47846c069c8e8a9bfa01d83c94b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:17.531ex; height:2.843ex;" alt="{\displaystyle p{\dot {r}}=nab\,\varepsilon \sin(\theta ).}"></span> </p><p>Differentiating once more <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p{\ddot {r}}=nab\varepsilon \cos(\theta )\,{\dot {\theta }}=nab\varepsilon \cos(\theta )\,{\frac {nab}{r^{2}}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\varepsilon \cos(\theta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>n</mi> <mi>a</mi> <mi>b</mi> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>n</mi> <mi>a</mi> <mi>b</mi> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mi>a</mi> <mi>b</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p{\ddot {r}}=nab\varepsilon \cos(\theta )\,{\dot {\theta }}=nab\varepsilon \cos(\theta )\,{\frac {nab}{r^{2}}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\varepsilon \cos(\theta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f2e5fd890ec49f9640707ffb54f71a15f147fe4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; margin-left: -0.089ex; width:56.39ex; height:6.009ex;" alt="{\displaystyle p{\ddot {r}}=nab\varepsilon \cos(\theta )\,{\dot {\theta }}=nab\varepsilon \cos(\theta )\,{\frac {nab}{r^{2}}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\varepsilon \cos(\theta ).}"></span> </p><p>The radial acceleration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\text{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>r</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\text{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de75944f94af01412ec55eed418a74d5140f7b0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.107ex; height:2.009ex;" alt="{\displaystyle a_{\text{r}}}"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle pa_{\text{r}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\varepsilon \cos(\theta )-p{\frac {n^{2}a^{2}b^{2}}{r^{3}}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\left(\varepsilon \cos(\theta )-{\frac {p}{r}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>r</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mi>r</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle pa_{\text{r}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\varepsilon \cos(\theta )-p{\frac {n^{2}a^{2}b^{2}}{r^{3}}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\left(\varepsilon \cos(\theta )-{\frac {p}{r}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e636066276675c57c67de5ce28a3172a4d16f4dd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; margin-left: -0.089ex; width:60.44ex; height:6.009ex;" alt="{\displaystyle pa_{\text{r}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\varepsilon \cos(\theta )-p{\frac {n^{2}a^{2}b^{2}}{r^{3}}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\left(\varepsilon \cos(\theta )-{\frac {p}{r}}\right).}"></span> </p><p>Substituting the equation of the ellipse gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle pa_{\text{r}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\left({\frac {p}{r}}-1-{\frac {p}{r}}\right)=-{\frac {n^{2}a^{2}}{r^{2}}}b^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>r</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mi>r</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mi>r</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle pa_{\text{r}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\left({\frac {p}{r}}-1-{\frac {p}{r}}\right)=-{\frac {n^{2}a^{2}}{r^{2}}}b^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30adbc91b55aac25ed201e34f03f4d98c8ce9ecf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; margin-left: -0.089ex; width:41.276ex; height:6.009ex;" alt="{\displaystyle pa_{\text{r}}={\frac {n^{2}a^{2}b^{2}}{r^{2}}}\left({\frac {p}{r}}-1-{\frac {p}{r}}\right)=-{\frac {n^{2}a^{2}}{r^{2}}}b^{2}.}"></span> </p><p>The relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}=pa}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>p</mi> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}=pa}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa2d4caebb6d29b5f399fa1cac9ae980289d4d38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.549ex; height:3.009ex;" alt="{\displaystyle b^{2}=pa}"></span> gives the simple final result <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\text{r}}=-{\frac {n^{2}a^{3}}{r^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>r</mtext> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\text{r}}=-{\frac {n^{2}a^{3}}{r^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fd666e933d3175d1d345287e540dd514bd5d27d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:13.229ex; height:6.009ex;" alt="{\displaystyle a_{\text{r}}=-{\frac {n^{2}a^{3}}{r^{2}}}.}"></span> </p><p>This means that the acceleration vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\ddot {r}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\ddot {r}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56c1bbddb24650234037137265f21502f7e5d6bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.337ex; height:2.343ex;" alt="{\displaystyle \mathbf {\ddot {r}} }"></span> of any planet obeying Kepler's first and second law satisfies the <b><a href="/wiki/Inverse-square_law" title="Inverse-square law">inverse square law</a></b> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\ddot {r}} =-{\frac {\alpha }{r^{2}}}{\hat {\mathbf {r} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\ddot {r}} =-{\frac {\alpha }{r^{2}}}{\hat {\mathbf {r} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/247f161b058c667759cbae197da28b32adfe59e0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:10.345ex; height:5.009ex;" alt="{\displaystyle \mathbf {\ddot {r}} =-{\frac {\alpha }{r^{2}}}{\hat {\mathbf {r} }}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =n^{2}a^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =n^{2}a^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b239262f5f903fbeacf60fdd45729c9cb1f50dec" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.319ex; height:2.676ex;" alt="{\displaystyle \alpha =n^{2}a^{3}}"></span> is a constant, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {r} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {r} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9740464b71653e12932278ee944540be8caa5b96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.343ex;" alt="{\displaystyle {\hat {\mathbf {r} }}}"></span> is the unit vector pointing from the Sun towards the planet, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f08ce4d4c86c5b43f36c8435fb598da6471047c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.436ex; height:1.676ex;" alt="{\displaystyle r\,}"></span> is the distance between the planet and the Sun. </p><p>Since mean motion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n={\frac {2\pi }{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mi>T</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n={\frac {2\pi }{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb1f2ba873078a0023318363a65e3a94c7f082f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.824ex; height:5.176ex;" alt="{\displaystyle n={\frac {2\pi }{T}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is the period, according to Kepler's third law, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> has the same value for all the planets. So the inverse square law for planetary accelerations applies throughout the entire Solar System. </p><p>The inverse square law is a <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a>. The solutions to this differential equation include the Keplerian motions, as shown, but they also include motions where the orbit is a <a href="/wiki/Hyperbola" title="Hyperbola">hyperbola</a> or <a href="/wiki/Parabola" title="Parabola">parabola</a> or a <a href="/wiki/Straight_line" class="mw-redirect" title="Straight line">straight line</a>. (See <a href="/wiki/Kepler_orbit" title="Kepler orbit">Kepler orbit</a>.) </p> <div class="mw-heading mw-heading3"><h3 id="Newton's_law_of_gravitation"><span id="Newton.27s_law_of_gravitation"></span>Newton's law of gravitation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=14" title="Edit section: Newton&#039;s law of gravitation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By <a href="/wiki/Newton%27s_second_law" class="mw-redirect" title="Newton&#39;s second law">Newton's second law</a>, the gravitational force that acts on the planet is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =m_{\text{planet}}\mathbf {\ddot {r}} =-m_{\text{planet}}\alpha r^{-2}{\hat {\mathbf {r} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>planet</mtext> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>planet</mtext> </mrow> </msub> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =m_{\text{planet}}\mathbf {\ddot {r}} =-m_{\text{planet}}\alpha r^{-2}{\hat {\mathbf {r} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afa40986bc59da1b8306edc014d479fbc65ef056" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.555ex; height:3.343ex;" alt="{\displaystyle \mathbf {F} =m_{\text{planet}}\mathbf {\ddot {r}} =-m_{\text{planet}}\alpha r^{-2}{\hat {\mathbf {r} }}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\text{planet}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>planet</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\text{planet}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21aaf3675f3875cb22bd09957a7837d0c022dce8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.75ex; height:2.343ex;" alt="{\displaystyle m_{\text{planet}}}"></span> is the mass of the planet and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> has the same value for all planets in the Solar System. According to <a href="/wiki/Newton%27s_third_law" class="mw-redirect" title="Newton&#39;s third law">Newton's third law</a>, the Sun is attracted to the planet by a force of the same magnitude. Since the force is proportional to the mass of the planet, under the symmetric consideration, it should also be proportional to the mass of the Sun, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\text{Sun}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\text{Sun}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca7c27d0dfe7b32f4cb03160e633516a8b8d4fdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.015ex; height:2.009ex;" alt="{\displaystyle m_{\text{Sun}}}"></span>. So <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =Gm_{\text{Sun}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =Gm_{\text{Sun}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32a9da6ff69f639d9b94a2eb6d9893e16b1c0f41" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.427ex; height:2.509ex;" alt="{\displaystyle \alpha =Gm_{\text{Sun}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a>. </p><p>The acceleration of Solar System body number <i>i</i> is, according to Newton's laws: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\ddot {r}} _{i}=G\sum _{j\neq i}m_{j}r_{ij}^{-2}{\hat {\mathbf {r} }}_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>G</mi> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>i</mi> </mrow> </munder> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\ddot {r}} _{i}=G\sum _{j\neq i}m_{j}r_{ij}^{-2}{\hat {\mathbf {r} }}_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b2783d08dd9528e50a038f7536fd65d364a9ef8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:20.162ex; height:6.009ex;" alt="{\displaystyle \mathbf {\ddot {r}} _{i}=G\sum _{j\neq i}m_{j}r_{ij}^{-2}{\hat {\mathbf {r} }}_{ij}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14f2b12b1676ba2f42ad8d2c9ee6aa46e7667b73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.95ex; height:2.343ex;" alt="{\displaystyle m_{j}}"></span> is the mass of body <i>j</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/857845aef8b93395ad10279211c6c49180bb8791" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.526ex; height:2.343ex;" alt="{\displaystyle r_{ij}}"></span> is the distance between body <i>i</i> and body <i>j</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {r} }}_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {r} }}_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d0cfdd01826297abc901653334dbf2498d26677" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.64ex; height:3.009ex;" alt="{\displaystyle {\hat {\mathbf {r} }}_{ij}}"></span> is the unit vector from body <i>i</i> towards body <i>j</i>, and the vector summation is over all bodies in the Solar System, besides <i>i</i> itself. </p><p>In the special case where there are only two bodies in the Solar System, Earth and Sun, the acceleration becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\ddot {r}} _{\text{Earth}}=Gm_{\text{Sun}}r_{{\text{Earth}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Sun}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </msub> <mo>=</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\ddot {r}} _{\text{Earth}}=Gm_{\text{Sun}}r_{{\text{Earth}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Sun}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9c8d7da639233ba2a1de97b06353b99725f5efa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:33.001ex; height:3.676ex;" alt="{\displaystyle \mathbf {\ddot {r}} _{\text{Earth}}=Gm_{\text{Sun}}r_{{\text{Earth}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Sun}}}}"></span> which is the acceleration of the Kepler motion. So this Earth moves around the Sun according to Kepler's laws. </p><p>If the two bodies in the Solar System are Moon and Earth the acceleration of the Moon becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\ddot {r}} _{\text{Moon}}=Gm_{\text{Earth}}r_{{\text{Moon}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Earth}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> </msub> <mo>=</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\ddot {r}} _{\text{Moon}}=Gm_{\text{Earth}}r_{{\text{Moon}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Earth}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17ecd2069b8f084001610f5dd082cabc0d971989" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:36.97ex; height:3.676ex;" alt="{\displaystyle \mathbf {\ddot {r}} _{\text{Moon}}=Gm_{\text{Earth}}r_{{\text{Moon}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Earth}}}}"></span> </p><p>So in this approximation, the Moon moves around the Earth according to Kepler's laws. </p><p>In the three-body case the accelerations are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {\ddot {r}} _{\text{Sun}}&amp;=Gm_{\text{Earth}}r_{{\text{Sun}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Sun}},{\text{Earth}}}+Gm_{\text{Moon}}r_{{\text{Sun}},{\text{Moon}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Sun}},{\text{Moon}}}\\\mathbf {\ddot {r}} _{\text{Earth}}&amp;=Gm_{\text{Sun}}r_{{\text{Earth}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Sun}}}+Gm_{\text{Moon}}r_{{\text{Earth}},{\text{Moon}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Moon}}}\\\mathbf {\ddot {r}} _{\text{Moon}}&amp;=Gm_{\text{Sun}}r_{{\text{Moon}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Sun}}}+Gm_{\text{Earth}}r_{{\text{Moon}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Earth}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </mrow> </msub> <mo>+</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </mrow> </msub> <mo>+</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Sun</mtext> </mrow> </mrow> </msub> <mo>+</mo> <mi>G</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </msub> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Moon</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Earth</mtext> </mrow> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {\ddot {r}} _{\text{Sun}}&amp;=Gm_{\text{Earth}}r_{{\text{Sun}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Sun}},{\text{Earth}}}+Gm_{\text{Moon}}r_{{\text{Sun}},{\text{Moon}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Sun}},{\text{Moon}}}\\\mathbf {\ddot {r}} _{\text{Earth}}&amp;=Gm_{\text{Sun}}r_{{\text{Earth}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Sun}}}+Gm_{\text{Moon}}r_{{\text{Earth}},{\text{Moon}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Moon}}}\\\mathbf {\ddot {r}} _{\text{Moon}}&amp;=Gm_{\text{Sun}}r_{{\text{Moon}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Sun}}}+Gm_{\text{Earth}}r_{{\text{Moon}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Earth}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7be3e860ad101db04892b5da95ac4c661421ac2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.813ex; margin-bottom: -0.192ex; width:64.756ex; height:11.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {\ddot {r}} _{\text{Sun}}&amp;=Gm_{\text{Earth}}r_{{\text{Sun}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Sun}},{\text{Earth}}}+Gm_{\text{Moon}}r_{{\text{Sun}},{\text{Moon}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Sun}},{\text{Moon}}}\\\mathbf {\ddot {r}} _{\text{Earth}}&amp;=Gm_{\text{Sun}}r_{{\text{Earth}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Sun}}}+Gm_{\text{Moon}}r_{{\text{Earth}},{\text{Moon}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Earth}},{\text{Moon}}}\\\mathbf {\ddot {r}} _{\text{Moon}}&amp;=Gm_{\text{Sun}}r_{{\text{Moon}},{\text{Sun}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Sun}}}+Gm_{\text{Earth}}r_{{\text{Moon}},{\text{Earth}}}^{-2}{\hat {\mathbf {r} }}_{{\text{Moon}},{\text{Earth}}}\end{aligned}}}"></span> </p><p>These accelerations are not those of Kepler orbits, and the <a href="/wiki/Three-body_problem" title="Three-body problem">three-body problem</a> is complicated. But Keplerian approximation is the basis for <a href="/wiki/Perturbation_(astronomy)" title="Perturbation (astronomy)">perturbation</a> calculations. (See <a href="/wiki/Lunar_theory" title="Lunar theory">Lunar theory</a>.) </p> <div class="mw-heading mw-heading2"><h2 id="Position_as_a_function_of_time">Position as a function of time<span class="anchor" id="position_function_time"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=15" title="Edit section: Position as a function of time"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kepler used his two first laws to compute the position of a planet as a function of time. His method involves the solution of a <a href="/wiki/Transcendental_function" title="Transcendental function">transcendental equation</a> called <a href="/wiki/Kepler%27s_equation" title="Kepler&#39;s equation">Kepler's equation</a>. </p><p>The procedure for calculating the heliocentric polar coordinates (<i>r</i>,<i>θ</i>) of a planet as a function of the time <i>t</i> since <a href="/wiki/Perihelion" class="mw-redirect" title="Perihelion">perihelion</a>, is the following five steps: </p> <ol><li>Compute the <a href="/wiki/Mean_motion" title="Mean motion">mean motion</a> <span class="texhtml"><i>n</i> = (2<i>π</i> rad)/<i>P</i></span>, where <i>P</i> is the period.</li> <li>Compute the <a href="/wiki/Mean_anomaly" title="Mean anomaly">mean anomaly</a> <span class="texhtml"><i>M</i> = <i>nt</i></span>, where <i>t</i> is the time since perihelion.</li> <li>Compute the <a href="/wiki/Eccentric_anomaly" title="Eccentric anomaly">eccentric anomaly</a> <i>E</i> by solving Kepler's equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=E-\varepsilon \sin E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi>E</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=E-\varepsilon \sin E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ced95f5eb0c7574ecc6d24dd82e1edf9ed63cf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.292ex; height:2.509ex;" alt="{\displaystyle M=E-\varepsilon \sin E,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> is the eccentricity.</li> <li>Compute the <a href="/wiki/True_anomaly" title="True anomaly">true anomaly</a> <i>θ</i> by solving the equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-\varepsilon )\tan ^{2}{\frac {\theta }{2}}=(1+\varepsilon )\tan ^{2}{\frac {E}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-\varepsilon )\tan ^{2}{\frac {\theta }{2}}=(1+\varepsilon )\tan ^{2}{\frac {E}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ac9aa270f5c6c6e9fbdd57bd961792e1f926958" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.876ex; height:5.343ex;" alt="{\displaystyle (1-\varepsilon )\tan ^{2}{\frac {\theta }{2}}=(1+\varepsilon )\tan ^{2}{\frac {E}{2}}}"></span></li> <li>Compute the heliocentric distance <i>r</i>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a(1-\varepsilon \cos E),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a(1-\varepsilon \cos E),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c79483f83546f1bd10015ef9833438fb7d4b43cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.58ex; height:2.843ex;" alt="{\displaystyle r=a(1-\varepsilon \cos E),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is the semimajor axis.</li></ol> <p>The position polar coordinates (<i>r</i>,<i>θ</i>) can now be written as a Cartesian vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =r\left\langle \cos {\theta },\sin {\theta }\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi>r</mi> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>,</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mrow> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =r\left\langle \cos {\theta },\sin {\theta }\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb109df7f1525a979a5feefd95873f1fa3b4f659" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.785ex; height:2.843ex;" alt="{\displaystyle \mathbf {p} =r\left\langle \cos {\theta },\sin {\theta }\right\rangle }"></span> and the Cartesian velocity vector can then be calculated as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} ={\frac {\sqrt {\mu a}}{r}}\left\langle -\sin {E},{\sqrt {1-\varepsilon ^{2}}}\cos {E}\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>&#x03BC;<!-- μ --></mi> <mi>a</mi> </msqrt> <mi>r</mi> </mfrac> </mrow> <mrow> <mo>&#x27E8;</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </mrow> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} ={\frac {\sqrt {\mu a}}{r}}\left\langle -\sin {E},{\sqrt {1-\varepsilon ^{2}}}\cos {E}\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f95149470c51d8ccc73cf591372f711693b66e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.513ex; height:5.843ex;" alt="{\displaystyle \mathbf {v} ={\frac {\sqrt {\mu a}}{r}}\left\langle -\sin {E},{\sqrt {1-\varepsilon ^{2}}}\cos {E}\right\rangle }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is the <a href="/wiki/Standard_gravitational_parameter" title="Standard gravitational parameter">standard gravitational parameter</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p><p>The important special case of circular orbit, <i>ε</i>&#160;=&#160;0, gives <span class="nowrap"><i>θ</i> = <i>E</i> = <i>M</i></span>. Because the uniform circular motion was considered to be <i>normal</i>, a deviation from this motion was considered an anomaly. </p><p>The proof of this procedure is shown below. </p> <div class="mw-heading mw-heading3"><h3 id="Mean_anomaly,_M"><span id="Mean_anomaly.2C_M"></span>Mean anomaly, <i>M</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=16" title="Edit section: Mean anomaly, M"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mean_anomaly" title="Mean anomaly">Mean anomaly</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mean_Anomaly.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Mean_Anomaly.svg/170px-Mean_Anomaly.svg.png" decoding="async" width="170" height="149" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Mean_Anomaly.svg/255px-Mean_Anomaly.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Mean_Anomaly.svg/340px-Mean_Anomaly.svg.png 2x" data-file-width="522" data-file-height="456" /></a><figcaption>Geometric construction for Kepler's calculation of θ. The Sun (located at the focus) is labeled <i>S</i> and the planet <i>P</i>. The auxiliary circle is an aid to calculation. Line <i>xd</i> is perpendicular to the base and through the planet <i>P</i>. The shaded sectors are arranged to have equal areas by positioning of point <i>y</i>.</figcaption></figure> <p>The Keplerian problem assumes an <a href="/wiki/Elliptic_orbit" title="Elliptic orbit">elliptical orbit</a> and the four points: </p> <ul><li><i>s</i> the Sun (at one focus of ellipse);</li> <li><i>z</i> the <a href="/wiki/Perihelion_and_aphelion" class="mw-redirect" title="Perihelion and aphelion">perihelion</a></li> <li><i>c</i> the center of the ellipse</li> <li><i>p</i> the planet</li></ul> <p>and </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=|cz|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>c</mi> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=|cz|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/165d22ca8371f9fcc491873f98ba7a6155c3076e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.364ex; height:2.843ex;" alt="{\displaystyle a=|cz|,}"></span> distance between center and perihelion, the semimajor axis,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon ={|cs| \over a},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>c</mi> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon ={|cs| \over a},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5046e55eb737fc431a876835b8b35a4d09097d10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.056ex; height:5.676ex;" alt="{\displaystyle \varepsilon ={|cs| \over a},}"></span> the eccentricity,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=a{\sqrt {1-\varepsilon ^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=a{\sqrt {1-\varepsilon ^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9df111881f490ebcee2d0fc57a463781b8f5b29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.437ex; height:3.509ex;" alt="{\displaystyle b=a{\sqrt {1-\varepsilon ^{2}}},}"></span> the semiminor axis,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=|sp|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=|sp|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2742e799b8923008d730d1daff828385127019bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.348ex; height:2.843ex;" alt="{\displaystyle r=|sp|,}"></span> the distance between Sun and planet.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta =\angle zsp,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>z</mi> <mi>s</mi> <mi>p</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta =\angle zsp,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19bc771d4ca28fcb421347052477bceb2e9fdf5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.862ex; height:2.509ex;" alt="{\displaystyle \theta =\angle zsp,}"></span> the direction to the planet as seen from the Sun, the <a href="/wiki/True_anomaly" title="True anomaly">true anomaly</a>.</li></ul> <p>The problem is to compute the <a href="/wiki/Polar_coordinates" class="mw-redirect" title="Polar coordinates">polar coordinates</a> (<i>r</i>,<i>θ</i>) of the planet from the time since perihelion,&#160;<i>t</i>. </p><p>It is solved in steps. Kepler considered the circle with the major axis as a diameter, and </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> the projection of the planet to the auxiliary circle</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99bd9829c9ef4adcb0f9f5d53b27463a873a8e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.802ex; height:2.009ex;" alt="{\displaystyle y,}"></span> the point on the circle such that the sector areas |<i>zcy</i>| and |<i>zsx</i>| are equal,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=\angle zcy,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>z</mi> <mi>c</mi> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=\angle zcy,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f6c3806a941993003b88ddabac258d64bd1a41d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.116ex; height:2.509ex;" alt="{\displaystyle M=\angle zcy,}"></span> the <a href="/wiki/Mean_anomaly" title="Mean anomaly">mean anomaly</a>.</li></ul> <p>The sector areas are related by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |zsp|={\frac {b}{a}}\cdot |zsx|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>s</mi> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>s</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |zsp|={\frac {b}{a}}\cdot |zsx|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1be769ab29ec51de1db4884f07c1fcbb176090c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.934ex; height:5.343ex;" alt="{\displaystyle |zsp|={\frac {b}{a}}\cdot |zsx|.}"></span> </p><p>The <a href="/wiki/Circular_sector" title="Circular sector">circular sector</a> area <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |zcy|={\frac {a^{2}M}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>c</mi> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |zcy|={\frac {a^{2}M}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa7c9b9555627aee6910d877508a39c86c8c4905" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.852ex; height:5.676ex;" alt="{\displaystyle |zcy|={\frac {a^{2}M}{2}}.}"></span> </p><p>The area swept since perihelion, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |zsp|={\frac {b}{a}}\cdot |zsx|={\frac {b}{a}}\cdot |zcy|={\frac {b}{a}}\cdot {\frac {a^{2}M}{2}}={\frac {abM}{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>s</mi> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>s</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>c</mi> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>b</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |zsp|={\frac {b}{a}}\cdot |zsx|={\frac {b}{a}}\cdot |zcy|={\frac {b}{a}}\cdot {\frac {a^{2}M}{2}}={\frac {abM}{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/839fd2dde7d5ed33e354a1d550bbd901601eeebb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:49.332ex; height:5.676ex;" alt="{\displaystyle |zsp|={\frac {b}{a}}\cdot |zsx|={\frac {b}{a}}\cdot |zcy|={\frac {b}{a}}\cdot {\frac {a^{2}M}{2}}={\frac {abM}{2}},}"></span> is by Kepler's second law proportional to time since perihelion. So the mean anomaly, <i>M</i>, is proportional to time since perihelion, <i>t</i>. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=nt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi>n</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=nt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/696afb693e04639aa34ac6787c9afabcac7182f4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.422ex; height:2.509ex;" alt="{\displaystyle M=nt,}"></span> where <i>n</i> is the <a href="/wiki/Mean_motion" title="Mean motion">mean motion</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Eccentric_anomaly,_E"><span id="Eccentric_anomaly.2C_E"></span>Eccentric anomaly, <i>E</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=17" title="Edit section: Eccentric anomaly, E"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When the mean anomaly <i>M</i> is computed, the goal is to compute the true anomaly <i>θ</i>. The function <i>θ</i>&#160;=&#160;<i>f</i>(<i>M</i>) is, however, not elementary.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> Kepler's solution is to use <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\angle zcx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>z</mi> <mi>c</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\angle zcx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b41b1524ffab7a08ace401d32956b5e99ba9b623" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.624ex; height:2.509ex;" alt="{\displaystyle E=\angle zcx,}"></span> <i>x</i> as seen from the centre, the <a href="/wiki/Eccentric_anomaly" title="Eccentric anomaly">eccentric anomaly</a> as an intermediate variable, and first compute <i>E</i> as a function of <i>M</i> by solving Kepler's equation below, and then compute the true anomaly <i>θ</i> from the eccentric anomaly <i>E</i>. Here are the details. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}|zcy|&amp;=|zsx|=|zcx|-|scx|\\with|scx|&amp;={\frac {|cs|.|dx|}{2}}\\{\frac {a^{2}M}{2}}&amp;={\frac {a^{2}E}{2}}-{\frac {a\varepsilon \cdot a\sin E}{2}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>c</mi> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>s</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>w</mi> <mi>i</mi> <mi>t</mi> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mi>c</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>c</mi> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>E</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>&#x03B5;<!-- ε --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}|zcy|&amp;=|zsx|=|zcx|-|scx|\\with|scx|&amp;={\frac {|cs|.|dx|}{2}}\\{\frac {a^{2}M}{2}}&amp;={\frac {a^{2}E}{2}}-{\frac {a\varepsilon \cdot a\sin E}{2}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39543f1abc30bb55e917150d3c14316163e170f6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:33.396ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}|zcy|&amp;=|zsx|=|zcx|-|scx|\\with|scx|&amp;={\frac {|cs|.|dx|}{2}}\\{\frac {a^{2}M}{2}}&amp;={\frac {a^{2}E}{2}}-{\frac {a\varepsilon \cdot a\sin E}{2}}\end{aligned}}}"></span> </p><p>Division by <i>a</i><sup>2</sup>/2 gives <a href="/wiki/Kepler%27s_equation" title="Kepler&#39;s equation">Kepler's equation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=E-\varepsilon \sin E.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi>E</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=E-\varepsilon \sin E.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c979fb07c9d8c2e8d4ea8abbe15da0d6f450186" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.292ex; height:2.343ex;" alt="{\displaystyle M=E-\varepsilon \sin E.}"></span> </p><p>This equation gives <i>M</i> as a function of <i>E</i>. Determining <i>E</i> for a given <i>M</i> is the inverse problem. Iterative numerical algorithms are commonly used. </p><p>Having computed the eccentric anomaly <i>E</i>, the next step is to calculate the true anomaly&#160;<i>θ</i>. </p><p>But note: Cartesian position coordinates with reference to the center of ellipse are (<i>a</i>&#160;cos&#160;<i>E</i>,&#160;<i>b</i>&#160;sin&#160;<i>E</i>) </p><p>With reference to the Sun (with coordinates (<i>c</i>,0) = (<i>ae</i>,0) ), <i>r</i> = (<i>a</i>&#160;cos&#160;<i>E</i> – <i>ae</i>, <i>b</i>&#160;sin&#160;<i>E</i>) </p><p>True anomaly would be arctan(<i>r</i><sub><i>y</i>/<i>r</i></sub><i>x</i>), magnitude of <i>r</i> would be <span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;"><i>r</i>&#160;·&#160;<i>r</i></span></span>. </p> <div class="mw-heading mw-heading3"><h3 id="True_anomaly,_θ"><span id="True_anomaly.2C_.CE.B8"></span>True anomaly, <i>θ</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=18" title="Edit section: True anomaly, θ"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Note from the figure that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |cd|=|cs|+|sd|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>c</mi> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>c</mi> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |cd|=|cs|+|sd|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3d49f80c18c0c85f63cd2fa0b22d019b3283986" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.446ex; height:2.843ex;" alt="{\displaystyle |cd|=|cs|+|sd|}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cos E=a\varepsilon +r\cos \theta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> <mo>=</mo> <mi>a</mi> <mi>&#x03B5;<!-- ε --></mi> <mo>+</mo> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cos E=a\varepsilon +r\cos \theta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bba1000d403215b8a30323809708ca96fa2e5add" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:21.814ex; height:2.343ex;" alt="{\displaystyle a\cos E=a\varepsilon +r\cos \theta .}"></span> </p><p>Dividing by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and inserting from Kepler's first law <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {r}{a}}={\frac {1-\varepsilon ^{2}}{1+\varepsilon \cos \theta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mi>a</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {r}{a}}={\frac {1-\varepsilon ^{2}}{1+\varepsilon \cos \theta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fe518b097c1aedceda978da9c64d37166ad3f4d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:16.063ex; height:6.009ex;" alt="{\displaystyle {\frac {r}{a}}={\frac {1-\varepsilon ^{2}}{1+\varepsilon \cos \theta }}}"></span> to get <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos E=\varepsilon +{\frac {1-\varepsilon ^{2}}{1+\varepsilon \cos \theta }}\cos \theta ={\frac {\varepsilon (1+\varepsilon \cos \theta )+\left(1-\varepsilon ^{2}\right)\cos \theta }{1+\varepsilon \cos \theta }}={\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> <mo>=</mo> <mi>&#x03B5;<!-- ε --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B5;<!-- ε --></mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos E=\varepsilon +{\frac {1-\varepsilon ^{2}}{1+\varepsilon \cos \theta }}\cos \theta ={\frac {\varepsilon (1+\varepsilon \cos \theta )+\left(1-\varepsilon ^{2}\right)\cos \theta }{1+\varepsilon \cos \theta }}={\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76e164d5c60960f59d4bf3f73ea8755da44ee420" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:75.79ex; height:6.343ex;" alt="{\displaystyle \cos E=\varepsilon +{\frac {1-\varepsilon ^{2}}{1+\varepsilon \cos \theta }}\cos \theta ={\frac {\varepsilon (1+\varepsilon \cos \theta )+\left(1-\varepsilon ^{2}\right)\cos \theta }{1+\varepsilon \cos \theta }}={\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}.}"></span> </p><p>The result is a usable relationship between the eccentric anomaly <i>E</i> and the true anomaly&#160;<i>θ</i>. </p><p>A computationally more convenient form follows by substituting into the <a href="/wiki/Trigonometric_identity" class="mw-redirect" title="Trigonometric identity">trigonometric identity</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan ^{2}{\frac {x}{2}}={\frac {1-\cos x}{1+\cos x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan ^{2}{\frac {x}{2}}={\frac {1-\cos x}{1+\cos x}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/668111e97729b38c75416e7380d22eeb0918e23d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.379ex; height:5.343ex;" alt="{\displaystyle \tan ^{2}{\frac {x}{2}}={\frac {1-\cos x}{1+\cos x}}.}"></span> </p><p>Get <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\tan ^{2}{\frac {E}{2}}&amp;={\frac {1-\cos E}{1+\cos E}}={\frac {1-{\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}}{1+{\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}}}\\[8pt]&amp;={\frac {(1+\varepsilon \cos \theta )-(\varepsilon +\cos \theta )}{(1+\varepsilon \cos \theta )+(\varepsilon +\cos \theta )}}={\frac {1-\varepsilon }{1+\varepsilon }}\cdot {\frac {1-\cos \theta }{1+\cos \theta }}={\frac {1-\varepsilon }{1+\varepsilon }}\tan ^{2}{\frac {\theta }{2}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="1.1em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B5;<!-- ε --></mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B5;<!-- ε --></mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </mfrac> </mrow> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\tan ^{2}{\frac {E}{2}}&amp;={\frac {1-\cos E}{1+\cos E}}={\frac {1-{\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}}{1+{\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}}}\\[8pt]&amp;={\frac {(1+\varepsilon \cos \theta )-(\varepsilon +\cos \theta )}{(1+\varepsilon \cos \theta )+(\varepsilon +\cos \theta )}}={\frac {1-\varepsilon }{1+\varepsilon }}\cdot {\frac {1-\cos \theta }{1+\cos \theta }}={\frac {1-\varepsilon }{1+\varepsilon }}\tan ^{2}{\frac {\theta }{2}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bc0a064e24ecffca17176902230ccd78625ad9a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.771ex; margin-bottom: -0.234ex; width:74.115ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}\tan ^{2}{\frac {E}{2}}&amp;={\frac {1-\cos E}{1+\cos E}}={\frac {1-{\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}}{1+{\frac {\varepsilon +\cos \theta }{1+\varepsilon \cos \theta }}}}\\[8pt]&amp;={\frac {(1+\varepsilon \cos \theta )-(\varepsilon +\cos \theta )}{(1+\varepsilon \cos \theta )+(\varepsilon +\cos \theta )}}={\frac {1-\varepsilon }{1+\varepsilon }}\cdot {\frac {1-\cos \theta }{1+\cos \theta }}={\frac {1-\varepsilon }{1+\varepsilon }}\tan ^{2}{\frac {\theta }{2}}.\end{aligned}}}"></span> </p><p>Multiplying by 1&#160;+&#160;<i>ε</i> gives the result <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-\varepsilon )\tan ^{2}{\frac {\theta }{2}}=(1+\varepsilon )\tan ^{2}{\frac {E}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-\varepsilon )\tan ^{2}{\frac {\theta }{2}}=(1+\varepsilon )\tan ^{2}{\frac {E}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ac9aa270f5c6c6e9fbdd57bd961792e1f926958" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.876ex; height:5.343ex;" alt="{\displaystyle (1-\varepsilon )\tan ^{2}{\frac {\theta }{2}}=(1+\varepsilon )\tan ^{2}{\frac {E}{2}}}"></span> </p><p>This is the third step in the connection between time and position in the orbit. </p> <div class="mw-heading mw-heading3"><h3 id="Distance,_r"><span id="Distance.2C_r"></span>Distance, <i>r</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=19" title="Edit section: Distance, r"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The fourth step is to compute the heliocentric distance <i>r</i> from the true anomaly <i>θ</i> by Kepler's first law: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(1+\varepsilon \cos \theta )=a\left(1-\varepsilon ^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r(1+\varepsilon \cos \theta )=a\left(1-\varepsilon ^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fb13a67d8e7729d9259ab41c623b50b1fb70c12" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.906ex; height:3.343ex;" alt="{\displaystyle r(1+\varepsilon \cos \theta )=a\left(1-\varepsilon ^{2}\right)}"></span> </p><p>Using the relation above between <i>θ</i> and <i>E</i> the final equation for the distance <i>r</i> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a(1-\varepsilon \cos E).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a(1-\varepsilon \cos E).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a6528ededaf968bdd753c2060f721861190d670" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.58ex; height:2.843ex;" alt="{\displaystyle r=a(1-\varepsilon \cos E).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=20" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Circular_motion" title="Circular motion">Circular motion</a></li> <li><a href="/wiki/Free-fall_time" title="Free-fall time">Free-fall time</a></li> <li><a href="/wiki/Gravity" title="Gravity">Gravity</a></li> <li><a href="/wiki/Kepler_orbit" title="Kepler orbit">Kepler orbit</a></li> <li><a href="/wiki/Kepler_problem" title="Kepler problem">Kepler problem</a></li> <li><a href="/wiki/Kepler%27s_equation" title="Kepler&#39;s equation">Kepler's equation</a></li> <li><a href="/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector" title="Laplace–Runge–Lenz vector">Laplace–Runge–Lenz vector</a></li> <li><a href="/wiki/Specific_relative_angular_momentum" class="mw-redirect" title="Specific relative angular momentum">Specific relative angular momentum</a>, relatively easy derivation of Kepler's laws starting with conservation of angular momentum</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Explanatory_notes">Explanatory notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=21" title="Edit section: Explanatory notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">In 1621, Johannes Kepler noted that Jupiter's moons obey (approximately) his third law in his <i><a href="/wiki/Epitome_Astronomiae_Copernicanae" title="Epitome Astronomiae Copernicanae">Epitome Astronomiae Copernicanae</a></i> [Epitome of Copernican Astronomy] (Linz ("Lentiis ad Danubium"), (Austria): Johann Planck, 1622), book 4, part 2, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wa2SE_6ZL7YC&amp;pg=PA554">pages 554–555</a>. From pp. 554–555: <i>" ... plane ut est cum sex planet circa Solem, ... prodit Marius in suo mundo Ioviali ista 3.5.8.13 (vel 14. Galilæo) ... Periodica vero tempora prodit idem Marius ... sunt maiora simplis, minora vero duplis."</i> (... just as it is clearly [true] among the six planets around the Sun, so also it is among the four [moons] of Jupiter, because around the body of Jupiter any [satellite] that can go farther from it, orbits slower, and even that [orbit's period] is not in the same proportion, but greater [than the distance from Jupiter]; that is, 3/2 (<i>sescupla</i>) of the proportion of each of the distances from Jupiter, which is clearly the very [proportion] as is used for the six planets above. In his [book] <i>The World of Jupiter</i> [<i>Mundus Jovialis</i>, 1614], [Simon Mayr or] "Marius" [1573–1624] presents these distances, from Jupiter, of the four [moons] of Jupiter: 3, 5, 8, 13 (or 14 [according to] Galileo) [Note: The distances of Jupiter's moons from Jupiter are expressed as multiples of Jupiter's diameter.] ... Mayr presents their time periods: 1 day 18 1/2 hours, 3 days 13 1/3 hours, 7 days 2 hours, 16 days 18 hours: for all [of these data] the proportion is greater than double, thus greater than [the proportion] of the distances 3, 5, 8, 13 or 14, although less than [the proportion] of the squares, which double the proportions of the distances, namely 9, 25, 64, 169 or 196, just as [a power of] 3/2 is also greater than 1 but less than 2.)</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Godefroy Wendelin wrote a letter to Giovanni Battista Riccioli about the relationship between the distances of the Jovian moons from Jupiter and the periods of their orbits, showing that the periods and distances conformed to Kepler's third law. See: Joanne Baptista Riccioli, <i>Almagestum novum</i> ... (Bologna (Bononia), (Italy): Victor Benati, 1651), volume 1, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_mJDAAAAcAAJ&amp;pg=PA492">page 492 Scholia III.</a> In the margin beside the relevant paragraph is printed: <i>Vendelini ingeniosa speculatio circa motus &amp; intervalla satellitum Jovis</i>. (Wendelin's clever speculation about the movement and distances of Jupiter's satellites.) From p. 492: <i>"III. Non minus Kepleriana ingeniosa est Vendelini ... &amp; D. 7. 164/1000. pro penextimo, &amp; D. 16. 756/1000. pro extimo."</i> (No less clever [than] Kepler's is the most keen astronomer Wendelin's investigation of the proportion of the periods and distances of Jupiter's satellites, which he had communicated to me with great generosity [in] a very long and very learned letter. So, just as in [the case of] the larger planets, the planets' mean distances from the Sun are respectively in the 3/2 ratio of their periods; so the distances of these minor planets of Jupiter from Jupiter (which are 3, 5, 8, and 14) are respectively in the 3/2 ratio of [their] periods (which are 1.769 days for the innermost [Io], 3.554 days for the next to the innermost [Europa], 7.164 days for the next to the outermost [Ganymede], and 16.756 days for the outermost [Callisto]).)</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=22" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-:0-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html">"Kepler's Laws"</a>. <i>hyperphysics.phy-astr.gsu.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=hyperphysics.phy-astr.gsu.edu&amp;rft.atitle=Kepler%27s+Laws&amp;rft_id=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2Fkepler.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-:1-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://solarsystem.nasa.gov/resources/310/orbits-and-keplers-laws">"Orbits and Kepler's Laws"</a>. <i>NASA Solar System Exploration</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=NASA+Solar+System+Exploration&amp;rft.atitle=Orbits+and+Kepler%27s+Laws&amp;rft_id=https%3A%2F%2Fsolarsystem.nasa.gov%2Fresources%2F310%2Forbits-and-keplers-laws&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://earthobservatory.nasa.gov/features/OrbitsHistory">"Planetary Motion: The History of an Idea That Launched the Scientific Revolution"</a>. <i>earthobservatory.nasa.gov</i>. 2009-07-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=earthobservatory.nasa.gov&amp;rft.atitle=Planetary+Motion%3A+The+History+of+an+Idea+That+Launched+the+Scientific+Revolution&amp;rft.date=2009-07-07&amp;rft_id=https%3A%2F%2Fearthobservatory.nasa.gov%2Ffeatures%2FOrbitsHistory&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.history.com/topics/inventions/nicolaus-copernicus">"Nicolaus Copernicus"</a>. <i>history.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=history.com&amp;rft.atitle=Nicolaus+Copernicus&amp;rft_id=https%3A%2F%2Fwww.history.com%2Ftopics%2Finventions%2Fnicolaus-copernicus&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-Gingerich-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gingerich_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gingerich_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGingerich2011" class="citation journal cs1">Gingerich, Owen (2011). <a rel="nofollow" class="external text" href="https://pubs.aip.org/physicstoday/article-pdf/64/9/50/9881314/50_1_online.pdf">"The great Martian catastrophe and how Kepler fixed it"</a> <span class="cs1-format">(PDF)</span>. <i>Physics Today</i>. <b>64</b> (9): 50–54. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PhT....64i..50G">2011PhT....64i..50G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2FPT.3.1259">10.1063/PT.3.1259</a><span class="reference-accessdate">. Retrieved <span class="nowrap">27 July</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Today&amp;rft.atitle=The+great+Martian+catastrophe+and+how+Kepler+fixed+it&amp;rft.volume=64&amp;rft.issue=9&amp;rft.pages=50-54&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1063%2FPT.3.1259&amp;rft_id=info%3Abibcode%2F2011PhT....64i..50G&amp;rft.aulast=Gingerich&amp;rft.aufirst=Owen&amp;rft_id=https%3A%2F%2Fpubs.aip.org%2Fphysicstoday%2Farticle-pdf%2F64%2F9%2F50%2F9881314%2F50_1_online.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Voltaire, <i>Eléments de la philosophie de Newton</i> [Elements of Newton's Philosophy] (London: 1738). See, for example: <ul><li><a rel="nofollow" class="external text" href="https://books.google.com/books?id=t3UiO3NFQigC&amp;pg=PA162">From p. 162:</a> <i>"Par une des grandes loix de Kepler, toute Planete décrit des aires égales en temp égaux&#160;: par une autre loi non-moins sûre, chaque Planete fait sa révolution autour du Soleil en telle sort, que si, sa moyenne distance au Soleil est 10. prenez le cube de ce nombre, ce qui sera 1000., &amp; le tems de la révolution de cette Planete autour du Soleil sera proportionné à la racine quarrée de ce nombre 1000."</i> (By one of the great laws of Kepler, each planet describes equal areas in equal times; by another law no less certain, each planet makes its revolution around the sun in such a way that if its mean distance from the sun is 10, take the cube of that number, which will be 1000, and the time of the revolution of that planet around the sun will be proportional to the square root of that number 1000.)</li> <li><a rel="nofollow" class="external text" href="https://books.google.com/books?id=t3UiO3NFQigC&amp;pg=PA205">From p. 205:</a> <i>"Il est donc prouvé par la loi de Kepler &amp; par celle de Neuton, que chaque Planete gravite vers le Soleil, ..."</i> (It is thus proved by the law of Kepler and by that of Newton, that each planet revolves around the sun ...)</li></ul> </span></li> <li id="cite_note-Wilson_1994-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wilson_1994_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wilson_1994_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilson1994" class="citation journal cs1">Wilson, Curtis (May 1994). <a rel="nofollow" class="external text" href="https://had.aas.org/sites/had.aas.org/files/HADN31.pdf">"Kepler's Laws, So-Called"</a> <span class="cs1-format">(PDF)</span>. <i>HAD News</i> (31): 1–2<span class="reference-accessdate">. Retrieved <span class="nowrap">December 27,</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=HAD+News&amp;rft.atitle=Kepler%27s+Laws%2C+So-Called&amp;rft.issue=31&amp;rft.pages=1-2&amp;rft.date=1994-05&amp;rft.aulast=Wilson&amp;rft.aufirst=Curtis&amp;rft_id=https%3A%2F%2Fhad.aas.org%2Fsites%2Fhad.aas.org%2Ffiles%2FHADN31.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">De la Lande, <i>Astronomie</i>, vol. 1 (Paris: Desaint &amp; Saillant, 1764). See, for example: <ul><li><a rel="nofollow" class="external text" href="https://books.google.com/books?hl=en&amp;id=Sg8OAAAAQAAJ&amp;pg=PA390">From p. 390:</a> <i>"... mais suivant la fameuse loi de Kepler, qui sera expliquée dans le Livre suivant (892), le rapport des temps périodiques est toujours plus grand que celui des distances, une planete cinq fois plus éloignée du soleil, emploie à faire sa révolution douze fois plus de temps ou environ; ..."</i> (... but according to the famous law of Kepler, which will be explained in the following book [i.e., chapter] (para. 892), the ratio of the periods is always greater than that of the distances [so that, for example,] a planet five times farther from the sun, requires about twelve times or so more time to make its revolution [around the sun] ...)</li> <li><a rel="nofollow" class="external text" href="https://books.google.com/books?hl=en&amp;id=Sg8OAAAAQAAJ&amp;pg=PA429">From p. 429:</a> <i>"Les Quarrés des Temps périodiques sont comme les Cubes des Distances. 892. La plus fameuse loi du mouvement des planetes découverte par Kepler, est celle du repport qu'il y a entre les grandeurs de leurs orbites, &amp; le temps qu'elles emploient à les parcourir; ..."</i> (The squares of the periods are as the cubes of the distances. 892. The most famous law of the movement of the planets discovered by Kepler is that of the relation between the sizes of their orbits and the times that the [planets] require to traverse them; ...)</li> <li><a rel="nofollow" class="external text" href="https://books.google.com/books?hl=en&amp;id=Sg8OAAAAQAAJ&amp;pg=PA430">From p. 430:</a> <i>"Les Aires sont proportionnelles au Temps. 895. Cette loi générale du mouvement des planetes devenue si importante dans l'Astronomie, sçavior, que les aires sont proportionnelles au temps, est encore une des découvertes de Kepler; ..."</i> (Areas are proportional to times. 895. This general law of the movement of the planets [which has] become so important in astronomy, namely, that areas are proportional to times, is one of Kepler's discoveries; ...)</li> <li><a rel="nofollow" class="external text" href="https://books.google.com/books?hl=en&amp;id=Sg8OAAAAQAAJ&amp;pg=PA435">From p. 435:</a> <i>"On a appellé cette loi des aires proportionnelles aux temps, Loi de Kepler, aussi bien que celle de l'article 892, du nome de ce célebre Inventeur; ..."</i> (One called this law of areas proportional to times (the law of Kepler) as well as that of para. 892, by the name of that celebrated inventor; ... )</li></ul> </span></li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Robert Small, <i>An account of the astronomical discoveries of Kepler</i> (London: J Mawman, 1804), <a rel="nofollow" class="external text" href="https://archive.org/details/accountofastrono00unse/page/298">pp. 298–299.</a></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Robert Small, <a rel="nofollow" class="external text" href="https://archive.org/details/accountofastrono00unse">An account of the astronomical discoveries of Kepler</a> (London: J. Mawman, 1804).</span> </li> <li id="cite_note-Stephenson1994-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stephenson1994_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBruce_Stephenson1994" class="citation book cs1">Bruce Stephenson (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pxCYAeOqJg8C&amp;pg=PA170"><i>Kepler's Physical Astronomy</i></a>. Princeton University Press. p.&#160;170. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-03652-6" title="Special:BookSources/978-0-691-03652-6"><bdi>978-0-691-03652-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kepler%27s+Physical+Astronomy&amp;rft.pages=170&amp;rft.pub=Princeton+University+Press&amp;rft.date=1994&amp;rft.isbn=978-0-691-03652-6&amp;rft.au=Bruce+Stephenson&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpxCYAeOqJg8C%26pg%3DPA170&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Astronomia nova Aitiologitis, seu Physica Coelestis tradita Commentariis de Motibus stellae Martis ex observationibus G.V. Tychnonis.Prague 1609; Engl. tr. W.H. Donahue, Cambridge 1992.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">In his <i>Astronomia nova</i>, Kepler presented only a proof that Mars' orbit is elliptical. Evidence that the other known planets' orbits are elliptical was presented only in 1621.<br /> See: Johannes Kepler, <i>Astronomia nova</i> ... (1609), <a rel="nofollow" class="external text" href="https://archive.org/stream/Astronomianovaa00Kepl#page/284/mode/2up">p. 285.</a> After having rejected circular and oval orbits, Kepler concluded that Mars' orbit must be elliptical. From the top of page 285: <i>"Ergo ellipsis est Planetæ iter; ... "</i> (Thus, an ellipse is the planet's [i.e., Mars'] path; ... ) Later on the same page: <i>" ... ut sequenti capite patescet: ubi simul etiam demonstrabitur, nullam Planetæ relinqui figuram Orbitæ, præterquam perfecte ellipticam; ... "</i> ( ... as will be revealed in the next chapter: where it will also then be proved that any figure of the planet's orbit must be relinquished, except a perfect ellipse; ... ) And then: <i>"Caput LIX. Demonstratio, quod orbita Martis, ... , fiat perfecta ellipsis: ... "</i> (Chapter 59. Proof that Mars' orbit, ... is a perfect ellipse: ... ) The geometric proof that Mars' orbit is an ellipse appears as Protheorema XI on pages 289–290.<br /> Kepler stated that every planet travels in elliptical orbits having the Sun at one focus in: Johannes Kepler, <i>Epitome Astronomiae Copernicanae</i> [Summary of Copernican Astronomy] (Linz ("Lentiis ad Danubium"), (Austria): Johann Planck, 1622), book 5, part 1, III. De Figura Orbitæ (III. On the figure [i.e., shape] of orbits), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wa2SE_6ZL7YC&amp;pg=PA658">pages 658–665.</a> From p. 658: <i>"Ellipsin fieri orbitam planetæ ... "</i> (Of an ellipse is made a planet's orbit ... ). From p. 659: <i>" ... Sole (Foco altero huius ellipsis) ... "</i> ( ... the Sun (the other focus of this ellipse) ... ).</span> </li> <li id="cite_note-Holton-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Holton_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Holton_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolton,_Gerald_JamesBrush,_Stephen_G.2001" class="citation book cs1">Holton, Gerald James; Brush, Stephen G. (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=czaGZzR0XOUC&amp;pg=PA40"><i>Physics, the Human Adventure: From Copernicus to Einstein and Beyond</i></a> (3rd paperback&#160;ed.). Piscataway, NJ: Rutgers University Press. pp.&#160;40–41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8135-2908-0" title="Special:BookSources/978-0-8135-2908-0"><bdi>978-0-8135-2908-0</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">December 27,</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physics%2C+the+Human+Adventure%3A+From+Copernicus+to+Einstein+and+Beyond&amp;rft.place=Piscataway%2C+NJ&amp;rft.pages=40-41&amp;rft.edition=3rd+paperback&amp;rft.pub=Rutgers+University+Press&amp;rft.date=2001&amp;rft.isbn=978-0-8135-2908-0&amp;rft.au=Holton%2C+Gerald+James&amp;rft.au=Brush%2C+Stephen+G.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DczaGZzR0XOUC%26pg%3DPA40&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">In his <i>Astronomia nova</i> ... (1609), Kepler did not present his second law in its modern form. He did that only in his <i>Epitome</i> of 1621. Furthermore, in 1609, he presented his second law in two different forms, which scholars call the "distance law" and the "area law". <ul><li>His "distance law" is presented in: <i>"Caput XXXII. Virtutem quam Planetam movet in circulum attenuari cum discessu a fonte."</i> (Chapter 32. The force that moves a planet circularly weakens with distance from the source.) See: Johannes Kepler, <i>Astronomia nova</i> ... (1609), <a rel="nofollow" class="external text" href="https://archive.org/stream/Astronomianovaa00Kepl#page/164/mode/2up">pp. 165–167.</a> <a rel="nofollow" class="external text" href="https://archive.org/stream/Astronomianovaa00Kepl#page/166/mode/2up">On page 167</a>, Kepler states: <i>" ... , quanto longior est αδ quam αε, tanto diutius moratur Planeta in certo aliquo arcui excentrici apud δ, quam in æquali arcu excentrici apud ε."</i> ( ... , as αδ is longer than αε, so much longer will a planet remain on a certain arc of the eccentric near δ than on an equal arc of the eccentric near ε.) That is, the farther a planet is from the Sun (at the point α), the slower it moves along its orbit, so a radius from the Sun to a planet passes through equal areas in equal times. However, as Kepler presented it, his argument is accurate only for circles, not ellipses.</li> <li>His "area law" is presented in: <i>"Caput LIX. Demonstratio, quod orbita Martis, ... , fiat perfecta ellipsis: ... "</i> (Chapter 59. Proof that Mars' orbit, ... , is a perfect ellipse: ... ), Protheorema XIV and XV, <a rel="nofollow" class="external text" href="https://archive.org/stream/Astronomianovaa00Kepl#page/284/mode/2up">pp. 291–295.</a> On the top p. 294, it reads: <i>"Arcum ellipseos, cujus moras metitur area AKN, debere terminari in LK, ut sit AM."</i> (The arc of the ellipse, of which the duration is delimited [i.e., measured] by the area AKM, should be terminated in LK, so that it [i.e., the arc] is AM.) In other words, the time that Mars requires to move along an arc AM of its elliptical orbit is measured by the area of the segment AMN of the ellipse (where N is the position of the Sun), which in turn is proportional to the section AKN of the circle that encircles the ellipse and that is tangent to it. Therefore, the area that is swept out by a radius from the Sun to Mars as Mars moves along an arc of its elliptical orbit is proportional to the time that Mars requires to move along that arc. Thus, a radius from the Sun to Mars sweeps out equal areas in equal times.</li></ul> In 1621, Kepler restated his second law for any planet: Johannes Kepler, <i>Epitome Astronomiae Copernicanae</i> [Summary of Copernican Astronomy] (Linz ("Lentiis ad Danubium"), (Austria): Johann Planck, 1622), book 5, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wa2SE_6ZL7YC&amp;pg=PA668">page 668</a>. From page 668: <i>"Dictum quidem est in superioribus, divisa orbita in particulas minutissimas æquales: accrescete iis moras planetæ per eas, in proportione intervallorum inter eas &amp; Solem."</i> (It has been said above that, if the orbit of the planet is divided into the smallest equal parts, the times of the planet in them increase in the ratio of the distances between them and the sun.) That is, a planet's speed along its orbit is inversely proportional to its distance from the Sun. (The remainder of the paragraph makes clear that Kepler was referring to what is now called angular velocity.)</span> </li> <li id="cite_note-Kepler_1619-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kepler_1619_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kepler_1619_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Johannes Kepler, <i>Harmonices Mundi</i> [The Harmony of the World] (Linz, (Austria): Johann Planck, 1619), book 5, chapter 3, <a rel="nofollow" class="external text" href="https://archive.org/details/ioanniskepplerih00kepl/page/189">p. 189.</a> From the bottom of p. 189: <i>"Sed res est certissima exactissimaque quod </i>proportio qua est inter binorum quorumcunque Planetarum tempora periodica, sit præcise sesquialtera proportionis<i> mediarum distantiarum, ... "</i> (But it is absolutely certain and exact that the <i>proportion between the periodic times of any two planets is precisely the sesquialternate proportion</i> [i.e., the ratio of 3:2] of their mean distances, ... ")<br /> An English translation of Kepler's <i>Harmonices Mundi</i> is available as: Johannes Kepler with E. J. Aiton, A. M. Duncan, and <a href="/wiki/Judith_V._Field" title="Judith V. Field">J. V. Field</a>, trans., <i>The Harmony of the World</i> (Philadelphia, Pennsylvania: American Philosophical Society, 1997); see especially <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rEkLAAAAIAAJ&amp;pg=PA411">p. 411</a>.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNational_Earth_Science_Teachers_Association2008" class="citation web cs1">National Earth Science Teachers Association (9 October 2008). <a rel="nofollow" class="external text" href="https://www.windows2universe.org/?page=/our_solar_system/planets_table.html">"Data Table for Planets and Dwarf Planets"</a>. <i>Windows to the Universe</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Windows+to+the+Universe&amp;rft.atitle=Data+Table+for+Planets+and+Dwarf+Planets&amp;rft.date=2008-10-09&amp;rft.au=National+Earth+Science+Teachers+Association&amp;rft_id=https%3A%2F%2Fwww.windows2universe.org%2F%3Fpage%3D%2Four_solar_system%2Fplanets_table.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMercator1664" class="citation book cs1 cs1-prop-foreign-lang-source">Mercator, Nicolaus (1664). <i>Nicolai Mercatoris Hypothesis astronomica nova, et consensus eius cum observationibus</i> &#91;<i>Nicolaus Mercator's new astronomical hypothesis, and its agreement with observations</i>&#93; (in Latin). London, England: Leybourn.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nicolai+Mercatoris+Hypothesis+astronomica+nova%2C+et+consensus+eius+cum+observationibus&amp;rft.place=London%2C+England&amp;rft.pub=Leybourn&amp;rft.date=1664&amp;rft.aulast=Mercator&amp;rft.aufirst=Nicolaus&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMercator1670" class="citation journal cs1 cs1-prop-foreign-lang-source">Mercator, Nic. (25 March 1670). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1670.0018">"Some considerations of Mr. Nic. Mercator, concerning the geometrick and direct method of signior Cassini for finding the apogees, excentricities, and anomalies of the planets; ..."</a></span>. <i>Philosophical Transactions of the Royal Society of London</i> (in Latin). <b>5</b> (57): 1168–1175. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstl.1670.0018">10.1098/rstl.1670.0018</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+of+London&amp;rft.atitle=Some+considerations+of+Mr.+Nic.+Mercator%2C+concerning+the+geometrick+and+direct+method+of+signior+Cassini+for+finding+the+apogees%2C+excentricities%2C+and+anomalies+of+the+planets%3B+...&amp;rft.volume=5&amp;rft.issue=57&amp;rft.pages=1168-1175&amp;rft.date=1670-03-25&amp;rft_id=info%3Adoi%2F10.1098%2Frstl.1670.0018&amp;rft.aulast=Mercator&amp;rft.aufirst=Nic.&amp;rft_id=https%3A%2F%2Froyalsocietypublishing.org%2Fdoi%2Fpdf%2F10.1098%2Frstl.1670.0018&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span> Mercator criticized Cassini's method of finding, from three observations, an orbit's line of apsides. Cassini had assumed (wrongly) that planets move uniformly along their elliptical orbits. From p. 1174: <i>"Sed cum id Observationibus nequaquam congruere animadverteret, mutavit sententiam, &amp; lineam veri motus Planetæ æqualibus temporibus æquales areas Ellipticas verrere professus est: ... "</i> (But when he noticed that it didn't agree at all with observations, he changed his thinking, and he declared that a line [from the Sun to a planet, denoting] a planet's true motion, sweeps out equal areas of an ellipse in equal periods of time: ... [which is the "area" form of Kepler's second law])</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilbur_Applebaum2000" class="citation book cs1">Wilbur Applebaum (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=k43Q9RHuGXgC&amp;pg=PT603"><i>Encyclopedia of the Scientific Revolution: From Copernicus to Newton</i></a>. Routledge. p.&#160;603. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000esrc.book.....A">2000esrc.book.....A</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-135-58255-5" title="Special:BookSources/978-1-135-58255-5"><bdi>978-1-135-58255-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Encyclopedia+of+the+Scientific+Revolution%3A+From+Copernicus+to+Newton&amp;rft.pages=603&amp;rft.pub=Routledge&amp;rft.date=2000&amp;rft_id=info%3Abibcode%2F2000esrc.book.....A&amp;rft.isbn=978-1-135-58255-5&amp;rft.au=Wilbur+Applebaum&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dk43Q9RHuGXgC%26pg%3DPT603&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoy_Porter1992" class="citation book cs1"><a href="/wiki/Roy_Porter" title="Roy Porter">Roy Porter</a> (1992). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/isbn_0521396999"><i>The Scientific Revolution in National Context</i></a></span>. Cambridge University Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/isbn_0521396999/page/102">102</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-39699-8" title="Special:BookSources/978-0-521-39699-8"><bdi>978-0-521-39699-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Scientific+Revolution+in+National+Context&amp;rft.pages=102&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1992&amp;rft.isbn=978-0-521-39699-8&amp;rft.au=Roy+Porter&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fisbn_0521396999&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVictor_GuilleminShlomo_Sternberg2006" class="citation book cs1">Victor Guillemin; Shlomo Sternberg (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3NXFth0gDQgC&amp;pg=PR5"><i>Variations on a Theme by Kepler</i></a>. American Mathematical Soc. p.&#160;5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-4184-6" title="Special:BookSources/978-0-8218-4184-6"><bdi>978-0-8218-4184-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Variations+on+a+Theme+by+Kepler&amp;rft.pages=5&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2006&amp;rft.isbn=978-0-8218-4184-6&amp;rft.au=Victor+Guillemin&amp;rft.au=Shlomo+Sternberg&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3NXFth0gDQgC%26pg%3DPR5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-Wolfram2nd-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wolfram2nd_25-0">^</a></b></span> <span class="reference-text">Bryant, Jeff; Pavlyk, Oleksandr. "<a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/KeplersSecondLaw/">Kepler's Second Law</a>", <i><a href="/wiki/Wolfram_Demonstrations_Project" title="Wolfram Demonstrations Project">Wolfram Demonstrations Project</a></i>. Retrieved December 27, 2009.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoltonBrush2001" class="citation book cs1">Holton, Gerald; Brush, Stephen (2001). <i>Brush and Holton - Physics: the Human Adventure</i>. Princeton University Press. pp.&#160;42–43. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0813529080" title="Special:BookSources/978-0813529080"><bdi>978-0813529080</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brush+and+Holton+-+Physics%3A+the+Human+Adventure&amp;rft.pages=42-43&amp;rft.pub=Princeton+University+Press&amp;rft.date=2001&amp;rft.isbn=978-0813529080&amp;rft.aulast=Holton&amp;rft.aufirst=Gerald&amp;rft.au=Brush%2C+Stephen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="/wiki/Edwin_Arthur_Burtt" title="Edwin Arthur Burtt">Burtt, Edwin</a>. <i>The Metaphysical Foundations of Modern Physical Science</i>. p. 52.</span> </li> <li id="cite_note-Holton3-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Holton3_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGerald_James_Holton,_Stephen_G._Brush2001" class="citation book cs1">Gerald James Holton, Stephen G. Brush (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=czaGZzR0XOUC&amp;pg=PA45"><i>Physics, the Human Adventure</i></a>. Rutgers University Press. p.&#160;45. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8135-2908-0" title="Special:BookSources/978-0-8135-2908-0"><bdi>978-0-8135-2908-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physics%2C+the+Human+Adventure&amp;rft.pages=45&amp;rft.pub=Rutgers+University+Press&amp;rft.date=2001&amp;rft.isbn=978-0-8135-2908-0&amp;rft.au=Gerald+James+Holton%2C+Stephen+G.+Brush&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DczaGZzR0XOUC%26pg%3DPA45&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVijaya2019" class="citation journal cs1">Vijaya, G. K. (2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395789">"Original form of Kepler's Third Law and its misapplication in Propositions XXXII-XXXVII in Newton's Principia (Book I)"</a>. <i>Heliyon</i>. <b>5</b> (2): e01274. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Heliy...501274V">2019Heliy...501274V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.heliyon.2019.e01274">10.1016/j.heliyon.2019.e01274</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395789">6395789</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30886926">30886926</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Heliyon&amp;rft.atitle=Original+form+of+Kepler%27s+Third+Law+and+its+misapplication+in+Propositions+XXXII-XXXVII+in+Newton%27s+Principia+%28Book+I%29&amp;rft.volume=5&amp;rft.issue=2&amp;rft.pages=e01274&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6395789%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F30886926&amp;rft_id=info%3Adoi%2F10.1016%2Fj.heliyon.2019.e01274&amp;rft_id=info%3Abibcode%2F2019Heliy...501274V&amp;rft.aulast=Vijaya&amp;rft.aufirst=G.+K.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6395789&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaspar1993" class="citation book cs1">Caspar, Max (1993). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/kepler00casp"><i>Kepler</i></a></span>. New York: Dover. p.&#160;304. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780486676050" title="Special:BookSources/9780486676050"><bdi>9780486676050</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kepler&amp;rft.place=New+York&amp;rft.pages=304&amp;rft.pub=Dover&amp;rft.date=1993&amp;rft.isbn=9780486676050&amp;rft.aulast=Caspar&amp;rft.aufirst=Max&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fkepler00casp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaspar1993" class="citation book cs1">Caspar, Max (1993). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/kepler00casp"><i>Kepler</i></a></span>. New York: Dover. p.&#160;286. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780486676050" title="Special:BookSources/9780486676050"><bdi>9780486676050</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kepler&amp;rft.place=New+York&amp;rft.pages=286&amp;rft.pub=Dover&amp;rft.date=1993&amp;rft.isbn=9780486676050&amp;rft.aulast=Caspar&amp;rft.aufirst=Max&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fkepler00casp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">I. Newton, <i>Principia</i>, p. 408 in the translation of I.B. Cohen and A. Whitman</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">I. Newton, <i>Principia</i>, p. 943 in the translation of I.B. Cohen and A. Whitman</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwarz" class="citation web cs1">Schwarz, René. <a rel="nofollow" class="external text" href="https://downloads.rene-schwarz.com/download/M001-Keplerian_Orbit_Elements_to_Cartesian_State_Vectors.pdf">"Memorandum № 1: Keplerian Orbit Elements → Cartesian State Vectors"</a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">. Retrieved <span class="nowrap">4 May</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Memorandum+%E2%84%96+1%3A+Keplerian+Orbit+Elements+%E2%86%92+Cartesian+State+Vectors&amp;rft.aulast=Schwarz&amp;rft.aufirst=Ren%C3%A9&amp;rft_id=https%3A%2F%2Fdownloads.rene-schwarz.com%2Fdownload%2FM001-Keplerian_Orbit_Elements_to_Cartesian_State_Vectors.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüller1995" class="citation web cs1">Müller, M (1995). <a rel="nofollow" class="external text" href="http://info.ifpan.edu.pl/firststep/aw-works/fsII/mul/mueller.html">"Equation of Time – Problem in Astronomy"</a>. Acta Physica Polonica A<span class="reference-accessdate">. Retrieved <span class="nowrap">23 February</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Equation+of+Time+%E2%80%93+Problem+in+Astronomy&amp;rft.pub=Acta+Physica+Polonica+A&amp;rft.date=1995&amp;rft.aulast=M%C3%BCller&amp;rft.aufirst=M&amp;rft_id=http%3A%2F%2Finfo.ifpan.edu.pl%2Ffirststep%2Faw-works%2FfsII%2Fmul%2Fmueller.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="General_bibliography">General bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=23" title="Edit section: General bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Kepler's life is summarized on pp.&#160;523–627 and Book Five of his <i>magnum opus</i>, <i><a href="/wiki/Harmonice_Mundi" class="mw-redirect" title="Harmonice Mundi">Harmonice Mundi</a></i> (<i>harmonies of the world</i>), is reprinted on: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHawking2002" class="citation book cs1"><a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking, Stephen</a>, ed. (2002). <a href="/wiki/On_the_Shoulders_of_Giants_(book)" title="On the Shoulders of Giants (book)"><i>On the shoulders of giants: the great works of physics and astronomy</i></a>. Philadelphia: <a href="/wiki/Running_Press" title="Running Press">Running Press</a>. pp.&#160;635–732. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7624-1348-5" title="Special:BookSources/978-0-7624-1348-5"><bdi>978-0-7624-1348-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=On+the+shoulders+of+giants%3A+the+great+works+of+physics+and+astronomy&amp;rft.place=Philadelphia&amp;rft.pages=635-732&amp;rft.pub=Running+Press&amp;rft.date=2002&amp;rft.isbn=978-0-7624-1348-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></li> <li>A derivation of Kepler's third law of planetary motion is a standard topic in engineering mechanics classes. See, for example: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeriam1971" class="citation book cs1">Meriam, J. L. (1971) [1966]. <a rel="nofollow" class="external text" href="https://archive.org/details/dynamics00meri"><i>Dynamics</i></a> (2nd&#160;ed.). New York: <a href="/wiki/Wiley_(publisher)" title="Wiley (publisher)">Wiley</a>. pp.&#160;161–164. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-59601-1" title="Special:BookSources/978-0-471-59601-1"><bdi>978-0-471-59601-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dynamics&amp;rft.place=New+York&amp;rft.pages=161-164&amp;rft.edition=2nd&amp;rft.pub=Wiley&amp;rft.date=1971&amp;rft.isbn=978-0-471-59601-1&amp;rft.aulast=Meriam&amp;rft.aufirst=J.+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdynamics00meri&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurrayDermott1999" class="citation book cs1"><a href="/wiki/Carl_D._Murray" title="Carl D. Murray">Murray, Carl D.</a>; <a href="/wiki/Stanley_Dermott" title="Stanley Dermott">Dermott, S. F.</a> (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NY9iQgAACAAJ"><i>Solar system dynamics</i></a>. Cambridge&#160;; New York: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-57295-8" title="Special:BookSources/978-0-521-57295-8"><bdi>978-0-521-57295-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Solar+system+dynamics&amp;rft.place=Cambridge+%3B+New+York&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1999&amp;rft.isbn=978-0-521-57295-8&amp;rft.aulast=Murray&amp;rft.aufirst=Carl+D.&amp;rft.au=Dermott%2C+S.+F.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNY9iQgAACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArnolʹd1997" class="citation book cs1"><a href="/wiki/Vladimir_Arnold" title="Vladimir Arnold">Arnolʹd, V. I.</a> (1997). "Chapter 2: Investigation of the Equations of Motion". <a href="/wiki/Mathematical_Methods_of_Classical_Mechanics" title="Mathematical Methods of Classical Mechanics"><i>Mathematical methods of classical mechanics</i></a>. Graduate texts in mathematics (2nd&#160;ed.). New York: <a href="/wiki/Springer_Publishing" title="Springer Publishing">Springer Publishing</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-96890-2" title="Special:BookSources/978-0-387-96890-2"><bdi>978-0-387-96890-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+2%3A+Investigation+of+the+Equations+of+Motion&amp;rft.btitle=Mathematical+methods+of+classical+mechanics&amp;rft.place=New+York&amp;rft.series=Graduate+texts+in+mathematics&amp;rft.edition=2nd&amp;rft.pub=Springer+Publishing&amp;rft.date=1997&amp;rft.isbn=978-0-387-96890-2&amp;rft.aulast=Arnol%CA%B9d&amp;rft.aufirst=V.+I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKepler%27s+laws+of+planetary+motion" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;action=edit&amp;section=24" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Kepler_motions" class="extiw" title="commons:Category:Kepler motions">Kepler motions</a></span>.</div></div> </div> <ul><li>B.Surendranath Reddy; animation of Kepler's laws: <a rel="nofollow" class="external text" href="http://www.surendranath.org/Applets/Dynamics/Kepler/Kepler1.html">applet</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131006041128/http://www.surendranath.org/Applets/Dynamics/Kepler/Kepler1.html">Archived</a> 2013-10-06 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li>Crowell, Benjamin, <i><a rel="nofollow" class="external text" href="http://www.lightandmatter.com/lm">Light and Matter</a></i>, an <a href="/wiki/On-line_book" class="mw-redirect" title="On-line book">online book</a> that gives a proof of the first law without the use of calculus (see section 15.7)</li> <li>David McNamara and Gianfranco Vidali, "<a rel="nofollow" class="external text" href="https://web.archive.org/web/20060910225253/http://www.phy.syr.edu/courses/java/mc_html/kepler.html">Kepler's Second Law – Java Interactive Tutorial</a>", an interactive Java applet that aids in the understanding of Kepler's Second Law.</li> <li>Cain, Gay (May 10, 2010), <i>Astronomy Cast</i>, "<a rel="nofollow" class="external text" href="http://www.astronomycast.com/history/ep-189-johannes-kepler-and-his-laws-of-planetary-motion/">Ep. 189: Johannes Kepler and His Laws of Planetary Motion</a>"</li> <li>University of Tennessee's Dept. Physics &amp; Astronomy: Astronomy 161, "<a rel="nofollow" class="external text" href="http://csep10.phys.utk.edu/astr161/lect/history/kepler.html">Johannes Kepler: The Laws of Planetary Motion</a>"</li> <li>Solar System Simulator (<a rel="nofollow" class="external text" href="http://physinf.com/NPM/NPM.html">Interactive Applet</a>) <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181213115626/https://www.physinf.com/NPM/NPM.html">Archived</a> 2018-12-13 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li>"<a rel="nofollow" class="external text" href="http://www.phy6.org/stargaze/Skeplaws.htm">Kepler and His Laws</a>" in <i>From Stargazers to Starships</i> by David P. Stern (10 October 2016)</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=dG9J0o7AwVs"><span class="plainlinks">"Kepler's Three Laws of Planetary Motion"</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a> by Jens Puhle (Dec 27, 2023) – a video explaining and visualizing Kepler's three laws of planetary motion</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Gravitational_orbits" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Orbits" title="Template:Orbits"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Orbits" title="Template talk:Orbits"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Orbits" title="Special:EditPage/Template:Orbits"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Gravitational_orbits" style="font-size:114%;margin:0 4em">Gravitational <a href="/wiki/Orbit" title="Orbit">orbits</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_orbits" title="List of orbits">Types</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Box_orbit" title="Box orbit">Box</a></li> <li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Capture</a></li> <li><a href="/wiki/Circular_orbit" title="Circular orbit">Circular</a></li> <li><a href="/wiki/Elliptic_orbit" title="Elliptic orbit">Elliptical</a> / <a href="/wiki/Highly_elliptical_orbit" title="Highly elliptical orbit">Highly elliptical</a></li> <li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Escape</a></li> <li><a href="/wiki/Horseshoe_orbit" title="Horseshoe orbit">Horseshoe</a></li> <li><a href="/wiki/Hyperbolic_trajectory" title="Hyperbolic trajectory">Hyperbolic trajectory</a></li> <li><a href="/wiki/Inclined_orbit" title="Inclined orbit">Inclined</a> / <a href="/wiki/Non-inclined_orbit" class="mw-redirect" title="Non-inclined orbit">Non-inclined</a></li> <li><a href="/wiki/Kepler_orbit" title="Kepler orbit">Kepler</a></li> <li><a href="/wiki/Lagrange_point" title="Lagrange point">Lagrange point</a></li> <li><a href="/wiki/Osculating_orbit" title="Osculating orbit">Osculating</a></li> <li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Parabolic trajectory</a></li> <li><a href="/wiki/Parking_orbit" title="Parking orbit">Parking</a></li> <li><a href="/wiki/Retrograde_and_prograde_motion" title="Retrograde and prograde motion">Prograde / Retrograde</a></li> <li><a href="/wiki/Synchronous_orbit" title="Synchronous orbit">Synchronous</a> <ul><li><a href="/wiki/Semi-synchronous_orbit" title="Semi-synchronous orbit">semi</a></li> <li><a href="/wiki/Subsynchronous_orbit" title="Subsynchronous orbit">sub</a></li></ul></li> <li><a href="/wiki/Hohmann_transfer_orbit" title="Hohmann transfer orbit">Transfer orbit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em"><a href="/wiki/Geocentric_orbit" title="Geocentric orbit">Geocentric</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Geosynchronous_orbit" title="Geosynchronous orbit">Geosynchronous</a> <ul><li><a href="/wiki/Geostationary_orbit" title="Geostationary orbit">Geostationary</a></li> <li><a href="/wiki/Geostationary_transfer_orbit" title="Geostationary transfer orbit">Geostationary transfer</a></li></ul></li> <li><a href="/wiki/Graveyard_orbit" title="Graveyard orbit">Graveyard</a></li> <li><a href="/wiki/High_Earth_orbit" title="High Earth orbit">High Earth</a></li> <li><a href="/wiki/Low_Earth_orbit" title="Low Earth orbit">Low Earth</a></li> <li><a href="/wiki/Medium_Earth_orbit" title="Medium Earth orbit">Medium Earth</a></li> <li><a href="/wiki/Molniya_orbit" title="Molniya orbit">Molniya</a></li> <li><a href="/wiki/Near-equatorial_orbit" title="Near-equatorial orbit">Near-equatorial</a></li> <li><a href="/wiki/Orbit_of_the_Moon" title="Orbit of the Moon">Orbit of the Moon</a></li> <li><a href="/wiki/Polar_orbit" title="Polar orbit">Polar</a></li> <li><a href="/wiki/Sun-synchronous_orbit" title="Sun-synchronous orbit">Sun-synchronous</a></li> <li><a href="/wiki/Transatmospheric_orbit" title="Transatmospheric orbit">Transatmospheric</a></li> <li><a href="/wiki/Tundra_orbit" title="Tundra orbit">Tundra</a></li> <li><a href="/wiki/Very_low_Earth_orbit" title="Very low Earth orbit">Very low Earth</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em">About<br />other points</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li>Mars <ul><li><a href="/wiki/Areocentric_orbit" title="Areocentric orbit">Areocentric</a></li> <li><a href="/wiki/Areosynchronous_orbit" title="Areosynchronous orbit">Areosynchronous</a></li> <li><a href="/wiki/Areostationary_orbit" title="Areostationary orbit">Areostationary</a></li></ul></li> <li>Lagrange points <ul><li><a href="/wiki/Distant_retrograde_orbit" title="Distant retrograde orbit">Distant retrograde</a></li> <li><a href="/wiki/Halo_orbit" title="Halo orbit">Halo</a></li> <li><a href="/wiki/Lissajous_orbit" title="Lissajous orbit">Lissajous</a></li> <li><a href="/wiki/Libration_point_orbit" title="Libration point orbit">Libration</a></li></ul></li> <li><a href="/wiki/Lunar_orbit" title="Lunar orbit">Lunar</a></li> <li>Sun <ul><li><a href="/wiki/Heliocentric_orbit" title="Heliocentric orbit">Heliocentric</a> <ul><li><a href="/wiki/Earth%27s_orbit" title="Earth&#39;s orbit">Earth's orbit</a></li></ul></li> <li><a href="/wiki/Mars_cycler" title="Mars cycler">Mars cycler</a></li> <li><a href="/wiki/Sun-synchronous_orbit" title="Sun-synchronous orbit">Heliosynchronous</a></li></ul></li> <li>Other <ul><li><a href="/wiki/Lunar_cycler" title="Lunar cycler">Lunar cycler</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Orbital_elements" title="Orbital elements">Parameters</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em"><div class="hlist"><ul><li>Shape</li><li>Size</li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><span class="texhtml mvar" style="font-style:italic;">e</span>&#160;&#160;<a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">Eccentricity</a></li> <li><span class="texhtml mvar" style="font-style:italic;">a</span>&#160;&#160;<a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">Semi-major axis</a></li> <li><span class="texhtml mvar" style="font-style:italic;">b</span>&#160;&#160;<a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">Semi-minor axis</a></li> <li><span class="texhtml mvar" style="font-style:italic;">Q</span>,&#160;<span class="texhtml mvar" style="font-style:italic;">q</span>&#160;&#160;<a href="/wiki/Apsis" title="Apsis">Apsides</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em">Orientation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><span class="texhtml mvar" style="font-style:italic;">i</span>&#160;&#160;<a href="/wiki/Orbital_inclination" title="Orbital inclination">Inclination</a></li> <li><span class="texhtml mvar" style="font-style:italic;">Ω</span>&#160;&#160;<a href="/wiki/Longitude_of_the_ascending_node" title="Longitude of the ascending node">Longitude of the ascending node</a></li> <li><span class="texhtml mvar" style="font-style:italic;">ω</span>&#160;&#160;<a href="/wiki/Argument_of_periapsis" title="Argument of periapsis">Argument of periapsis</a></li> <li><span class="texhtml mvar" style="font-style:italic;">ϖ</span>&#160;&#160;<a href="/wiki/Longitude_of_the_periapsis" class="mw-redirect" title="Longitude of the periapsis">Longitude of the periapsis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em">Position</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><span class="texhtml mvar" style="font-style:italic;">M</span>&#160;&#160;<a href="/wiki/Mean_anomaly" title="Mean anomaly">Mean anomaly</a></li> <li><span class="texhtml mvar" style="font-style:italic;">ν</span>, <span class="texhtml mvar" style="font-style:italic;">θ</span>, <span class="texhtml mvar" style="font-style:italic;">f</span>&#160;&#160;<a href="/wiki/True_anomaly" title="True anomaly">True anomaly</a></li> <li><span class="texhtml mvar" style="font-style:italic;">E</span>&#160;&#160;<a href="/wiki/Eccentric_anomaly" title="Eccentric anomaly">Eccentric anomaly</a></li> <li><span class="texhtml mvar" style="font-style:italic;">L</span>&#160;&#160;<a href="/wiki/Mean_longitude" title="Mean longitude">Mean longitude</a></li> <li><span class="texhtml mvar" style="font-style:italic;">l</span>&#160;&#160;<a href="/wiki/True_longitude" title="True longitude">True longitude</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em">Variation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><span class="texhtml mvar" style="font-style:italic;">T</span>&#160;&#160;<a href="/wiki/Orbital_period" title="Orbital period">Orbital period</a></li> <li><span class="texhtml mvar" style="font-style:italic;">n</span>&#160;&#160;<a href="/wiki/Mean_motion" title="Mean motion">Mean motion</a></li> <li><span class="texhtml mvar" style="font-style:italic;">v</span>&#160;&#160;<a href="/wiki/Orbital_speed" title="Orbital speed">Orbital speed</a></li> <li><span class="texhtml"><i>t</i><sub>0</sub></span>&#160;&#160;<a href="/wiki/Epoch_(astronomy)" title="Epoch (astronomy)">Epoch</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Orbital_maneuver" title="Orbital maneuver">Maneuvers</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bi-elliptic_transfer" title="Bi-elliptic transfer">Bi-elliptic transfer</a></li> <li><a href="/wiki/Collision_avoidance_(spacecraft)" title="Collision avoidance (spacecraft)">Collision avoidance (spacecraft)</a></li> <li><a href="/wiki/Delta-v" title="Delta-v">Delta-v</a></li> <li><a href="/wiki/Delta-v_budget" title="Delta-v budget">Delta-v budget</a></li> <li><a href="/wiki/Gravity_assist" title="Gravity assist">Gravity assist</a></li> <li><a href="/wiki/Gravity_turn" title="Gravity turn">Gravity turn</a></li> <li><a href="/wiki/Hohmann_transfer_orbit" title="Hohmann transfer orbit">Hohmann transfer</a></li> <li><a href="/wiki/Orbital_inclination_change" title="Orbital inclination change">Inclination change</a></li> <li><a href="/wiki/Low-energy_transfer" title="Low-energy transfer">Low-energy transfer</a></li> <li><a href="/wiki/Oberth_effect" title="Oberth effect">Oberth effect</a></li> <li><a href="/wiki/Orbit_phasing" title="Orbit phasing">Phasing</a></li> <li><a href="/wiki/Tsiolkovsky_rocket_equation" title="Tsiolkovsky rocket equation">Rocket equation</a></li> <li><a href="/wiki/Space_rendezvous" title="Space rendezvous">Rendezvous</a></li> <li><a href="/wiki/Trans-lunar_injection" title="Trans-lunar injection">Trans-lunar injection</a></li> <li><a href="/wiki/Transposition,_docking,_and_extraction" title="Transposition, docking, and extraction">Transposition, docking, and extraction</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Orbital_mechanics" title="Orbital mechanics">Orbital<br />mechanics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Astronomical_coordinate_systems" title="Astronomical coordinate systems">Astronomical coordinate systems</a></li> <li><a href="/wiki/Characteristic_energy" title="Characteristic energy">Characteristic energy</a></li> <li><a href="/wiki/Escape_velocity" title="Escape velocity">Escape velocity</a></li> <li><a href="/wiki/Ephemeris" title="Ephemeris">Ephemeris</a></li> <li><a href="/wiki/Equatorial_coordinate_system" title="Equatorial coordinate system">Equatorial coordinate system</a></li> <li><a href="/wiki/Ground_track" class="mw-redirect" title="Ground track">Ground track</a></li> <li><a href="/wiki/Hill_sphere" title="Hill sphere">Hill sphere</a></li> <li><a href="/wiki/Interplanetary_Transport_Network" title="Interplanetary Transport Network">Interplanetary Transport Network</a></li> <li><a class="mw-selflink selflink">Kepler's laws of planetary motion</a></li> <li><a href="/wiki/Kozai_mechanism" title="Kozai mechanism">Kozai mechanism</a></li> <li><a href="/wiki/Lagrange_point" title="Lagrange point">Lagrangian point</a></li> <li><a href="/wiki/N-body_problem" title="N-body problem"><i>n</i>-body problem</a></li> <li><a href="/wiki/Orbit_equation" title="Orbit equation">Orbit equation</a></li> <li><a href="/wiki/Orbital_state_vectors" title="Orbital state vectors">Orbital state vectors</a></li> <li><a href="/wiki/Perturbation_(astronomy)" title="Perturbation (astronomy)">Perturbation</a></li> <li><a href="/wiki/Retrograde_and_prograde_motion" title="Retrograde and prograde motion">Retrograde and prograde motion</a></li> <li><a href="/wiki/Specific_orbital_energy" title="Specific orbital energy">Specific orbital energy</a></li> <li><a href="/wiki/Specific_angular_momentum" title="Specific angular momentum">Specific angular momentum</a></li> <li><a href="/wiki/Two-line_element_set" title="Two-line element set">Two-line elements</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_orbits" title="List of orbits">List of orbits</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Johannes_Kepler" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Johannes_Kepler" title="Template:Johannes Kepler"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Johannes_Kepler" title="Template talk:Johannes Kepler"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Johannes_Kepler" title="Special:EditPage/Template:Johannes Kepler"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Johannes_Kepler" style="font-size:114%;margin:0 4em"><a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Johannes Kepler</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scientific career</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kepler_conjecture" title="Kepler conjecture">Kepler conjecture</a></li> <li><a class="mw-selflink selflink">Kepler's laws of planetary motion</a></li> <li><a href="/wiki/Kepler_orbit" title="Kepler orbit">Kepler orbit</a></li> <li><a href="/wiki/Kepler_triangle" title="Kepler triangle">Kepler triangle</a></li> <li><a href="/wiki/Kepler%27s_equation" title="Kepler&#39;s equation">Kepler's equation</a></li> <li><a href="/wiki/Kepler%E2%80%93Poinsot_polyhedron#History" title="Kepler–Poinsot polyhedron">Kepler polyhedra</a></li> <li><a href="/wiki/Kepler%27s_Supernova" title="Kepler&#39;s Supernova">Kepler's Supernova</a></li> <li><a href="/wiki/Refracting_telescope#Keplerian_telescope" title="Refracting telescope">Keplerian telescope</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Works</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Mysterium_Cosmographicum" title="Mysterium Cosmographicum">Mysterium Cosmographicum</a></i> (1596)</li> <li><i><a href="/wiki/De_Stella_Nova" title="De Stella Nova">De Stella Nova</a></i> (1606)</li> <li><i><a href="/wiki/Astronomia_nova" title="Astronomia nova">Astronomia nova</a></i> (1609)</li> <li><i><a href="/wiki/Epitome_Astronomiae_Copernicanae" title="Epitome Astronomiae Copernicanae">Epitome Astronomiae Copernicanae</a></i> (1618, 1620-21)</li> <li><i><a href="/wiki/Harmonices_Mundi" title="Harmonices Mundi">Harmonices Mundi</a></i> (1619)</li> <li><i><a href="/wiki/Rudolphine_Tables" title="Rudolphine Tables">Rudolphine Tables</a></i> (1627)</li> <li><i><a href="/wiki/Somnium_(novel)" title="Somnium (novel)">Somnium</a></i> (1634)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Die_Harmonie_der_Welt" title="Die Harmonie der Welt">Die Harmonie der Welt</a></i> (opera)</li> <li><a href="/wiki/Katharina_Kepler" title="Katharina Kepler">Katharina Kepler</a> (mother)</li> <li><a href="/wiki/Jakob_Bartsch" title="Jakob Bartsch">Jakob Bartsch</a> (son-in-law)</li> <li><i><a href="/wiki/Kepler_(opera)" title="Kepler (opera)">Kepler</a></i> (opera)</li> <li><a href="/wiki/Kepler_space_telescope" title="Kepler space telescope">Kepler space telescope</a></li> <li><a href="/wiki/Johannes_Kepler_ATV" title="Johannes Kepler ATV"><i>Johannes Kepler</i> ATV</a></li> <li><i><a href="/wiki/Astronomers_Monument" title="Astronomers Monument">Astronomers Monument</a></i></li> <li><a href="/wiki/List_of_things_named_after_Johannes_Kepler" title="List of things named after Johannes Kepler">List of namesakes</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1184024115"></div><div role="navigation" class="navbox" aria-labelledby="Sir_Isaac_Newton" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Isaac_Newton" title="Template:Isaac Newton"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Isaac_Newton" title="Template talk:Isaac Newton"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Isaac_Newton" title="Special:EditPage/Template:Isaac Newton"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Sir_Isaac_Newton" style="font-size:114%;margin:0 4em"><a href="/wiki/Isaac_Newton" title="Isaac Newton">Sir Isaac Newton</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Publications</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Method_of_Fluxions" title="Method of Fluxions">Fluxions</a></i>&#160;(1671)</li> <li><i><a href="/wiki/De_motu_corporum_in_gyrum" title="De motu corporum in gyrum">De Motu</a></i>&#160;(1684)</li> <li><i><a href="/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica" title="Philosophiæ Naturalis Principia Mathematica">Principia</a></i>&#160;(1687)</li> <li><i><a href="/wiki/Opticks" title="Opticks">Opticks</a></i>&#160;(1704)</li> <li><i><a href="/wiki/The_Queries" class="mw-redirect" title="The Queries">Queries</a></i>&#160;(1704)</li> <li><i><a href="/wiki/Arithmetica_Universalis" title="Arithmetica Universalis">Arithmetica</a></i>&#160;(1707)</li> <li><i><a href="/wiki/De_analysi_per_aequationes_numero_terminorum_infinitas" title="De analysi per aequationes numero terminorum infinitas">De Analysi</a></i>&#160;(1711)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Other writings</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Quaestiones_quaedam_philosophicae" title="Quaestiones quaedam philosophicae">Quaestiones</a></i>&#160;(1661–1665)</li> <li>"<a href="/wiki/Standing_on_the_shoulders_of_giants" title="Standing on the shoulders of giants">standing on the shoulders of giants</a>"&#160;(1675)</li> <li><i><a href="/wiki/Notes_on_the_Jewish_Temple" title="Notes on the Jewish Temple">Notes on the Jewish Temple</a></i>&#160;(c.&#160;1680)</li> <li>"<a href="/wiki/General_Scholium" title="General Scholium">General Scholium</a>"&#160;(1713; <i>"<a href="/wiki/Hypotheses_non_fingo" title="Hypotheses non fingo">hypotheses non fingo</a>"</i>&#8201;)</li> <li><i><a href="/wiki/The_Chronology_of_Ancient_Kingdoms_Amended" title="The Chronology of Ancient Kingdoms Amended">Ancient Kingdoms Amended</a></i>&#160;(1728)</li> <li><i><a href="/wiki/An_Historical_Account_of_Two_Notable_Corruptions_of_Scripture" title="An Historical Account of Two Notable Corruptions of Scripture">Corruptions of Scripture</a></i>&#160;(1754)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Contributions</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Calculus" title="Calculus">Calculus</a> <ul><li><a href="/wiki/Fluxion" title="Fluxion">fluxion</a></li></ul></li> <li><a href="/wiki/Impact_depth" title="Impact depth">Impact depth</a></li> <li><a href="/wiki/Inertia" title="Inertia">Inertia</a></li> <li><a href="/wiki/Newton_disc" title="Newton disc">Newton disc</a></li> <li><a href="/wiki/Newton_polygon" title="Newton polygon">Newton polygon</a> <ul><li><a href="/wiki/Newton%E2%80%93Okounkov_body" title="Newton–Okounkov body">Newton–Okounkov body</a></li></ul></li> <li><a href="/wiki/Newton%27s_reflector" title="Newton&#39;s reflector">Newton's reflector</a></li> <li><a href="/wiki/Newtonian_telescope" title="Newtonian telescope">Newtonian telescope</a></li> <li><a href="/wiki/Newton_scale" title="Newton scale">Newton scale</a></li> <li><a href="/wiki/Newton%27s_metal" title="Newton&#39;s metal">Newton's metal</a></li> <li><a href="/wiki/Spectrum" title="Spectrum">Spectrum</a></li> <li><a href="/wiki/Structural_coloration" title="Structural coloration">Structural coloration</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;"><a href="/wiki/Newtonianism" title="Newtonianism">Newtonianism</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bucket_argument" title="Bucket argument">Bucket argument</a></li> <li><a href="/wiki/Newton%27s_inequalities" title="Newton&#39;s inequalities">Newton's inequalities</a></li> <li><a href="/wiki/Newton%27s_law_of_cooling" title="Newton&#39;s law of cooling">Newton's law of cooling</a></li> <li><a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton&#39;s law of universal gravitation">Newton's law of universal gravitation</a> <ul><li><a href="/wiki/Post-Newtonian_expansion" title="Post-Newtonian expansion">post-Newtonian expansion</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">parameterized</a></li> <li><a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a></li></ul></li> <li><a href="/wiki/Newton%E2%80%93Cartan_theory" title="Newton–Cartan theory">Newton–Cartan theory</a></li> <li><a href="/wiki/Schr%C3%B6dinger%E2%80%93Newton_equation" title="Schrödinger–Newton equation">Schrödinger–Newton equation</a></li> <li><a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newton's laws of motion</a> <ul><li><a class="mw-selflink selflink">Kepler's laws</a></li></ul></li> <li><a href="/wiki/Newtonian_dynamics" title="Newtonian dynamics">Newtonian dynamics</a></li> <li><a href="/wiki/Newton%27s_method_in_optimization" title="Newton&#39;s method in optimization">Newton's method in optimization</a> <ul><li><a href="/wiki/Problem_of_Apollonius" title="Problem of Apollonius">Apollonius's problem</a></li> <li><a href="/wiki/Truncated_Newton_method" title="Truncated Newton method">truncated Newton method</a></li></ul></li> <li><a href="/wiki/Gauss%E2%80%93Newton_algorithm" title="Gauss–Newton algorithm">Gauss–Newton algorithm</a></li> <li><a href="/wiki/Newton%27s_rings" title="Newton&#39;s rings">Newton's rings</a></li> <li><a href="/wiki/Newton%27s_theorem_about_ovals" title="Newton&#39;s theorem about ovals">Newton's theorem about ovals</a></li> <li><a href="/wiki/Newton%E2%80%93Pepys_problem" title="Newton–Pepys problem">Newton–Pepys problem</a></li> <li><a href="/wiki/Newtonian_potential" title="Newtonian potential">Newtonian potential</a></li> <li><a href="/wiki/Newtonian_fluid" title="Newtonian fluid">Newtonian fluid</a></li> <li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Corpuscular_theory_of_light" title="Corpuscular theory of light">Corpuscular theory of light</a></li> <li><a href="/wiki/Leibniz%E2%80%93Newton_calculus_controversy" title="Leibniz–Newton calculus controversy">Leibniz–Newton calculus controversy</a></li> <li><a href="/wiki/Newton%27s_notation" class="mw-redirect" title="Newton&#39;s notation">Newton's notation</a></li> <li><a href="/wiki/Rotating_spheres" title="Rotating spheres">Rotating spheres</a></li> <li><a href="/wiki/Newton%27s_cannonball" title="Newton&#39;s cannonball">Newton's cannonball</a></li> <li><a href="/wiki/Newton%E2%80%93Cotes_formulas" title="Newton–Cotes formulas">Newton–Cotes formulas</a></li> <li><a href="/wiki/Newton%27s_method" title="Newton&#39;s method">Newton's method</a> <ul><li><a href="/wiki/Generalized_Gauss%E2%80%93Newton_method" title="Generalized Gauss–Newton method">generalized Gauss–Newton method</a></li></ul></li> <li><a href="/wiki/Newton_fractal" title="Newton fractal">Newton fractal</a></li> <li><a href="/wiki/Newton%27s_identities" title="Newton&#39;s identities">Newton's identities</a></li> <li><a href="/wiki/Newton_polynomial" title="Newton polynomial">Newton polynomial</a></li> <li><a href="/wiki/Newton%27s_theorem_of_revolving_orbits" title="Newton&#39;s theorem of revolving orbits">Newton's theorem of revolving orbits</a></li> <li><a href="/wiki/Newton%E2%80%93Euler_equations" title="Newton–Euler equations">Newton–Euler equations</a></li> <li><a href="/wiki/Power_number" title="Power number">Newton number</a> <ul><li><a href="/wiki/Kissing_number" title="Kissing number">kissing number problem</a></li></ul></li> <li><a href="/wiki/Difference_quotient" title="Difference quotient">Newton's quotient</a></li> <li><a href="/wiki/Parallelogram_of_force" title="Parallelogram of force">Parallelogram of force</a></li> <li><a href="/wiki/Puiseux_series" title="Puiseux series">Newton–Puiseux theorem</a></li> <li><a href="/wiki/Absolute_space_and_time#Newton" title="Absolute space and time">Absolute space and time</a></li> <li><a href="/wiki/Luminiferous_aether" title="Luminiferous aether">Luminiferous aether</a></li> <li><a href="/wiki/Finite_difference" title="Finite difference">Newtonian series</a> <ul><li><a href="/wiki/Table_of_Newtonian_series" title="Table of Newtonian series">table</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Personal life</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Woolsthorpe_Manor" title="Woolsthorpe Manor">Woolsthorpe Manor</a>&#160;(birthplace)</li> <li><a href="/wiki/Cranbury_Park" title="Cranbury Park">Cranbury Park</a>&#160;(home)</li> <li><a href="/wiki/Early_life_of_Isaac_Newton" title="Early life of Isaac Newton">Early life</a></li> <li><a href="/wiki/Later_life_of_Isaac_Newton" title="Later life of Isaac Newton">Later life</a></li> <li><a href="/wiki/Isaac_Newton%27s_apple_tree" title="Isaac Newton&#39;s apple tree">Apple tree</a></li> <li><a href="/wiki/Religious_views_of_Isaac_Newton" title="Religious views of Isaac Newton">Religious views</a></li> <li><a href="/wiki/Isaac_Newton%27s_occult_studies" title="Isaac Newton&#39;s occult studies">Occult studies</a></li> <li><a href="/wiki/Scientific_Revolution" title="Scientific Revolution">Scientific Revolution</a></li> <li><a href="/wiki/Copernican_Revolution" title="Copernican Revolution">Copernican Revolution</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Relations</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Catherine_Barton" title="Catherine Barton">Catherine Barton</a>&#160;(niece)</li> <li><a href="/wiki/John_Conduitt" title="John Conduitt">John Conduitt</a>&#160;(nephew-in-law)</li> <li><a href="/wiki/Isaac_Barrow" title="Isaac Barrow">Isaac Barrow</a>&#160;(professor)</li> <li><a href="/wiki/William_Clarke_(apothecary)" title="William Clarke (apothecary)">William Clarke</a>&#160;(mentor)</li> <li><a href="/wiki/Benjamin_Pulleyn" title="Benjamin Pulleyn">Benjamin Pulleyn</a>&#160;(tutor)</li> <li><a href="/wiki/Roger_Cotes" title="Roger Cotes">Roger Cotes</a>&#160;(student)</li> <li><a href="/wiki/William_Whiston" title="William Whiston">William Whiston</a>&#160;(student)</li> <li><a href="/wiki/John_Keill" title="John Keill">John Keill</a>&#160;(disciple)</li> <li><a href="/wiki/William_Stukeley" title="William Stukeley">William Stukeley</a>&#160;(friend)</li> <li><a href="/wiki/William_Jones_(mathematician)" title="William Jones (mathematician)">William Jones</a>&#160;(friend)</li> <li><a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a>&#160;(friend)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;"><a href="/wiki/Isaac_Newton_in_popular_culture" title="Isaac Newton in popular culture">Depictions</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Newton_(Blake)" title="Newton (Blake)"><i>Newton</i> by Blake</a>&#160;(monotype)</li> <li><a href="/wiki/Newton_(Paolozzi)" title="Newton (Paolozzi)"><i>Newton</i> by Paolozzi</a>&#160;(sculpture)</li> <li><i><a href="/wiki/Isaac_Newton_Gargoyle" title="Isaac Newton Gargoyle">Isaac Newton Gargoyle</a></i></li> <li><i><a href="/wiki/Astronomers_Monument" title="Astronomers Monument">Astronomers Monument</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;"><a href="/wiki/List_of_things_named_after_Isaac_Newton" title="List of things named after Isaac Newton">Namesake</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Newton_(unit)" title="Newton (unit)">Newton (unit)</a></li> <li><a href="/wiki/Newton%27s_cradle" title="Newton&#39;s cradle">Newton's cradle</a></li> <li><a href="/wiki/Isaac_Newton_Institute" title="Isaac Newton Institute">Isaac Newton Institute</a></li> <li><a href="/wiki/Institute_of_Physics_Isaac_Newton_Medal" class="mw-redirect" title="Institute of Physics Isaac Newton Medal">Isaac Newton Medal</a></li> <li><a href="/wiki/Isaac_Newton_Telescope" title="Isaac Newton Telescope">Isaac Newton Telescope</a></li> <li><a href="/wiki/Isaac_Newton_Group_of_Telescopes" title="Isaac Newton Group of Telescopes">Isaac Newton Group of Telescopes</a></li> <li><a href="/wiki/XMM-Newton" title="XMM-Newton">XMM-Newton</a></li> <li><a href="/wiki/Sir_Isaac_Newton_Sixth_Form" title="Sir Isaac Newton Sixth Form">Sir Isaac Newton Sixth Form</a></li> <li><a href="/wiki/Statal_Institute_of_Higher_Education_Isaac_Newton" title="Statal Institute of Higher Education Isaac Newton">Statal Institute of Higher Education Isaac Newton</a></li> <li><a href="/wiki/Newton_International_Fellowship" title="Newton International Fellowship">Newton International Fellowship</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Categories</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"><div class="div-col"> <div class="CategoryTreeTag" data-ct-options="{&quot;mode&quot;:20,&quot;hideprefix&quot;:20,&quot;showcount&quot;:false,&quot;namespaces&quot;:false,&quot;notranslations&quot;:false}"><div class="CategoryTreeSection"><div class="CategoryTreeItem"><span class="CategoryTreeBullet"><a class="CategoryTreeToggle" data-ct-title="Isaac_Newton" aria-expanded="false"></a> </span> <bdi dir="ltr"><a href="/wiki/Category:Isaac_Newton" title="Category:Isaac Newton">Isaac Newton</a></bdi></div><div class="CategoryTreeChildren" style="display:none"></div></div></div> </div></div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/17px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="17" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/26px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/34px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/19px-Crab_Nebula.jpg" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/29px-Crab_Nebula.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/38px-Crab_Nebula.jpg 2x" data-file-width="3864" data-file-height="3864" /></span></span> </span><a href="/wiki/Portal:Astronomy" title="Portal:Astronomy">Astronomy</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:He1523a.jpg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/16px-He1523a.jpg" decoding="async" width="16" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/25px-He1523a.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/33px-He1523a.jpg 2x" data-file-width="180" data-file-height="207" /></a></span> </span><a href="/wiki/Portal:Stars" title="Portal:Stars">Stars</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/19px-RocketSunIcon.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/29px-RocketSunIcon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/38px-RocketSunIcon.svg.png 2x" data-file-width="128" data-file-height="128" /></span></span> </span><a href="/wiki/Portal:Spaceflight" title="Portal:Spaceflight">Spaceflight</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/21px-Earth-moon.jpg" decoding="async" width="21" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/32px-Earth-moon.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/42px-Earth-moon.jpg 2x" data-file-width="3000" data-file-height="2400" /></span></span> </span><a href="/wiki/Portal:Outer_space" title="Portal:Outer space">Outer space</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/15px-Solar_system.jpg" decoding="async" width="15" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/23px-Solar_system.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/30px-Solar_system.jpg 2x" data-file-width="4500" data-file-height="5600" /></span></span> </span><a href="/wiki/Portal:Solar_System" title="Portal:Solar System">Solar System</a></li></ul></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q83219#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q83219#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q83219#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4365820-9">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh94003544">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12445155q">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12445155q">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007537148305171">Israel</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/033600619">IdRef</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5857dfdcd6‐sd5gb Cached time: 20241203065111 Cache expiry: 21600 Reduced expiry: true Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.128 seconds Real time usage: 1.489 seconds Preprocessor visited node count: 4654/1000000 Post‐expand include size: 154037/2097152 bytes Template argument size: 6047/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 165312/5000000 bytes Lua time usage: 0.561/10.000 seconds Lua memory usage: 7753493/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 989.398 1 -total 23.21% 229.669 1 Template:Reflist 13.19% 130.518 1 Template:Astrodynamics 12.72% 125.865 1 Template:Sidebar_with_collapsible_lists 12.59% 124.603 7 Template:Cite_web 12.26% 121.314 1 Template:Short_description 8.75% 86.612 5 Template:Navbox 7.98% 78.915 2 Template:Pagetype 7.33% 72.536 14 Template:Cite_book 6.70% 66.320 1 Template:Orbits --> <!-- Saved in parser cache with key enwiki:pcache:17553:|#|:idhash:canonical and timestamp 20241203065111 and revision id 1257373043. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;oldid=1257373043">https://en.wikipedia.org/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;oldid=1257373043</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:1609_in_science" title="Category:1609 in science">1609 in science</a></li><li><a href="/wiki/Category:1619_in_science" title="Category:1619 in science">1619 in science</a></li><li><a href="/wiki/Category:Copernican_Revolution" title="Category:Copernican Revolution">Copernican Revolution</a></li><li><a href="/wiki/Category:Eponymous_laws_of_physics" title="Category:Eponymous laws of physics">Eponymous laws of physics</a></li><li><a href="/wiki/Category:Equations_of_astronomy" title="Category:Equations of astronomy">Equations of astronomy</a></li><li><a href="/wiki/Category:Johannes_Kepler" title="Category:Johannes Kepler">Johannes Kepler</a></li><li><a href="/wiki/Category:Orbits" title="Category:Orbits">Orbits</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_Latin-language_sources_(la)" title="Category:CS1 Latin-language sources (la)">CS1 Latin-language sources (la)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2024" title="Category:Articles with unsourced statements from March 2024">Articles with unsourced statements from March 2024</a></li><li><a href="/wiki/Category:Articles_with_hatnote_templates_targeting_a_nonexistent_page" title="Category:Articles with hatnote templates targeting a nonexistent page">Articles with hatnote templates targeting a nonexistent page</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 14 November 2024, at 15:59<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Kepler%27s_laws_of_planetary_motion&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5857dfdcd6-5sq5t","wgBackendResponseTime":192,"wgPageParseReport":{"limitreport":{"cputime":"1.128","walltime":"1.489","ppvisitednodes":{"value":4654,"limit":1000000},"postexpandincludesize":{"value":154037,"limit":2097152},"templateargumentsize":{"value":6047,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":165312,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 989.398 1 -total"," 23.21% 229.669 1 Template:Reflist"," 13.19% 130.518 1 Template:Astrodynamics"," 12.72% 125.865 1 Template:Sidebar_with_collapsible_lists"," 12.59% 124.603 7 Template:Cite_web"," 12.26% 121.314 1 Template:Short_description"," 8.75% 86.612 5 Template:Navbox"," 7.98% 78.915 2 Template:Pagetype"," 7.33% 72.536 14 Template:Cite_book"," 6.70% 66.320 1 Template:Orbits"]},"scribunto":{"limitreport-timeusage":{"value":"0.561","limit":"10.000"},"limitreport-memusage":{"value":7753493,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5857dfdcd6-sd5gb","timestamp":"20241203065111","ttl":21600,"transientcontent":true}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Kepler's laws of planetary motion","url":"https:\/\/en.wikipedia.org\/wiki\/Kepler%27s_laws_of_planetary_motion","sameAs":"http:\/\/www.wikidata.org\/entity\/Q83219","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q83219","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-03-06T05:10:17Z","dateModified":"2024-11-14T15:59:28Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/98\/Kepler_laws_diagram.svg","headline":"scientific laws describing motion of planets around the Sun"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10