CINXE.COM

Search results for: wheat

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wheat</title> <meta name="description" content="Search results for: wheat"> <meta name="keywords" content="wheat"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wheat" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wheat"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 446</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wheat</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Wheat Production and Market in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fayiz%20Saifurahman">Fayiz Saifurahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noori%20Fida%20Mohammad"> Noori Fida Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Afghanistan produces the highest rate of wheat, it is the first source of food, and food security in Afghanistan is dependent on the availability of wheat. Although Afghanistan is the main producer of wheat, on the other hand, Afghanistan is the largest importers of flour. The objective of this study is to assess the structure and dynamics of the wheat market in Afghanistan, can compute with foreign markets, and increase the level of production. To complete this, a broad series of secondary data was complied with, group discussions and interviews with farmers, agricultural and market experts. The research findings propose that; the government should adopt different policies to support the local market. The government should distribute the seed, support financially and technically to increase wheat production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afghanistan" title="Afghanistan">Afghanistan</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production "> production </a>, <a href="https://publications.waset.org/abstracts/search?q=import" title=" import "> import </a> </p> <a href="https://publications.waset.org/abstracts/128290/wheat-production-and-market-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Polymorphism of HMW-GS in Collection of Wheat Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ch%C5%88apek">M. Chňapek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tomka"> M. Tomka</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Peroutkov%C3%A1"> R. Peroutková</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20G%C3%A1lov%C3%A1"> Z. Gálová </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Processes of plant breeding, testing and licensing of new varieties, patent protection in seed production, relations in trade and protection of copyright are dependent on identification, differentiation and characterization of plant genotypes. Therefore, we focused our research on utilization of wheat storage proteins as genetic markers suitable not only for differentiation of individual genotypes, but also for identification and characterization of their considerable properties. We analyzed a collection of 102 genotypes of bread wheat (Triticum aestivum L.), 41 genotypes of spelt wheat (Triticum spelta L.), and 35 genotypes of durum wheat (Triticum durum Desf.), in this study. Our results show, that genotypes of bread wheat and durum wheat were homogenous and single line, but spelt wheat genotypes were heterogenous. We observed variability of HMW-GS composition according to environmental factors and level of breeding and predict technological quality on the basis of Glu-score calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotype%20identification" title="genotype identification">genotype identification</a>, <a href="https://publications.waset.org/abstracts/search?q=HMW-GS" title=" HMW-GS"> HMW-GS</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20quality" title=" wheat quality"> wheat quality</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a> </p> <a href="https://publications.waset.org/abstracts/6533/polymorphism-of-hmw-gs-in-collection-of-wheat-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Doubled Haploid Production in Wheat Using Imperata cylindrica Mediated Chromosome Elimination Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Patial">Madhu Patial</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharam%20Pal"> Dharam Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Kumar"> Jagdish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Chaudhary"> H. K. Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doubled haploid breeding serves as a useful technique in wheat improvement by providing instant and complete homozygosity. Of the various techniques employed for haploid production chromosome elimination has a large scale practical application in wheat improvement. Barclay (1975) initiated the technique in wheat by crossing wheat variety Chinese spring with Hordeum bulbosum, but due to presence of the dominant crossability inhibitor genes Kr7 and Kr2 in many wheat varieties, the technique was however genotypic specific. The discovery of wheat X maize system of haploid production being genotype non-specific is quite successful but still maize needs to be grown in greenhouse to coincide flowering with wheat crop. Recently, wheat X Imperate cylindrica has been identified as a new chromosome mediated DH approach for efficient haploid induction. An experiment to use this technique in wheat was set up by crossing six F1s and two three way F1s with Imperata cylindrica. The data was recorded for the three component traits of haploid induction viz., seed formation, embryo formation and regeneration frequency. Variation among wheat F1s was observed and higher frequency for all the traits were recorded in cross HD 2997/2*FL-8/DONSK-POLL and KLE/BER/2*FL-8/DONSK-POLL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid" title=" haploid"> haploid</a>, <a href="https://publications.waset.org/abstracts/search?q=imperata%20cylindrica" title=" imperata cylindrica"> imperata cylindrica</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20elimination%20technique" title=" chromosome elimination technique"> chromosome elimination technique</a> </p> <a href="https://publications.waset.org/abstracts/24869/doubled-haploid-production-in-wheat-using-imperata-cylindrica-mediated-chromosome-elimination-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Evaluation of Wheat Sowing and Fertilizer Application Methods in Wheat Weeds Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Izadi-Darbandi">Ebrahim Izadi-Darbandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigation the effects of sowing methods, nitrogen and phosphorus application methods in wheat weeds management, an experiment was performed as split plot, based on randomized completely block design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, in 2010. Treatments included, wheat sowing methods (single-row with 30 cm distance and twine row on 50 cm width ridges) as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots. In this experiment, phosphorus and nitrogen sources for fertilization were super phosphate triple (150 kg ha-1) applied before wheat sowing and incorporated with soil and urea (200 kg ha-1) respectively, applied in 2 phases (pre-plant 50%) and near wheat shooting (50%). Results showed that the effect of fertilizers application methods and wheat sowing methods were significant (p≤0.01) on wheat yield increasing and reducing weed-wheat competition. Wheat twine row sowing method, reduced weeds biomass for 25% compared wheat single-row sowing method and increased wheat seed yield and biomass for 60% and 30% respectively. Phosphorus and nitrogen band application reduced weeds biomass for 46% and 53% respectively and increased wheat seed yield for 22% and 33% compared to their broadcast application. The effects of wheat sowing method plus phosphorus and nitrogen application methods interactions, showed that the fertilizers band application and wheat twine-row sowing method were the best methods in wheat yield improvement and reducing wheat-weeds interaction. These results shows that modifying of fertilization methods and wheat sowing method can have important role in fertilizers use efficiency and improving of weeds managements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competition" title="competition">competition</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20yield" title=" wheat yield"> wheat yield</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20management" title=" fertilizer management"> fertilizer management</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/13197/evaluation-of-wheat-sowing-and-fertilizer-application-methods-in-wheat-weeds-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Yield Parameters of Hulled Wheat Species, Grown in Organic Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Konvalina">Petr Konvalina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Moudry"> Jan Moudry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As organic farmers are searching foregoing crops for horticultural crops, there is possible to choice neglected wheat species and also have a new market and sale opportunities. Concerning wheat, there are landraces so called hulled wheat species (einkorn, emmer wheat, spelt) comprising parts of collections of the world gene banks. The advantage of this wheat species are small demands on growing conditions and also droughtiness in conditions of changing climate. Our paper aims at presenting the results of the study and the assessment of spring wheat forms, four einkorn cultivars, eight emmer wheat cultivars, seven spelt wheat cultivars in particular, as compared to modern bread wheat variety. Small-plot trials were established at two different localities within the Czech Republic and Austria in 2009 and 2012. The results of the trials show that some varieties were inclined to lodging. On the other hand, they were resistant to common wheat diseases (mildew, brown rust). Hulls served as barriers and obstacles against the DON grain contamination. The yield rate was lower. The grains were characterized by a high proportion of protein in grain (up to 18.1 %). However, they may be difficult to use for common baking. Moreover, new food products demonstrating a different technological quality of the hulled wheat species have to be launched on the market. They will be suitable for regional marketing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=hulled%20wheat%20species" title=" hulled wheat species"> hulled wheat species</a>, <a href="https://publications.waset.org/abstracts/search?q=einkorn" title=" einkorn"> einkorn</a>, <a href="https://publications.waset.org/abstracts/search?q=emmer" title=" emmer"> emmer</a>, <a href="https://publications.waset.org/abstracts/search?q=spelt" title=" spelt"> spelt</a> </p> <a href="https://publications.waset.org/abstracts/29354/yield-parameters-of-hulled-wheat-species-grown-in-organic-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Technological Value of Selected Spring Wheat Cultivars Depending on the Sowing Date</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marta%20Wyzi%C5%84ska">Marta Wyzińska</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20Grabi%C5%84ski"> Jerzy Grabiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicja%20Su%C5%82ek"> Alicja Sułek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The grain quality is a decisive factor in its use. In Poland, spring wheat is characterized by more favorable quality parameters in relation to the winter form of this species. In the present study, the effects of three different sowing dates (autumn, delayed autumn, and spring) and cultivar (Tybalt, Cytra, Bombona, Monsun, and Parabola) on the selected technological value parameters of spring wheat over three years were studied. The field trials were carried out in two locations (Bezek, Czesławice) in the Lubelskie Vivodeship, Poland. It was found that the falling number of spring wheat grains from autumn sowing dates was at a similar level to wheat sown in spring. The amount of wet gluten in the grain was variable in years, and its quality was better in wheat sown in spring. Sedimentation index was dependent upon on the cultivar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sowing%20term" title="Sowing term">Sowing term</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20wheat" title=" spring wheat"> spring wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20value" title=" technological value"> technological value</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/104669/technological-value-of-selected-spring-wheat-cultivars-depending-on-the-sowing-date" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> Weeds Density Affects Yield and Quality of Wheat Crop under Different Crop Densities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20Ahmad">Ijaz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weed competition is one of the major biotic constraints in wheat crop productivity. Avena fatua L. and Silybum marianum (L.) Gaertn. are among the worst weeds of wheat, greatly deteriorating wheat quality subsequently reducing its market value. In this connection, two-year experiments were conducted in 2018 & 2019. Different seeding rate wheat viz; 80, 100, 120 and 140 kg ha-1 and different weeds ratio (A. fatua: S. marianum ) sown at the rate 1:8, 2:7, 3:6, 4:5, 5:4, 6:3, 7:2, 8:1 and 0:0 respectively. The weeds ratio and wheat densities are indirectly proportional. However, the wheat seed at the rate of 140 kg ha-1 has minimal weeds interference. Yield losses were 17.5% at weeds density 1:8 while 7.2% at 8:1. However, in wheat density, the highest percent losses were computed on 80 kg ha-1 while the lowest was recorded on 140 kg ha-1. Since due to the large leaf canopy of S. marianum other species can't sustain their growth. Hence, it has been concluded that S. marianum is the hotspot that causes reduction to the yield-related parameters, followed by A. fatua and the other weeds. Due to the morphological mimicry of A. fatua with wheat crop during the vegetative growth stage, it cannot be easily distinguished. Therefore, managing A. fatua and S. marianum before seed setting is recommended for reducing the future weed problem. Based on current studies, it is suggested that sowing wheat seed at the rate of 140 kg ha-1 is recommended to better compete with all the field weeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fat%20content" title="fat content">fat content</a>, <a href="https://publications.waset.org/abstracts/search?q=holly%20thistle" title=" holly thistle"> holly thistle</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a>, <a href="https://publications.waset.org/abstracts/search?q=weed%20competition" title=" weed competition"> weed competition</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20oat" title=" wild oat"> wild oat</a> </p> <a href="https://publications.waset.org/abstracts/139251/weeds-density-affects-yield-and-quality-of-wheat-crop-under-different-crop-densities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Optimal Wheat Straw to Bioethanol Supply Chain Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Halim%20Abdul%20Razik">Abdul Halim Abdul Razik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Elkamel"> Ali Elkamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Simon"> Leonardo Simon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat straw is one of the alternative feedstocks that may be utilized for bioethanol production especially when sustainability criteria are the major concerns. To increase market competitiveness, optimal supply chain plays an important role since wheat straw is a seasonal agricultural residue. In designing the supply chain optimization model, economic profitability of the thermochemical and biochemical conversion routes options were considered. It was found that torrefied pelletization with gasification route to be the most profitable option to produce bioethanol from the lignocellulosic source of wheat straw. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-ethanol" title="bio-ethanol">bio-ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20straw" title=" wheat straw"> wheat straw</a> </p> <a href="https://publications.waset.org/abstracts/27560/optimal-wheat-straw-to-bioethanol-supply-chain-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">736</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Behavior of Common Wheat under the Influence of Treated Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiahi%20Nadia">Chiahi Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of our work is to monitor the behavior of soft wheat on a morpho-physiological and agronomic scale under the influence of treated wastewater. Physico-chemical analyses of the treated sewage were also carried out, and our tests were carried out on two varieties of common wheat (Triticum aestivum L), HD1220 and ARZ. For this, a seedling was made, and two different irrigations were chosen, one using treated wastewater from the Sedrata (Wilaya of Souk ahras - Algeria) WWTP and the other stormwater as a control. The tests focused on soil and soft wheat parameters, and based on our results, the soft wheat development, physiological and yield parameters appear to respond favorably to the use of these waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20wheat%20%28Triticum%20aestivum%20L.%29" title="common wheat (Triticum aestivum L.)">common wheat (Triticum aestivum L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=purified%20wastewater" title=" purified wastewater"> purified wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=morph%20physiological%20and%20agronomic%20parameters" title=" morph physiological and agronomic parameters"> morph physiological and agronomic parameters</a> </p> <a href="https://publications.waset.org/abstracts/171497/behavior-of-common-wheat-under-the-influence-of-treated-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Evaluation of Symptoms, Laboratory Findings, and Natural History of IgE Mediated Wheat Allergy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soudeh%20Tabashi">Soudeh Tabashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soudabeh%20Fazeli%20Dehkordy"> Soudabeh Fazeli Dehkordy</a>, <a href="https://publications.waset.org/abstracts/search?q=Masood%20Movahedi"> Masood Movahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20Behniafard"> Nasrin Behniafard </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Food allergy has increased in three last decades. Since wheat is one of the major constituents of daily meal in many regions throughout the world, wheat allergy is one of the most important allergies ranking among the 8 most common types of food allergies. Our information about epidemiology and etiology of food allergies are limited. Therefore, in this study we sought to evaluate the symptoms and laboratory findings in children with wheat allergy. Materials and methods: There were 23 patients aged up to 18 with the diagnosis of IgE mediated wheat allergy that were included enrolled in this study. Using a questionnaire .we collected their information and organized them into 4 groups categories of: demographic data identification, signs and symptoms, comorbidities, and laboratory data. Then patients were followed up for 6 month and their lab data were compared together. Results: Most of the patients (82%) presented the symptoms of wheat allergy in the first year of their life. The skin and the respiratory system were the most commonly involved organs with an incidence of 86% and 78% respectively. Most of the patients with wheat allergy were also sensitive to the other type of foods and their sensitivity to egg were most common type (47%). in 57% of patients, IgE levels were decreased during the 6 month follow-up period. Conclusion: We do not have enough information about data on epidemiology and response to therapy of wheat allergy and to best of our knowledge no study has addressed this issue in Iran so far. This study is the first source of information about IgE mediated wheat allergy in Iran and It can provide an opening for future studies about wheat allergy and its treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20allergy" title="wheat allergy">wheat allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20allergy" title=" food allergy"> food allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=IgE" title=" IgE"> IgE</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20allergy" title=" food allergy"> food allergy</a> </p> <a href="https://publications.waset.org/abstracts/3851/evaluation-of-symptoms-laboratory-findings-and-natural-history-of-ige-mediated-wheat-allergy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Isolated Microspore Culture in Durum Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelikha%20Labbani">Zelikha Labbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Durum%20wheat" title="Durum wheat">Durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid%20embryos" title=" haploid embryos"> haploid embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=on%20in%20vitro" title=" on in vitro"> on in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/47819/isolated-microspore-culture-in-durum-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> How Much the Role of Fertilizers Management and Wheat Planting Methods on Its Yield Improvement?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Izadi-Darbandi">Ebrahim Izadi-Darbandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Azad"> Masoud Azad</a>, <a href="https://publications.waset.org/abstracts/search?q=Masumeh%20Dehghan"> Masumeh Dehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effects of nitrogen and phosphoruse management and wheat sowing method on wheat yield, two experiments was performed as factorial, based on completely randomized design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran in 2009. In the first experiment nitrogen application rates (100kg ha-1, 200 kg ha-1, 300 kg ha-1), phosphorus application rates (100 kg ha-1, 200 kg ha-1) and two levels of their application methods (Broadcast and Band) were studied. The second experiment treatments included of wheat sowing methods (single-row with 30 cm distance and twine row on 60 cm width ridges), as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots (150 kg ha-1). Phosphorus and nitrogen sources for fertilization at both experiment were respectively super phosphate, applied before wheat sowing and incorporated with soil and urea, applied in two phases (50% pre plant) and (50%) near wheat shooting. Results from first experiment showed that the effect of fertilizers application methods were significant (p≤0.01) on wheat yield increasing. Band application of phosphorus and nitrogen were increased biomass and seed yield of wheat with nine and 15% respectively compared to their broadcast application. The interaction between the effects of nitrogen and phosphorus application rate with phosphorus and nitrogen application methods, showed that band application of fertilizers and the rate of application of 200kg/ha phosphorus and 300kg/ha nitrogen were the best methods in wheat yield improvement. The second experiment also showed that the effect of wheat sowing method and fertilizers application methods were significant (p≤0.01) on wheat seed and biomass yield improvement. Wheat twine row on 60 cm width ridges sowing method, increased its biomass and seed yield for 22% and 30% respectively compared to single-row with 30 cm. Wheat sowing method and fertilizers application methods interaction indicated that band application of fertilizers and wheat twine row on 60 cm width ridges sowing method was the best treatment on winter wheat yield improvement. In conclusion these results indicated that nitrogen and phosphorus management in wheat and modifying wheat sowing method have important role in increasing fertilizers use efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20application" title="band application">band application</a>, <a href="https://publications.waset.org/abstracts/search?q=broadcast%20application" title=" broadcast application"> broadcast application</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20fertilizer%20application" title=" rate of fertilizer application"> rate of fertilizer application</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20seed%20yield" title=" wheat seed yield"> wheat seed yield</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20biomass%20yield" title=" wheat biomass yield"> wheat biomass yield</a> </p> <a href="https://publications.waset.org/abstracts/13988/how-much-the-role-of-fertilizers-management-and-wheat-planting-methods-on-its-yield-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> On In vitro Durum Wheat Isolated Microspore Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelikha%20Labbani">Zelikha Labbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However, in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durum%20wheat" title="durum wheat">durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid%20embryos" title=" haploid embryos"> haploid embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=on%20in%20vitro" title=" on in vitro"> on in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/44239/on-in-vitro-durum-wheat-isolated-microspore-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Effect of Drying Condition on the Wheat Germ Stability Using Fluidized-Bed Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Hung">J. M. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Chan"> J. S. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Kuo"> M. I. Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Chan"> D. S. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Lu"> C. P. Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat germ is a by-product obtained from wheat milling and it contains highly concentrated nutrients. Due to highly lipase and lipoxygenase activities, wheat germ products can easily turn into rancid flavor and cause a short life. The objective of this study is to control moisture content and retard lipid hydrolysis by fluidized-bed drying. The raw wheat germ of 2 kg was dried with a vertical batch fluidized bed with the following varying conditions, inlet air temperature of 50, 80 and 120°C, inlet air velocity of 3.62 m/s. The experiment was designed to obtain a final product at around 40°C with water activity of 0.3 ± 0.1. Changes in the moisture content, water activity, enzyme activity of dried wheat germ during storage were measured. Results showed the fluidized-bed drying was found to reduce moisture content, water activity and lipase activity of raw wheat germ. After drying wheat germ, moisture content and water activity were between 5.8% to 7.2% and 0.28 to 0.40 respectively during 12 weeks of storage. The variation range of water activity indicated to retard lipid oxidation. All drying treatments displayed inactivation of lipase, except for drying condition of 50°C which showed relative high enzyme activity. During storage, lipase activity increased slowly during the first 6 weeks of storage and reached a plateau for another 6 weeks. As a result, using a fluidized-bed dryer was found to be effective drying technique in improving storage stability of wheat germ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20germ" title="wheat germ">wheat germ</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized-bed%20dryer" title=" fluidized-bed dryer"> fluidized-bed dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/54931/effect-of-drying-condition-on-the-wheat-germ-stability-using-fluidized-bed-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Enzymatic Activities of Two Iranian Wheat Cultivars Infected with Fusarium Culmorum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parastoo%20Motallebi">Parastoo Motallebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Niknam"> Vahid Niknam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ebrahimzadeh"> Hassan Ebrahimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Hashemi"> Majid Hashemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat, the most strategically important worldwide crop, is widely grown in various countries. Based on international wheat production statistics (FAOSTAT database), the total production of wheat in 2012 was 13.8 in Iran. Fusarium culmorum is one of the principal causative agents of Fusarium crown rot (FCR), an overwhelming disease of wheat and barley which is in the early stages causing yield losses, stand reductions and rotting of root and lower stem tissues. In this study inoculation of two wheat seedlings of the susceptible cultivar Falat and the partially field-resistant cultivar Pishtaz were carried out in greenhouse conditions and root samples were taken for 6 days. The activity of peroxidase (POX) and polyphenoloxidase (PPO) enzymes were analyzed to identify possible relations between resistance and enzymatic activities. Although the POX and PPO activities in both geno types increased, this significant increase was more dominant in Pishtaz. The results showed an earlier elevation in the activity of these defense related enzymes in semi-resistant cv. Pishtaz after inoculation, suggested that the activities of POX and PPO in wheat geno types play an important role in the induction of resistance to this disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defense%20responses" title="Defense responses">Defense responses</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20culmorum" title=" Fusarium culmorum"> Fusarium culmorum</a>, <a href="https://publications.waset.org/abstracts/search?q=Wheat" title=" Wheat"> Wheat</a> </p> <a href="https://publications.waset.org/abstracts/23063/enzymatic-activities-of-two-iranian-wheat-cultivars-infected-with-fusarium-culmorum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Climate Change Impacts on Future Wheat Growing Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Aljaryian">Rasha Aljaryian</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalit%20Kumar"> Lalit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate is undergoing continuous change and this trend will affect the cultivation areas ofmost crops, including wheat (Triticum aestivum L.), in the future. The current suitable cultivation areas may become unsuitable climatically. Countries that depend on wheat cultivation and export may suffer an economic loss because of production decline. On the other hand, some regions of the world could gain economically by increasing cultivation areas. This study models the potential future climatic suitability of wheat by using CLIMEX software. Two different global climate models (GCMs) were used, CSIRO-Mk3.0 (CS) and MIROC-H (MR), with two emission scenarios (A2, A1B). The results of this research indicate that the suitable climatic areas for wheat in the southern hemisphere, such as Australia, are expected to contract by the end of this century. However, some unsuitable or marginal areas will become climatically suitable under future climate scenarios. In North America and Europe further expansion inland could occur. Also, the results illustrate that heat and dry stresses as abiotic climatic factors will play an important role in wheat distribution in the future. Providing sufficient information about future wheat distribution will be useful for agricultural ministries and organizations to manage the shift in production areas in the future. They can minimize the expected harmful economic consequences by preparing strategic plans and identifying new areas for wheat cultivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Climate%20change" title="Climate change">Climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Climate%20modelling" title=" Climate modelling"> Climate modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=CLIMEX" title=" CLIMEX"> CLIMEX</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20aestivum" title=" Triticum aestivum"> Triticum aestivum</a>, <a href="https://publications.waset.org/abstracts/search?q=Wheat" title=" Wheat"> Wheat</a> </p> <a href="https://publications.waset.org/abstracts/56514/climate-change-impacts-on-future-wheat-growing-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Iron Influx, Its Root-Shoot Relations and Utilization Efficiency in Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Malik%20Dawlatzai">Abdul Malik Dawlatzai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafiqullah%20Rahmani"> Shafiqullah Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant cultivars of the same species differ in their Fe efficiency. This paper studied the Fe influx and root-shoot relations of Fe at different growth stages in wheat. The four wheat cultivars (HD 2967, PDW 233, PBW 550 and PDW 291) were grown in pots in Badam Bagh agricultural researching farm, Kabul under two Fe treatments: (i) 0 mg Fe kg⁻¹ soil (soil with 2.7 mg kg⁻¹ of DTPA-extractable Fe) and (ii) 50 mg Fe kg⁻¹ soil. Root length (RL), shoot dry matter (SDM), Fe uptake, and soil parameters were measured at tillering and anthesis. Application of Fe significantly increased RL, root surface area, SDM, and Fe uptake in all wheat cultivars. Under Fe deficiency, wheat cv. HD 2967 produced 90% of its maximum RL and 75% of its maximum SDM. However, PDW 233 produced only 69% and 60%, respectively. Wheat cultivars HD 2967, and PDW 233 exhibited the highest and lowest value of root surface area and Fe uptake, respectively. The concentration difference in soil solution Fe between bulk soil and root surface (ΔCL) was maximum in wheat cultivar HD 2967, followed by PBW 550, PDW 291, and PDW 233. More depletion at the root surface causes steeper concentration gradients, which result in a high influx and transport of Fe towards root. Fe influx in all the wheat cultivars increased with the Fe application, but the increase was maximum, i.e., 4 times in HD 2967 and minimum, i.e., 2.8 times in PDW 233. It can be concluded that wheat cultivars HD 2967 and PBW 550 efficiently utilized Fe as compared to other cultivars. Additionally, iron efficiency of wheat cultivars depends upon uptake of each root segment, i.e., the influx, which in turn depends on depletion of Fe in the rhizosphere during vegetative phase and higher utilization efficiency of acquired Fe during reproductive phase that governs the ultimate grain yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%20efficiency" title="Fe efficiency">Fe efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%20influx" title=" Fe influx"> Fe influx</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%20uptake" title=" Fe uptake"> Fe uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhizosphere" title=" Rhizosphere"> Rhizosphere</a> </p> <a href="https://publications.waset.org/abstracts/128052/iron-influx-its-root-shoot-relations-and-utilization-efficiency-in-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Performance of Riped and Unriped Plantain-Wheat Flour Blend in Biscuit Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Idoko">J. O. Idoko</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nwajiaku"> I. Nwajiaku </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unripe and ripe plantain were dried and milled into flour and used with wheat flour in biscuit production to determine the best plantain-wheat composite flour for biscuit production. The blends as follows: 100% wheat flour, 100% ripe plantain flour, 100% unripe plantain flour, 50% wheat flour and 50% ripe plantain flour and 50% wheat flour and 50% unripe plantain flour. The Biscuit samples were stored at ambient temperature for 8 weeks after which the equilibrium moisture content and water activity were determined. The sensory evaluation of the biscuit samples was also determined. The results of these analyses showed 100% unripe plantain flour as the most stable of the biscuit samples judging from its equilibrium moisture content level of 0.32% and water activity of 0.62. The sensory evaluation results showed Biscuit made from 150:50 ripe plantain and wheat flour as most generally accepted at 5% level of significance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biscuit" title="biscuit">biscuit</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20moisture%20content" title=" equilibrium moisture content"> equilibrium moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=plantain" title=" plantain"> plantain</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20activity" title=" water activity "> water activity </a> </p> <a href="https://publications.waset.org/abstracts/2064/performance-of-riped-and-unriped-plantain-wheat-flour-blend-in-biscuit-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Influence of Nitrogen Fertilization on the Yields and Grain Quality of Winter Wheat under Different Environmental Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alicja%20Su%C5%82ek">Alicja Sułek</a>, <a href="https://publications.waset.org/abstracts/search?q=Gra%C5%BCyna%20Cacak-Pietrzak"> Grażyna Cacak-Pietrzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Wyzi%C5%84ska"> Marta Wyzińska</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Nier%C3%B3bca"> Anna Nieróbca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2013/2014 and 2014/2015, a field experiment was conducted in two locations: Osiny and Wielichowo (Poland). The two-factor experiment was based on the method of randomized subblocks, in three replications. The first factor (A) was dose of nitrogen fertilization (two levels). The second factor (B) was nine winter wheat cultivars. It was found that winter wheat cultivars exhibited different reactions to higher nitrogen fertilization depending on the years and localities. Only KWS Dacanto cultivar under all growing conditions showed a significant increase in grain yield after the application of a higher level of nitrogen fertilization. The increase in nitrogen fertilization influenced the increase in gluten proteins content in wheat grain, but these changes were statistically significant only in the first year of the study. The quality of gluten does not depend on nitrogen fertilization. The quality of wheat grain depends on cultivars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilization" title="fertilization">fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20quality" title=" grain quality"> grain quality</a>, <a href="https://publications.waset.org/abstracts/search?q=winter%20wheat" title=" winter wheat"> winter wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/104670/influence-of-nitrogen-fertilization-on-the-yields-and-grain-quality-of-winter-wheat-under-different-environmental-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Clustering the Wheat Seeds Using SOM Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Ghamari">Salah Ghamari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20organizing%20map" title=" self organizing map"> self organizing map</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20variety" title=" wheat variety"> wheat variety</a> </p> <a href="https://publications.waset.org/abstracts/33833/clustering-the-wheat-seeds-using-som-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> An Analysis of the Wheat Export Performance of Ukraine in Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Bala%20Das">Kiran Bala Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the Ukraine wheat export condition after Russian-Ukrainian military confrontation. The political conflict in Ukraine and the recent military intervention of Russia in Crimea is raising concern full effect of the events there is still uncertain, but some hints can be seen in the wheat market by analyzing the trend and pattern of Ukraine wheat export. Crimea is extremely important as it is where most of Ukraine grain exported by ship from its ports of the black sea. Ukraine is again seeking to establish itself a significant exporter of agricultural product with its rich black soil, it is chornozem the top soil layer that makes the country soil so fertile and become one of the major exporter of wheat in the world, its generous supplier of wheat make Ukraine 'Bread basket of Europe'. Ukraine possesses 30% of the world’s richest black soil; its agricultural industry has huge potential especially in grains. European Union (EU) is a significant trading partner of Ukraine but geopolitical tension adversely affects the wheat trade from black sea, which threatens Europe breadbasket. This study also highlights an index of export intensity to analyze the intensity of existing trade for the period 2011-2014 between Ukraine and EU countries. The result show export has intensified over the years, but this year low trade intensity. The overall consequence is hard to determine but if the situation deteriorates and Ukraine cutoff export, international wheat price will hike and grain prices (wheat) also come under the current circumstances and the recent development indicates how the grain market get affected and Agri future now in danger in Ukraine, and its forecast that Ukraine harvest low wheat crop this year and projected decline in export of wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breadbasket%20of%20Europe" title="breadbasket of Europe">breadbasket of Europe</a>, <a href="https://publications.waset.org/abstracts/search?q=export%20intensity%20index" title=" export intensity index"> export intensity index</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20rate" title=" growth rate"> growth rate</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20export" title=" wheat export"> wheat export</a> </p> <a href="https://publications.waset.org/abstracts/46968/an-analysis-of-the-wheat-export-performance-of-ukraine-in-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Appropriate Nutrient Management for Wheat Production in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azizurahman%20Sakhizadah">Azizurahman Sakhizadah</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsugiyuki%20Masunaga"> Tsugiyuki Masunaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of sulfur fertilizer by Afghanistan farmers for wheat production has never been practiced, although sulfur deficiency has been expected for wheat production. A field experiment was conducted at Poza e Ishan Research Station Farm, Baghlan province, Afghanistan to examine the effect of sulfur fertilizer on growth and yield components of wheat. The experiment was laid out in randomize complete block design (RCBD), having three replications and eight treatments. The initial soil of experiment was alkaline (pH8.4), with textural class of sandy clay loam, available sulfur (40.8) mg kg-1, and Olsen-P (28.8) mg kg-1. Wheat variety, Kabul 013 was cultivated from November 2015 to June 2016. The recommended doses of nitrogen and Phosphors (Urea and DAP at 250 and 125 kg ha-1) were applied by broadcasting except control plot. Sulfur was applied by foliar spray (K2 SO4) at the rate of 10, 20, and 30 kg ha-1, split at tillering and flowering stages. The results demonstrated that sulfur application positively influenced on growth and yield of wheat crop with combination of nitrogen. Plant did not respond to sole sulfur application. Plant height, spike length, spikelet's number spike-1, were increased and yield g m-2 was also increased by 1.2, 19.1 and 25.1 % for 10, 20 and 30 kg sulfur ha-1 application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur" title="sulfur">sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar" title=" foliar"> foliar</a> </p> <a href="https://publications.waset.org/abstracts/88926/appropriate-nutrient-management-for-wheat-production-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Efficient Method for Inducing Embryos from Isolated Microspores of Durum Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelikha%20Labbani">Zelikha Labbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Durum wheat represents an attractive species to study androgenesis via isolated microspore culture in order to increase the efficiency of androgenic yield in recalcitrant species such as in induction embryogenesis. We describe here an efficient method for inducing embryos from isolated microspores of durum wheat. It is shown that this method, associated with cold alone or cold plus mannitol pretreatment, or mannitol alone of the spikes kept within their sheath leaves during different times, has significant positive effects on embryo production. The aim of this study was, therefore, to test the effect of mannitol 0,3M and cold pretreatment on the quality and quantity of embryos produced from microspore culture from wheat cultivars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20embryogenesis" title="in vitro embryogenesis">in vitro embryogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated%20microspores%20culture" title=" isolated microspores culture"> isolated microspores culture</a>, <a href="https://publications.waset.org/abstracts/search?q=durum%20wheat" title=" durum wheat"> durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatments" title=" pretreatments"> pretreatments</a>, <a href="https://publications.waset.org/abstracts/search?q=mannitol%200.3m" title=" mannitol 0.3m"> mannitol 0.3m</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20pretreatment" title=" cold pretreatment"> cold pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/184559/efficient-method-for-inducing-embryos-from-isolated-microspores-of-durum-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Evaluation of the Contamination of Consumed Wheat and Its Derivatives by Ochratoxinogenic Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zebiri%20Saliha">Zebiri Saliha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ochratoxin A (OTA) is a mycotoxin produced by certain species of the genera Aspergillus and Penicillium, primarily found in cereals, coffee, and grapevine products. Its accumulation in the body can lead to nephrotoxic, teratogenic, immunosuppressive, and carcinogenic effects. The objective of this study is to investigate the contamination of consumed wheat and its derivatives by toxic fungi in Algeria. For this purpose, an analysis of 200 samples was conducted, including 90 samples of durum wheat and common wheat and 110 samples of wheat derivatives collected from mills (semolina and flour manufacturers). The results revealed an average fungal contamination rate ranging from 60% to 100%. The identified fungal isolates primarily belonged to the genera Aspergillus (70%), Penicillium (27.5%), Alternaria (40%), and Mucor (19.4%). The density of the fungal flora was higher in products intended for animal consumption, such as durum wheat flour (2525 CFU/g), wheat scraps (3175 CFU/g), and wheat bran (2950 CFU/g). Conversely, low fungal density was observed in fine semolina (900 CFU/g) and flour (800 CFU/g) intended for human consumption. The genus Penicillium was isolated in 46% of the analyzed samples of durum wheat derivatives and in 62.7% of the analyzed samples of common wheat derivatives. The Aspergillus genus dominated the majority of the analyzed samples. Molecular identification of Aspergillus and Penicillium isolates by sequencing ITS1-5.8S-ITS2 regions of DNAr and a part of the calmodulin (CaM) gene indicated that the species involved in the production of OTA in wheat and its derivatives were mainly Aspergillus ochraceus, A. westerdijkia, A. alliaceus, A. carbonarius, and Penicillium islandicus. The amounts of OTA produced by these species were determined by HPLC-FLD and ranged between 0,8.9 and 3033μg/g. Given that food safety and quality are major concerns today, understanding the microbial biodiversity of wheat is crucial because it is a staple food in Algeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20derivatives" title="wheat derivatives">wheat derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus" title=" Aspergillus"> Aspergillus</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20biodiversity" title=" microbial biodiversity"> microbial biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=OTA" title=" OTA"> OTA</a> </p> <a href="https://publications.waset.org/abstracts/185383/evaluation-of-the-contamination-of-consumed-wheat-and-its-derivatives-by-ochratoxinogenic-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Effect of Green Manuring Jantar (Sesbania acculata. L.) on the Growth and Yield of Crops Grown in Wheat-Based Cropping Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Kamal">Javed Kamal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A proposed field study of wheat-based cropping systems was conducted at Faisalabad (Post-Graduate Research Station). We used 7 treatments and Jantar as a green manuring crop to increase the fertility status of soil; after the vegetative phases of wheat, rice, sorghum, and mungbean, the agronomic parameters of these crops were recorded. Hopefully, all increased with jantar treatment when compared with controls. The benefit: cost ratio and physicochemical characteristics of the soil before and after the crop harvest were also calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benifit%20cost%20ratio" title="benifit cost ratio">benifit cost ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=jantar" title=" jantar"> jantar</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/1683/effect-of-green-manuring-jantar-sesbania-acculata-l-on-the-growth-and-yield-of-crops-grown-in-wheat-based-cropping-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Reaction of Nine Candidate Wheat Lines/Mutants against Leaf Rust: Lodging and Aphid Population under Field Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsan">Muhammad Mohsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehboob%20Ur-Rahman"> Mehboob Ur-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Zulfiqar"> Sana Zulfiqar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumila%20Ashfaq"> Shumila Ashfaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brown Rust (Puccinia triticina), also known as leaf rust, pose a serious threat to wheat cultivation in the world. Nine candidate wheat lines/mutants were subjected to rust inoculation, lodging and aphid population in vivo conditions. Four lines/mutants (E-284, E-505, 2008-6 MR and 2008-14MR) were found resistant to leaf rust attack. Two lines (PGMB 15-29 and 2011-1 MR) displayed moderately resistant reactions against the disease. Three lines/mutants were depicted as susceptible to leaf rust. The lowest population of aphids, i.e., 16.67, was observed on 2008-14MR. Three lines/mutants (NN1-47, NN1-89 and PGMB 15-29) were found under zero level of lodging. The presence and absence of different leaf rust-resistant genes like Lr13, Lr34, Lr46 and Lr67 were assessed with the help of molecular markers. All the wheat lines/mutants were found loaded with leaf rust-resistant genes such as Lr13 and Lr 34, while Lr46 and Lr67 were found in 66% of wheat lines/mutants. The resistant source can be exploited in the breeding program to develop rust, aphid and lodging with race-nonspecific resistant wheat variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20rust" title=" leaf rust"> leaf rust</a>, <a href="https://publications.waset.org/abstracts/search?q=lodging" title=" lodging"> lodging</a>, <a href="https://publications.waset.org/abstracts/search?q=aphid" title=" aphid"> aphid</a> </p> <a href="https://publications.waset.org/abstracts/162424/reaction-of-nine-candidate-wheat-linesmutants-against-leaf-rust-lodging-and-aphid-population-under-field-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Development and Characterization of Wheat Bread with Lupin Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paula%20M.%20R.%20Correia">Paula M. R. Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Gonzaga"> Marta Gonzaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20M.%20Batista"> Luis M. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20Beir%C3%A3o-Costa"> Luísa Beirão-Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20F.%20P.%20Guin%C3%A9"> Raquel F. P. Guiné</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work was to develop an innovative food product with good textural and sensorial characteristics. The product, a new type of bread, was prepared with wheat (90%) and lupin (10%) flours, without the addition of any conservatives. Several experiences were also done to find the most appropriate proportion of lupin flour. The optimized product was characterized considering the rheological, physical-chemical and sensorial properties. The water absorption of wheat flour with 10% of lupin was higher than that of the normal wheat flours, and Wheat Ceres flour presented the lower value, with lower dough development time and high stability time. The breads presented low moisture but a considerable water activity. The density of bread decreased with the introduction of lupin flour. The breads were quite white, and during storage the colour parameters decreased. The lupin flour clearly increased the number of alveolus, but the total area increased significantly just for the Wheat Cerealis bread. The addition of lupin flour increased the hardness and chewiness of breads, but the elasticity did not vary significantly. Lupin bread was sensorially similar to wheat bread produced with WCerealis flour, and the main differences are the crust rugosity, colour and alveolus characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lupin%20flour" title="Lupin flour">Lupin flour</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-chemical%20properties" title=" physical-chemical properties"> physical-chemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorial%20analysis" title=" sensorial analysis"> sensorial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20flour" title=" wheat flour"> wheat flour</a> </p> <a href="https://publications.waset.org/abstracts/30976/development-and-characterization-of-wheat-bread-with-lupin-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Effect of Cadmium and Zinc on Initial Insect Food Chain in Wheat Agroecosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Xaaceph%20Khan">Muhammad Xaaceph Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abida%20Butt"> Abida Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Kausar"> Farah Kausar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to geogenic and anthropogenic factors, heavy metals concentrations increased throughout the world and deposit into soil. Thus available to different plants and travel in different food chains. The present study was designed to achieve bioaccumulation of Cd and Zn in the wheat-aphid-beetle food chain. For this purpose, wheat plants were grown in three different treatments: Cd, Zn, Cd+Zn. Data showed that Cd content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle and seed weight per panicle decreases with increase in Cd content in the soil. Zn content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle, and seed weight per panicle increase with an increase in Zn content in the soil. With the addition of Zn in Cd-treated soil, the uptake of Cd decreases in all parts of wheat plants. Bioaccumulation from wheat plant to aphids and then its predators were also studied. Cd concentration increases from low to high concentration in all arthropods. Same was observed in Zn concentrations, while in Cd+Zn, Cd accumulation decreases but Zn accumulates increases. Health risk index (HRI) also showed that in the presence of Zn, the HRI improves and can help to reduce health risks associated with Cd. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aphid" title="aphid">aphid</a>, <a href="https://publications.waset.org/abstracts/search?q=beetle" title=" beetle"> beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation" title=" bioaccumulation"> bioaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/110262/effect-of-cadmium-and-zinc-on-initial-insect-food-chain-in-wheat-agroecosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> In vitro Evaluation of Prebiotic Potential of Wheat Germ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%C3%ADgia%20Pimentel">Lígia Pimentel</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Pereira"> Miguel Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Pintado"> Manuela Pintado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=by-products" title="by-products">by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20ingredients" title=" functional ingredients"> functional ingredients</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic%20potential" title=" prebiotic potential"> prebiotic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20germ" title=" wheat germ"> wheat germ</a> </p> <a href="https://publications.waset.org/abstracts/31117/in-vitro-evaluation-of-prebiotic-potential-of-wheat-germ" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Marker Assisted Breeding for Grain Quality Improvement in Durum Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Ate%C5%9F%20S%C3%B6nmezo%C4%9Flu">Özlem Ateş Sönmezoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Beg%C3%BCm%20Terzi"> Begüm Terzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y%C4%B1ld%C4%B1r%C4%B1m"> Ahmet Yıldırım</a>, <a href="https://publications.waset.org/abstracts/search?q=Leyla%20G%C3%BCnd%C3%BCz"> Leyla Gündüz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Durum wheat quality is defined as its suitability for pasta processing, that is pasta making quality. Another factor that determines the quality of durum wheat is the nutritional value of wheat or its final products. Wheat is a basic source of calories, proteins and minerals for humans in many countries of the world. For this reason, improvement of wheat nutritional value is of great importance. In recent years, deficiencies in protein and micronutrients, particularly in iron and zinc, have seriously increased. Therefore, basic foods such as wheat must be improved for micronutrient content. The effects of some major genes for grain quality established. Gpc-B1 locus is one of the genes increased protein and micronutrients content, and used in improvement studies of durum wheat nutritional value. The aim of this study was to increase the protein content and the micronutrient (Fe, Zn ve Mn) contents of an advanced durum wheat line (TMB 1) that was previously improved for its protein quality. For this purpose, TMB1 advanced durum wheat line were used as the recurrent parent and also, UC1113-Gpc-B1 line containing the Gpc-B1 gene was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region were selected by marker assisted selection (MAS). BC4F1 plants MAS method was employed in combination with embryo culture and rapid plant growth in a controlled greenhouse conditions in order to shorten the duration of the transition between generations in backcross breeding. The Gpc-B1 gene was selected specific molecular markers. Since Yr-36 gene associated with Gpc-B1 allele, it was also transferred to the Gpc-B1 transferred lines. Thus, the backcrossed plants selected by MAS are resistance to yellow rust disease. This research has been financially supported by TÜBİTAK (112T910). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Durum%20wheat" title="Durum wheat">Durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=Gpc-B1" title=" Gpc-B1"> Gpc-B1</a>, <a href="https://publications.waset.org/abstracts/search?q=MAS" title=" MAS"> MAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20durum" title=" Triticum durum"> Triticum durum</a>, <a href="https://publications.waset.org/abstracts/search?q=Yr-36" title=" Yr-36"> Yr-36</a> </p> <a href="https://publications.waset.org/abstracts/68346/marker-assisted-breeding-for-grain-quality-improvement-in-durum-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10