CINXE.COM
Predicting Failures of Molteno and Baerveldt Glaucoma Drainage Devices Using Machine Learning Models
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Predicting Failures of Molteno and Baerveldt Glaucoma Drainage Devices Using Machine Learning Models</title> <!-- common meta tags --> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <meta name="title" content="Predicting Failures of Molteno and Baerveldt Glaucoma Drainage Devices Using Machine Learning Models"> <meta name="description" content="The purpose of this retrospective study is to measure machine learning models' ability to predict glaucoma drainage device (GDD) failure based on demographic information and preoperative measurements. The medical records of sixty-two patients were used. Potential predictors included the patient's race, age, sex, preoperative intraocular pressure (IOP), preoperative visual acuity, number of IOP-lowering medications, and number and type of previous ophthalmic surgeries. Failure was defined as final IOP greater than 18 mm Hg, reduction in IOP less than 20% from baseline, or need for reoperation unrelated to normal implant maintenance. Five classifiers were compared: logistic regression, artificial neural network, random forest, decision tree, and support vector machine. Recursive feature elimination was used to shrink the number of predictors and grid search was used to choose hyperparameters. To prevent leakage, nested cross-validation was used throughout. Overall, the best classifier was logistic regression"/> <!-- end common meta tags --> <!-- Dublin Core(DC) meta tags --> <meta name="dc.title" content="Predicting Failures of Molteno and Baerveldt Glaucoma Drainage Devices Using Machine Learning Models"> <meta name="citation_author" content="Paul Morrison"> <meta name="citation_author" content="Maxwell Dixon"> <meta name="citation_author" content="Arsham Sheybani"> <meta name="citation_author" content="Bahareh Rahmani"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Computer Science & Information Technology (CS & IT), Vol 10, No.16"> <meta name="dc.date" content="28-11-2020"> <meta name="dc.identifier" content="10.5121/csit.2020.101610"> <meta name="dc.publisher" content="AIRCC Publishing Corporation"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="The purpose of this retrospective study is to measure machine learning models' ability to predict glaucoma drainage device (GDD) failure based on demographic information and preoperative measurements. The medical records of sixty-two patients were used. Potential predictors included the patient's race, age, sex, preoperative intraocular pressure (IOP), preoperative visual acuity, number of IOP-lowering medications, and number and type of previous ophthalmic surgeries. Failure was defined as final IOP greater than 18 mm Hg, reduction in IOP less than 20% from baseline, or need for reoperation unrelated to normal implant maintenance. Five classifiers were compared: logistic regression, artificial neural network, random forest, decision tree, and support vector machine. Recursive feature elimination was used to shrink the number of predictors and grid search was used to choose hyperparameters. To prevent leakage, nested cross-validation was used throughout. Overall, the best classifier was logistic regression.With a small amount of data, the best classifier was logistic regression, but with more data, the best classifier was the random forest. All five classification methods discussed at this research confirm that race effects on failure glaucoma drainage. Use of topical beta-blockers preoperatively is related to device failure. In treating glaucoma medically, prostaglandin equivalents are often first-line with beta-blockers used second-line or as a reasonable alternative first-line agent"/> <!-- Prism meta tags --> <meta name="prism.publicationName" content="Computer Science & Information Technology (CS & IT)"> <meta name="prism.publicationDate" content="28-11-2020"> <meta name="prism.volume" content="10"> <meta name="prism.number" content="16"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="109"> <!-- End Prism meta tags --> <!-- citation meta tags --> <meta name="citation_journal_title" content="Computer Science & Information Technology (CS & IT)"> <meta name="citation_publisher" content="AIRCC Publishing Corporation"> <meta name="citation_author" content="Bahareh Rahmani1"> <meta name="citation_author" content="Paul Morrison"> <meta name="citation_author" content="Arsham Sheybani"> <meta name="citation_author" content="Maxwell Dixon"> <meta name="citation_title" content="Predicting Failures of Molteno and Baerveldt Glaucoma Drainage Devices Using Machine Learning Models"> <meta name="citation_online_date" content="28-11-2020"> <meta name="citation_volume" content="10"> <meta name="citation_issue" content="16"> <meta name="citation_firstpage" content="109"> <meta name="citation_author" content="Eric S. Pahl"> <meta name="citation_author" content="W. Nick Street"> <meta name="citation_author" content="Hans J. Johnson"> <meta name="citation_author" content="Alan I. Reed"> <meta name="citation_doi" content="10.5121/csit.2020.101610"> <meta name="citation_abstract_html_url" content="https://aircconline.com/csit/abstract/v10n16/csit101610.html"> <meta name="citation_pdf_url" content="https://aircconline.com/csit/papers/vol10/csit101610.pdf"> <!-- end citation meta tags --> <!-- Og meta tags --> <meta property="og:site_name" content="AIRCC" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://aircconline.com/csit/abstract/v10n16/csit101610.html"/> <meta property="og:title" content="Predicting Failures of Molteno and Baerveldt Glaucoma Drainage Devices Using Machine Learning Models"> <meta property="og:description" content="The purpose of this retrospective study is to measure machine learning models' ability to predict glaucoma drainage device (GDD) failure based on demographic information and preoperative measurements. The medical records of sixty-two patients were used. Potential predictors included the patient's race, age, sex, preoperative intraocular pressure (IOP), preoperative visual acuity, number of IOP-lowering medications, and number and type of previous ophthalmic surgeries. Failure was defined as final IOP greater than 18 mm Hg, reduction in IOP less than 20% from baseline, or need for reoperation unrelated to normal implant maintenance. Five classifiers were compared: logistic regression, artificial neural network, random forest, decision tree, and support vector machine. Recursive feature elimination was used to shrink the number of predictors and grid search was used to choose hyperparameters. To prevent leakage, nested cross-validation was used throughout. Overall, the best classifier was logistic regression.With a small amount of data, the best classifier was logistic regression, but with more data, the best classifier was the random forest. All five classification methods discussed at this research confirm that race effects on failure glaucoma drainage. Use of topical beta-blockers preoperatively is related to device failure. In treating glaucoma medically, prostaglandin equivalents are often first-line with beta-blockers used second-line or as a reasonable alternative first-line agent. "/> <!-- end og meta tags --> <!-- INDEX meta tags --> <meta name="google-site-verification" content="t8rHIcM8EfjIqfQzQ0IdYIiA9JxDD0uUZAitBCzsOIw" /> <meta name="yandex-verification" content="e3d2d5a32c7241f4" /> <!-- end INDEX meta tags --> <link rel="icon" type="image/ico" href="../img/ico.ico"/> <link rel="stylesheet" type="text/css" href="../main1.css" media="screen" /> <style type="text/css"> a{ color:white; text-decoration:none; line-height:20px; } ul li a{ font-weight:bold; color:#000; list-style:none; text-decoration:none; size:10px;} .imagess { height:90px; text-align:left; margin:0px 5px 2px 8px; float:right; border:none; } #left p { font-family: CALIBRI; font-size: 16px; margin-left: 20px; font-weight: 500; } .right { margin-right: 20px; } #button{ float: left; font-size: 14px; margin-left: 10px; height: 28px; width: auto; background-color: #1e86c6; } </style> </head> <body> <div class="font"> <div id="wap"> <div id="page"> <div id="top"> <form action="https://airccj.org/csecfp/library/Search.php" method="get" target="_blank" > <table width="100%" cellspacing="0" cellpadding="0" > <tr class="search_input"> <td width="665" align="right"> </td> <td width="236" > <input name="title" type="text" value="Enter the paper title" class="search_textbox" onclick="if(this.value=='Enter the paper title'){this.value=''}" onblur="if(this.value==''){this.value='Enter the paper title'}" /> </td> <td width="59"> <input type="image" src="../img/go.gif" /> </td> </tr> <tr> <td colspan="3" valign="top"><img src="../img/top1.gif" alt="Academy & Industry Research Collaboration Center (AIRCC)" /></td> </tr> </table> </form> </div> <div id="font-face"> <div id="menu"> <a href="http://airccse.org">Home</a> <a href="http://airccse.org/journal.html">Journals</a> <a href="http://airccse.org/ethics.html">Ethics</a> <a href="http://airccse.org/conference.html">Conferences</a> <a href="http://airccse.org/past.html">Past Events</a> <a href="http://airccse.org/b.html">Submission</a> </div> <div id="content"> <div id="left"> <h2 class="lighter"><font size="2">Volume 10, Number 16, November 2020</font></h2> <h4 style="text-align:center;height:auto;"><a>Predicting Failures of Molteno and Baerveldt Glaucoma Drainage Devices Using Machine Learning Models</a></h4> <h3> Authors</h3> <p class="#left right" style="text-align:">Paul Morrison<sup>1</sup>, Maxwell Dixon<sup>2</sup>, Arsham Sheybani<sup>2</sup>, Bahareh Rahmani<sup>1, 3</sup>, <sup>1</sup>Fontbonne University, USA, <sup>2</sup>Washington University, USA, <sup>3</sup>Maryville University, USA</p> <h3> Abstract</h3> <p class="#left right" style="text-align:justify">The purpose of this retrospective study is to measure machine learning models' ability to predict glaucoma drainage device (GDD) failure based on demographic information and preoperative measurements. The medical records of sixty-two patients were used. Potential predictors included the patient's race, age, sex, preoperative intraocular pressure (IOP), preoperative visual acuity, number of IOP-lowering medications, and number and type of previous ophthalmic surgeries. Failure was defined as final IOP greater than 18 mm Hg, reduction in IOP less than 20% from baseline, or need for reoperation unrelated to normal implant maintenance. Five classifiers were compared: logistic regression, artificial neural network, random forest, decision tree, and support vector machine. Recursive feature elimination was used to shrink the number of predictors and grid search was used to choose hyperparameters. To prevent leakage, nested cross-validation was used throughout. Overall, the best classifier was logistic regression. <br><br> With a small amount of data, the best classifier was logistic regression, but with more data, the best classifier was the random forest. All five classification methods discussed at this research confirm that race effects on failure glaucoma drainage. Use of topical beta-blockers preoperatively is related to device failure. In treating glaucoma medically, prostaglandin equivalents are often first-line with beta-blockers used second-line or as a reasonable alternative first-line agent. </p> <br> <button type="button" id="button"><a target="blank" href="/csit/papers/vol10/csit101610.pdf">Full Text</a></button> <button type="button" id="button"><a href="http://airccse.org/csit/V10N16.html">Volume 10, Number 16</a></button> <br><br><br><br><br> </div> <div id="right"> <div class="menu_right"> <ul> <li id="id"><a href="http://airccse.org/editorial.html">Editorial Board</a></li> <li><a href="http://airccse.org/arch.html">Archives</a></li> <li><a href="http://airccse.org/indexing.html">Indexing</a></li> <li><a href="http://airccse.org/faq.html" target="_blank">FAQ</a></li> </ul> </div> <div class="clear_left"></div> <br> </div> <div class="clear"></div> <div id="footer"> <table width="100%" > <tr> <td width="46%" class="F_menu"><a href="http://airccse.org/subscription.html">Subscription</a> <a href="http://airccse.org/membership.html">Membership</a> <a href="http://airccse.org/cscp.html">AIRCC CSCP</a> <a href="http://airccse.org/acontact.html">Contact Us</a> </td> <td width="54%" align="right"><a href="http://airccse.org/index.php"><img src="/csit/abstract/img/logo.gif" alt="" width="21" height="24" /></a><a href="http://www.facebook.com/AIRCCSE"><img src="/csit/abstract/img/facebook.jpeg" alt="" width="21" height="24" /></a><a href="https://twitter.com/AIRCCFP"><img src="/csit/abstract/img/twitter.jpeg" alt="" width="21" height="24" /></a><a href="http://cfptech.wordpress.com/"><img src="/csit/abstract/img/index1.jpeg" alt="" width="21" height="24" /></a></td> </tr> <tr><td height="25" colspan="2"> <p align="center">All Rights Reserved ® AIRCC</p> </td></tr> </table> </div> </div> </div> </div> </div> </div> </body> </html>