CINXE.COM
Search results for: garnet
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: garnet</title> <meta name="description" content="Search results for: garnet"> <meta name="keywords" content="garnet"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="garnet" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="garnet"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 27</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: garnet</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Magneto-Optical Properties in Transparent Region of Implanted Garnet Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lali%20Kalanadzde">Lali Kalanadzde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated magneto-optical Kerr effect in transparent region of implanted ferrite-garnet films for the (YBiCa)3(FeGe)5O12. The implantation process was carried out at room temperature by Ne+ ions with energy of 100 KeV and with various doses (0.5-2.5) 1014 ion/cm<sup>2</sup>. We discovered that slight deviation of the plane of external alternating magnetic field from plane of sample leads to appearance intensive magneto-optical maximum in transparent region of garnet films ħω=0.5-2.0 eV. In the proceeding, we have also found that the deviation of polarization plane from P- component of incident light leads to the appearance of the similar magneto-optical effects in this region. The research of magnetization processes in transparent region of garnet films showed that the formation of magneto-optical effects in region ħω<sup>=</sup>0.5-2.3 eV has a rather complex character. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrite-garnet%20films" title="ferrite-garnet films">ferrite-garnet films</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20implantation" title=" ion implantation"> ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-optical" title=" magneto-optical"> magneto-optical</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/68772/magneto-optical-properties-in-transparent-region-of-implanted-garnet-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Effect of Heat Treatment on the Hardness and Abrasiveness of Almandine and Pyrope Garnet for Water-Cutting of Marble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Rabh">Mahmoud Rabh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Garnet has been used for decades as an abrasive in water jet cutting and sand blasting because of its superior physical properties. When added to use in water-cutting process of marble. A standard commercial sample of the mineral was tested in terms of the hardness and abrasiveness properties. The sample was sized to 4 fractions having the size of < 60 um, > 60 < 100 um, > 100 < 180 um > 1280 < 250 and 250 um designated the symbols, FF, MF, MC and C respectively. Each sample was separately heated in controlled conditions at temperatures up to 1000 °C at a heating rate of 10°C/min in an electrically heated chamber furnace. Soaking time at the maximum temperature was up to 6 h. Hardness and abrasiveness properties of the heat treated samples were tested to cut marble having a thickness of 25 mm. Results revealed that H/A of the natural garnet mineral increased by heating at temperatures up to 600°C and exhibited pronounced decrease with higher temperatures up to 1000 °C. Results were explained in the light of a structural irreversible dislocation (SD) of the crystals of garnet almandine Fe2+3Al2Si3O12 and pyrope Mg3Al2Si3O12. Characterization of the mineral was carried out with the help of XRD, SEM and FT-IR measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=garnet%20abrasive" title="garnet abrasive">garnet abrasive</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20jet%20cutting" title=" water jet cutting"> water jet cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20abrasiveness" title=" hardness abrasiveness"> hardness abrasiveness</a> </p> <a href="https://publications.waset.org/abstracts/36369/effect-of-heat-treatment-on-the-hardness-and-abrasiveness-of-almandine-and-pyrope-garnet-for-water-cutting-of-marble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Preparation of Nano-Sized Samarium-Doped Yttrium Aluminum Garnet </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tabatabaee">M. Tabatabaee</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Binavayan"> N. Binavayan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Nateghi"> M. R. Nateghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research nano-size of yttrium aluminum garnet (YAG) containing lanthanide metals was synthesized by the sol-gel method in presente citric acid as a complexing agent. Samarium (III) was used to synthesis of YAG:M3+. The prepared powders were characterized by powder X-ray diffraction (PXRD). The size distribution and morphology of the samples were analyzed by scanning electron microscopy (SEM). XRD results show that Sm, La, and ce doped YAG crystallizes in the cubic system and additional peaks compared to pure YAG can be assigned to the presence of Sm in the synthesize YAG. The SEM images show possess spherical nano-sized particle with average 50 nm in diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title="citric acid">citric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20particle" title=" nano particle"> nano particle</a>, <a href="https://publications.waset.org/abstracts/search?q=samarium" title=" samarium"> samarium</a>, <a href="https://publications.waset.org/abstracts/search?q=yttrium%20aluminum%20garnet" title=" yttrium aluminum garnet"> yttrium aluminum garnet</a> </p> <a href="https://publications.waset.org/abstracts/23331/preparation-of-nano-sized-samarium-doped-yttrium-aluminum-garnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Kharbouch">Zakaria Kharbouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Bouchaara"> Mustapha Bouchaara</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Elkouihen"> F. Elkouihen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Habbal"> A. Habbal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ratnani"> A. Ratnani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Faik"> A. Faik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20batteries" title="lithium batteries">lithium batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=all-solid-state%20batteries" title=" all-solid-state batteries"> all-solid-state batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20electrolytes" title=" solid state electrolytes"> solid state electrolytes</a> </p> <a href="https://publications.waset.org/abstracts/181943/collaborative-data-refinement-for-enhanced-ionic-conductivity-prediction-in-garnet-type-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Participation of Titanium Influencing the Petrological Assemblage of Mafic Dyke: Salem, South India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoti%20Banerjee">Ayoti Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Meenakshi%20Banerjee"> Meenakshi Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of metamorphic reaction textures is important in contributing to our understanding of the evolution of metamorphic terranes. Where preserved, they provide information on changes in the P-T conditions during the metamorphic history of the rock, and thus allow us to speculate on the P-T-t evolution of the terrane. Mafic dykes have attracted the attention of petrologists because they act as window to mantle. This rock represents a mafic dyke of doleritic composition. It is fine to medium grained in which clinopyroxene are enclosed by the lath shaped plagioclase grains to form spectacular ophitic texture. At places, sub ophitic texture was also observed. Grains of pyroxene and plagioclase show very less deformation typically plagioclase showing deformed lamella along with plagioclase-clinopyroxene-phyric granoblastic fabric within a groundmass of feldspar microphenocrysts and Fe–Ti oxides. Both normal and reverse zoning were noted in the plagioclase laths. The clinopyroxene grains contain exsolved phases such as orthopyroxene, plagioclase, magnetite, ilmenite along the cleavage traces and the orthopyroxene lamella form granules in the periphery of the clinopyroxene grains. Garnet corona also develops preferentially around plagioclase at the contact of clinopyroxene, ilmenite or magnetite. Tiny quartz and K-fs grains showed symplectic intergrowth with garnet at a few places. The product quartz formed along with garnet rims the coronal garnet and the reacting clinopyroxene. Thin amphibole corona formed along the periphery of deformed plagioclase and clinopyroxene occur as patches over the magmatic minerals. The amphibole coronas cannot be assigned to a late magmatic stage and are interpreted as reactive being restricted to the contact between clinopyroxene and plagioclase, thus postdating the crystallization of both. The amphibole and garnet do not share grain boundary in the entire rock and is thus pointing towards simultaneous crystallization. Olivine is absent. Spectacular myrmekitic growth of orthoclase and quartz rimming the plagioclase is consistent with the potash metasomatic effects that is also found in other rocks of this region. These textural features are consistent with a phase of fluid induced metamorphism (retrogression). But the appearance of coronal garnet and amphibole exclusive of each other reflects the participation if Ti as the prime reason. Presence of Ti as a reactant phase is a must for amphibole forming reactions whereas it is not so in case of garnet forming reactions although the reactants are the same plagioclase and clinopyroxene in both cases. These findings are well validated by petrographical and textural analysis. In order to obtain balanced chemical reactions that explain formation of amphibole and garnet in the mafic dyke rocks a matrix operation technique called Singular Value Decomposition (SVD) was adopted utilizing the measured chemical compositions of the minerals. The computer program C-Space was used for this purpose and the required compositional matrix. Data fed to C-Space was after doing cation-calculation of the oxide percentages obtained from EPMA analysis. The Garnet-Clinopyroxene geothermometer yielded a temperature of 650 degrees Celsius. The Garnet-Clinopyroxene-Plagioclase geobarometer and Al-in amphibole yielded roughly 7.5 kbar pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corona" title="corona">corona</a>, <a href="https://publications.waset.org/abstracts/search?q=dolerite" title=" dolerite"> dolerite</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermometer" title=" geothermometer"> geothermometer</a>, <a href="https://publications.waset.org/abstracts/search?q=metasomatism" title=" metasomatism"> metasomatism</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphic%20reaction%20texture" title=" metamorphic reaction texture"> metamorphic reaction texture</a>, <a href="https://publications.waset.org/abstracts/search?q=retrogression" title=" retrogression"> retrogression</a> </p> <a href="https://publications.waset.org/abstracts/66268/participation-of-titanium-influencing-the-petrological-assemblage-of-mafic-dyke-salem-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Facial Partial Unilateral Lentiginosis Treated with Low-Fluence Q-Switched 1,064-Nm Neodymium-Doped Yttrium Aluminum Garnet Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=En%20Hyung%20Kim">En Hyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partial unilateral lentiginosis (PUL) is an unusual pigmentary disorder characterized by numerous lentigines grouped within an area of normal skin. Although treatment is not necessary, many patients with facial PUL seek medical help for cosmetic reasons. There is no established standard treatment for PUL. Conventional lasers may cause postinflammatory hyperpigmentation because keratinocytes are injured during the process. Also scarring, long downtime and pain are important issues. Case: A 19-year-old patient with facial PUL was treated with 1064-nm Q-Switched Neodymium-Doped Yttrium Aluminum Garnet (QS Nd:YAG) laser. The patient was treated at one-week intervals starting with a spot size of 6 mm, a fluence of 2.5 J/cm2 and a pulse rate of 10 Hz with 1-2 passes of slow sliding technique with approximately 5-15 % overlap. The fluence was elevated to 3 J/cm2 after the 4th session according to treatment response and patient tolerance. After 10 treatment sessions the lesions were remarkably improved. Discussion: Although the exact mechanism by which low fluence 1,064-nm QS Nd:YAG laser improves pigmentary lesions is unclear, the term ‘subcellular selective photothermolysis’ and ‘melanocyte apoptosis and replacement’ have been proposed. If appropriate measures are taken to monitor patient response during and after the procedure, low fluence 1064-nm QS Nd:YAG laser may achieve good cosmetic result in the treatment of PUL with a very safe and effective profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20toning" title="laser toning">laser toning</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20fluence" title=" low fluence"> low fluence</a>, <a href="https://publications.waset.org/abstracts/search?q=1064-nm%20Q-switched%20neodymium-doped%20yttrium%20aluminum%20garnet%20laser" title=" 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser"> 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20unilateral%20lentiginosis" title=" partial unilateral lentiginosis"> partial unilateral lentiginosis</a> </p> <a href="https://publications.waset.org/abstracts/72818/facial-partial-unilateral-lentiginosis-treated-with-low-fluence-q-switched-1064-nm-neodymium-doped-yttrium-aluminum-garnet-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Evaluation and Provenance Studies of Heavy Mineral Deposits in Recent Sediment of Ologe Lagoon, South Western, Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayowa%20Philips%20Ibitola">Mayowa Philips Ibitola</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinade-Solomon%20Olorunfemi"> Akinade-Solomon Olorunfemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abe%20Oluwaseun%20Banji"> Abe Oluwaseun Banji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy minerals studies were carried out on eighteen sediment samples from Ologe lagoon located at Lagos Barrier complex, with the aim of evaluating the heavy mineral deposits and determining the provenance of the sediments. The samples were subjected to grain analysis techniques in order to collect the finest grain size. Separation of heavy minerals from the samples was done with the aid of bromoform to enable petrographic analyses of the heavy mineral suite, under the polarising microscope. The data obtained from the heavy mineral analysis were used in preparing histograms and pie chart, from which the individual heavy mineral percentage distribution and ZTR index were derived. The percentage composition of the individual heavy mineral analyzed are opaque mineral 63.92%, Zircon 12.43%, Tourmaline 5.79%, Rutile 13.44%, Garnet 1.74% and Staurolite 3.52%. The calculated zircon, tourmaline, rutile index in percentage (ZTR) varied between 76.13 -92.15%, average garnet-zircon index (GZI), average rutile-zircon index (RuZI) and average staurolite-zircon index values in all the stations are 16.18%, 54.33%, 25.11% respectively. The mean ZTR index percentage value is 85.17% indicates that the sediments within the lagoon are mineralogically matured. The high percentage of zircon, rutile, and tourmaline indicates an acid igneous rock source for the sediments. However, the low percentage of staurolite, rutile and garnet occurrence indicates sediment of metamorphic rock source input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lagoon" title="lagoon">lagoon</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20mineral" title=" heavy mineral"> heavy mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=ZTR%20index" title=" ZTR index"> ZTR index</a> </p> <a href="https://publications.waset.org/abstracts/90033/evaluation-and-provenance-studies-of-heavy-mineral-deposits-in-recent-sediment-of-ologe-lagoon-south-western-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Effect of Sintering Temperature on Transport Properties of Garnet-Type Solid-State Electrolytes for Energy Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Farooq">U. Farooq</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Samson"> A. Samson</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thangadurai"> V. Thangadurai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Edwards"> R. Edwards</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, an impressive research has been conducted to introduce the solid-state electrolytes for the future energy storage devices like Li-ion batteries more specifically. In this work we tried to prepare a ceramic electrolyte (Li6.5 La2.5 Ba0.5 Nb Zr O12(LLBNZO)) and sintered the pallets of as-prepared material at elevated temperature like 1050, 1100, 1150 and 1200 °C. The objective to carry out this research was to observe the effect of temperature on porosity, density and transport properties of materials. Preliminary results suggest that the material sintered at higher temperature could show enhanced performance in terms of fast ionic transport. This enhancement in performance can be attributed to low porosity of materials which is result of high temperature sintering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20battery" title="solid state battery">solid state battery</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte" title=" electrolyte"> electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=garnet%20structures" title=" garnet structures"> garnet structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20battery" title=" Li-ion battery"> Li-ion battery</a> </p> <a href="https://publications.waset.org/abstracts/42973/effect-of-sintering-temperature-on-transport-properties-of-garnet-type-solid-state-electrolytes-for-energy-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Deepak">D. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yagnesh%20Sharma"> N. Yagnesh Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasive%20water%20jet%20machining" title="abrasive water jet machining">abrasive water jet machining</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20kinetic%20energy" title=" jet kinetic energy"> jet kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20pressure" title=" operating pressure"> operating pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Garnet%20abrasive" title=" Garnet abrasive"> Garnet abrasive</a> </p> <a href="https://publications.waset.org/abstracts/27545/numerical-analysis-on-the-effect-of-abrasive-parameters-on-wall-shear-stress-and-jet-exit-kinetic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Investigating the Pathfinding Elements and Indicator Minerals of Au as the Main Geological Signatures for Au Ore Discovery at Kubi Gold Deposit, Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20K.%20Nzulu">Gabriel K. Nzulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans%20H%C3%B6gberg"> Hans Högberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Eklund"> Per Eklund</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Hultman"> Lars Hultman</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Magnuson"> Martin Magnuson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) are applied to investigate the properties of rock samples from a drill hole from the Kubi Gold Project of the Asante Gold Corporation near Dunwka-on-Offin in the Central Region of Ghana. The distribution of these minerals in the rocks were observed in the drill hole sections. X-ray diffraction indicates that the samples contain garnet, pyrite, periclase, and quartz as the main indicator minerals. SEM revealed morphologies of these minerals. From EDX and XPS, Fe, Mg, Al, S, O, Hg, Ti, Mn, Na, Ag, Au, Cu, Si, and K are identified as the pathfinder elements in the area that either form alloys with gold or inherent elements in the sediments. This finding can be ascribed to primary geochemical distribution, which developed from crystallization of magma and hydrothermal liquids as well as the movement of metasomatic elements and the precipitous rate of chemical weathering of lateralization in secondary processes. The results indicate that Au mineralization in the Kubi Mine area is controlled by garnet, pyrite, goethite, and kaolinite that grades up to the surface (oxides) with hematite and limonite alterations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=pathfinder%20element" title=" pathfinder element"> pathfinder element</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a> </p> <a href="https://publications.waset.org/abstracts/157979/investigating-the-pathfinding-elements-and-indicator-minerals-of-au-as-the-main-geological-signatures-for-au-ore-discovery-at-kubi-gold-deposit-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Standard Gibbs Energy of Formation and Entropy of Lanthanide-Iron Oxides of Garnet Crystal Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Varazashvili">Vera Varazashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Murman%20Tsarakhov"> Murman Tsarakhov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Mirianashvili"> Tamar Mirianashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Teimuraz%20Pavlenishvili"> Teimuraz Pavlenishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tengiz%20Machaladze"> Tengiz Machaladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mzia%20Khundadze"> Mzia Khundadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity and by using the semi-empirical method for calculation of ΔH298.15 (formation). Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title="calorimetry">calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20capacity" title=" heat capacity"> heat capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20energy%20of%20formation" title=" Gibbs energy of formation"> Gibbs energy of formation</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20iron%20garnets" title=" rare earth iron garnets"> rare earth iron garnets</a> </p> <a href="https://publications.waset.org/abstracts/28451/standard-gibbs-energy-of-formation-and-entropy-of-lanthanide-iron-oxides-of-garnet-crystal-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Photoluminescent Properties of Noble Metal Nanoparticles Supported Yttrium Aluminum Garnet Nanoparticles Doped with Cerium (Ⅲ) Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitsunobu%20Iwasaki">Mitsunobu Iwasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Akifumi%20Iseda"> Akifumi Iseda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yttrium aluminum garnet doped with cerium (Ⅲ) ions (Y3Al5O12:Ce3+, YAG:Ce3+) has attracted a great attention because it can efficiently convert the blue light into a very broad yellow emission band, which produces white light emitting diodes and is applied for panel displays. To improve the brightness and resolution of the display, a considerable attention has been directed to develop fine phosphor particles. We have prepared YAG:Ce3+ nanophosphors by environmental-friendly wet process. The peak maximum of absorption spectra of surface plasmon of Ag nanopaticles are close to that of the excitation spectra (460 nm) of YAG:Ce3+. It can be expected that Ag nanoparticles supported onto the surface of YAG:Ce3+ (Ag-YAG:Ce3+) enhance the absorption of Ce3+ ions. In this study, we have prepared Ag-YAG:Ce3+ nanophosphors and investigated their photoluminescent properties. YCl3・6H2O and AlCl3・6H2O with a molar ratio of Y:Al=3:5 were dissolved in ethanol (100 ml), and CeCl3•7H2O (0.3 mol%) was further added to the above solution. Then, NaOH (4.6×10-2 mol) dissolved in ethanol (50 ml) was added dropwise to the mixture under reflux over 2 hours, and the solution was further refluxed for 1 hour. After cooling to room temperature, precipitates in the reaction mixture were heated at 673 K for 1 hour. After the calcination, the particles were immersed in AgNO3 solution for 1 hour, followed by sintering at 1123 K for 1 hour. YAG:Ce3+ were confirmed to be nanocrystals with a crystallite size of 50-80 nm in diameter. Ag nanoparticles supported onto YAG:Ce3+ were single nanometers in diameter. The excitation and emission spectra were 454 nm and 539 nm at a maximum wavelength, respectively. The emission intensity was maximum for Ag-YAG:Ce3+ immersed into 0.5 mM AgCl (Ag-YAG:Ce (0.5 mM)). The absorption maximum (461 nm) was increased for Ag-YAG:Ce3+ in comparison with that for YAG:Ce3+, indicating that the absorption was enhanced by the addition of Ag. The external and internal quantum efficiencies became 11.2 % and 36.9 % for Ag-YAG:Ce (0.5 mM), respectively. The emission intensity and absorption maximum of Ag-YAG:Ce (0.5 mM)×n (n=1, 2, 3) were increased with an increase of the number of supporting times (n), respectively. The external and internal quantum efficiencies were increased for the increase of n, respectively. The external quantum efficiency of Ag-YAG:Ce (0.5 mM) (n=3) became twice as large as that of YAG:Ce. In conclusion, Ag nanoparticles supported onto YAG:Ce3+ increased absorption and quantum efficiency. Therefore, the support of Ag nanoparticles enhanced the photoluminescent properties of YAG:Ce3+. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmon" title="plasmon">plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=yttrium%20aluminum%20garnet" title=" yttrium aluminum garnet"> yttrium aluminum garnet</a> </p> <a href="https://publications.waset.org/abstracts/28061/photoluminescent-properties-of-noble-metal-nanoparticles-supported-yttrium-aluminum-garnet-nanoparticles-doped-with-cerium-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Mineralogy and Thermobarometry of Xenoliths in Basalt from the Chanthaburi-Trat Gem Fields, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apichet%20Boonsoong">Apichet Boonsoong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Chanthaburi-Trat basalts, xenoliths are composed of essentially ultramafic xenoliths (particularly spinel lherzolite) with a few of an aggregate of feldspar. Some 19 ultramafic xenoliths were collected from 13 different locations. They range in size from 3.5 to 60mm across. Most are weathered and oxidized on the surface but fresh samples are obtained from cut surfaces. Chemical analyses were performed on carbon-coated polished thin sections using a fully automated CAMECA SX-50 electron microprobe (EMPA) in wavelength-dispersive mode. In thin section, they are seen to consist of variable amounts of olivine, clinopyroxene, orthopyroxene with minor spinel and plagioclase, and are classed as lherzolite. Modal compositions of the ultramafic nodules vary with olivine (60-75%), clinopyroxene (20-30%), orthopyroxene (0-15%), minor spinel (1-3%) and plagioclase (<1%). The essential minerals form an equigranular, medium- to coarse-grained, granoblastic texture, and all are in mutual contact indicating attainment of equilibrium. Reaction rims are common along the nodule margins and in some are also present along grain boundaries. Zoning occurs in clinopyroxene, and to a lesser extent in orthopyroxene. The homogeneity of mineral compositions in lherzolite xenoliths suggests the attainment of equilibrium. The equilibration temperatures of these xenoliths are estimated to be in the range of 973 to 1063°C. Pressure estimates are not so easily obtained because no suitable barometer exists for garnet-free lherzolites and so an indirect method was used. The general mineral assemblage of the lherzolite xenoliths and the absence of garnet indicate a pressure range of approximately 12–19kbar, which is equivalent to depths approximately of 38 to 60km. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chanthaburi-trat%20basalts" title="chanthaburi-trat basalts">chanthaburi-trat basalts</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel%20lherzolite" title=" spinel lherzolite"> spinel lherzolite</a>, <a href="https://publications.waset.org/abstracts/search?q=xenoliths" title=" xenoliths"> xenoliths</a>, <a href="https://publications.waset.org/abstracts/search?q=973%20to%201063%C2%B0C" title=" 973 to 1063°C"> 973 to 1063°C</a>, <a href="https://publications.waset.org/abstracts/search?q=38%20to%2060km" title=" 38 to 60km"> 38 to 60km</a> </p> <a href="https://publications.waset.org/abstracts/92834/mineralogy-and-thermobarometry-of-xenoliths-in-basalt-from-the-chanthaburi-trat-gem-fields-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Regional Metamorphism of the Loki Crystalline Massif Allochthonous Complex of the Caucasus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Shengelia">David Shengelia</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Chichinadze"> Giorgi Chichinadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamara%20Tsutsunava"> Tamara Tsutsunava</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Beridze"> Giorgi Beridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Irakli%20Javakhishvili"> Irakli Javakhishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Loki pre-Alpine crystalline massif crops out within the Caucasus region. The massif basement is represented by the Upper Devonian gneissose quartz-diorites, the Lower-Middle Paleozoic metamorphic allochthonous complex, and different magmatites. Earlier, the metamorphic complex was considered as indivisible set represented by the series of different temperature metamorphits. The degree of metamorphism of separate parts of the complex is due to different formation conditions. This fact according to authors of the abstract was explained by the allochthonous-flaky structure of the complex. It was stated that the complex thrust over the gneissose quartz diorites before the intrusion of Sudetic granites. During the detailed mapping, the authors turned out that the metamorphism issues need to be reviewed and additional researches to be carried out. Investigations were accomplished by using the following methodologies: finding of key sections, a sampling of rocks, microscopic description of the material, analytical determination of elements in the rocks, microprobe analysis of minerals and new interpretation of obtained data. According to the author’s recent data within the massif four tectonic plates: Lower Gorastskali, Sapharlo-Lok-Jandari, Moshevani and “mélange” overthrust sheets have been mapped. They differ from each other by composition, the degree of metamorphism and internal structure. It is confirmed that the initial rocks of the tectonic plates formed in different geodynamic conditions during overthrusting due to tectonic compression form a thick tectonic sheet. Based on the detailed laboratory investigations additional mineral assemblages were established, temperature limits were specified, and a renewed trend of metamorphism facies and subfacies was elaborated. The results are the following: 1. The Lower Gorastskali overthrust sheet is a fragment of ophiolitic association corresponding to the Paleotethys oceanic crust. The main rock-forming minerals are carbonate, chlorite, spinel, epidote, clinoptilolite, plagioclase, hornblende, actinolite, hornblende, albite, serpentine, tremolite, talc, garnet, and prehnite. Regional metamorphism of rocks corresponds to the greenschist facies lowest stage. 2. The Sapharlo-Lok-Jandari overthrust sheet metapelites are represented by chloritoid, chlorite, phengite, muscovite, biotite, garnet, ankerite, carbonate, and quartz. Metabasites containing actinolite, chlorite, plagioclase, calcite, epidote, albite, actinolitic hornblende and hornblende are also present. The degree of metamorphism corresponds to the greenschist high-temperature chlorite, biotite, and low-temperature garnet subfacies. Later the rocks underwent the contact influence of Late Variscan granites. 3. The Moshevani overthrust sheet is represented mainly by metapelites and rarely by metabasites. Main rock-forming minerals of metapelites are muscovite, biotite, chlorite, quartz, andalusite, plagioclase, garnet and cordierite and of metabasites - plagioclase, green and blue-green hornblende, chlorite, epidote, actinolite, albite, and carbonate. Metamorphism level corresponds to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies as well. 4. The “mélange” overthrust sheet is built of different size rock fragments and blocks of Moshevani and Lower Gorastskali overthrust sheets. The degree of regional metamorphism of first and second overthrust sheets of the Loki massif corresponds to chlorite, biotite, and low-temperature garnet subfacies, but of the third overthrust sheet – to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regional%20metamorphism" title="regional metamorphism">regional metamorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20massif" title=" crystalline massif"> crystalline massif</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20assemblages" title=" mineral assemblages"> mineral assemblages</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Caucasus" title=" the Caucasus"> the Caucasus</a> </p> <a href="https://publications.waset.org/abstracts/106824/regional-metamorphism-of-the-loki-crystalline-massif-allochthonous-complex-of-the-caucasus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Comparison of Safety and Efficacy between Thulium Fibre Laser and Holmium YAG Laser for Retrograde Intrarenal Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Poudyal">Sujeet Poudyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: After Holmium:yttrium-aluminum-garnet (Ho: YAG) laser has revolutionized the management of urolithiasis, the introduction of Thulium fibre laser (TFL) has already challenged Ho:YAG laser due to its multiple commendable properties. Nevertheless, there are only few studies comparing TFL and holmium laser in Retrograde Intrarenal Surgery(RIRS). Therefore, this study was carried out to compare the efficacy and safety of thulium fiber laser (TFL) and holmium laser in RIRS. Methods: This prospective comparative study, which included all patients undergoing laser lithotripsy (RIRS) for proximal ureteric calculus and nephrolithiasis from March 2022 to March 2023, consisted of 63 patients in Ho:YAG laser group and 65 patients in TFL group. Stone free rate, operative time, laser utilization time, energy used, and complications were analysed between the two groups. Results: Mean stone size was comparable in TFL (14.23±4.1 mm) and Ho:YAG (13.88±3.28 mm) group, p-0.48. Similarly, mean stone density in TFL (1269±262 HU) was comparable to Ho:YAG (1189±212 HU), p-0.48. There was significant difference in lasing time between TFL (12.69±7.41 mins) and Ho:YAG (20.44±14 mins), p-0.012). TFL group had operative time of 43.47± 16.8 mins which was shorter than Ho:YAG group (58±26.3 mins),p-0.005. Both TFL and Ho:YAG groups had comparable total energy used(11.4±6.2 vs 12±8 respectively, p-0.758). Stone free rate was 87%for TFL, whereas it was 79.5% for Ho:YAG, p-0.25). Two cases of sepsis and one ureteric stricture were encountered in TFL, whereas three cases suffered from sepsis apart from one ureteric stricture in Ho:YAG group, p-0.62). Conclusion: Thulium Fibre Laser has similar efficacy as Holmium: YAG Laser in terms of safety and stone free rate. However, due to better stone ablation rate in TFL, it can become the game changer in management of urolithiasis in the coming days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retrograde%20intrarenal%20surgery" title="retrograde intrarenal surgery">retrograde intrarenal surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=thulium%20fibre%20laser" title=" thulium fibre laser"> thulium fibre laser</a>, <a href="https://publications.waset.org/abstracts/search?q=holmium%3Ayttrium-aluminum-garnet%20%28ho%3Ayag%29%20laser" title=" holmium:yttrium-aluminum-garnet (ho:yag) laser"> holmium:yttrium-aluminum-garnet (ho:yag) laser</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrolithiasis" title=" nephrolithiasis"> nephrolithiasis</a> </p> <a href="https://publications.waset.org/abstracts/168964/comparison-of-safety-and-efficacy-between-thulium-fibre-laser-and-holmium-yag-laser-for-retrograde-intrarenal-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumlachew%20Zelalem%20Walle">Kumlachew Zelalem Walle</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Chen%20Yang"> Chun-Chen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 (<a href="/cdn-cgi/l/email-protection" class="__cf_email__" data-cfemail="f1bd98bf97b1bdb6c1dfc3c4bdabbeb7">[email protected]</a>) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8 10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-voltage%20cathodes" title="high-voltage cathodes">high-voltage cathodes</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20solid%20electrolytes" title=" hybrid solid electrolytes"> hybrid solid electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=garnet" title=" garnet"> garnet</a>, <a href="https://publications.waset.org/abstracts/search?q=graphitic-carbon%20nitride%20%28g-C3N4%29" title=" graphitic-carbon nitride (g-C3N4)"> graphitic-carbon nitride (g-C3N4)</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF-8%20MOF" title=" ZIF-8 MOF"> ZIF-8 MOF</a> </p> <a href="https://publications.waset.org/abstracts/175160/garnet-based-bilayer-hybrid-solid-electrolyte-for-high-voltage-cathode-material-modified-with-composite-interface-enabler-on-lithium-metal-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Thermal Stability and Electrical Conductivity of Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M = Zn, Ni Measured by Impedance Spectroscopy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20S.%20Tolkacheva">Anna S. Tolkacheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20N.%20Shkerin"> Sergey N. Shkerin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20G.%20Zemlyanoi"> Kirill G. Zemlyanoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20G.%20Reznitskikh"> Olga G. Reznitskikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20D.%20Khavlyuk"> Pavel D. Khavlyuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium oxovanadates with garnet related structure are multifunctional oxides in various fields like photoluminescence, microwave dielectrics, and magneto-dielectrics. For example, vanadate garnets are self-luminescent compounds. They attract attention as RE-free broadband excitation and emission phosphors and are candidate materials for UV-based white light-emitting diodes (WLEDs). Ca₅M₄(VO₄)₆ (M = Mg, Zn, Co, Ni, Mn) compounds are also considered promising for application in microwave devices as substrate materials. However, the relation between their structure, composition and physical/chemical properties remains unclear. Given the above-listed observations, goals of this study are to synthesise Ca₅M₄(VO₄)₆ (M = Mg, Zn, Ni) and to study their thermal and electrical properties. Solid solutions Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M is Zn and Ni have been synthesized by sol-gel method. The single-phase character of the final products was checked by powder X-ray diffraction on a Rigaku D/MAX-2200 X-ray diffractometer using Cu Kα radiation in the 2θ range from 15° to 70°. The dependence of thermal properties on chemical composition of solid solutions was studied using simultaneous thermal analyses (DSC and TG). Thermal analyses were conducted in a Netzch simultaneous analyser STA 449C Jupiter, in Ar atmosphere, in temperature range from 25 to 1100°C heat rate was 10 K·min⁻¹. Coefficients of thermal expansion (CTE) were obtained by dilatometry measurements in air up to 800°C using a Netzsch 402PC dilatometer; heat rate was 1 K·min⁻¹. Impedance spectra were obtained via the two-probe technique with an impedance meter Parstat 2273 in air up to 700°C with the variation of pH₂O from 0.04 to 3.35 kPa. Cation deficiency in Ca and Mg sublattice under the substitution of MgO with ZnO up to 1/6 was observed using Rietveld refinement of the crystal structure. Melting point was found to decrease with x changing from 0 to 4 in Ca₅Mg₄₋ₓMₓ(VO₄)₆ where M is Zn and Ni. It was observed that electrical conductivity does not depend on air humidity. The reported study was funded by the RFBR Grant No. 17–03–01280. Sample attestation was carried out in the Shared Access Centers at the IHTE UB RAS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=garnet%20structure" title="garnet structure">garnet structure</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20expansion" title=" thermal expansion"> thermal expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/84064/thermal-stability-and-electrical-conductivity-of-ca5mg4mvo46-0-x-4-where-m-zn-ni-measured-by-impedance-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Varazashvili">Vera Varazashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Murman%20Tsarakhov"> Murman Tsarakhov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Mirianashvili"> Tamar Mirianashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Teimuraz%20Pavlenishvili"> Teimuraz Pavlenishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tengiz%20Machaladze"> Tengiz Machaladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mzia%20Khundadze"> Mzia Khundadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title="calorimetry">calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy" title=" enthalpy"> enthalpy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20capacity" title=" heat capacity"> heat capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=gibbs%20energy%20of%20formation" title=" gibbs energy of formation"> gibbs energy of formation</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20iron%20garnets" title=" rare earth iron garnets"> rare earth iron garnets</a> </p> <a href="https://publications.waset.org/abstracts/28939/thermodynamic-approach-of-lanthanide-iron-double-oxides-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> COVID in Pregnancy: Evaluating Maternal and Neonatal Complications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexa%20L.%20Walsh">Alexa L. Walsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Hartl"> Christine Hartl</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliette%20Ferdschneider"> Juliette Ferdschneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Lezode%20Kipoliongo"> Lezode Kipoliongo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Feketeova"> Eleonora Feketeova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation of COVID-19 and its effects has been at the forefront of clinical research since its emergence in the United States in 2020. Although the possibility of severe infection in immunocompromised individuals has been documented, within the general population of pregnant individuals, there remains to be vaccine hesitancy and uncertainty regarding how the virus may affect the individual and fetus. To combat this hesitancy, this study aims to evaluate the effects of COVID-19 infection on maternal and neonatal complication rates. This retrospective study was conducted by manual chart review of women who were diagnosed with COVID-19 during pregnancy (n = 78) and women who were not diagnosed with COVID-19 during pregnancy (n = 1,124) that gave birth at Garnet Health Medical Centers between 1/1/2019-1/1/2021. Both the COVID+ and COVID- groups exhibited similar median ages, BMI, and parity. The rates of complications were compared between the groups and statistical significance was determined using Chi-squared analysis. Results demonstrated a statistically higher rate of PROM, polyhydramnios, oligohydramnios, GDM, DVT/PE, preterm birth, and the overall incidence of any birth complication in the population that was infected with COVID-19 during their pregnancy. With this information, obstetrical providers can be better prepared for the management of COVID-19+ pregnancies and continue to educate their patients on the benefits of vaccination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complications" title="complications">complications</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=Gynecology" title=" Gynecology"> Gynecology</a>, <a href="https://publications.waset.org/abstracts/search?q=Obstetrics" title=" Obstetrics"> Obstetrics</a> </p> <a href="https://publications.waset.org/abstracts/162526/covid-in-pregnancy-evaluating-maternal-and-neonatal-complications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Optical Bands Splitting in Tm₃Fe₅O₁₂ Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vidyasagar">R. Vidyasagar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20S.%20Vilela"> G. L. S. Vilela</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Guiraldelli"> B. M. Guiraldelli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Henriques"> A. B. Henriques</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20%20Moodera"> J. Moodera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-scaled magnetic systems that can have both magnetic and optical transitions controlled and manipulated by external means have received enormous research attention for their potential applications in magneto-optics and spintronic devices. Among several ferrimagnetic insulators, the Tm₃Fe₅O₁₂ (TmIG) has become a prototype material displaying huge perpendicular magnetic anisotropy. Nevertheless, the optical properties of nano-scale TnIG films have not yet been investigated. We report the observation of giant splitting in the optical transitions of high-quality thin films of Tm₃Fe₅O₁₂ (TmIG) grown by rf sputtering on gadolinium gallium garnet substrates (GGG-111) substrate. The optical absorbance profiles measured with optical absorption spectroscopy show a dual optical transition in visible frequency regimes attributed to the transitions of electrons from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to the Fe-2p⁵3d⁶ excitonic states at the Γ-symmetric point of the TmIG Brillouin zone. When the thickness of the film is reduced from 120 nm to 7.5 nm, the 1st optical transition energy shifted from 2.98 to 3.11 eV ( ~130 meV), and the 2nd transition energy shifted from 2.62 to 2.56 eV (~ 60 meV). The giant band splitting of both transitions can be attributed to the population of excited states associated with the atomic modification pertaining to the compressive or tensile strains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20transitions" title="optical transitions">optical transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrimagnetic%20insulator" title=" ferrimagnetic insulator"> ferrimagnetic insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=strains" title=" strains"> strains</a> </p> <a href="https://publications.waset.org/abstracts/186490/optical-bands-splitting-in-tm3fe5o12-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Heavy Minerals Distribution in the Recent Stream Sediments of Diyala River Basin, Northeastern Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20R.%20Ali">Abbas R. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Daroon%20Hasan%20Khorsheed"> Daroon Hasan Khorsheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twenty one samples of stream sediments were collected from the Diyala River Basin (DRB), which represent one of three major tributaries of the Tigris River at northeastern Iraq. This study is concerned with the heavy minerals (HM) analysis in the + 63μ m fraction of the Diyala River sediments, distribution pattern in the various river basin sectors, as well as comparing the present results with previous works.The metastable heavy minerals (epidote, staurolite, garnet) represent more than (30%) Whereas the ultrastable heavy minerals (pyroxene and amphibole) make only about (19 %). Opaques are present in high proportions reaching about (29%) as an average. The ultrastable (zircon, tourmaline, rutile) heavy minerals are the miner constituents (7%) in the sediments.According to the laboratory analytical data of heavy mineral distributions the studied sediments are derived from mafic and ultramafic rocks are found in northeastern Iraq that represent Walash – Nawpordan Series and Mawat complexes in Zagros zones. The presence of zircon and tourmaline in trace amounts may give an indication for the weak role of acidic rocks in the source area whereas the epidote group minerals give an indication for the role of metamorphic rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20minerals" title="heavy minerals">heavy minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20distribution" title=" mineral distribution"> mineral distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=recent%20stream%20sediment" title=" recent stream sediment"> recent stream sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=Diyala%20river" title=" Diyala river"> Diyala river</a>, <a href="https://publications.waset.org/abstracts/search?q=northeastern%20Iraq" title=" northeastern Iraq "> northeastern Iraq </a> </p> <a href="https://publications.waset.org/abstracts/20950/heavy-minerals-distribution-in-the-recent-stream-sediments-of-diyala-river-basin-northeastern-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Microdiamond and Moissanite Inclusions in Garnets from Pohorje Mountains, Eastern Alps, Slovenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirijam%20Vrabec">Mirijam Vrabec</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Janak"> Marian Janak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojan%20Ambrozic"> Bojan Ambrozic</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelja%20K.%20Surca"> Angelja K. Surca</a>, <a href="https://publications.waset.org/abstracts/search?q=Nastja%20Rogan%20Smuc"> Nastja Rogan Smuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Zupancic"> Nina Zupancic</a>, <a href="https://publications.waset.org/abstracts/search?q=Saso%20Sturm"> Saso Sturm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural microdiamonds and moissanite (SiC) can form during the orogenic events under ultrahigh-pressure metamorphic conditions (UHP), when parts of Earth’s crust are subducted to extreme depths. So far, such processes were identified only in few places on the Earth, and therefore, represent unique opportunity to study the evolution of the Earth’s deep interior. An important discovery of microdiamonds and moissanite was reported from Pohorje, (Slovenia), where they occurred as single or polyphase inclusions in garnets. Metasedimentary rocks from Pohorje are predominantly gneisses representing parts of the Austroalpine metamorphic units of the Eastern Alps. During Cretaceous orogeny, (ca. 95–92 Ma) continental crustal rocks were deeply subducted to the mantle depths (below 100 km) and metamorphosed at pressures exceeding 3.5 GPa and temperatures between 800–850 °C. Microstructural and phase analysis of the inclusions as well as detailed elemental analysis of host garnets were carried out combining several analytical techniques: optical microscope in plane polarized transmitted light, electron probe microanalysis (EPMA) with wavelength-dispersive x-ray spectrometry (WDS) and field-emission scanning microscope (FEG-SEM) with energy-dispersive x-ray spectroscopy (EDS). Micro-Raman analysis revealed sharp, first order diamond bands sometimes accompanied by graphite bands implying that transformation of diamond back to graphite occurred. To study the chemical and crystallographic relationship between microdiamonds and co-inclusions, advanced techniques of transmission electron microscopy (TEM) were applied, which included high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), combined with EDS and electron energy-loss spectroscopy (EELS). To prepare electron transparent TEM lamellae selectively a dual-beam Focused Ion Beam/SEM (FIB/SEM) was employed. Detailed study of TEM lamellae, which was cross-sectioned from the highly faceted inclusion body located within the host garnet crystal matrix, revealed rich and rather complex internal structure. Namely, the negative crystal facets of the main inclusion body were typically decorated with up to 1 μm thick amorphous layer, reflecting the general garnet composition with slight variations in Fe/Ca content. Within these layers, ELNES analysis revealed the presence of a 28–30 nm thick layer of amorphous carbon. The very last section of this layer corresponds to composition of SiO2. Within the inclusion, besides diamond and moissanite alumosilicate mineral with pronounced layered structure, iron sulfides and chlorine were identified under TEM and CO2 and CH4 using Raman. Moissanite is found as single crystal or composed from numerous highly textured nano-crystals with the average size of 10 nm. Moissanite inclusions were found embedded inside the amorphous crust implying that moissanite crystalized well before the deposition of the amorphous layer. From the microstructural, crystallographic and chemical observations so far we can deduce, that polyphase inclusions in diamond bearing garnets from Pohorje most probably crystallized from reduced supercritical fluids. Based on layered interface structure of the host mineral multiphase process of crystallization is possible. The presence of microdiamonds and moissanite in rocks from Pohorje demonstrates that these parts of the Eastern Alps were subducted to extreme depths, and were subsequently exhumed back to the Earth's surface without complete breakdown of UHP mineral phases, allowing a rear and exceptional opportunity to study them in-situ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond" title="diamond">diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusions" title=" fluid inclusions"> fluid inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=moissanite" title=" moissanite"> moissanite</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=UHP%20metamorphism." title=" UHP metamorphism."> UHP metamorphism.</a> </p> <a href="https://publications.waset.org/abstracts/76623/microdiamond-and-moissanite-inclusions-in-garnets-from-pohorje-mountains-eastern-alps-slovenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Genesis of Talc Bodies in Relation to the Mafic-Ultramafic Rocks around Wonu, Ibadan-Apomu Area, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morenike%20Abimbola%20Adeleye">Morenike Abimbola Adeleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Temidayo%20Bolarinwa"> Anthony Temidayo Bolarinwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genesis of talc bodies around Wonu, Ibadan-Apomu area, southwestern Nigeria, has been speculative due to inadequate compositional data on the talc and the mafic-ultramafic protoliths. Petrography, morphology, using scanning electron microscope, mineral chemistry, X-ray diffraction, and major, trace and rare-earth element compositions of the talc and the mafic-ultramafic in the area were undertaken with a view to determine the genesis of the talc bodies. Fine-grained amphibolite and lherzolite are the major mafic-ultramafic rocks in the study area. The amphibolite is fine-grained, composed of amphiboles, pyroxenes plagioclase, K-feldspar, ilmenite, magnetite, and garnet. The lherzolite and talc are composed of olivines, pyroxenes, amphiboles, and plagioclase. Alteration minerals include serpentine, amesite, talc, Cr-bearing clinochlore, and ferritchromite. Cr-spinel, pyrite, and magnetite are the accessory minerals present. Alteration of olivines, pyroxenes, and amphiboles to talc and chlinochlore; and spinel to ferritchchromite by hydrothermal (H₂O-CO₂-Cl-HF) fluids, provided by the granitic intrusions in the area, showed retrograde metasomatism of amphibolites to greenschist facies at 500-550ºC. This led to the formation of talc, amesite, anthophyllite, actinolite, and tremolite. The Al₂O₃-Fe₂O₃+TiO₂-MgO discrimination diagram suggests tholeiitic protolith for the amphibolite and komatitic protolith for the lherzolite. The lherzolite has flat rare-earth element patterns typical of komatiites and dunites. The Al₂O₃/TiO₂ ratios, Ce/Nb vs. Th/Nb, Cr-TiO₂, TiO₂ vs. Al₂O₃, and Nd vs. Nb discrimination diagrams indicated that the talcs are from two-parent sources: altered metacarbonates and tholeiitic basalts (amphibolites) to komatitic basalts (lherzolites). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphibolites" title="amphibolites">amphibolites</a>, <a href="https://publications.waset.org/abstracts/search?q=lherzolites" title=" lherzolites"> lherzolites</a>, <a href="https://publications.waset.org/abstracts/search?q=talc" title=" talc"> talc</a>, <a href="https://publications.waset.org/abstracts/search?q=komatiite" title=" komatiite"> komatiite</a> </p> <a href="https://publications.waset.org/abstracts/121689/genesis-of-talc-bodies-in-relation-to-the-mafic-ultramafic-rocks-around-wonu-ibadan-apomu-area-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Geochemical and Mineralogical Characters of the Coastal Plain Sediments of the Arabian Gulf, Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Ahmed%20Aly%20Elhabab">Adel Ahmed Aly Elhabab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Adsani"> Ibrahim Adsani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with detailed geochemical and mineralogical studies of the coastal plain sediments formed along the shoreline of the Arabian Gulf area, Kuwait. These deposits are mainly fluviomarine and beach sands. The coastal plain deposits of the central Kuwait shoreline zone were found to consist of average medium-grained sand. The sand composed, on average of about 90% sand, and about 10% or less is mud, and has a unimodal distribution with a mode of medium sand (1-2 ф). The sediments consist mainly quartz, Feldspar, clay minerals with carbonate minerals (detritus calcite and dolomite) and rock fragments (chert). The mineralogy of the clay fractions of the sediments is dominated by illite, palygorskite, mixed layer illite-montmorillonite with minor amounts of chlorite and Kaolinite Heavy minerals are concentrated in the very fine sand fraction and are dominated by opaque minerals, and non opaque minerals which represented by amphiboles, pyroxenes, epidotes, dolomite, zircon, tourmaline, rutile, garnet and other which represented by Staurolite, Kyanite, Andalusite and Sillimenite as a trace amounts. The chemical analysis for the detrital amphibole grains from sandstone of coastal plain sediments shows the following features; the grains which have (Na+K) <0.50 its composition ranges from actino hornblende to magnesio hornblende, but the grains which have (Na+K) >0.50 its composition have wide variation and on the (Na+K)-AlIV diagram can be characterized two association: Association 1 which characterized by low amount of AlIV and low amount of (Na+K), by comparing the chemical composition of this association and the chemical composition of amphibole grains from older basement rock, can be say, these association may be derived from metamorphic source rocks and association 2 which characterized by high amount of AlIV and low amount of (Na+K), may be derived from volcanic source rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20area" title=" coastal area"> coastal area</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20probe%20micro%20analyzer%20%28EPMA%29" title=" electro probe micro analyzer (EPMA)"> electro probe micro analyzer (EPMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=fluviomarine%20sediments" title=" fluviomarine sediments"> fluviomarine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20minerals" title=" heavy minerals"> heavy minerals</a> </p> <a href="https://publications.waset.org/abstracts/38146/geochemical-and-mineralogical-characters-of-the-coastal-plain-sediments-of-the-arabian-gulf-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Peculiar Mineralogical and Chemical Evolution of Contaminated Igneous Rocks at a Gabbro-Carbonate Contact, Wadai Bayhan, Yemen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murad%20Ali">Murad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoji%20Arai"> Shoji Arai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khedr"> Mohamed Khedr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukhtar%20Nasher"> Mukhtar Nasher</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawki%20Nasr"> Shawki Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Wadi Bayhan area of southeastern Yemen is about 60 km NW of Al-Bayda city in the Al-Bayda uplift terrane at the southeast margin of the Arabian-Nubian Shield. Intrusion of alkali gabbro into carbonate rocks apparently produced an 8m to 10 m thick reaction zone at the contact. This had been identified as nepheline pyroxenite. We have observed this to be mineralogically zoned with calc-silicate assemblages (e.g. pyroxene, calcite, spinel, garnet and melilite). The presence of melilite implies a skarn. The sinuous embayed pyroxenite-skarn contact, the presence of skarn minerals in pyroxenite, and textural evidence for growth of calc-silicate skarn by replacement of both carbonate rocks and solid pyroxenite indicate that reaction involved assimilation of carbonate wall rock by magma and loss of Al and Si to the skarn. Textural relationships between minerals provide evidence for a metasomatic development of the skarn at the expense of the pyroxenite. This process, related to the circulation of fluids equilibrated with carbonates, is responsible for those pyroxenite-spinel (± calcite) skarns. The uneven modal distribution of euhedral pyroxenite and enveloping nepheline in pyroxenite, the restricted occurrence of alkali gabbro as dikes in pyroxenite and skarn and the leucocratic matrix of pyroxenite suggest that pyroxenite represents an accumulation of titanaugite cemented by an alkali-rich residual magma and that alkali gabbro represents a part of the residual contaminated magma that was squeezed out of the pyroxene crystal mush. Carbonate assimilation is modeled by reaction of calcite and magmatic plagioclase, which results in resorption of plagioclase, growth of pyroxene enriched in Ca, Fe, Ti, and Al, and solution of nepheline in residual contaminated magma. The composition of nepheline pyroxenite evolved by addition of Ca from dissolved carbonate rocks, loss of Al and Si to skarn, and local segregation of solid pyroxene and alkali gabbro magma. The predominance of pyroxenite among contaminated rocks and their restriction to a large zone along the intrusive contact provide little evidence for the genesis of a significant volume of alkaline magmatic surroundings by carbonate assimilation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yemen" title="Yemen">Yemen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wadi%20Bayhan" title=" Wadi Bayhan"> Wadi Bayhan</a>, <a href="https://publications.waset.org/abstracts/search?q=skarn" title=" skarn"> skarn</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroxenite" title=" pyroxenite"> pyroxenite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonatite" title=" carbonatite"> carbonatite</a>, <a href="https://publications.waset.org/abstracts/search?q=metasomatic" title=" metasomatic"> metasomatic</a> </p> <a href="https://publications.waset.org/abstracts/15617/peculiar-mineralogical-and-chemical-evolution-of-contaminated-igneous-rocks-at-a-gabbro-carbonate-contact-wadai-bayhan-yemen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Strategic Metals and Rare Earth Elements Exploration of Lithium Cesium Tantalum Type Pegmatites: A Case Study from Northwest Himalayas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auzair%20Mehmood">Auzair Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Arif"> Mohammad Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LCT (Li, Cs and Ta rich)-type pegmatites, genetically related to peraluminous S-type granites, are being mined for strategic metals (SMs) and rare earth elements (REEs) around the world. This study investigates the SMs and REEs potentials of pegmatites that are spatially associated with an S-type granitic suite of the Himalayan sequence, specifically Mansehra Granitic Complex (MGC), northwest Pakistan. Geochemical signatures of the pegmatites and some of their mineral extracts were analyzed using Inductive Coupled Plasma Mass Spectroscopy (ICP-MS) technique to explore and generate potential prospects (if any) for SMs and REEs. In general, the REE patterns of the studied whole-rock pegmatite samples show tetrad effect and possess low total REE abundances, strong positive Europium (Eu) anomalies, weak negative Cesium (Cs) anomalies and relative enrichment in heavy REE. Similar features have been observed on the REE patterns of the feldspar extracts. However, the REE patterns of the muscovite extracts reflect preferential enrichment and possess negative Eu anomalies. The trace element evaluation further suggests that the MGC pegmatites have undergone low levels of fractionation. Various trace elements concentrations (and their ratios) including Ta versus Cs, K/Rb (Potassium/Rubidium) versus Rb and Th/U (Thorium/Uranium) versus K/Cs, were used to analyze the economically viable mineral potential of the studied rocks. On most of the plots, concentrations fall below the dividing line and confer either barren or low-level mineralization potential of the studied rocks for both SMs and REEs. The results demonstrate paucity of the MGC pegmatites with respect to Ta-Nb (Tantalum-Niobium) mineralization, which is in sharp contrast to many Pan-African S-type granites around the world. The MGC pegmatites are classified as muscovite pegmatites based on their K/Rb versus Cs relationship. This classification is consistent with the occurrence of rare accessory minerals like garnet, biotite, tourmaline, and beryl. Furthermore, the classification corroborates with an earlier sorting of the MCG pegmatites into muscovite-bearing, biotite-bearing, and subordinate muscovite-biotite types. These types of pegmatites lack any significant SMs and REEs mineralization potentials. Field relations, such as close spatial association with parent granitic rocks and absence of internal zonation structure, also reflect the barren character and hence lack of any potential prospects of the MGC pegmatites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploration" title="exploration">exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=Himalayas" title=" Himalayas"> Himalayas</a>, <a href="https://publications.waset.org/abstracts/search?q=pegmatites" title=" pegmatites"> pegmatites</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a> </p> <a href="https://publications.waset.org/abstracts/90355/strategic-metals-and-rare-earth-elements-exploration-of-lithium-cesium-tantalum-type-pegmatites-a-case-study-from-northwest-himalayas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Beg">Anwar Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Sireetorn%20Kuharat"> Sireetorn Kuharat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Mehmood"> Rashid Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabil%20Tabassum"> Rabil Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Babaie"> Meisam Babaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-orthogonal%20stagnation-point%20heat%20transfer" title="non-orthogonal stagnation-point heat transfer">non-orthogonal stagnation-point heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20nano-polymer%20coating" title=" solar nano-polymer coating"> solar nano-polymer coating</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20numerical%20quadrature" title=" MATLAB numerical quadrature"> MATLAB numerical quadrature</a>, <a href="https://publications.waset.org/abstracts/search?q=Variational%20Iterative%20Method%20%28VIM%29" title=" Variational Iterative Method (VIM)"> Variational Iterative Method (VIM)</a> </p> <a href="https://publications.waset.org/abstracts/96804/oblique-radiative-solar-nano-polymer-gel-coating-heat-transfer-and-slip-flow-manufacturing-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>